
communications in

analysis and geometry

Volume 12, Number 1, 345-388, 2004

1 + 1 Wave Maps into Symmetric Spaces

Chuu-Lian Terng
1

and Karen Uhlenbeck
2

We explain how to apply techniques from integrable systems
to construct 2k-soliton homoclinic wave maps from the periodic
Minkowski space S1 × R1 to a compact Lie group, and more gen-
erally to a compact symmetric space. We give a correspondence
between solutions of the −1 flow equation associated to a com-
pact Lie group G and wave maps into G. We use Bäcklund trans-
formations to construct explicit 2k-soliton breather solutions for
the −1 flow equation and show that the corresponding wave maps
are periodic and homoclinic. The compact symmetric space G/K
can be embedded as a totally geodesic submanifold of G via the
Cartan embedding. We prescribe the constraint condition for the
−1 flow equation associated to G which insures that the corre-
sponding wave map into G actually lies in G/K. For example,
when G/K = SU(2)/SO(2) = S2 , the constrained −1-flow equa-
tion associated to SU(2) has the sine-Gordon equation (SGE) as
a subequation and classical breather solutions of the SGE are 2-
soliton breathers. Thus our result generalizes the result of Shatah
and Strauss that a classical breather solution of the SGE gives rise
to a periodic homoclinic wave map to S2. When the group G is
non-compact, the bi-invariant metric on G is pseudo-Riemannian
and Bäcklund transformations of a smooth solution often are sin-
gular. We use Bäcklund transformations to show that there exist
smooth initial data with constant boundary conditions and finite
energy such that the Cauchy problem for wave maps from R1,1 to
the pseudo-Riemannian manifold SL(2, R) develops singularities in
finite time.

1Research supported in part by NSF Grant DMS-0306446.
2Research supported in part by Sid Richardson Regents’ Chair Funds, University

of Texas system and NSF Grant DMS-0305505.

345



346 C.-L. Terng and K. Uhlenbeck

1. Introduction.

A smooth map s : M → N between two pseudo-Riemannian manifolds is
called harmonic if it is a critical point of the functional

J(s) =
1
2

∫
M
〈dsp, dsp〉pdv, (1.1)

where 〈 , 〉p is the natural bilinear form induced from the metrics on TMp

and TNs(p), and dv is the volume form of M associated to its metric. When
the domain manifold is Riemannian, the Euler-Lagrange equation of J is
elliptic, and is the natural non-linear generalization of the Laplace-Beltrami
equation. There is an extensive literature in geometry and physics on elliptic
harmonic maps. When the domain manifold is the Lorentz space M =
Rn,1, the equations are non-linear wave equations, and the solution maps
are referred to as wave maps . When the target manifold N is a Lie Group
G, these equations have a particularly simple form. For M = R

1,1, the
equation for s : R1,1 → G is

(s−1st)t = (s−1sx)x, (1.2)

and a solution is called a 1+1 wave map into G. This equation in light cone
(characteristic) coordinates

ξ =
x + t

2
, η =

x− t
2

,

takes the form
(s−1sξ)η = −(s−1sη)ξ, (1.3)

which can be encoded in a Lax pair, i.e., s is a 1+1 wave map if and only if[
∂

∂ξ
+

(1− λ)
2

s−1sξ,
∂

∂η
+

(1− λ−1)
2

s−1sη

]
= 0

for all λ ∈ C \ {0}. Because of this Lax formulation, the 1 + 1 wave map
equation (1.2) is an integrable system.

In this paper we describe how to apply methods from integrable systems
to construct periodic and homoclinic wave maps to Lie groups and more
generally to symmetric spaces. We will use a closely related integrable non-
linear wave equation, the −1 flow equation associated to G. This is the first
order semi-linear wave system for (a, u, v) : R

1,1 → G × G × G:⎧⎪⎨⎪⎩
at = ax,

ut = ux − [a, v],
vt = −vx − [u, v],

(1.4)
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where G is the Lie algebra of G. The −1 flow equation also has a Lax pair,
namely (a, u, v) is a solution of the −1 flow equation if and only if[

∂

∂ξ
+ aλ+ u,

∂

∂η
+ λ−1v

]
= 0

for all λ ∈ C \ {0}, where ξ, η are characteristic coordinates. The name −1
flow comes from the standard convention in the theory of soliton equations
and we give a brief explanation next.

There is a hierarchy of soliton flows associated to each Lie group G. The
Lax pair of the j-th flow in the G-hierarchy is of the form[

∂

∂x
+ aλ+ u,

∂

∂t
+ bλj +Q1λ

j−1 + · · ·+Qj

]
= 0

with a, b, u, Qi in G. For example, the focusing non-linear Schrödinger equa-
tion (NLS)

qt =
i

2
(qxx + 2|q|2q)

and the complex modified KdV equation

qt = −1
4
(qxxx + 6|q|2qx)

are the second and third flows in the SU(2)-hierarchy.
The Lax pairs of the wave map equation and the −1 flow equation are

gauge equivalent, which in turn gives an equivalence between solutions of the
−1 flow equation associated to G and wave maps s : R1,1 → G with s(0, 0) =
I the identity. This is analogous to the Hasimoto transformation between the
focusing NLS and the Heisenberg magnetic model equation. If a solution of
the −1 flow equation associated to G satisfies a certain constraint (a reality
condition) coming from an involution σ of G, then the corresponding wave
map to G is in fact a wave map to the symmetric space G/K (here K is the
fixed point set of σ). When G = SU(2) and σ(g) = (gt)−1, the constrained
−1-flow equation is equivalent to the equation for wave maps from R1.1 to S2.
Moreover, this constrained −1 flow equation associated to SU(2) contains
the sine-Gordon equation (SGE),

qtt − qxx = sin q,

as a subequation.
Shatah and Strauss prove in [3] that wave maps into S2 corresponding

to classical breather solutions of the SGE are homoclinic, when viewed as
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wave maps from S1 × R
1 to S2, in the sense that their limits as t → ∞

and as t → −∞ are the same. Our study of periodic 1 + 1 wave maps into
symmetric spaces was inspired by their paper.

To explain the method we use to construct homoclinic wave maps from
S1 × R to a symmetric space, we need to give a brief review of Bäcklund
transformations in integrable systems (cf. [5]). First note that given smooth
gl(n,C) valued maps A,B on R2, the condition that A,B satisfy[

∂

∂ξ
+ A,

∂

∂η
+ B

]
= 0

is equivalent to the existence of the trivialization E such that

Eξ = EA, Eη = EB, E(0, 0) = I.

Now let (a, u, v) be a solution of the −1 flow, and E(ξ, η, λ) the trivialization
of the corresponding Lax pair, i.e.,

Eξ = E (aλ+ u), Eη = λ−1Ev, E(0, 0, λ) = I.

Since the coefficients of the above differential equation are holomorphic in
the parameter λ ∈ C \ {0}, E(ξ, η, λ) is holomorphic in λ ∈ C \ {0}. The
basic idea of a Bäcklund transformation is that given a linear fractional map
from S2 = C ∪{∞} to GL(n,C) of the form g(λ) = I + P

λ−z for some z ∈ C

and P ∈ gl(n), we can use residue calculus to choose a gl(n)-valued map P̃

defined in an open neighborhood O of (0, 0) in the (ξ, η)-plane so that

Ẽ(ξ, η, λ) = g(λ)E(ξ, η, λ)g̃(ξ, η, λ)−1

is holomorphic in λ ∈ C \ {0} for each (ξ, η) ∈ O, where g̃ = I + P̃
λ−z . By a

direct computation, one can see that

Ẽ−1Ẽξ = aλ+ ũ, Ẽ−1Ẽη = λ−1ṽ

for some ũ, ṽ defined on O. Hence (a, ũ, ṽ) is again a solution of the −1
equation. We call

(a, u, v) �→ g • (a, u, v) := (a, ũ, ṽ)

a Bäcklund transformation of the −1 flow equation. We notice that the
classical breather solutions of SGE can be constructed from the vacuum
solution q = 0 by applying Bäcklund transformations twice with carefully
placed poles. Therefore we can apply Bäcklund transformations 2k times to
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construct 2k-soliton breathers for SGE. We show that corresponding wave
maps into S2 are also homoclinic. In fact, we generalize results of Shatah
and Strauss to 1 + 1 wave maps into any compact symmetric spaces.

Note that if a ∈ G is a constant, then (a, 0, a) is a trivial solution of the
−1 flow equation, and the k-soliton solutions of the −1 flow equation can be
constructed by applying Bäcklund transformations to it k times. If we choose
a so that exp(2πa) = I and place the poles of the Bäcklund transformations
carefully, then we can obtain k-solitons of the −1-flow equations, that are
periodic in time or in space. Such solutions are called k-soliton breathers .
The wave maps into G corresponding to k-soliton breathers are periodic in
the space variable. Wave maps from S1 × R to G are called periodic wave
maps into G. The wave map corresponding to the trivial solution (a, 0, a) of
the −1 flow equation is a stationary wave map into G, which is the geodesic
γ(x) = exp(ax) in G. We apply Bäcklund transformations to these solutions
to construct explicit k-soliton periodic wave maps. Moreover, we compute
the asymptotic behavior of these periodic wave maps and prove that they are
homoclinic. We also construct explicitly 2k-soliton homoclinic wave maps
from S1 × R into CPn and 4k-soliton homoclinic wave maps into Sn−1.

When G is compact, a wave map from R
1,1 to G corresponding to a

general k-soliton solution of the −1 flow equation usually oscillates as the
space variable |x| → ∞, i.e., does not have constant boundary conditions at
infinity. To construct wave maps into G that have good boundary conditions
and finite energy, we first note that a wave map to a circle subgroup T of
G is given essentially by a solution of the linear wave equation, so wave
maps to T with finite energy and good boundary conditions at ±∞ can be
written down easily, and Bäcklund transformations of such wave maps are
again wave maps having finite energy and constant boundary conditions at
infinity.

The Lax pair of the defocusing NLS

qt =
i

2
(qxx − 2|q|2q)

satisfies the reality condition coming from the non-compac group SU(1, 1),
and does not have smooth solitons. The theorem that Bäcklund transfor-
mations do not introduce singularities applies only to the reality condition
coming from a compact Lie group. Unfortunately there are many interest-
ing geometric problems in integrable systems for which solutions obtained
via Bäcklund transformations do have singularities. Nevertheless, Bäcklund
transformations can still be used in the non-compact case to construct in-
teresting examples as we will see next with G = SL(2,R).
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It is known that the Cauchy problem for wave maps from R
1,1 to a

complete Riemannian manifold N with smooth initial data in L2
1 has long

time existence (cf. [1]). But this is no longer true if we replace N by a
pseudo-Riemannian manifold. There are counterexamples for N = SL(2,R)
equipped with the pseudo-Riemannian bi-invariant metric.

This paper is organized as follows. In section 2, we review the Lagrangian
formulation of wave maps from R1,1 to G and the corresponding Lax pair. In
section 3, we give the Hamiltonian formalism for wave maps and compute the
stable and unstable modes at stationary solutions. In section 4, we prove the
Lax pair of the −1 flow equation associated to G is gauge equivalent to the
Lax pair of the equation for wave maps into G, and give a bijection between
solutions of the −1 flow equation and wave maps s satisfying s(0, 0) = I. In
section 5, we review Bäcklund transformations for the −1 flow equation as-
sociated to SU(n), and apply these transformations to stationary wave maps
to construct explicit k-soliton wave maps from S1 × R to SU(2). In section
6, we prove the wave maps to SU(2) corresponding to 2k-soliton breather
solutions are homoclinic. In section 7, we explain the constraint condition
for the −1 flow equation associated to SU(2) so that the corresponding wave
maps into SU(2) = S3 lie in S2. In section 8, we first recall a useful descrip-
tion of the compact symmetric space G/K imbedded as a totally geodesic
submanifold in G, and then prescribe the constraint condition for the −1
flow associated to G that insures that the corresponding wave maps into G
actually lie in a symmetric space. We emphasize the important case of wave
maps into S2 = SU (2)

SO(2) , into CPn−1, and into Sn−1. Finally in section 9, we
use Bäcklund transformations to construct examples of smooth Cauchy data
with constant boundary conditions at infinity and finite energy such that
the Cauchy problem for wave maps from R1,1 to SL(2,R) have long time
existence and also examples of initial data that develop singularities in finite
time.

2. Wave map equation and its Lax pair.

We rewrite (1.3) as a first order system. Let P = s−1sξ, and Q = s−1sη, i.e.,

sξ = sP, sη = sQ. (2.1)

The compatibility condition of the linear system (2.1) is

QP + Pη = PQ+Qξ,

or equivalently,
Pη −Qξ = PQ−QP = [P.Q]. (2.2)
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Combine equations (2.2) and (1.3) to see that the wave map equation in
characteristic coordinates is

Pη = −Qξ =
1
2
[P,Q],

i.e.,

(s−1sξ)η = −(s−1sη)ξ =
1
2

[s−1sξ , s
−1sη ]. (2.3)

In other words, we have

Proposition 2.1. Let (ξ, η) denote the light cone coordinate system of R
1,1.

If s : R1.1 → SU(n) is a wave map, then A = 1
2s

−1sξ and B = 1
2s

−1sη satisfy
the first order system

Aη = −Bξ = [A,B]. (2.4)

Conversely, if (A,B) is a solution of (2.4), then there exists a unique s :
R1,1 → SU(n) such that

sξ = 2sA, sη = 2sB, s(0, 0) = I.

Moreover, s satisfies (1.3), i.e., s is a wave map.

Next we formulate equation (2.4) as the condition for a family of con-
nections to be flat. Recall that the curvature of a gl(n)-valued connection{

∂

∂ξ
+ P,

∂

∂η
+Q

}
is defined to be

F =
[
∂

∂ξ
+ P,

∂

∂η
+Q

]
= −Pη +Qξ + [P,Q].

The connection is flat if the curvature is zero. So the compatibility con-
dition (2.2) for linear system (2.1) is also the condition for the connection{
∂
∂ξ + P, ∂

∂η +Q
}

to be flat. Another convenient way to write connection
is as a gl(n)-valued 1-form

θ = A dξ +B dη.

Then the curvature is

dθ + θ ∧ θ = (−Aη + Bξ + [A,B]) dξ ∧ dη.

It is easy to see that the following statements are equivalent for smooth
maps A,B : R

2 → gl(n):
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1.
[
∂
∂x + A(x, t), ∂

∂t +B(x, t)
]

= 0,

2. The connection 1-form θ = Adx+Bdt is flat, i.e., dθ = −θ ∧ θ.

3. At −Bx = [A,B].

4. Ex = EA, Et = EB, E(0, 0) = I has a unique solution E : R2 →
GL(n). Such E is called the trivialization of the flat connection A dx+
B dt (normalized at (0, 0)).

The wave map equation has a Lax pair (cf. [7, 6]), i.e., there is a one
parameter family of sl(n,C)-valued connection 1-forms Ωλ on R

1,1 defined
in terms of s : R1,1 → SU(n) and its derivatives so that Ωλ is flat for all
λ ∈ C \ {0} if and only if s satisfies (1.3). We explain this next. Given
A,B : R1,1 → su(n) and λ ∈ C \ {0}, consider the following gl(n,C)-valued
connection 1-form on R

1,1:

Ωλ = (1− λ)A dξ + (1− λ−1)B dη.

We claim that Ωλ is flat for all λ ∈ C
∗ if and only if (A,B) is a solution of

(2.4). To see this, note that Ωλ is flat is equivalent to

(1− λ)Aη − (1− λ−1)Bξ = [(1− λ)A, (1− λ−1)B] = (2− λ− λ−1)[A,B]

for all λ ∈ C \ {0}. Equate the coefficients of λ−1, λ and constant term to
get ⎧⎪⎨⎪⎩

Aη = [A,B],
Aη − Bξ = 2[A,B],
Bξ = −[A,B].

This is equivalent to (2.4), and we prove the claim. We summarize our
discussions:

Proposition 2.2. ([6, 7]). Let s : R
1,1 → SU(n) be a smooth map, (ξ, η)

the light cone coordinate system, and

A =
1
2
(s−1sξ), B =

1
2
(s−1sη).

Then the following statements are equivalent:

1. s is a wave map.

2. s is a solution of (1.3).
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3. (A,B) is a solution of (2.4).

4. The connection 1-form

Ωλ = (1− λ)A dξ + (1− λ−1)B dη (2.5)

is flat for all λ ∈ C \ {0},

Corollary 2.3. If A,B : R1,1 → su(n) satisfy equation (2.4), then there
exists E(x, t, λ) such that

E−1Eξ = (1− λ)A, E−1Eη = (1− λ−1)B, E(0, 0, λ) = I

for all λ ∈ C \ {0}, i.e., E(·, ·, λ) is the trivialization of the Lax pair Ωλ

defined by (2.5). Moreover, s(ξ, η) = E(ξ, η,−1) is a wave map from R1,1 to
SU(n), s−1sξ = 2A, and s−1sη = 2B.

A direct computation implies that the Lax pair Ωλ of the wave map
equation satisfies the following reality condition:

Ω∗̄
λ

+ Ωλ = 0, (2.6)

where ξ∗ = ξ̄t. We claim that the trivialization E(x, t, λ) of Ωλ satisfies the
reality condition

E(x, t, λ̄)∗E(x, t, λ) = I, (2.7)

or equivalently,
E(x, t, λ)−1 = E(x, t, λ̄)∗.

To see this, let F (x, t, λ) = (E(x, t, λ̄)∗)−1. A direct computation implies
that F−1dF = −Ω∗̄

λ
, which is equal to Ωλ. But F (0, 0, λ) = I. Since both

E and F satisfy the same linear differential equation with the same initial
condition, the uniqueness of ODE implies that E = F . This proves the
claim.

The λ parameter seems redundant. But it is this parameter that allows
us to construct Bäcklund transformations and explicit solutions. These will
be explained in later sections.

3. The Hamiltonian formulation of wave maps.

The functional J defined by (1.1) for maps s : S1 ×R→ SU(n) is

J(s) =
1
2

∫
R2
||s−1st||2 − ||s−1sx||2 dxdt,
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where ||y||2 = −tr(y2). Viewed as a functional on the space of curves from R

to C∞(S1, SU(n)), J has two terms. The first term of J is the kinetic energy
and the second term is the potential energy. The Lagrangian formulation
of the wave map equation views the equation as an equation for curves on
the tangent bundle of M = C∞(S1, SU(n)). In this section, we use the
Legendre transformation to view the wave map equation as a Hamiltonian
system on the cotangent bundle ofM, and compute the stable and unstable
modes at stationary wave maps.

Recall that the cotangent bundle T ∗M of a manifold M has a natural
symplectic form w = dτ , where τ is the canonical 1-form on T ∗M defined
by

τ�(v) = �(dπ(v)),

where π : T ∗M→M is the natural projection.
Given a curve γ : (−ε, ε) → C∞(S1, SU(n)) with γ(0) = s, we identify

the tangent vector γ ′(0) as

(γ(0), γ(0)−1γ ′(0)) = (s, s−1δs).

This identifies TM =M×C∞(S1, su(n)). Note that

(v1, v2) = −tr(v1v2)

defines an inner product on su(n). So we can also identify T ∗Ms as TMs

via the L2 inner product:

〈v1, v2〉 =
∫ 2π

0

−tr(v1v2)dx.

By definition of the canonical 1-form on T ∗M, we get

τ(s,v)(s
−1δs, δv) = 〈v, s−1δs〉 =

∫ 2π

0
−tr(vs−1δs) dx.

We use the Cartan formula

w(X, Y ) = dτ(X, Y ) = X(τ(Y ))− Y (τ(X))− τ([X, Y ])

to compute the symplectic form w = dτ on T ∗M. Let X(s, v) = (η1, δ1v)
and Y (s, v) = (η2, δ2v) be two constant vector fields on T ∗M = TM. Then

X(τ(Y )) = X

(∫ 2π

0
−tr(v(x)η2(x)) dx

)
= −

∫ 2π

0
tr(δ1v, η2)dx = 〈δ1v, η2〉.
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So we get
w(s,v)((η1, δ1v), (η2, δ2v)) = 〈δ1v, η2〉 − 〈δ2v, η1〉.

Consider the HamiltonianH : T ∗M→ R, which is the sum of kinetic energy
and potential energy, i.e.,

H(s, v) =
1
2
(
〈v, v〉+ 〈s−1sx, s

−1sx〉
)

= −1
2

∫ 2π

0

tr(v2 + (s−1sx)2)dx.

The Hamiltonian vector field XH of H is the vector field satisfying

dH(s,v)(s
−1δs, δv) = w((s−1δs, δv, XH(s, v))

for all (s−1δs, δv). A direct computation shows that

dH(s,v)(s
−1δs, δv) = 〈δv, v〉 − 〈s−1δs, (s−1sx)x〉.

So the Hamiltonian vector field for H is

XH(s, v) = (v, (s−1sx)x).

The Hamiltonian equation is

s−1st = v, vt = (s−1sx)x,

which is the wave map equation (1.2).

Proposition 3.1. The stationary points of XH are (s, 0), where s(x) =
ceax, a ∈ su(2) a constant such that e2πa = I and c ∈ SU(2) a constant.

Proof. XH(s, v) = (0, 0) if and only if v = 0 and (s−1sx)x = 0. So s−1sx = a

for some constant a ∈ su(n). Hence s(x) = ceax for some c ∈ su(n). Since
s(2π) = s(0), e2πa = I . �

Note that stationary points of XH are closed geodesics of SU(n).
Next we compute the linearization ofXH at a stationary point, stable and

unstable subspaces. We will do this calculation for SU(2). The calculations
for other compact groups are similar.

Let m be a non-zero integer, a = diag(im,−im), and s(x) = eax. The
linearization of X = XH at the stationary point (s, 0) is

dX(s,0)(s
−1δs, δv) = (δv, δ(s−1sx)x).
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Set
s−1δs = p, δv = q.

Compute directly to get

δ(s−1sx) = −(s−1δs)s−1sx + s−1(δs)x
= −pa+ s−1(sp)x = −pa + s−1(sxp+ spx)
= −pa+ ap+ px = px + [a, p].

So
dX(s,0)(p, q) = (q, pxx + [a, px]).

The linearized equation is {
pt = q,

qt = pxx + [a, px].
(3.1)

The linearization of the wave map equation at s is

ptt = pxx + [a, px]. (3.2)

We compute the linear modes of the linear wave equation (3.1) next, i.e.,
solve the following linear system for (p, q) : S1→ su(2):{

q = kp,

pxx + [a, px] = kq.

Substitute the first equation to the second to get

pxx + [a, px]− k2p = 0. (3.3)

Write (3.3) in terms of entries of p = (pij) ∈ su(2) to get{
(p11)xx − k2p11 = 0,
(p12)xx + 2im(p12)x − k2p12 = 0.

(3.4)

This system is linear with constant coefficients. So it can be solved explicitly:

p11(x) =

{
c1 + c2x, if k = 0,
c1e

kx + c2e
−kx, if k �= 0,

p12 = c1e
(−im+

√
k2−m2)x + c2e

(−im−√
k2−m2)x
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We divide the computation into three cases:
(1) k = 0.

Since in this case p11 is linear and periodic with period 2π, p11 = c1 is
a pure imaginary constant. Note p12 = c2 + c3e

−2imx with c2, c3 ∈ C. So
the nullity of d(XH)(s,0) is 5. In fact, let scb denote the stationary point
sc,b(x) = cebx. Then {sc,b | c ∈ SU(2), b ∈ su(2) is conjugate to a} is a five
dimensional stationary submanifold ofM and the tangent space at s = sI,a
is the kernel of the linearization (3.2).
(2) k ∈ R \ {0}.

Note p11 = c1e
kx + c2e

−kx is periodic and k is non-zero and real implies
that p11 = 0. Since p12 has period 2π, m2 − k2 ≥ 0 and

√
m2 − k2 is an

integer. So real non-zero eigenvalues of d(XH)(s,0) are

k = ±
√
m2 − j2, 0 ≤ |j| < m, j integer.

Eigenvectors for k = ±
√
m2 − j2 are (pk, q±k ), where

pk =
(

0 c1e
−i(m+j)x + c2e

−i(m−j)x

−c̄1ei(m+j)x − c̄2ei(m−j)x 0

)
,

q±k = ±
√
m2 − j2 pk.

(3.5)

(3) k ∈ C \ R.
Since p12 has to be periodic, m2 − k2 > 0 and

√
m2 − k2 is an integer.

Hence k2 must be real. But k is not real. So k is pure imaginary. In other
words, k = ic for some c ∈ R and

√
m2 + c2 is an integer. Hence the non-real

eigenvalues are
±i
√
j2 −m2, j > |m|, j integer.

Recall that the stable (unstable resp.) subspace of XH at a stationary
point (s, 0) is the direct sum of the eigenspaces of d(XH)(s,0) with eigenvalues
k such that Re(k) < 0 (Re(k) > 0 resp.) So the above computation gives

Proposition 3.2. Let m be an integer, a = diag(im,−im), and s(x) = eax.
The unstable subspace of the Hamiltonian vector field XH at the stationary
point (s, 0) is ⊕m−1

j=0 W
+
j , where W+

j is the eigenspace of d(XH)(s,0) with
eigenvalue k =

√
m2 − j2 and is spanned by (pk, q+k ) given in (3.5). The

stable subspace of the Hamiltonian vector field XH at (s, 0) is ⊕m−1
j=0 W

−
j ,

where W−
j is the eigenspace of d(XH)(s,0) with eigenvalue k = −

√
m2 − j2

and is spanned by (pk, q−k ) given in (3.5).
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Corollary 3.3. Let m be a positive integer, and a = diag(im,−im). Then
the linearization of the wave map equation at the stationary wave map s(x, t)
= eax is

ξtt = ξxx + [a, ξx].

Moreover, the stable and unstable modes corresponding to ±
√
m2 − j2 are

p−m,j(x, t) = −e−
√
m2−j2 t

(
0 cei(−m±j)x

−c̄e−i(−m±j)x 0

)
(3.6a)

p+
m,j(x, t) = e

√
m2−j2 t

(
0 cei(−m±j)x

−c̄e−i(−m±j)x 0

)
(3.6b)

respectively, where c ∈ C is a constant, j is an integer and |j| < m.

4. The −1 flow equation and the wave map.

We give a correspondence between solutions of the −1 flow equation (1.4)
and wave maps.

In characteristic coordinate (ξ, η), the −1 flow equation (1.4) associated
to SU(n) is the following system for (a, u, v) : R2 → Π3

i=1su(n):⎧⎪⎨⎪⎩
aη = 0,
uη = [a, v],
vξ = −[u, v].

(4.1)

A direct computation implies that

Proposition 4.1. The map (a, u, v) : R
2 → Π3

i=1su(n) is a solution of the
−1-flow equation (4.1) associated to SU(n) if and only if

θλ = (aλ+ u) dξ + λ−1v dη (4.2)

is flat for all λ ∈ C \ {0}.

Note that the Lax pair θλ of the above −1 flow equation satisfies the
reality condition (2.6). So the trivialization E(x, t, λ) of θλ satisfies the
reality condition (2.7).

Recall that the gauge transformation of g : R1,1 → GL(n,C) of the
connection {

∂

∂ξ
+ A,

∂

∂η
+ B

}



1 + 1 Wave Maps into Symmetric Spaces 359

is {
g

(
∂

∂ξ
+A

)
g−1, g

(
∂

∂η
+B

)
g−1

}
.

Direct computation gives

g

(
∂

∂ξ
+ A

)
g−1 =

∂

∂ξ
+ gAg−1 − gξg−1,

g

(
∂

∂η
+B

)
g−1 =

∂

∂η
+ gBg−1 − gηg−1.

Since[
g

(
∂

∂ξ
+A

)
g−1, g

(
∂

∂η
+ B

)
g−1

]
= g

[
∂

∂ξ
+ A,

∂

∂η
+ B

]
g−1,

the gauge transformation of a flat connection is again flat. Written in terms
of connection 1-form θ = A dξ +B dη, the gauge transformation g ∗ θ is

g ∗ θ = gθg−1 − dgg−1.

It is easy to check that if E is the trivialization of the flat connection θ,
then g(0, 0)−1Eg−1 is the trivialization of g ∗ θ.

Below we show that the Lax pairs of wave map equation and the −1
flow equation are gauge equivalent and give a correspondence between wave
maps and solutions of the −1 flow equation.

Theorem 4.2. Let (a, u, v) be a solution to the −1-flow equation (4.1) as-
sociated to SU(n), and Φ(ξ, η, λ) the trivialization of

θλ = (a(ξ, η)λ+ u(ξ, η)) dξ + λ−1v(ξ, η) dη.

Set Φ(λ)(ξ, η) = Φ(ξ, η, λ). Then s = Φ(−1)Φ(1)−1 is a wave map from R
1,1

to SU(n), and

s−1sξ = −2Φ(1)aΦ(1)−1, s−1sη = −2Φ(1)vΦ(1)−1. (4.3)

Conversely, suppose s : R
1,1 → SU(n) is a wave map and s(0, 0) = I. Let

ψ(ξ, η) be the solution of ψ−1ψη = 1
2s

−1sη with ψ(ξ, 0) = I, and⎧⎪⎨⎪⎩
a(ξ, η) = 1

2 (s−1sξ)(ξ, 0),
u(ξ, η) = a(ξ)− (ψξψ−1)(ξ, η),
v = −1

2ψs
−1sηψ

−1.

(4.4)

Then (−a, u, v) is a solution of the −1 flow equation associated to SU(n)
and s is the wave map corresponding to (−a, u, v).
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Proof. A direct computation gives

Θλ = Φ(1) ∗ θλ = (1− λ)(−Φ(1)aΦ(1)−1)dξ + (1− λ−1)(−Φ(1)vΦ(1)−1)dη.

The trivialization of Θλ is Φ(λ)Φ(1)−1. By Corollary 2.2, Φ(−1)Φ(1)−1 is a
wave map.

To prove the converse, set A = 1
2s

−1sξ and B = 1
2s

−1sη. By Proposition
2.2, we have Aη = −Bξ = [A,B]. Set Ã(ξ, η) = ψ(ξ, η)−1a(ξ)ψ(ξ, η). A
direct computation implies that Ãη = [Ã, B]. But A satisfies the same
differential equation as Ã, i.e., Aη = [A,B], and

Ã(ξ, 0) = A(ξ, 0) = a(ξ) =
1
2
(s−1sξ)(ξ, 0).

By the uniqueness of solutions of ordinary differential equation we have

A(ξ, η) = Ã(ξ, η) = ψ−1(ξ, η)a(ξ)ψ(ξ, η).

Apply gauge transformation of ψ to the Lax pair of the wave map

Ωλ = (1− λ)A dξ + (1− λ−1)B dη

to get
ψ ∗Ωλ = (−aλ+ a− ψξψ−1) dξ − λ−1ψBψ−1 dη.

Since Ωλ is flat. so is ψ ∗Ωλ. It follows from Proposition 4.1 that (−a, u, v)
is a solution of the −1 flow, where a, u, v are defined by (4.4).

Let F (ξ, η, λ) denote the trivialization of Ωλ. Since Ω1 = 0, F (ξ, η, 1) is
a constant. But F (0, 0, λ) = I. Thus F (ξ, η, 1) = I. It follows from Corollary
2.3 that the harmonic map s(ξ, η) = F (ξ, η,−1). The trivialization of ψ ∗Ωλ

is
E(ξ, η, λ) = F (ξ, η, λ)ψ(ξ, η).

But we have proved ψ ∗ Ωλ is the Lax pair for (−a, u, v). So the wave map
corresponding to (−a, u, v) is

E(ξ, η,−1)E(ξ, η, 1)−1 = F (ξ, η,−1)F (ξ, η, 1)−1 = F (ξ, η,−1) = s.

�

The proof of the above Theorem implies that the Lax pair (2.5) of the
wave map equation is gauge equivalent to the Lax pair (4.2) of the −1 flow
equation.
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Example 4.3. closed geodesics
Let a = diag(im1, · · · , imn) ∈ su(n), where 2m1, · · · , 2mn are integers.

Then (a, 0, a) is a solution of the −1 flow equation, the corresponding Lax
pair is

θλ = aλ dξ + aλ−1dη,

and the trivialization of θλ is

E0(ξ, η, λ) = ea(λξ+λ
−1η).

The corresponding wave map constructed in Theorem 4.2 is the stationary
wave map

s0(ξ, η) = E0(ξ, η,−1)E0(ξ, η, 1)−1 = e−2ax = diag(e−2im1x, . . . , e−2imnx),

a closed geodesic in SU(n).

Note that SU(2) equipped with the bi-invariant metric is isometric to
the standard S3 because

SU(2) =
{(

z −w̄
w z̄

) ∣∣∣∣ z, w ∈ C, |z|2 + |w|2 = 1
}

is isometric to S3 in C
2 = R

4 via(
z −w̄
w z̄

)
�→

(
z

w

)
.

Example 4.4. wave maps into a great circle
Let h(ξ) and k(η) be smooth real valued functions on R, u = 0, and

a = h′(ξ)
(
i 0
0 −i

)
, b = k′(η)

(
i 0
0 −i

)
.

Then (a, 0, b) is a solution of the −1 flow equation associated to SU(2), its
Lax pair is θλ = a(ξ)λ dξ + b(η)λ−1dη, and its trivialization is

E(ξ, η, λ) =

(
ei(h(ξ)λ+k(η)λ−1) 0

0 e−i(h(ξ)λ+k(η)λ−1)

)
.

The wave map corresponding to (a, 0, b) is

s(ξ, η) = diag(e−2i(h(ξ)+k(η)), e2i(h(ξ)+k(η))),
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which lies in the great circle |z| = 1 and w = 0 in

SU(2) =
{(

z −w̄
w z̄

) ∣∣∣∣z, w ∈ C, |z|2 + |w|2 = 1
}

= S3.

Hence it is also a wave map into the circle S1. The equation for wave maps
into S1 is essentially the linear wave equation, and general solutions are of the
form h(ξ)+k(η). Note that if h and k decay at ±∞, then the corresponding
wave map tends to I as |x| → ∞.

5. Bäcklund transformations.

In this section, we use Bäcklund transformations to construct k-soliton so-
lutions of the −1 flow equation, and use Theorem 4.2 to construct the cor-
responding k-soliton wave maps. Most of these wave maps oscillates as the
space variable x tends to ±∞, but some of these wave maps are periodic
in x. Note that wave maps into a great circle of SU(2) can be written in
terms of solutions of the linear wave equation. We show that if s is a wave
map into a great circle so that s has constant boundary condition at ±∞
and finite energy, then the new wave maps obtained by applying Bäcklund
transformations to s also have constant boundary condition and finite en-
ergy.

First we review the construction of Bäcklund transformations of the −1
flow equation. Let (a, u, v) be a solution of the −1 flow equation (4.1) as-
sociated to SU(n), and E(x, t, λ) the trivialization of its Lax pair (4.2) θλ,
i.e., ⎧⎪⎨⎪⎩

E−1Eξ = aλ+ u,

E−1Eη = λ−1v,

E(0, 0, λ) = I.

(5.1)

Since the right hand side of (5.1) is holomorphic in parameter λ ∈ C \ 0,
the solution E(x, t, λ) is holomoprhic in λ ∈ C \ 0. Because θλ satisfies the
reality condition (2.6), E satisfies (2.7).

Let π be a Hermitian projection of C
n onto a complex linear subspace V ,

π⊥ = I − π the projection onto the orthogonal complement V ⊥, and z ∈ C.
Let gz,π : C→ GL(n,C) denote the rational map defined by

gz,π(λ) = π +
λ− z
λ− z̄ π

⊥ = I +
z̄ − z
λ− z̄ π

⊥. (5.2)

We call gz,π a simple element . A direct computation shows that gz,π satisfies
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the reality condition (2.7):

(gz,π(λ̄))∗gz,π(λ) = I.

In particular,

g−1
z,π(λ) = (gz,π(λ))∗ = π +

λ− z̄
λ− z π

⊥ = gz̄,π(λ).

To construct Bäcklund transformations for the −1 flow equation, we first
find Ẽ and g̃ so that

gz,π(λ)E(x, t, λ) = Ẽ(x, t, λ)g̃(x, t, λ)

with Ẽ holomorphic in λ ∈ C \ 0 and g̃ holomorphic in a neighborhood of
{0,∞}. Since the left hand side has a pole at λ = z̄, so g̃ must have too. In
fact, g̃ can be taken to be the form gz,π̃(x,t)(λ) for some projection π̃(x, t).
Moreover, Ẽ is the trivialization of a new solution of the −1 flow equation.
We state the results more precisely below.

Theorem 5.1. ([5]). Let (a, u, v) be a solution of the −1 flow equation
(4.1), and E(ξ, η, λ) the trivialization of the corresponding Lax pair θλ, i.e.,

E−1Eξ = aλ+ u, E−1Eη = λ−1v, E(0, 0, λ) = I.

Let z ∈ C \ R, and π the projection onto a linear subspace V of C
n. Set

Ṽ (ξ, η) = E(ξ, η, z)∗(V )

π̃(ξ, η) = the Hermitian projection of C
n onto Ṽ (ξ, η)

ũ = u+ (z − z̄)[π̃, a],

ṽ =
1
| z | 2

(z̄π̃ + zπ̃⊥)v(zπ̃ + z̄π̃⊥),

Ẽ(ξ, η, λ) = gz,π(λ)E(ξ, η, λ)gz,π̃(λ)−1

=
(
π +

λ− z
λ− z̄ π

⊥
)
E(ξ, η, λ)

(
π̃(ξ, η) +

λ− z̄
λ− z π̃

⊥(ξ, η)
)
.

Then

1. Ẽ(ξ, η, λ) is holomorphic for λ ∈ C \ 0,

2. (a, ũ, ṽ) is a new solution of the −1 flow equation,
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3. Ẽ satisfies the reality condition (2.7), and Ẽ is the trivialization of the
Lax pair of (a, ũ, ṽ).

We sketch the proof of this Theorem. Let g = gz,π, and g̃ = gz,π̃(x,t).
Note that Ẽ = gEg̃−1 is holomoprhic for λ ∈ C \ {0, z, z̄} and has poles at
λ = z and z̄ of order ≤ 1. Use definition of π̃ to prove that the residues of
Ẽ at λ = z and λ = z̄ are zero. Thus Ẽ is holomorphic for λ ∈ C \ 0. Let
θ̃λ = Ẽ−1dẼ. Then

θ̃λ = g̃θλg̃
−1 − (dg̃)g̃−1 = g̃ ∗ θλ. (5.3)

Expand Ẽ−1Ẽξ in λ to see that its leading term is aλ. Since Ẽ−1Ẽξ is
holomorphic in λ ∈ C, it must be of the form aλ+ ũ for some ũ. A similar
argument implies that Ẽ−1Ẽη must be of the form λ−1ṽ. But θ̃λ = (aλ +
ũ) dξ + λ−1ṽ dη is flat. So (a, ũ, ṽ) is a solution of the −1 flow equation.
The formula of ũ, ṽ can be computed from (5.3).

Theorem 5.1 gives an algebraic method to construct new solutions from
a given solution of the −1 flow equation if the trivialization of the Lax pair
of the given solution is known. Let gz,π •(a, u, v) denote the solution (a, ũ, ṽ)
constructed in Theorem 5.1, and the transformation (a, u, v) �→ gz,π•(a, u, v)
is called a Bäcklund transformation of the −1 flow equation. Let s be the
wave map corresponding to (a, u, v) given by Theorem 4.2, and gz,π • s the
wave map corresponding to gz,π • (a, u, v). We call s �→ gz,π • s a Bäcklund
transformation of wave maps.

In the next two examples, we use Bäcklund transformations to construct
explicit wave maps into SU(2).

Example 5.2. periodic 1-soliton wave map
Let 2m > 0 be an integer, a = diag(im,−im). We have seen in Example

4.3 that (a, 0, a) is a solution of the −1 flow equation, its Lax pair is

θλ = aλ dξ + aλ−1 dη,

its trivialization is E0(ξ, η, λ) = eaλξ+aλ
−1η, and the corresponding wave map

is the stationary wave map s0(x, t) = e−2ax. Since we have the trivialization
for (a, 0, a), we can apply Bäcklund transformation to (a, 0, a). Let z = eiθ,

q0 =
(

1
1

)
, and π the Hermitian projection onto V = Cq0. We use Theorem
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5.1 to compute gz,π • (a, 0, a) next. First we get

q̃(ξ, η) = exp(a(zξ + z−1η))∗q0 = exp(−a(z̄ξ + z̄−1η))q0
= exp(−a(e−iθξ + eiθη))q0
= exp(−a(cos θ(ξ + η) + i sin θ(−ξ + η)))q0

= exp(−a(x cos θ − it sin θ)
(

1
1

)
=
(
e−(imx cos θ+mt sin θ)

eimx cos θ+mt sin θ

)
.

Therefore the projection π̃(x, t) of C
2 onto Cq̃(x, t) is

π̃(x, t) =
1

e2mt sin θ + e−2mt sin θ

(
e−2mt sin θ e−2imx cos θ

e2imx cos θ e2mt sin θ

)
,

the trivialization of gz,π • (a, 0, a) is

E1(ξ, η, λ) = gz,π(λ)E0(ξ, η, λ)gz.π̃(ξ,η)(λ)−1

=
(
π +

λ− z
λ− z̄ π

⊥
)
ea(λξ+λ

−1η)

(
π̃(x, t) +

λ− z̄
λ− z π̃

⊥(x, t)
)
.

By Theorem 4.2, the wave map s corresponding to gz,π • (a, 0, a) is

s(x, t) = E1(x, t,−1)E1(x, t, 1)−1

= gz,π(−1)E0(x, t,−1)gz,π̃(x,t)(−1)−1gz,π̃(x,t)(1)E0(x, t, 1)−1gz,π(1)−1.

A direct computation gives

E0(x, t,−1) = E0(x, t, 1)−1 = e−ax,

gz,π̃(x,t)(−1)−1gz,π̃(x,t)(1) = π̃(x, t)− π̃(x, t)⊥.

Hence

s(x, t) = gz,π(−1)e−ax(π̃(x, t)− π̃(x, t)⊥)e−axgz,π(1)−1. (5.4)

In particular, the first column of e−ax(π̃(x, t)− π̃(x, t)⊥)e−ax

S(x, t) =
(
−e−2imx tanh(2mt sinθ)
e2imx cos θsech (2mt sin θ)

)
is a wave map into S3.

Note that if cos θ = j
2m for some integer j, then s is periodic in x with

period 2π. In this case, S is a wave map from S1 × R to S3.
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Example 5.3. 1-soliton wave map into SU(2)
Let z = r+ is, and a, π and s0 as in Example 5.2. We derive the formula

for s̃ = gz,π • s0. A direct computation as in Example 5.2 implies that

π̃(ξ, η) =
1

1 + e2A

(
1 eA−iB

eA+iB e2A

)
,

where

A = ms

(
x+ t− x− t

|z|2

)
= ms

((
1− 1
|z|2

)
x +

(
1 +

1
|z|2

)
t

)
,

B = mr

(
x+ t+

x− t
|z|2

)
= mr

((
1 +

1
|z|2

)
x+

(
1− 1
|z|2

)
t

)
.

The first column of E0(x, t,−1)(2π̃(x, t)− I)E0(x, t, 1)−1 is

S̃ =
(
−e−2imx tanhA
eiBsech A

)
,

which is a wave map into S3. Note that S̃ is periodic in x if |z| = 1 and r is
rational, and oscillates as |x| → ∞ if |z| �= 1.

Example 5.4. k-soliton wave map from S1 × R to SU(2)
We apply Bäcklund transformations k times to construct k-soliton wave

maps from S1 ×R to SU(2). Let a, q0, V , and π be as in Example 5.2. Let

zj = eiθj =
rj + iµj
m

, 2rj an integer, |rj| < m, µj =
√
m2 − r2j

for j = 1, · · · , k. Set

(a, uj, vj) = gzj ,π • (gzj−1,π • · · · • gz1,π • (a, 0, a) · · · ),

Ej the trivialization of the Lax pair of (a, uj, vj),

qj(x, t) = Ej−1(x, t, zj)∗(q0) = Ej−1(x, t, z̄j)−1(q0),

πj(x, t) the Hermitian projection of Cn onto Cqj(x, t), i.e.,

πj(x, t) =
qj(x, t)q∗j (x, t)
||qj(x, t)||2

.

Set
gj(λ) = gzj ,π(λ), g̃j(x, t, λ) = gzj ,πj (x,t)(λ).
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By Theorem 5.1 and induction, we have

Ej(x, t, λ) = (gj · · ·g1)(λ)E0(x, t, λ)(g̃j · · · g̃1)−1(x, t, λ), (5.5a)
qj(x, t) = (g̃j−1 · · · g̃1)(z̄j)E0(x, t, zj)∗(gj−1 · · ·g1)∗(zj)(q0), (5.5b)

where E0(x, t, λ) = ea(λξ+λ
−1η).

Since π(q0) = q0, π⊥(q0) = 0,

gi(zj)∗(q0) =
(
π +

z̄j − z̄i
z̄j − zi

π⊥
)

(q0) = q0. (5.6)

Hence (gj · · ·g1)∗(zj)(q0) = q0, and

qj(x, t) = (g̃j−1 · · · g̃1)(z̄j)E0(x, t, zj)∗(q0)

= (g̃j−1 · · · g̃1)(z̄j)
(
e−(irjx+µjt)

eirjx+µj t

)
. (5.7)

The wave map corresponding to (a, uj, vj) constructed in Theorem 4.2 is

sj(x, t) = Ej(x, t,−1)Ej(x, t, 1)−1.

From Example 5.2, we get

q1(x, t) =
(
e−(ir1x+µ1t)

eir1x+µ1t

)
, (5.8a)

π1(x, t) =
1

e2µ1t + e−2µ1t

(
e−2µ1t e−2ir1x

e2ir1x e2µ1t

)
, (5.8b)

E1(x, t, λ) = g1(λ)ea(λξ+λ
−1η)g̃1(x, t, λ)−1, (5.8c)

s1(x, t) = g1(−1)e−ax(π1(x, t)− π⊥1 (x, t))e−axg1(1)−1. (5.8d)

Since r1 is an integer, π1, g̃1, s1 are periodic in x with period 2π.
Note that

E0(x, t, zj)∗(q0) =
(
e−(irjx+µj t)

eirjx+µj t

)
. (5.9)

Use (5.5b), (5.6) and (5.9) to get

q2(x, t) = g̃1(x, t, z̄2)
(
e−(ir2x+µ2t)

eir2x+µ2t

)
.

Since g̃1 is periodic in x and r2 is an integer, q2 is periodic in x with period
2π. So is π2. The wave map corresponding to (a, u2, v2) is

s2(x, t) = b2e
−axg̃1(x, t,−1)−1(π2(x, t)− π2(x, t)⊥)g̃1(x, t, 1)e−axc−1

2 ,
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where b2 = (g2g1)(−1), c2 = (g2g1)(1), and π2(x, t) is the projection onto

q2(x, t) =
(
π1(x, t) +

z̄1 − z1
z̄2 − z̄1

π⊥1 (x, t)
)(

1
e2ir2x+µ2t

)
.

By assumption 2r2 is an integer. So q2 and s2 are periodic in x with period
2π.

It now follows from induction that

1. the wave map corresponding to (a, uj, vj) is

sj(x, t) = bje
−ax(g̃−1

1 · · · g̃−1
j )(x, t,−1)(g̃j · · · g̃1)(x, t, 1)c−1

j , (5.10)

where
bj = (gj · · ·g1)(−1), cj = (gj · · ·g1)(1), (5.11)

2. sj is periodic in x with period 2π, i.e., sj is a wave map from S1 × R

to SU(2).

Next we compute the wave map constructed by applying Bäcklund trans-
formation to wave maps into S1 constructed in Example 4.4.

Example 5.5. Let z = r + is, v0 =
(

1
1

)
, h, h, a, b and s as in Example

4.4. We use Theorem 5.1 to construct (a, u, v) = gz,π ∗ (a, 0, b). A direct
computation gives

q(ξ, η) = E(ξ, η, z)∗(v0) =

(
e−i(h(ξ)z̄+k(η)z̄

−1)

ei(h(ξ)z̄+k(η)z̄
−1)

)
,

which is parallel to (
1

e
2s(h(ξ)− k(η)

r2+s2 )
e
2ir(h(ξ)+

k(η)

r2+s2 )

)
.

So the projection π̃(ξ, η) onto Cq(ξ, η) is

π̃(ξ, η) =
1

1 + e
4s(h(ξ)− k(η)

r2+s2 )

(
1 f̄

f |f |2
)
,

where f = e
2s(h(ξ)− k(η)

r2+s2 )+2ir(h(ξ)+
k(η)

r2+s2 ). Then

u = 2is[π̃, a],

v =
1
|z|2 (z̄π̃ + zπ̃⊥)b(η)(zπ̃+ z̄π̃⊥).
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The wave map corresponding to (a, u, v) is

s̃ = gz,π ∗ s = gz,π(−1)e−ax(π̃(x, t)− π̃(x, t)⊥)e−axgz,π(−1).

The first column S of e−ax(π̃(x, t)− π̃(x, t)⊥)e−ax is

S(x, t) =
(
−e−2imx tanhA
eiBsech A

)
,

where

A = 2s
(
h

(
x+ t

2

)
− 1
r2 + s2

k

(
x− t

2

))
,

B = 2r
(
h

(
x+ t

2

)
+

1
r2 + s2

k

(
x− t

2

))
.

If h(x) and k(x) tends to zero as |x| → ∞, then lim|x|→∞ π̃(x, t) = 1
2

(
1 1
1 1

)
.

In this case the wave maps s̃ and S have constant boundary condition.
We claim that if h′ and k′ are square integrable then the wave map s̃ has

finite energy at each level t. This can be proved using Theorem 4.2. The
energy at t = t0 is∫

t=t0

||s̃−1s̃x||2dx =
∫
t=t0

1
2
||s̃−1s̃ξ + s̃−1s̃η||2dx.

Recall that the trivialization Ẽ of the Lax pair of (a, u, v) satisfies the reality
condition (2.7). So Ẽ(x, t,±1) ∈ U(2). Thus by Theorem 4.2, we have

||s̃−1s̃ξ|| = 2||h′||, ||s̃−1s̃η|| = 2||v||.

Since 1
|z|(z̄π̃ + zπ̃⊥) ∈ U(2),

||v(ξ, η)||= ||k′(η)||.

The assumption h′, k′ are in L2 implies that∫
t=t0

||s̃−1s̃x||2dx < ∞.
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6. Homoclinic wave maps.

We study the asymptotic behavior of the periodic k-soliton wave maps sj
constructed in Example 5.4, and prove that they are homoclinic.

We use the same notations as in Example 5.4. First we look at the
behavior of sj as t→ −∞. Set

yj = e2µjt, fj = e2irjx.

Since µj > 0, limt→−∞ yj = 0. By (5.8a), q1(x, t) is parallel to

q̂1 =
(

1
f1y1

)
=
(

1
0

)
+ f1y1

(
0
1

)
.

So the projection π1(x, t) onto Cq̂1(x, t) is

π1(x, t) =
(

1 0
0 0

)
+ y1

(
0 f̄1
f1 0

)
+ O(y2

1),

where O(y2
1) means terms involving yn1 with n ≥ 2. By (5.7), q2(x, t) is

parallel to

q̂2(x, t) = g̃1(z̄2)
(

1
f2y2

)
.

Expand it in y1, y2 to get

q̂2(x, t) =
(

1
0

)
+ (c1f1y1 + c2f2y2)

(
0
1

)
+O(y2),

where c1, c2 are constants depending on z1, z2. This implies that the projec-
tion

π2(x, t) =
(

1 0
0 0

)
+ y1

(
0 ᾱ1f̄1

α1f1 0

)
+ y2

(
0 ᾱ2f̄2

α2f2 0

)
+O(y2),

where α1, α2 are constants depending on z1, z2. Use the formula for qj , πj, Ej
and induction to see that as t→ −∞ we have

πj(x, t) =
(

1 0
0 0

)
+

j∑
r=1

yr

(
0 ᾱrf̄r

αrfr 0

)
+ O(y2), (6.1)

where αr are constants depending on z1, . . . , zj. In particular, this proves
that

lim
t→−∞πj(x, t) =

(
1 0
0 0

)
. (6.2)
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Next we use formula (5.10) to compute the asymptotic behavior of sj as
t→ −∞. It follows from (6.2) that we have

lim
t→−∞ g̃r(x, t,−1)−1g̃r(x, t, 1) =

(
1 0
0 1+z̄r

1+zr

) (
1 0
0 1−zr

1−z̄r

)
=
(

1 0
0 −1

)
.

By (5.10), we have

lim
t→−∞ sj(x, t) = bje

−2ax

(
1 0
0 −1

)j
c−1
j ,

where bj, cj are given by (5.11). In particular, we get

lim
t→−∞ s2k(x, t) = b2ke

−2axc−1
2k , (6.3a)

lim
t→−∞ s2k+1(x, t) = b2k+1e

−2ax

(
1 0
0 −1

)
c−1
2k+1. (6.3b)

Both bj and cj lies in U(2). A direct computation gives

gz,π(−1)gz,π(1)−1 = π − π⊥.

This implies b2kc−1
2k ∈ SU(2). So

ŝ2k = b−1
2k s2kc2k

is a wave map from S1 × R
1 to SU(2). Use (5.10) and (6.1) and a direct

computation to conclude

ŝ2k(x, t) = e−2ax + e−ax

⎛⎝ 2k∑
j=1

yj

(
0 β̄j f̄j

−βjfj 0

)⎞⎠ e−ax +O(y2)

as t→ −∞, where β1, . . . , β2k are real constants. Recall that

s0(x, t) = e−2ax = diag(e−2imx, e2imx).

s−1
0 (x, t)yje−ax

(
0 β̄j f̄j

−βjfj 0

)
e−ax

= e2µjt

(
0 β̄je

2i(m−rj)x

−βje−2i(m−rj )x 0

)
,
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which is an unstable mode p+
−2m,2rj

at the stationary solution s0 with eigen-

value 2
√
m2 − r2j = 2µj as given in Corollary 3.3. In other words, we have

shown

lim
t→−∞ ŝ2k(x, t)− s0(x, t)− s0(x, t)

2k∑
j=1

p+
−2m,2rj

(x, t) = 0. (6.4)

To compute the asymptotic behavior of sj(x, t) as t→∞, we set

hj = e−2irjx, ρj = e−2µj t.

Since µj > 0, limt→∞ ρj = 0. A similar computation implies that

1. q1(x, t) is parallel to
(
h1ρ1

1

)
,

2.

πj(x, t) =
(

0 0
0 1

)
+

j∑
n=1

ρn

(
0 β̄′nh̄n

β′nhn 0

)
+O(ρ2) (6.5)

for some constants β′1, . . . , β′j depending on z1, · · · , zj,

3. limt→∞ g̃j(x, t,−1)−1g̃j(x, t, 1) =
(
−1 0
0 1

)
,

4.

lim
t→∞ s2k(x, t) = b2ke

−2axc−1
2k , (6.6a)

lim
t→∞ s2k+1(x, t) = b2k+1e

−2ax

(
−1 0
0 1

)
c−1
2k+1. (6.6b)

5.

ŝ2k(x, t) = e−2ax+ e−ax
2r∑
j=1

ρj

(
0 ε̄j h̄j

−εjhj 0

)
e−ax+O(ρ2), as t→∞

for some constants ε1, . . . , εj depending on z1, · · · , zj.

6. As t→∞ we have

lim
t→∞ ŝ2k(x, t)− s0(x, t)− s0(x, t)

2k∑
j=1

p−−2m,2rj
(x, t) = 0 (6.7)

for some linear stable mode p−−2m,2rj
.
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As a consequence of (6.3b) and (6.6b), we get

lim
t→−∞ s2k+1(x, t) = − lim

t→∞ s2k+1(x, t) = b2k+1e
−2ax

(
1 0
0 −1

)
c−1
2k+1.

So s2k+1 is a hecteroclinic wave map from S1 ×R1 to SU(2).
Formulas (6.4) and (6.7) imply that s2k, ŝ2k are homoclinic wave map

from S1 × R1 to SU(2). So we have

Theorem 6.1. Let 2m be an integer, a = diag(im,−im), and s0(x, t) =

e−2ax. Let π denote the projection of C
2 onto C

(
1
1

)
, and

zj = eiθj =
rj
m

+ i

√
m2 − r2j
m

=
rj + iµj
m

,

where 2r1, . . . , 2r2k are integers and |rj| < m. Let

s2k = gz2k,π • (· · · • (gz1,π • s0) · · · )

denote the wave map obtained by applying 2k Bäcklund transformations.
Then s2k is a homoclinic wave map from S1 × R

1 to SU(2). Moreover,
there exist constants b2k, c2k ∈ U(2) such that ŝ2k = b−1

2k s2kc2k satisfies
lim|t|→∞ s2k(x, t) = s0(x, t) and (6.4) and (6.7).

7. wave maps into S2.

We describe a constraint condition for solutions the −1 equation associated
to SU(2) = S3 so that the corresponding wave maps into S3 actually lies in
S2.

Recall that we identify S3 ⊂ C2 = R4 as SU(2) via(
z

w

)
�→
(
z −w̄
w z̄

)
.

The intersection of S3 with the linear hyperplane defined by Re(w) = 0 is

M =
{(

z is
is z̄

) ∣∣∣∣ z ∈ C, s ∈ R, |z|2 + s2 = 1
}
, (7.1)

which is a totally geodesic 2-sphere in SU(2) = S3. If y ∈ SU(2), then
y ∈M if and only if yt = y.
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It is well-known that if s is a wave map into a Riemannian manifold N
and the image of s lies in a totally geodesic submanifold M of N , then s is
a wave map into M . Hence if a wave map into S3 with its image lies in a
totally geodesic S2, then this is also a wave map into S2.

In this section, we give a constraint condition on solutions of the −1 flow
equation so that the corresponding wave maps lie in the totally geodesic S2

in SU(2) = S3. As a consequence, we also see that the SGE is a subequation
of the constrained −1 flow equation.

In order to explain how to get wave maps into S2, we need to view S2 as
the symmetric space SU(2)/SO(2). Let τ, σ : SL(2,C)→ SL(2,C) denote
the maps defined by

τ(g) = (g∗)−1, σ(g) = (gt)−1.

Then σ and τ are group homomorphisms, σ2 = τ2 = id, στ = τσ, and the
differentials at the identity matrix are

σ∗(ξ) = −ξt, τ∗(ξ) = −ξ∗.

Note that σ(SU(2)) ⊂ SU(2). Hence σ|SU(2) is an involution of SU(2).
The fixed point set of σ in SU(2) is SO(2), and S2 is diffeomorphic to
SU(2)/SO(2). A direct computation shows that

Mσ = {gσ(g)−1 | g ∈ SU(2)}

is the totally geodesic M = S2 given in (7.1).
Since σ2∗ = id, we have:

su(2) = K+ P ,

where K and P are eigenspaces of σ∗ on su(2) with eigenvalues 1,−1 respec-
tively. In fact,

K = so(2), P =
{
i

(
x y

y x

) ∣∣∣∣ x, y ∈ R

}
. (7.2)

Since σ∗ is a Lie algebra automorphism, σ∗([η1, η2]) = [σ∗(η1), σ∗(η2)]. So
we have

[K,K]⊂ K, [K,P ]⊂ P , [P ,P ]⊂ K.

Proposition 7.1. Let (a, u, v) be a solution of the −1 flow equation associ-
ated to SU(2), θλ = (aλ+u) dξ+λ−1 dη its Lax pair, and E the trivialization
of θλ. Then the following statements are equivalent:
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1. a, v ∈ P and u ∈ K.

2. θλ satisfies
θλ = −θ∗̄λ, θλ = −θt−λ. (7.3)

3. The trivialization E(x, t, λ) of θλ satisfies

E(x, t, λ̄)∗E(x, t, λ) = I, E(x, t, λ)E(x, t,−λ)t = I, (7.4)

Proof. It is easy to see that (1) and (2) are equivalent and (3) implies (2).
To prove (2) implies (3), we let F (x, t, λ) = (E(x, t,−λ)t)−1. Then

F−1dF = −θt−λ = θλ, F (0, 0, λ) = I.

Hence E = F , i.e., E(x, t, λ)E(x, t,−λ)t = I. We have shown before that
θλ = −θ∗̄

λ
implies that E(x, t, λ̄)∗E(x, t, λ) = I. �

Proposition 7.2. Let (a, u, v) be a solution of the −1 flow equation asso-
ciated to SU(2), and s the wave map constructed from (a, u, v) in Theorem
4.2. If a, v ∈ P and u ∈ K, then s is a wave map into S2.

Proof. By Proposition 7.1, the trivialization E of the Lax pair corre-
sponding to (a, u, v) satisfies the reality condition (7.4). This implies that
E(x, t, r) ∈ SU(2) for all r ∈ R and E(x, t, 1)−1 = E(x, t,−1)t. The wave
map constructed in Theorem 4.2 is

s(x, t) = E(x, t,−1)E(x, t, 1)−1 = E(x, t,−1)E(x, t,−1)t.

But y ∈ SU(2) lies in S2 given in (7.1) if and only if yt = y. So s(x, t) lies
in S2. Because S2 is totally geodesic in SU(2), s is a wave map into S2. �

The following Proposition was proved in [5].

Proposition 7.3. Let (a, u, v) be a solution of the −1 flow equation associ-
ated to SU(2) and a, v ∈ P and u ∈ K, and s the wave map corresponding
to (a, u, v) in Theorem 4.2. Then:

(1) If z = iµ is pure imaginary and π̄ = π, then (a, ũ, ṽ) = giµ,π • (a, u, v)
is again a solution of the −1 flow with ũ ∈ K, ṽ ∈ P , and giµ,π • s is
a wave map into S2.
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(2) If π̄ = π, then (a, û, v̂) = gz,π • (g−z̄,π • (a, u, v)) is a solution of the −1
flow with û ∈ K, v̂ ∈ P , and gz,π • (g−z̄,π • s) is a wave map into S2.

Example 7.4. SGE and wave maps into S2 ([2, 3, 5]).
Let su(2) = K + P , where K and P are given by (7.2). Let

a = diag(i,−i), u =
(

0 qξ
2

−qξ2 0

)
, v = − i

4

(
cos q sin q
sin q − cos q

)
.

Note a, v ∈ P and u ∈ K. A direct computation implies that:

(1) (a, u, v) is a solution of the −1 flow equation associated to SU(2) if
and only if q is a solution of the sine-Gordon equation (SGE):

qξη = sin q. (7.5)

Hence solutions of the SGE give rise to wave maps into S2.

(2) Let (a, ũ, ṽ) = gis,π • (a, u, v). If π̄ = π, then

ũ =

(
0 q̃ξ

2

− q̃ξ2 0

)
, ṽ = − i

4

(
cos q̃ sin q̃
sin q̃ − cos q̃

)
for some q̃. So q̃ is again a solution of the SGE. Let gis,π • q denote q̃.

(3) gis,π • 0 is the traveling wave solution of the SGE:

q(ξ, η) = 4 tan−1(esξ+
η
s ),

and geiθ ,π • (g−e−iθ ,π • 0) is the breather solution of the SGE:

4 tan−1

(
sin θ sin(t cos θ)

cos θ cosh(x sin θ)

)
,

where x, t are space and time coordinates.

This solution is periodic in time, and hence called a breather. But wave
map equation is invariant if we exchange the space and time variables. So a
breather solution can also be viewed as periodic in space instead.

Since wave maps into S2 is a special cases of wave maps into SU(2),
as a consequence of Theorem 6.1 and Proposition 7.3 we get the following
Theorem:

Theorem 7.5. We use the same assumption as in Theorem 6.1. If z2j =
−z̄2j−1, i.e., r2j = −r2j−1 and µ2j = µ2j−1 for all 1 ≤ j ≤ k, then s2k is a
homoclinic 2k-soliton wave map from S1 ×R

1 into S2.

When k = 1, the above Theorem was proved by Shatah and Strauss in
[3].
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8. Wave maps into compact symmetric spaces.

In section 7, we embed S2 as a totally geodesic submanifold of SU(2) = S3.
By viewing S2 as the symmetric space SU(2)/SO(2), we give conditions on
solutions of the −1 flow equation whose image lies in S2. In fact, this same
method works for any compact symmetric space. In particular, we apply this
method to construct homoclinic periodic 2k-soliton wave maps into CPn and
4k-soliton wave maps into Sn.

First we give a short review of symmetric spaces. Let G be a complex
semi-simple Lie group, and τ and σ involutions of G such that

(i) the differential τ∗ = dτe and σ∗ = dσe at the identity e are conjugate
linear and complex linear Lie algebra involution on G respectively, i.e.,
τ∗(αξ) = ᾱτ∗(ξ) and σ∗(αξ) = ασ∗(ξ) for all α ∈ C and ξ ∈ G,

(ii) στ = τσ.

Let U denote the fixed point set of τ in G. Such U is called a real form of
G. Since τ and σ commute, σ(U) ⊂ U . Let K denote the fixed point set
of σ in U , and P the −1 eigenspace of σ∗ on U . Then U/K is a symmetric
space, and U = K + P satisfying

[K,K]⊂ K, [K,P ]⊂ P , [P ,P ]⊂ K.

Let D be a domain in C that is invariant under complex conjugation.
We say that g : D→ G and ξ : D→ G satisfy the U -reality condition if

τ(g(λ̄)) = g(λ), τ∗(ξ(λ̄)) = ξ(λ), (8.1)

and satisfy the U/K-reality condition if{
τ(g(λ̄)) = g(λ), σ(g(−λ)) = g(λ),
τ∗(ξ(λ̄)) = ξ(λ), σ∗(ξ(−λ)) = ξ(λ)

(8.2)

respectively.
Let ∗ denote the U -action on U defined by g ∗ h = ghσ(g)−1. Then the

stablizer at the identity e is K. So the orbit at e,

Mσ = {gσ(g)−1 | g ∈ U}, (8.3)

is diffeomorphic to U/K. It is known that Mσ is isometric to the symmetric
space U/K (for a proof see [4]):
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Proposition 8.1. The U -orbit Mσ = U ∗ e is totally geodesic submanifold
of U and is an isometric embedding of the symmetric space U/K into U .

The embedding of U/K given in the above Proposition is called the
Cartan embedding . The embedding of S2 in SU(2) = S3 given by (7.1) is
the Cartan embedding of Mσ in SU(2), where SU (2)

SO(2) = S2 is the symmetric
space given by τ(g) = (g∗)−1 and σ(g) = (gt)−1.

The −1 flow equation associated to U is the equation (4.1) for (a, u, v) :
R

2 →
∏3
i=1 U , and has a Lax pair θλ = (aλ + u) dx + λ−1v dt. Our com-

putations and results for SU(2) and S2 = SU (2)
SO(2)

in previous sections work
for any compact Lie group U and symmetric space U/K. For example, the
following can be proved in a similar manner:

1. The Lax pair θλ of the −1 flow equation associated to U satisfies the
U -reality condition (8.1), i.e.,

τ∗(θλ̄) = θλ.

2. Theorem 4.2 holds by replacing SU(n) by U . In other words, we have
a correspondence between solutions of the −1 flow equation associated
to U and wave maps into U .

3. Since any compact Lie group U can be embedded as a subgroup of
SU(N ) for some N , to construct explicit solutions of the −1 flow equa-
tion, we only need to find product of simple elements (i.e., of the form
(5.2)) that satisfies the U -reality condition.

4. The linearization of the wave map equation from S1 × R
1 into U at

the stationary wave map s0(x, t) = eax with e2πa = I is

ξtt = ξxx + [a, ξx].

Its stable and unstable modes can be computed using roots of U .

5. Propositions 7.1 and 7.2 hold if we replace SU(2) and SU (2)
SO(2) by U and

U
K . The proofs are similar.

6. There are analogous Theorem 6.1 and Theorem 7.5 for U and U/K.

Next we give two examples:
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Example 8.2. Wave maps from S1 × R
1 to CPn−1

Let G = SL(n,C), J = diag(1, . . . , 1,−1), and τ, σ : G→ G defined by

τ(y) = (y∗)−1, σ(y) = JyJ−1.

A direct computation shows that both τ and σ are group homomorphisms,
τ2 = σ2 = Id, and τσ = στ . The fixed point set of τ in G is U = SU(n),
and the fixed point set of σ in U is S(U(1)×U(n− 1)). The ±1 eigenspace
of σ∗ in U is

K =
{(

ξ 0
0 c

) ∣∣∣∣ ξ ∈ u(n− 1), c ∈ C pure imaginary, tr(ξ) + c = 0
}

P =
{(

0 v̄t

−v 0

) ∣∣∣∣ v ∈M1×(n−1)(C)
}
.

Here Mk×j(K) is the space of k × j matrices with entries in K. The sym-
metric space corresponding to τ, σ is SU (n)

S(U (n−1)×O(1)) = CPn−1.
Let D ∈ gl(n− 1,C), v ∈M(n−1)×1(C), v ∈ M1×(n−1)(C), c ∈ C. Then

g =
(
D b

v c

)
∈ SU(n) if and only if

⎧⎪⎨⎪⎩
DD̄t + bb̄t = I,
vD̄t + cb̄t = 0,
||v||2 + |c|2 = 1.

So

gσ(g)−1 =
(
I − 2bb̄t 2bc̄
−2cb̄t 2|c|2− 1

)
.

The map from the symmetric space Mσ to CPn−1 (the space of complex
linear lines in C

n) defined by(
I − 2bb̄t 2bc̄
−2cb̄t 2|c|2 − 1

)
�→ C

(
2bc̄

2|c|2− 1

)
is an isometry from Mσ to CPn−1.

In order to construct explicit wave maps into CPn−1, we look for a prod-
uct of simple elements,

g = gz1,π1 · · ·gzr ,πr ,

that satisfies the extra reality condition

g(−λ) = σ(g(λ)).
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It can be checked that the simple element gz,π does not satisfy this extra
reality condition. But we can find product of two simple elements do. Let

π denote the Hermitian projection onto C

(
w
c

)
, where w ∈ C

n−1 and c ∈ C

so that ||w||2 = |c|2 = 1. A direct computation implies

π =
1
2

(
ww̄t wc̄
cw̄t |c|2

)
, (8.4a)

σ(π) =
1
2

(
ww̄t −wc̄
−cw̄t |c|2

)
= projection onto C

(
w
−c

)
. (8.4b)

Since
(
w
c

)
and

(
w
−c

)
are perpendicular with respect to the Hermitian inner

product, we have
πσ(π) = σ(π)π = 0. (8.5)

So gz,π and g−z,σ(π) commute. Let

hz,π = gz,πg−z,σ(π). (8.6)

Note
σ(π⊥) = σ(I− π) = I− σ(π) = (σ(π))⊥.

Use (8.5), σ(π⊥) = σ(π)⊥ and a direction computation to prove that hz,π
satisfies the SU (n)

S(U (n−1)×U (1))
-reality condition:

h(λ̄)∗h(λ) = I, h(−λ) = σ(h(λ)). (8.7)

We apply Bäcklund transformations given by these elements to the station-
ary wave maps (closed geodesics) to construct homoclinic wave maps from
S1 × R to CPn−1.

Let a0 ∈ P so that e2πa0 = I, m an integer, and a = ma0. Since
a0 ∈ su(n), there exists A ∈ SU(n) and C = diag(ic1, . . . , icn) so that
a0 = ACA−1. Because e2πa0 = I, all cj must be integers. Note (a, 0, a) is a
solution of the −1 flow equation associated to SU(n) with a ∈ P , and the
corresponding wave map constructed in Theorem 4.2 is

f0(x, t) = e−2ax = Ae−2CxA−1 ∈Mσ = CPn−1.

Choose z1, . . . , zj ∈ C so that

zj = eiθj =
rj + iµj
m
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as in Example 5.4. Let

hz,π • (a, u, v) = gz,π • (g−z,σ(π) • (a, u, v)),

(a, uj, vj) = hzj ,π • (· · · • (hz1,π • (a, 0, a)) · · ·),
fj = hzj ,π • (· · · • (hz1,π • f0) · · · ).

The computation in Example 5.4 and the proof of Theorem 6.1 implies that
fk is a homoclinic 2k-soliton wave map from S1 × R1 to SU(n). But each
hzj ,πj satisfies the reality conditions (8.7). Use a proof similar to that of
Proposition 7.3(2) to see that vj ∈ P and uj ∈ K and the wave map corre-
sponding to (a, uj, vj) lies in Mσ = CPn−1. So fj is a wave map from S1×R

to SU(n) whose image lies in CPn−1. By Theorem 6.1, fk is a homoclinic
wave map from S1 × R to CPn−1.

Example 8.3. Wave maps from S1 × R
1 to RPn−1 and Sn−1

Let G = SO(n,C),

τ(g) = ḡ, σ(g) = JgJ−1,

where J = diag(1, . . . , 1,−1). It can be checked easily that both τ and σ
are group homomorphisms of G, τ2 = σ2 = Id and τσ = στ . The fixed
point set of τ in G is U = SO(n), and the fixed point set of σ in U is
S(O(1)×O(n− 1)). The ±1 eigenspace of σ∗ in U is

K =
{(

0 0
0 ξ

) ∣∣∣∣ ξ ∈ so(n − 1)
}

P =
{(

0 vt

−v 0

) ∣∣∣∣ v ∈M1×(n−1)(R)
}
.

The symmetric space corresponding to τ, σ is SO(n)
S(O(n)×O(1)) , which is RPn−1.

Let g =
(
D b

v c

)
∈ SO(n) with D ∈ gl(n − 1,R), b ∈ M(n−1)×1 ∗ (R),

v ∈M1×(n−1)(R), and c ∈ R. A direct computation gives

gσ(g)−1 =
(

I− 2bbt 2bc
−2cbt 2c2 − 1

)
.

So the Cartan embedding is

Mσ = {gσ(g)−1 = gJgJ−1 | g ∈ SO(n)}

=
{(

I− 2bbt 2bc
−2cbt 2c2 − 1

) ∣∣∣∣ b ∈M(n−1)×1(R), c ∈ R, c2 + ||b||2 = 1
}
.



382 C.-L. Terng and K. Uhlenbeck

The map from

Sn−1 =
{(

b

c

) ∣∣∣∣ c ∈ R, b ∈ R
n−1, |c|2 + ||b||2 = 1

}
to Mσ defined by (

b

c

)
�→
(

I− 2bbt 2bc
−2cbt 2c2 − 1

)
is a double covering. This shows that Mσ is isometric to RPn−1.

To construct explicit wave maps into Sn−1 from a stationary wave map
into Sn−1, we need to find rational maps g from S2 to SO(n,C) that satis-
fying g(∞) = I and the SO(n)

S(O(n−1)×O(1))
-reality conditions:

g(λ̄)g(λ) = I, g(−λ) = Jg(λ)J−1. (8.8)

This is equivalent to find rational maps from S2 to GL(n,C) that satisfies

g(λ̄)∗g(λ) = I, g(λ̄)g(λ) = I, g(−λ) = Jg(λ)J−1. (8.9)

We have seen in Example 8.2 that hz,π defined by (8.6) satisfies the first
and third conditions of (8.9), but in general it does not satisfies the second
condition. However, let w ∈ R

n−1 and b ∈ R so that ||w|| = |b| = 1, and π

the projection onto C

(
w
ib

)
. A direct computation shows that

π =
(
wwt −ibw
ibwt 1

)
, σ(π) = π̄.

By (8.5), we have
ππ̄ = π̄π = 0.

It is easy to check that

φz,π = hz,πh−z̄,π = gz,πg−z,π̄g−z̄,πgz̄,π̄

satisfies all conditions in (8.9). Note φ has four simple poles, z,−z, z̄,−z̄.
Let a0 ∈ P so that e2πa0 = I. Then (a, 0, a) is a solution of the −1

flow equation associated to SO(n) whose corresponding wave map is the
stationary wave map into Mσ: s0(x, t) = e−2a0x. Let m an integer, and

a = ma0.
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Let

zj = eiθj =
rj + iµj
m

,

where rj is an integer. Let

φ • (a, u, v) = hz,π • (h−z̄,π • (a, u, v)).

Use similar reasoning as in Example 8.2 to see that wave map

sj = φzj ,π • (· · · (φz1,π • s0) · · · )

is a homoclinic 4j-soliton wave map from S1×R
1 to RPn−1. Moreover, the

last column of sj gives a homoclinic wave map from S1 ×R1 to Sn−1.

9. Wave maps from R1,1 to SL(2, R).

It is known that the Cauchy problem for wave map equation from R1,1 to
any complete Riemannian manifold has long time existence ([1]). We will
show that this is no longer true when the target manifold is the pseudo-
Riemannian manifold SL(2,R). In fact, we use Bäcklund transformations
to construct smooth initial data with finite energy and constant boundary
condition at ±∞ so that the Cauchy problem for wave maps into SL(2,R)

1. has long time existence, or

2. develops singularities in finite time.

First note that Theorem 4.2 holds if we replace SU(n) by any group
G. But Bäcklund transformations for the −1 flow equation associated to
SL(2,R) is different from the SU(n) case. Let α1, α2 ∈ C, and π a linear
projection of C

n (i.e., π is complex linear and π2 = π). Let

hα1,α2,π(λ) = I +
α1 − α2

λ− α1
π′, (9.1)

where π′ = I− π. Then

h−1
α1,α2,π(λ) = I +

α2 − α1

λ− α2
π′.

Bäcklund transformations are given as follows (cf. [5]):
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Theorem 9.1. Let (a, u, v) be a smooth solution of the −1 flow equation
associated to SL(n,C), θλ = (aλ + u) dξ + vλ−1dη its Lax pair, and E

the trivialization of θλ. Let π be the projection of C
n, V1 = Im(π), and

V2 = Ker(π). Set

Ṽi(ξ, η) = E(ξ, η, αi)−1(Vi), for i = 1, 2.

Suppose Ṽ1(ξ, η) ∩ Ṽ2(ξ, η) = {0} for (ξ, η) lies in an open subset O of R2.
Let π̃(ξ, η) denote the linear projection onto Ṽ1(ξ, η) along Ṽ2(ξ, η), and

ũ = u+ (α1 − α2)[a, π̃],

ṽ =
(

I− α1 − α2

α1
π̃

)
v

(
I− α1 − α2

α1
π̃

)−1

= (−α1π̃ + α2π̃
′)v(−α−1

1 π̃ + α−1
2 π̃′).

Then (a, ũ, ṽ) is a smooth solution of the −1 flow equation associated to
SL(n,C) defined on O. Moreover, the trivialization of the Lax pair of
(a, ũ, ṽ) is

Ẽ(ξ, η, λ) = hα1,α2,π(λ)E(ξ, η, λ)hα1,α2,π̃(x,t)(λ)−1.

We use hα1,α2,π • (a, u, v) to denote (a, ũ, ṽ).
If (a, u, v) is a solution of the −1 flow equation associated to SL(n,R),

then hα1,α2,π • (a, u, v) is also a solution of the −1 flow equation associated
to SL(n,R) provided that α1, α2 ∈ R and π̄ = π.

Example 9.1. Let a = diag(1,−1). Then (a, 0, a) is a solution of the −1
flow equation associated to SL(2,R) and the corresponding wave map is

s(x, t) = e−2ax. Let α1, α2 ∈ R, v1 =
(
c1
c2

)
∈ R

2, v2 =
(
d1

d2

)
∈ R

2, and π

the projection of C2 onto Cv1 along Cv2. Let

(a, ũ, ṽ) = hα1,α2,π • (a, 0, a).

Use Theorem 9.1 and a direct computation to get

π̃ =
1

c1d2eA − c2d1e−A

(
c1d2e

A −c1d1e
−B

c2d2e
B −c2d1e

−A

)
,

where

A = (α2 − α1)ξ + (α−1
2 − α−1

1 )η, B = (α2 + α1)ξ + (α−1
2 + α−1

1 )η.



1 + 1 Wave Maps into Symmetric Spaces 385

The new solution (a, ũ, ṽ) is expressed in terms of π̃(ξ, η) as given in Theorem
9.1. The wave map corresponding to (a, ũ, ṽ) is

s̃(ξ, η) = Ẽ(ξ, η,−1)Ẽ(ξ, η, 1)−1

= h(−1)e−ax
(

(1 + α1)(1− α2)− 2(α1 − α2)π̃(x, t)
(1 + α2)(1− α1)

)
e−axh(1)−1,

where h(λ) = hα1,α2,π(λ). If π̃ has singularities, then (a, ũ, ṽ) and s̃ have too.
Note that we can choose αi and v1, v2 so that hα1,α2,π • (a, 0, a) is singular
somewhere or is smooth on the whole R1,1. But such wave maps do not have
good boundary behavior when x→ ±∞.

Example 9.2. We construct wave maps whose image lies in the subgroup

R
+ = {diag(et, e−t) | t ∈ R}

of SL(2,R). Let h(ξ) and k(η) be smooth real valued functions, and

a(ξ) = h′(ξ)diag(1,−1), b(η) = k′(η)diag(1,−1).

Then (a, 0, b) is a solution of the −1 flow equation associated to SL(2,R),
its Lax pair is θλ = a(ξ)λ dξ + b(η)λ−1 dη, and the trivialization of θλ is

E(ξ, η, λ) = diag(eh(ξ)λ+k(η)λ−1
, e−(h(ξ)λ+k(η)λ−1)).

The corresponding wave map is

s(ξ, η) = E(ξ, η,−1)E(ξ, η, 1)−1 = diag(e−2(h(ξ)+k(η)), e2(h(ξ)+k(η))). (9.2)

Since the subgroup R
+ is abelian, the equation for wave maps into R

+

is the linear wave equation. Hence every wave maps into R+ is of the form
given in (9.2) for some smooth one variable real valued functions h, k.

Example 9.3. We compute Bäcklund transformation of the wave maps
given in Example 9.2. Let α1, α2 ∈ R, and π the projection of C2 onto

Cy1 along Cy2, where y1 =
(
c1
d1

)
and y2 =

(
c2
d2

)
are in R

2. To get

hα1,α2,π • (a, 0, b), we first compute

ỹ1(ξ, η) = E(ξ, η, α1)−1(y1) =
(
c1e

−A1

d1e
A1

)
,

ỹ2(ξ, η) = E(ξ, η, α2)−1(y2) =
(
c2e

−A2

d2e
A2

)
,
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where
Ai = h(ξ)αi + k(η)α−1

i for i = 1, 2.

Let π̃(ξ, η) be the projection onto Cỹ1(ξ, η) along Cỹ2(ξ, η). Then

π̃ =
1
W

(
c1d2e

−A1+A2 −c1c2e−(A1+A2)

d1d2e
A1+A2 −c2d1e

A1−A2

)
, (9.3)

where
W := c1d2e

−A1+A2 − c2d1e
A1−A2 .

So (a, ũ, ṽ) := hα1,α2,π • (a, 0, b) is given by⎧⎨⎩ũ = (α1 − α2)[a, π̃],

ṽ =
(
I− α1−α2

α1
π̃
)
b
(
I− α1−α2

α1
π̃
)−1

.

The trivialization of (a, ũ, ṽ) is

Ẽ(ξ, η, λ) = hα1,α2,π(λ)E(ξ, η, λ)h−1
α1,α2,π̃(ξ,η)(λ),

and the corresponding wave map is

s̃(ξ, η) = h(−1)A0

(
(1 + α1)(1− α2)− 2(α1 − α2)π̃

(1 + α2)(1− α1)

)
A0h(1)−1,

where h(λ) = hα1,α2,π(λ) and A0(ξ, η) = diag(e−(h(ξ)+k(η)), e(h(ξ)+k(η))).
It can be easily checked that

(i) π̃(ξ, η) has singularity at (ξ0, η0) if and only if W (ξ0, η0) = 0. For
example, if c1d2

c2d1
> 0, then π̃ has singularities at points on the curve

h(ξ)(α1 − α2) + k(η)(α−1
1 − α−1

2 )− 1
2

ln
(
c1d2

c2d1

)
= 0. (9.4)

(ii) If c1d2
c2d1

< 0, then W never vanishes. So π̃ is smooth for all (ξ, η).

Now suppose that both h and k is in L2
1, i.e, h, k, h′, k′ are square in-

tegrable. If W (x, t0) �= 0 for all x ∈ R, then the formula for π̃ implies
that

lim
|x|→∞

π̃(x, t0) =
1

c1d2 − c2d1

(
c1d2 −c1c2
d1d2 −d1c2

)
= π.

So

lim
|x|→−∞

s̃(x, t0) = h(−1)
(

(1 + α1)(1− α2)− 2(α1 − α2)π
(1 + α2)(1− α1)

)
h(1)−1
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is a constant
Rewrite the left hand side of (9.4) in space time coordinates x, t, and set

f(x, t) = (α1 − α2)h((x+ t)/2)− (α−1
1 − α

−1
2 )k((x− t)/2)− 1

2
ln
(
c1d2

c2d1

)
For case (i), we can choose α1, α2 ∈ R and h, k in L2

1 so that f(x, 0) never
vanishes for all x ∈ R, but vanishes at some (x0, t0) for some t0 > 0. We
check that the wave map s̃(x, 0) is smooth with finite energy and constant
boundary condition, but it develops singularities in finite time.

For case (ii), we have proved that s̃(x, t) has constant boundary condition
for all t. Claim that the energy of s̃ is finite. To see this, note that by
Theorem 4.2 we have

tr(s̃−1s̃ξ, s̃
−1sξ) = 4 tr(a, a),

tr(s̃−1s̃η, s̃
−1s̃η) = 4 tr(ṽ, ṽ)

But tr(ṽ, ṽ) = tr(b, b), which is finite. Thus s̃ is smooth, lim|x|→∞ s̃(x, t) is
a fixed constant for all t, and has finite energy.
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