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1+ 1 Wave Maps into Symmetric Spaces

CHUU-LI1AN TERNG! AND KAREN UHLENBECK?2

We explain how to apply techniques from integrable systems
to construct 2k-soliton homoclinic wave maps from the periodic
Minkowski space S* x R' to a compact Lie group, and more gen-
erally to a compact symmetric space. We give a correspondence
between solutions of the —1 flow equation associated to a com-
pact Lie group G and wave maps into G. We use Bécklund trans-
formations to construct explicit 2k-soliton breather solutions for
the —1 flow equation and show that the corresponding wave maps
are periodic and homoclinic. The compact symmetric space G/K
can be embedded as a totally geodesic submanifold of G via the
Cartan embedding. We prescribe the constraint condition for the
—1 flow equation associated to GG which insures that the corre-
sponding wave map into G actually lies in G/K. For example,
when G/K = SU(2)/SO(2) = S?, the constrained —1-flow equa-
tion associated to SU(2) has the sine-Gordon equation (SGE) as
a subequation and classical breather solutions of the SGE are 2-
soliton breathers. Thus our result generalizes the result of Shatah
and Strauss that a classical breather solution of the SGE gives rise
to a periodic homoclinic wave map to S2. When the group G is
non-compact, the bi-invariant metric on G is pseudo-Riemannian
and Bécklund transformations of a smooth solution often are sin-
gular. We use Bicklund transformations to show that there exist
smooth initial data with constant boundary conditions and finite
energy such that the Cauchy problem for wave maps from R"! to
the pseudo-Riemannian manifold SL(2, R) develops singularities in
finite time.
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1. Introduction.

A smooth map s : M — N between two pseudo-Riemannian manifolds is
called harmonic if it is a critical point of the functional

J(s) = %/M<dsp,dsp>pdv, (1.1)

where ( ,), is the natural bilinear form induced from the metrics on T'M,,
and T'Ny(,), and dv is the volume form of M associated to its metric. When
the domain manifold is Riemannian, the Euler-Lagrange equation of J is
elliptic, and is the natural non-linear generalization of the Laplace-Beltrami
equation. There is an extensive literature in geometry and physics on elliptic
harmonic maps. When the domain manifold is the Lorentz space M =
R™!, the equations are non-linear wave equations, and the solution maps
are referred to as wave maps. When the target manifold N is a Lie Group
G, these equations have a particularly simple form. For M = RY!, the
equation for s : Rb — @ is

(s_lst)t = (s_lsm)x, (1.2)

and a solution is called a 141 wave map into G. This equation in light cone
(characteristic) coordinates

T+t r—1
{=— 1=—75
takes the form
(3_135)77 = —(s" sp)es (1.3)

which can be encoded in a Lax pair, i.e., s is a 1 + 1 wave map if and only if

o (1-=X o (11—

8_f + 5 s Se, 8_"7 + 5
for all A € C\ {0}. Because of this Lax formulation, the 1 + 1 wave map
equation (1.2) is an integrable system.

In this paper we describe how to apply methods from integrable systems
to construct periodic and homoclinic wave maps to Lie groups and more
generally to symmetric spaces. We will use a closely related integrable non-
linear wave equation, the —1 flow equation associated to GG. This is the first
order semi-linear wave system for (a,u,v) : RL 5 GxGxG:

1 .
s sy =0

ay = Ay,
up = uy — [a,v], (1.4)

VUVt = —Ugy — [ua ’U],
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where G is the Lie algebra of G. The —1 flow equation also has a Lax pair,
namely (a,u,v) is a solution of the —1 flow equation if and only if

é%—I-a)\—l—u, %—I—)\_lv =0
for all A € C\ {0}, where £, n are characteristic coordinates. The name —1
flow comes from the standard convention in the theory of soliton equations
and we give a brief explanation next.
There is a hierarchy of soliton flows associated to each Lie group G. The
Lax pair of the j-th flow in the G-hierarchy is of the form

il b — 4 pN Mo | =0

5p TAtTY 5t + Q1 + + Q)

with a, b, u, Q; in G. For example, the focusing non-linear Schrodinger equa-
tion (NLS)

;
G = 5 (qus + 2|q/%q)

and the complex modified KdV equation

1
qt = _Z(q;mcac + 6‘Q‘QQLB)

are the second and third flows in the SU(2)-hierarchy.

The Lax pairs of the wave map equation and the —1 flow equation are
gauge equivalent, which in turn gives an equivalence between solutions of the
—1 flow equation associated to G and wave maps s : Rb! — G with s(0,0) =
I the identity. This is analogous to the Hasimoto transformation between the
focusing NLS and the Heisenberg magnetic model equation. If a solution of
the —1 flow equation associated to G satisfies a certain constraint (a reality
condition) coming from an involution o of G, then the corresponding wave
map to G is in fact a wave map to the symmetric space G/K (here K is the
fixed point set of ¢). When G = SU(2) and o(g) = (¢°) ™, the constrained
—1-flow equation is equivalent to the equation for wave maps from R to S2.
Moreover, this constrained —1 flow equation associated to SU(2) contains
the sine-Gordon equation (SGE),

qit — qza = Sing,

as a subequation.
Shatah and Strauss prove in [3] that wave maps into S? corresponding
to classical breather solutions of the SGE are homoclinic, when viewed as
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wave maps from S' x R! to S2, in the sense that their limits as ¢ — oo
and as t — —oo are the same. Our study of periodic 1+ 1 wave maps into
symmetric spaces was inspired by their paper.

To explain the method we use to construct homoclinic wave maps from
S x R to a symmetric space, we need to give a brief review of Bicklund
transformations in integrable systems (cf. [5]). First note that given smooth
gl(n, C) valued maps A, B on R?, the condition that A, B satisfy

0 0
Z +A —+B|=
e A gt 0

is equivalent to the existence of the trivialization E such that
Ec=FA, E,=FEB, FE(0,0)=1L

Now let (a,u,v) be a solution of the —1 flow, and E (£, n, ) the trivialization
of the corresponding Lax pair, i.e.,

E¢=F (aA+u), E,=X'Ev, E(0,0,)\)=L

Since the coefficients of the above differential equation are holomorphic in
the parameter A € C\ {0}, E(&,n, A) is holomorphic in A € C\ {0}. The
basic idea of a Béacklund transformation is that given a linear fractional map
from 52 = CU{oo} to GL(n,C) of the form g(A) =1 + £ for some 2z € C
and P € gl(n), we can use residue calculus to choose a gl(n)-valued map P
defined in an open neighborhood O of (0,0) in the (£, n)-plane so that

E(Ev m, )‘) = g()‘)E(Ev n, )‘)g(fv m, )‘)_1

is holomorphic in A € C\ {0} for each (£, n) € O, where j = I + y£-. By a
direct computation, one can see that

E7'Ee=a\+a, E'E,=X"'%
for some @, v defined on O. Hence (a,u,?) is again a solution of the —1
equation. We call

(a,u,v) — geo(a,u,v):= (a,u,)

a Backlund transformation of the —1 flow equation. We notice that the
classical breather solutions of SGE can be constructed from the vacuum
solution ¢ = 0 by applying Bécklund transformations twice with carefully
placed poles. Therefore we can apply Backlund transformations 2k times to
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construct 2k-soliton breathers for SGE. We show that corresponding wave
maps into S? are also homoclinic. In fact, we generalize results of Shatah
and Strauss to 1 4+ 1 wave maps into any compact symmetric spaces.

Note that if a € G is a constant, then (a, 0, a) is a trivial solution of the
—1 flow equation, and the k-soliton solutions of the —1 flow equation can be
constructed by applying Biacklund transformations to it k£ times. If we choose
a so that exp(2ma) = I and place the poles of the Bécklund transformations
carefully, then we can obtain k-solitons of the —1-flow equations, that are
periodic in time or in space. Such solutions are called k-soliton breathers.
The wave maps into G corresponding to k-soliton breathers are periodic in
the space variable. Wave maps from S! x R to G are called periodic wave
maps into G. The wave map corresponding to the trivial solution (a, 0, a) of
the —1 flow equation is a stationary wave map into GG, which is the geodesic
v(x) = exp(azx) in G. We apply Backlund transformations to these solutions
to construct explicit k-soliton periodic wave maps. Moreover, we compute
the asymptotic behavior of these periodic wave maps and prove that they are
homoclinic. We also construct explicitly 2k-soliton homoclinic wave maps
from S! x R into CP™ and 4k-soliton homoclinic wave maps into S™~1.

When G is compact, a wave map from RY! to G corresponding to a
general k-soliton solution of the —1 flow equation usually oscillates as the
space variable |z| — oo, i.e., does not have constant boundary conditions at
infinity. To construct wave maps into G that have good boundary conditions
and finite energy, we first note that a wave map to a circle subgroup 7" of
G is given essentially by a solution of the linear wave equation, so wave
maps to 7" with finite energy and good boundary conditions at oo can be
written down easily, and Bécklund transformations of such wave maps are
again wave maps having finite energy and constant boundary conditions at
infinity.

The Lax pair of the defocusing NLS

@ = 5(aee — 2lalq)

satisfies the reality condition coming from the non-compac group SU(1,1),
and does not have smooth solitons. The theorem that Backlund transfor-
mations do not introduce singularities applies only to the reality condition
coming from a compact Lie group. Unfortunately there are many interest-
ing geometric problems in integrable systems for which solutions obtained
via Backlund transformations do have singularities. Nevertheless, Bécklund
transformations can still be used in the non-compact case to construct in-
teresting examples as we will see next with G = SL(2,R).
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It is known that the Cauchy problem for wave maps from R to a
complete Riemannian manifold N with smooth initial data in L? has long
time existence (cf. [1]). But this is no longer true if we replace N by a
pseudo-Riemannian manifold. There are counterexamples for N = SL(2,R)
equipped with the pseudo-Riemannian bi-invariant metric.

This paper is organized as follows. In section 2, we review the Lagrangian
formulation of wave maps from R>! to G and the corresponding Lax pair. In
section 3, we give the Hamiltonian formalism for wave maps and compute the
stable and unstable modes at stationary solutions. In section 4, we prove the
Lax pair of the —1 flow equation associated to G is gauge equivalent to the
Lax pair of the equation for wave maps into G, and give a bijection between
solutions of the —1 flow equation and wave maps s satisfying s(0,0) = 1. In
section 5, we review Bécklund transformations for the —1 flow equation as-
sociated to SU(n), and apply these transformations to stationary wave maps
to construct explicit k-soliton wave maps from S! x R to SU(2). In section
6, we prove the wave maps to SU(2) corresponding to 2k-soliton breather
solutions are homoclinic. In section 7, we explain the constraint condition
for the —1 flow equation associated to SU(2) so that the corresponding wave
maps into SU(2) = S3 lie in S2. In section 8, we first recall a useful descrip-
tion of the compact symmetric space G/K imbedded as a totally geodesic
submanifold in G, and then prescribe the constraint condition for the —1
flow associated to GG that insures that the corresponding wave maps into G
actually lie in a symmetric space. We emphasize the important case of wave
maps into S? = SUQ) into CP™ ! and into S”~!. Finally in section 9, we
use Bécklund transformations to construct examples of smooth Cauchy data
with constant boundary conditions at infinity and finite energy such that
the Cauchy problem for wave maps from RY! to SL(2,R) have long time
existence and also examples of initial data that develop singularities in finite
time.

2. Wave map equation and its Lax pair.

We rewrite (1.3) as a first order system. Let P = 8_185, and Q = 8_1877, ie.,
se =sP, s, =350Q. (2.1)
The compatibility condition of the linear system (2.1) is
QP + P, = PQ + Q¢,

or equivalently,

Py = Qe = PQ— QP = [P.Q). (2.2)
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Combine equations (2.2) and (1.3) to see that the wave map equation in
characteristic coordinates is

1
Pn:_Q§:§[P7Q]7

i.e.,
_ _ 1, _ _

(57 se)n = (5" sp)e =5 [s7 s, 57 sy). (2.3)
In other words, we have
Proposition 2.1. Let (¢,7) denote the light cone coordinate system of RY:1.
If s : RM — SU(n) is a wave map, then A = 1s71se and B = s71s, satisfy
the first order system

A, =—-B¢=[A,BJ. (2.4)

Conversely, if (A, B) is a solution of (2.4), then there exists a unique s :
RYY — SU(n) such that

se =2sA, s, =2sB, s(0,0)=1.
Moreover, s satisfies (1.3), i.e., s is a wave map.

Next we formulate equation (2.4) as the condition for a family of con-
nections to be flat. Recall that the curvature of a gl(n)-valued connection

0 0
“Z.p =2
{0£+ | 8n+Q}
is defined to be

0 0
F = [8_£+P’ a—n+Q] =—P,+ Q¢+ [P, Q).

The connection is flat if the curvature is zero. So the compatibility con-
dition (2.2) for linear system (2.1) is also the condition for the connection

{% + P, % + Q} to be flat. Another convenient way to write connection

is as a gl(n)-valued 1-form
0 =Ad+ B dn.
Then the curvature is
A +0 N0 =(—A,+ Be + [A, B]) d§ A dn.

It is easy to see that the following statements are equivalent for smooth
maps A, B : R? — gl(n):
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1 [Z + Az, t), & + B(z,t)] =0,
2. The connection 1-form 6 = Adx + Bdt is flat, i.e., df = —0 A 6.
3. A, — B, =[A,B].

4. E, = FA, E;= EB, E(0,0)= I has a unique solution E : R? —
GL(n). Such E is called the trivialization of the flat connection A dx+
B dt (normalized at (0,0)).

The wave map equation has a Lax pair (cf. [7, 6]), i.e., there is a one
parameter family of si(n, C)-valued connection 1-forms ) on R%! defined
in terms of s : R — SU(n) and its derivatives so that Q, is flat for all
A € C\ {0} if and only if s satisfies (1.3). We explain this next. Given
A, B :RY — su(n) and A € C\ {0}, consider the following gl(n, C)-valued
connection 1-form on RY:

Q=1 -NAdE+(1—A"NHB dn.

We claim that €2y is flat for all A\ € C* if and only if (A, B) is a solution of
(2.4). To see this, note that Q) is flat is equivalent to

(1-=NA,— (1=AHB:=[1- M)A, 1 -AHB=2-X-2"1[A, B]

for all A € C\ {0}. Equate the coefficients of A=}, A\ and constant term to
get

A, = [A, B],
A, — Be = 2[A, B,
Be = —[A, B).

This is equivalent to (2.4), and we prove the claim. We summarize our
discussions:

Proposition 2.2. (/6, 7]). Let s : R4 — SU(n) be a smooth map, (£,7)
the light cone coordinate system, and

1
A=(s7's), B=5(s"sy).

Then the following statements are equivalent:
1. s is a wave map.

2. s is a solution of (1.3).
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3. (A, B) is a solution of (2.4).
4. The connection 1-form
=1 -NAdE+(1-A"HBdy (2.5)
is flat for all X € C\ {0},

Corollary 2.3. If A, B : RYY — su(n) satisfy equation (2.4), then there
exists E(x,t, \) such that

E'Ee=(1-MNA, E'E,=(1-XYB, FE0,0,\)=1

for all A € C\ {0}, i.e., E(-,-,\) is the trivialization of the Lax pair
defined by (2.5). Moreover, s(¢,m) = E(&,n,—1) is a wave map from RY! to
SU(n), s~'s¢ =24, and s7's, = 2B.

A direct computation implies that the Lax pair 2, of the wave map
equation satisfies the following reality condition:

O+ Q) =0, (2.6)

where ¢* = £'. We claim that the trivialization E(z,t, \) of 2, satisfies the
reality condition B
E(x,t, \)*E(z,t,\) =1, (2.7)

or equivalently, -
E(z,t,\)"t = E(x,t, \)*.

To see this, let F(z,t,\) = (E(x,t,\)*)". A direct computation implies
that F~1dF = —€)}, which is equal to Q). But F(0,0,A) = I. Since both
FE and F satisfy the same linear differential equation with the same initial
condition, the uniqueness of ODE implies that £ = F. This proves the
claim.

The A parameter seems redundant. But it is this parameter that allows
us to construct Béacklund transformations and explicit solutions. These will
be explained in later sections.

3. The Hamiltonian formulation of wave maps.

The functional J defined by (1.1) for maps s : S x R — SU(n) is

1 — —
J(s) = 5/ |[s™Ls| |2 — ||s 8| [ dadt,
]RQ
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where ||y||> = —tr(y?). Viewed as a functional on the space of curves from R
to C>= (81, SU(n)), J has two terms. The first term of J is the kinetic energy
and the second term is the potential energy. The Lagrangian formulation
of the wave map equation views the equation as an equation for curves on
the tangent bundle of M = C*(S!,SU(n)). In this section, we use the
Legendre transformation to view the wave map equation as a Hamiltonian
system on the cotangent bundle of M, and compute the stable and unstable
modes at stationary wave maps.

Recall that the cotangent bundle T*M of a manifold M has a natural
symplectic form w = dr, where 7 is the canonical 1-form on T* M defined
by

7e(v) = £(dm(v)),
where 7 : T* M — M is the natural projection.

Given a curve 7 : (—¢,€) — C*®(S!, SU(n)) with v(0) = s, we identify
the tangent vector 7/(0) as

(7(0),7(0)719/(0)) = (s, 57 'ds).
This identifies TM = M x C*(S!, su(n)). Note that
(v1,v2) = —tr(vive)

defines an inner product on su(n). So we can also identify T M, as T M,
via the L? inner product:

2m
(v1,v2) = / —tr(vivy)dx.
0
By definition of the canonical 1-form on T* M, we get
2m
T(s,v)(s_l(ssv 57}) = <’U, 8_153> = / —tr(vs_lds) dx.
0

We use the Cartan formula
w(X,Y)=dr(X,)Y)=X(r(Y)) =Y (r(X)) — 7([X,Y])

to compute the symplectic form w = dr on T*M. Let X(s,v) = (11, d1v)
and Y (s,v) = (n2, 62v) be two constant vector fields on T*M = T M. Then

X(r(Y)) = X ( /O Tt (o(@)m(a)) dx) . /O T Gy, )z = (Bro,m).
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So we get
W(s,0)((M1,010), (102, 020)) = (810, M2) — (20, M1)-

Consider the Hamiltonian H : T* M — R, which is the sum of kinetic energy
and potential energy, i.e.,

27
H(s,v) = % ((v,v) + (s sz, 571 s5)) = _%/0 tr(v? + (s7's,)?)du.

The Hamiltonian vector field Xz of H is the vector field satisfying
dH(va)(s_lds, 6v) = w((s™1ds, 6v, Xp(s,v))
for all (s718s,6v). A direct computation shows that
dH(va)(s_lds, 6v) = (6v,v) — (s 10, (s s,) ).
So the Hamiltonian vector field for H is

Xu(s,v) = (v, (s s2)a).
The Hamiltonian equation is

1

slsp=v, v =(s"

S2)zs

which is the wave map equation (1.2).

Proposition 3.1. The stationary points of Xpg are (s,0), where s(z) =
ce®, a € su(2) a constant such that e2™ = I and c € SU(2) a constant.

Proof. Xy (s,v) = (0,0) if and only if v =0 and (s7's;), = 0. So s7!s, = a
for some constant a € su(n). Hence s(z) = ce® for some ¢ € su(n). Since
s(27) = 5(0), e?™@ = I. O

Note that stationary points of Xy are closed geodesics of SU(n).

Next we compute the linearization of X at a stationary point, stable and
unstable subspaces. We will do this calculation for SU(2). The calculations
for other compact groups are similar.

Let m be a non-zero integer, a = diag(im, —im), and s(z) = e**. The
linearization of X = Xy at the stationary point (s, 0) is

dX(SVO)(s_lds, 6v) = (6v,6(5  52)2).
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Set
slos=p, dv=gq.
Compute directly to get
§(571sy) = —(s7108)s L5y + 571 (08),

= —pa+ 5 (sp)y = —pa + 5 (5D + spx)
= —pa + ap + py = pz + [a, pl.

So
dX(50)(P, ) = (¢, Pzz + [a, Pa])-

The linearized equation is
bt = g, (31)
Gt = Pz + [aapac]'

The linearization of the wave map equation at s is
Dt = Pxx + [aapx]' (32)

We compute the linear modes of the linear wave equation (3.1) next, i.e.,
solve the following linear system for (p, q) : S* — su(2):

q = kp,
Dz + [avpx] = kQ'
Substitute the first equation to the second to get
Pax + [0, p2] — kp = 0. (3.3)

Write (3.3) in terms of entries of p = (p;j) € su(2) to get

{(pn)m — k?*p11 =0, (3.4)

(p12)zz + 2im(p12). — k*p12 = 0.

This system is linear with constant coefficients. So it can be solved explicitly:

(2) c1 + cox, if k=0,
xTr) =
b 16F% ek if k£ 0,

Di2 = Cle(—im+\/k2—m2)ac + 626(—im—\/k2—m2)x
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We divide the computation into three cases:
(1) k=0.

Since in this case p17 is linear and periodic with period 27, p11 = ¢1 is
a pure imaginary constant. Note p1a = co + ¢3¢ 2% with ¢9,c3 € C. So
the nullity of d(Xg)(,0) is 5. In fact, let sy denote the stationary point
sep(x) = ce®®. Then {s.p | ¢ € SU(2),b € su(2) is conjugate to a} is a five
dimensional stationary submanifold of M and the tangent space at s = si,
is the kernel of the linearization (3.2).
(2) k e R\ {0}.

Note p11 = c1€R® 4 coe™F g periodic and k is non-zero and real implies
that p;; = 0. Since pi2 has period 27, m? — k2 > 0 and vVm2 — k2 is an
integer. So real non-zero eigenvalues of d(Xp)(s0) are

kx

k==+yvm?—3j2 0<|j|<m, jinteger.
Eigenvectors for k = £+/m? — j2 are (pg, q,:f), where

0 cre~mEie 4 C26_i(m_j)x)

br = <_Elei(m+j)ac _ E2ei(m—j)x 0 (3'5)

g = £V/m? — j2 py.

(38) ke C\R.

Since pi2 has to be periodic, m? — k% > 0 and vm? — k2 is an integer.
Hence k% must be real. But k is not real. So k is pure imaginary. In other
words, k = ic for some ¢ € R and vm? + ¢? is an integer. Hence the non-real
eigenvalues are

+iy/j2 —m?2, j > |m|, j integer.

Recall that the stable (unstable resp.) subspace of Xy at a stationary
point (s, 0) is the direct sum of the eigenspaces of d(Xg) s ) with eigenvalues
k such that Re(k) < 0 (Re(k) > 0 resp.) So the above computation gives

Proposition 3.2. Let m be an integer, a = diag(im, —im), and s(x) = e**.
The unstable subspace of the Hamiltonian vector field X at the stationary
point (s,0) is @;”:_OIWJ*, where I/Vj+ is the eigenspace of d(Xpy)(so) with

eigenvalue k = \/m? — j2 and is spanned by (pr,q;) given in (3.5). The

stable subspace of the Hamiltonian vector field X at (s,0) is EB;”:_OIWJ»_,

where W, is the eigenspace of d(Xu)(s,0) with eigenvalue k = —y/m?2 — 52
and is spanned by (pk, q;, ) given in (3.5).
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Corollary 3.3. Let m be a positive integer, and a = diag(im,—im). Then
the linearization of the wave map equation at the stationary wave map s(x,t)
= e s

gtt = gacac + [a, fac]
Moreover, the stable and unstable modes corresponding to +=+/m? — j2 are

- i(—m=j)z
P (@, 1) = =€V mE=g* t ( 0 e ) (3.6a)

J _Ee—i(—mﬂ:j)af: 0

- i(—m=j)z
P (@ t) = eVmi =it t ( 0 ce ) (3.6b)

J _ge—i(-mi)z 0
respectively, where ¢ € C is a constant, j is an integer and |j| < m.
4. The —1 flow equation and the wave map.
We give a correspondence between solutions of the —1 flow equation (1.4)
and wave maps.

In characteristic coordinate (£, ), the —1 flow equation (1.4) associated
to SU(n) is the following system for (a,u,v): R? — II3_; su(n):

ap =0,
uy = [a, v], (4.1)
ve = —[u, v].

A direct computation implies that

Proposition 4.1. The map (a,u,v) : R? — TI3_;su(n) is a solution of the
—1-flow equation (4.1) associated to SU(n) if and only if

0y = (aX +u) dé +X"tv dp (4.2)
is flat for all X € C\ {0}.

Note that the Lax pair #) of the above —1 flow equation satisfies the
reality condition (2.6). So the trivialization E(z,t, \) of 0y satisfies the
reality condition (2.7).

Recall that the gauge transformation of g : RM — GL(n,C) of the

connection 5 5
—+ A — +B
{85 T }
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bl s(en)s)

Direct computation gives

is

0 0
— 4 A -1_ ~ A -1 -1

o) o)
— +B|)gt==—+4gBg ' —gg L

Since

0 0 0 0
~ A -1 —_— B -1 = —_— A —_— B -1
[g<0£+ )g | “’(an* )g ] g[0£+ R A
the gauge transformation of a flat connection is again flat. Written in terms

of connection 1-form 6 = A d€ + B dn, the gauge transformation g * 0 is

1 1

gx0=g0g~" —dgg .

It is easy to check that if F is the trivialization of the flat connection 6,
then ¢(0,0)"'Eg~1! is the trivialization of g * 6.
Below we show that the Lax pairs of wave map equation and the —1

flow equation are gauge equivalent and give a correspondence between wave
maps and solutions of the —1 flow equation.

Theorem 4.2. Let (a,u,v) be a solution to the —1-flow equation (4.1) as-
sociated to SU(n), and ®(&,n, A) the trivialization of

Ox = (a(& mA+u(€,n)) dE + A v (&, n) dn.
Set ®(N\)(&,n) = ®(&,m,A). Then s = ®(—1)®(1)~! is a wave map from R
to SU(n), and
s7lse = —20(1)a®(1)™!,  s7ls, = —20(1)vd(1) . (4.3)

Conversely, suppose s : R4 — SU(n) is a wave map and s(0,0) = 1. Let
Y(€,m) be the solution of =1, = %8_1877 with ¥ (&,0) =1, and

a(£7 77) = %(8_185)(57 0)7
u(&,n) = a(§) — (Ye™") (&), (4.4)
v = —%¢8_18n¢_1.
Then (—a,u,v) is a solution of the —1 flow equation associated to SU(n)
and s is the wave map corresponding to (—a,u,v).
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Proof. A direct computation gives
O =D(1) %0y = (1 = A\)(—=2(1)a®(1) " )d¢ + (1 — A1) (=2(1)vd (1) )dn.

The trivialization of ©) is ®(\)®(1)~!. By Corollary 2.2, ®(—-1)®(1)" ! is a
wave map.

To prove the converse, set A = a s_lsn. By Proposition
2.2, we have A, = —B¢ = [A, B]. Set A( & n)ta(O)v(&n). A
direct computation implies that fln = [fl, B]. But A satisfies the same
differential equation as A, i.e., A, =[A, B], and

d

8_18§ n
&

N[

5=
)=

- 1
A(£,0) = A(£,0) = a(8) = 5(s7'5¢) (£, 0)-
By the uniqueness of solutions of ordinary differential equation we have

A& n) = A& n) = v & n)a©y(E,n).

Apply gauge transformation of ¢ to the Lax pair of the wave map
Q=01 -NAde+(1-A"YHBady

to get
Y xQy = (—a\+a—Pep™) dE — N1 By d.

Since Q) is flat. so is ¢ % Q. It follows from Proposition 4.1 that (—a,u, v)
is a solution of the —1 flow, where a, u, v are defined by (4.4).

Let F(&,n,A) denote the trivialization of Q. Since Q1 = 0, F(&,n,1) is
a constant. But F(0,0, ) = I. Thus F(&,n,1) = 1. It follows from Corollary
2.3 that the harmonic map s(§,n) = F(§,n, —1). The trivialization of 1) * Q)
is

E(f, m, )‘) - F(£7 m, )\W(fa 77)

But we have proved 1 * € is the Lax pair for (—a, u,v). So the wave map
corresponding to (—a, u,v) is

E(f, m, _1)E(£7n7 1)_1 = F(fa m, _1)F(£7 7, 1)_1 = F(fa m, _1) = S.
|
The proof of the above Theorem implies that the Lax pair (2.5) of the

wave map equation is gauge equivalent to the Lax pair (4.2) of the —1 flow
equation.
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Example 4.3. closed geodesics

Let a = diag(imy, -+ ,im,) € su(n), where 2myq, - -+, 2m,, are integers.
Then (a,0,a) is a solution of the —1 flow equation, the corresponding Lax
pair is

0y = a\ d¢ + a\"ldn,

and the trivialization of 0y is
Ep(&,m, \) = e,

The corresponding wave map constructed in Theorem 4.2 is the stationary
wave map

s0(€,m) = Eo(&n, =1 Bo(€,m, 1) 7 = 727 = diag(e ™7, ..., e727),
a closed geodesic in SU(n).

Note that SU(2) equipped with the bi-invariant metric is isometric to
the standard S® because

son-{(; )

is isometric to S? in C% = R? via

z,weC, 224 |w* = 1}

Example 4.4. wave maps into a great circle
Let h(§) and k(n) be smooth real valued functions on R, u = 0, and

0= (f) _O,L.), b= K(n) (g _O,L.).

Then (a,0,b) is a solution of the —1 flow equation associated to SU(2), its
Lax pair is 0y = a(£)A d€ + b(n)A~dn, and its trivialization is

e (REA+R(mMATY) 0
E(&m,A) = 0 e—i(R(EAHR(MAY)

The wave map corresponding to (a, 0, b) is

s(€, ) = diag(e~ 2 HEOTHM) - 2@+
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which lies in the great circle |z| =1 and w =0 in

- {(; )

Hence it is also a wave map into the circle S'. The equation for wave maps
into S is essentially the linear wave equation, and general solutions are of the
form h(&) +k(n). Note that if h and k decay at +o0o, then the corresponding
wave map tends to I as |z| — oo.

z,w€C, |22+ jw|? = 1} =83

5. Backlund transformations.

In this section, we use Béacklund transformations to construct k-soliton so-
lutions of the —1 flow equation, and use Theorem 4.2 to construct the cor-
responding k-soliton wave maps. Most of these wave maps oscillates as the
space variable x tends to doo, but some of these wave maps are periodic
in z. Note that wave maps into a great circle of SU(2) can be written in
terms of solutions of the linear wave equation. We show that if s is a wave
map into a great circle so that s has constant boundary condition at 4oco
and finite energy, then the new wave maps obtained by applying Bécklund
transformations to s also have constant boundary condition and finite en-
ergy.

First we review the construction of Backlund transformations of the —1
flow equation. Let (a,u,v) be a solution of the —1 flow equation (4.1) as-
sociated to SU(n), and E(z,t, A) the trivialization of its Lax pair (4.2) 6y,
i.e.,

E_1E§ = a\ + u,
E7'E, = X", (5.1)
E(0,0,\) =1

Since the right hand side of (5.1) is holomorphic in parameter A € C\ 0,
the solution E(z,t, A) is holomoprhic in A € C\ 0. Because ) satisfies the
reality condition (2.6), F satisfies (2.7).

Let m be a Hermitian projection of C™ onto a complex linear subspace V/,
7+ = I — 7 the projection onto the orthogonal complement V-1, and z € C.
Let g, : C — GL(n,C) denote the rational map defined by
A—z | zZ—z |

-y . 2
X—z" L (5:2)

gz,w()\) =7+

We call g, » a simple element. A direct computation shows that g, » satisfies
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the reality condition (2.7):

(922(X) " gom(X) = L.

In particular,

A—Z |
= gzx(A).
L T = 9aa(A)

9ot (N) = (gor(N))* =7+

To construct Backlund transformations for the —1 flow equation, we first
find ¥ and g so that

Gon(N)E(z,t,\) = E(z,t, \)g(z, t, \)

with E holomorphic in A € C \ 0 and § holomorphic in a neighborhood of
{0, 00}. Since the left hand side has a pole at A = Z, so § must have too. In
fact, g can be taken to be the form g, 7, (A) for some projection 7(x,t).
Moreover, E is the trivialization of a new solution of the —1 flow equation.
We state the results more precisely below.

Theorem 5.1. (/5]). Let (a,u,v) be a solution of the —1 flow equation
(4.1), and E(§,n, \) the trivialization of the corresponding Laz pair 0y, i.e.,

E7'Ee=a\+u, E'E,=)"'v, E(0,0,)\)=1.
Let z € C\ R, and 7 the projection onto a linear subspace V of C". Set

7(¢,n) = the Hermitian projection of C* onto V (£, 7)
u=u+(z—Zz)[7, al,

E(£7 , )‘) - gz,w()‘)E(gv n, )‘)gz,fr()‘)_l

= (m+ 5= ) B (Rem + 327 ) ).

9

Then
1. E(ﬁ’, 1, A\) is holomorphic for A € C\ 0,

2. (a,u,0) is a new solution of the —1 flow equation,
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3. E satisfies the reality condition (2.7), and E is the trivialization of the
Laz pair of (a,q,0).

We sketch the proof of this Theorem. Let g = g.r, and § = g, (1)
Note that E = gEg~" is holomoprhic for A € C \ {0, 2z, z} and has poles at
A = z and Z of order < 1. Use definition of 7 to prove that the residues of
E at A = z and A\ = Z are zero. Thus E is holomorphic for A € C\ 0. Let
0 = E~'dE. Then

O0r = 30,5 — (dg)g~" = g * . (5.3)

Expand E‘lEg in A to see that its leading term is aA. Since E‘lEg is
holomorphic in A € C, it must be of the form a\ + @ for some @. A similar
argument implies that E‘lEn must be of the form A\~'3. But 6y = (a) +
@) dé + A\7% dn is flat. So (a,, ) is a solution of the —1 flow equation.
The formula of @, v can be computed from (5.3).

Theorem 5.1 gives an algebraic method to construct new solutions from
a given solution of the —1 flow equation if the trivialization of the Lax pair
of the given solution is known. Let g . ® (a, u, v) denote the solution (a, u, ?)
constructed in Theorem 5.1, and the transformation (a, u, v) — g, r®(a, u, v)
is called a Bdcklund transformation of the —1 flow equation. Let s be the
wave map corresponding to (a,u,v) given by Theorem 4.2, and g,  ® s the
wave map corresponding to g, ® (a,u,v). We call s — g, ® s a Bicklund
transformation of wave maps.

In the next two examples, we use Backlund transformations to construct
explicit wave maps into SU(2).

Example 5.2. periodic 1-soliton wave map
Let 2m > 0 be an integer, a = diag(im, —im). We have seen in Example
4.3 that (a,0,a) is a solution of the —1 flow equation, its Lax pair is

0y = a\ d€ +a)"! dn,

its trivialization is Fo(&,n, A) = ea\6+ax™n and the corresponding wave map
is the stationary wave map so(z,t) = e~2%%  Since we have the trivialization

for (a,0,a), we can apply Bicklund transformation to (a,0,a). Let z = €%,

1
qo = ( 1), and 7 the Hermitian projection onto V' = Cqy. We use Theorem
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5.1 to compute g r ® (a,0, a) next. First we get

(&, m) = exp(a(z€ + 27 'n))*q0 = exp(—a(Z + 2 'n))qo
= exp(—a(e ¢ +¢"n))qo
= exp(—a(cos(§ +n) +isinf(—& +1)))q

1 e~ (ima cos +mt sin 0)
= exp(—a(x cosf — itsinb) <1> = ( )

eimac cos0+mt sin 6

Therefore the projection 7(z,t) of C? onto Cg(x, 1) is

1 —2mtsin 6 —2imax cos 0
~ £ — (&
7T({L’, ) - e2mt sinf n e—2mtsinf e2imac cos 6 e2mtsin6’ )
the trivialization of g, » ® (a,0, a) is

E1(£7 m, )‘) - gz,w()‘)EO(ga m, )‘)gz.fr(f,n)()‘)_l
= (W + i_ ZWL) c0(AE+AT1n) (7}(% t) + i _

—Z —Z

25l (a, t)) .
By Theorem 4.2, the wave map s corresponding to g, . ® (a,0, a) is
s(z,t) = By(x,t, —1)Ey (2, t,1) 7
= gon (1) Eo(@, t, =1) 92 (a,1) (1) 7 g ey (1) Bol, £, 1) g (1) 7
A direct computation gives
Eo(x,t,—1) = Ey(z,t,1) "t = e,
Go(et) (1) Gy (1) = T, t) — 7@, )"
Hence
s(@,1) = gom(=1)e (7 (2, t) — T2, 8) ) g (1) (5.4)
In particular, the first column of e =% (7 (x,t) — 7(x, t)")e "

—2imzx i
[ —e tanh(2mt sin 0)
S({lf, t) = <62imac cosOgachy (th sin 0))

is a wave map into S3. ‘
Note that if cosf = 5= for some integer j, then s is periodic in z with
period 27. In this case, S is a wave map from S x R to S3.
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Example 5.3. 1-soliton wave map into SU(2)
Let z = r+1is, and a, 7 and sg as in Example 5.2. We derive the formula
for 5 = g, » ® sp. A direct computation as in Example 5.2 implies that

N 1 1 eA—iB
(& n) = <6A+z‘B (24 ) ;

1+e24
-2 Ve (1 )

=ms -—— )z —

|22 1212) )"
1 1

B=mr(o+t+—" ! =mr|(|({l+—|z+|1-—7—])1].

|22 |22 |22

The first column of Ey(x,t, —1)(27(x,t) — 1) Eo(x,t,1)7  is

3 (—e_%mm tanh A) ’

where

A=ms :):—I—t—x;
|2]2

eBsech A

which is a wave map into S3. Note that S is periodic in z if [2| = 1 and 7 is
rational, and oscillates as |z| — oo if |z]| # 1.

Example 5.4. k-soliton wave map from S!' x R to SU(2)
We apply Backlund transformations k times to construct k-soliton wave
maps from S' x R to SU(2). Let a, qo, V, and 7 be as in Example 5.2. Let

0. ritiu; .
0y = 4 1J 2r; an integer, |r;| <m, pj=,/m?—r?

Zi =€
J m 7

forj=1,---,k. Set

(a,u,0;) = gz; r @ (92;_1x® @ gz r®(a,0,a) ),
E; the trivialization of the Lax pair of (a, uj,v;),

qi(z,t) = Ej_1(x,t, %) (q0) = Ej-1 (2,1, 25) " (qo0),
mj(x,t) the Hermitian projection of C" onto Cg;(z,1), i.e.,

q;(z,)q; (2, 1)

m@ ) = A P

Set
gj()‘) = gZ]',TI'()\)7 gj(xv L, )‘) = ng,ﬂj(ac,t)()‘)'
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By Theorem 5.1 and induction, we have
Ej(x,t,A) = (g;- - 91) (A) Bo(, £, \)(G5- - G1) " (.8, M), (5.5a)
qj(z,t) = (Gj-1- - G1)(Z) Eo(x,t, 25)"(gj-1- - 91)"(2) (o), (5.5b)
where Ego(z,t,\) = e@AEFAT ),
Since 7(q0) = qo, 7(q0) = 0,
" 2i — Z;
9i(%j)*(q0) = <7T + _jiﬁl) (90) = qo- (5.6)

Hence (g; ---91)*(2;)(q0) = qo, and

qj(x,t) = (gj-1---91)(Z) Eo(z, t, 21)" (qo0)

e—(ir]-ac—I—u]-t))

= (gj—l .. 51)(23) < ot (5.7)

The wave map corresponding to (a, uj, v;) constructed in Theorem 4.2 is
sj(z,t) = Ej(z,t, —1)Ej(z,t,1) 7%
From Example 5.2, we get

e—(im T4p1t)
) , (5.8a)

ql(xvt) = < eir1ac+u1t
1 e—2u1t e—2ir1x
m (.le, t) = W <e2ir1x e2mt ) (58b)
(2,1, ) = g(\)e" S g (2, 1,0) 7 (5.8¢)
si(x,t) = g1(—=1)e”(my (2, t) — 71 (2, t))e gy (1)L, (5.8d)
Since r1 is an integer, 71, g1, s1 are periodic in x with period 2.

Note that A
. e—(zr]-ac—i—u]-t)
Eo(.ﬁlf, 12 zj) (qo) - etriztust

Use (5.5b), (5.6) and (5.9) to get

B - e~ (iraz+pat)
QQ(xa t) =01 (.CU, L, 22) < eliraTtpat )

Since g; is periodic in x and ro is an integer, ¢o is periodic in x with period
27. So is my. The wave map corresponding to (a, ug, ve) is

82(;12, t) = b26_ax§1(xv L, —1)_1(7'(2(21?, t) - 7T2(217, t)l)gl(xv t, 1)6_(13862_17
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where by = (g291)(—1), c2 = (9291)(1), and 72 (x, t) is the projection onto

11—z 1
QQ(flf,t) = <7T1(£1?,t) + = U5 ({lf,t)) <62ir2x+u2t) .

Z2— 21

By assumption 2ry is an integer. So go and s, are periodic in x with period
2.
It now follows from induction that

1. the wave map corresponding to (a,uj, v;) is

sj(z,t) = bje (g - gy D (a, t, =1)(G5- - gu) (e, t, )¢, (5.10)

where
bj= (g5 --91)(=1), ¢ =(g5---91)(1), (5.11)
2. s; is periodic in x with period 27, i.e., s; is a wave map from S xR
to SU(2).

Next we compute the wave map constructed by applying Backlund trans-
formation to wave maps into S* constructed in Example 4.4.

Example 5.5. Let z = r +is, vg = , h,h, a,b and s as in Example

1
1
4.4. We use Theorem 5.1 to construct (a,u,v) = g, * (a,0,b). A direct
computation gives

. e~ i(h(&)z+k(n)z™")
Q(fv 77) = E(f, m, Z) (UO) = ez‘(h(g)z—f—k(n)z_l) ’

which is parallel to

1
(e%(h(f)—,«?(ﬁz )gidh(gﬂ%)) :

So the projection 7(&,n) onto Cq(&,n) is

- 1 1 f)
TSy == )
= o) e

k(n) ; k(n)
where f = PO~ 2y )+ 2 (MO+702) e
u = 2is[7, al,

1
v= W(Zﬁ + 27 )b (n) (27 + 27 1),
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The wave map corresponding to (a, u, v) is
§=0sn*s=gsa(—1)e “(7(x,t) — 7(x, t)l)e_‘“"gzm(—l).
The first column S of e~ (7 (x,t) — 7 (x,t)1)e " is

—e~2MmT tanh A
S(x,t) = ( eBsech A ) ’

T+t 1 x—t
a=2 (0 () - o (57)).
xr+t 1 x—t
B=2 .
() e (7))

If h(z) and k(z) tends to zero as x| — oo, then limy, o, 7(z,t) = & G D

In this case the wave maps s and S have constant boundary condition.

where

We claim that if h’ and &’ are square integrable then the wave map 5 has
finite energy at each level t. This can be proved using Theorem 4.2. The
energy at t = tg is

1
/ Hg—lgx\\?dx_/ SIS 8 + 575, P
t=to t=to

Recall that the trivialization F of the Lax pair of (a,u,v) satisfies the reality
condition (2.7). So E(z,t,£1) € U(2). Thus by Theorem 4.2, we have

15745l = 2l[P'[], (15751 = 2[Jo]].
Since ﬁ(zﬁ—l— 27t) e U(2),
o (€, I = 1K ()]l-

The assumption A’, k¥’ are in L? implies that

/ 15715, [2de < oo.
t=to
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6. Homoclinic wave maps.

We study the asymptotic behavior of the periodic k-soliton wave maps s;
constructed in Example 5.4, and prove that they are homoclinic.

We use the same notations as in Example 5.4. First we look at the
behavior of s; as t — —oo. Set

y; = 62“]'7:, fj — 621‘7’]-38'

Since p; > 0, limy—,_ y; = 0. By (5.8a), ¢1(z, t) is parallel to

()= () ()

So the projection m(z,t) onto Cg(x,t) is

Tz, t) = (é 8) + 1 (J?l J;l) +O0(y7),

where O(y?) means terms involving y? with n > 2. By (5.7), q2(x,1) is
parallel to

Expand it in y1, yo to get

Gz, t) = (é) + (crfiyn + cafoys) (?) +0(y?),

where ¢y, ¢ are constants depending on 21, z5. This implies that the projec-
tion

10 0 af 0  asfs 2
t) = 0
where a1, ap are constants depending on 21, z2. Use the formula for ¢;, 7, E;
and induction to see that as ¢ — —oo we have

w0 = (5 o) +:21yr (o ") rown

where «; are constants depending on z1,...,z;. In particular, this proves
that

lim m(z, t) = (é 8) (6.2)

t——o00
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Next we use formula (5.10) to compute the asymptotic behavior of s; as
t — —oo. It follows from (6.2) that we have

1 0 1 0 1 0
1 a —_ _1~ pu— = pu—
tlgnoo gr(z,t, =1)""gr(z,t, 1) <0 %iz) <0 %:Z) <0 _1) .

By (5.10), we have

J
lim s;(z,t) :bje_%x <(1) _01) c}l,

t——o00

where bj, ¢; are given by (5.11). In particular, we get

tliinoo 32k(x7 t) - b2k6_2ax62_]§17 (63&)
lim sopyq(2,t) = bop 120" L0 el (6.3b)
oo 2k+1\L, 2k+1 0 —1 2k+1" .

Both b; and ¢; lies in U(2). A direct computation gives
Gon(~1)gem(1) ™ = — 7.
This implies boxcy, € SU(2). So
Bok, = by sokCor,

is a wave map from S! x R! to SU(2). Use (5.10) and (6.1) and a direct
computation to conclude

2k > =
§2k($,t) — o 2ax 4+ e—a Zyj <_ﬁ0jfj ﬁjofj) oo +O(y2)

j=1
as t — —oo, where (1, ..., Ooi are real constants. Recall that

So(flf,t) — e—2aac — diag(e—%mm’ e2imac)'

— —ax 0 3i f —ax
sol(x,t)yje <_/8ij /Bjofj) e

— e2ut 0 BJ‘e?i(m—T’j)x
_ﬁje—Qz(m—r]-)ac 0 ’
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which is an unstable mode pf2m72r], at the stationary solution sy with eigen-

value 2, /m? — 'rjz = 2p; as given in Corollary 3.3. In other words, we have

shown
hm So(x,t) — so(z, t) (z,1) Zp am,2r,; (@, 1) = 0. (6.4)

To compute the asymptotic behavior of s;(z,t) as t — oo, we set
hj — e—2ir]-ac’ pj = e—2u]-t'

Since p; > 0, limy_., p; = 0. A similar computation implies that

1. qi(x,t) is parallel to <h1p1)7

1
2. ‘
j
(00 0 Bk
w0 = (g 1)+ e (4, T) ot 0
n=1 n
for some constants (3], . . .,ﬁz» depending on z1,- - -, zj,
. ~ - -1 0
3. llmtaoogj(xvtv_l) lgj(xatal) = < 0 1)7
4.
lim sop(z,t) = bgke_%xc;kl, (6.6a)
t—o00
I (,0) = bopsre 2 (1 O) oo (6.6b)
ti)rgOSQk‘-i—l xz, = 02k+1€ 0 1 62k+1 .
5.

2r T
0 €ih;
a __ _—2ax —azx . 774 —azx 2
Sop(z,t) =e +e lej <—€jhj 0 )e +0(p”), as t — o0
j:

for some constants €1, ..., €; depending on z1,-- -, 2;.

6. As t — oo we have
hm Sop(x,t) — so(x, t) (z,1) Zp am,2r, (T, 1) =0 (6.7)

for some linear stable mode p_,, 2
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As a consequence of (6.3b) and (6.6b), we get
lim s 1({13 t) = — lim so 1((13 t) = bog 16_2(13c 10 et
a0 + ) oo + ) + 0 —1 2k+1

So sok11 is a hecteroclinic wave map from S' x R! to SU(2).
Formulas (6.4) and (6.7) imply that sok, Sor are homoclinic wave map
from S' x R! to SU(2). So we have

Theorem 6.1. Let 2m be an integer, a = diag(im, —im), and so(z,t) =

. 1
e~29%  Let w denote the projection of C? onto C (1) , and

2 2
m* —r: :
0. TP Tty
zj:eu%:_J_i_Z _ J J’
m m m

where 211, ..., 2ryy, are integers and |r;| < m. Let

82k = Gzgp,m ® (e (921,7r ®5s0) )

denote the wave map obtained by applying 2k Bdcklund transformations.
Then so is a homoclinic wave map from S' x RY to SU(2). Moreover,
there exist constants bay, cor, € U(2) such that So = b2_k182k62k satisfies
limyy) o s2k(2,t) = so(z,t) and (6.4) and (6.7).

7. wave maps into S2.

We describe a constraint condition for solutions the —1 equation associated
to SU(2) = S3 so that the corresponding wave maps into S actually lies in
S2.

Recall that we identify S3 C C? = R* as SU(2) via

— .
w wo Oz
The intersection of S% with the linear hyperplane defined by Re(w) = 0 is

vy

which is a totally geodesic 2-sphere in SU(2) = S3. If y € SU(2), then
y € M if and only if ¢y = y.

zeC, seR, \2\2—1—82—1}, (7.1)
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It is well-known that if s is a wave map into a Riemannian manifold N
and the image of s lies in a totally geodesic submanifold M of N, then s is
a wave map into M. Hence if a wave map into S% with its image lies in a
totally geodesic S2, then this is also a wave map into S2.

In this section, we give a constraint condition on solutions of the —1 flow
equation so that the corresponding wave maps lie in the totally geodesic S?
in SU(2) = S3. As a consequence, we also see that the SGE is a subequation
of the constrained —1 flow equation.

In order to explain how to get wave maps into S?, we need to view S? as
the symmetric space SU(2)/SO(2). Let 7,0 : SL(2,C) — SL(2,C) denote
the maps defined by

Then ¢ and 7 are group homomorphisms, c* = 7° = id, o7 = 70, and the
differentials at the identity matrix are

0.(§) = =€, 7§ =-¢"

Note that o(SU(2)) € SU(2). Hence ¢|SU(2) is an involution of SU(2).
The fixed point set of ¢ in SU(2) is SO(2), and S? is diffeomorphic to
SU(2)/S0(2). A direct computation shows that

M, ={go(g)™" | g € SU2)}

is the totally geodesic M = S? given in (7.1).
Since 02 = id, we have:

su(2) =K+ P,

where KC and P are eigenspaces of o, on su(2) with eigenvalues 1, —1 respec-

tively. In fact,
K=s0(2), P= {’L (m y)
Yy x

Since o, is a Lie algebra automorphism, o.([n1,12]) = [04(m1), 0x(n2)]. So
we have

x,Y € R}. (7.2)

K.K]ck, [K,PlcP, [P,P]cKk.

Proposition 7.1. Let (a,u,v) be a solution of the —1 flow equation associ-
ated to SU(2), 0x = (aX+u) dE+A~1 dn its Laz pair, and E the trivialization
of 0x. Then the following statements are equivalent:
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1. a,v €P andu € K.

2. 0y satisfies
Or=—05, O\= —0" . (7.3)

3. The trivialization E(x,t, \) of 0 satisfies

E(x, t, \V*E(z,t,\) =1, E(z,t, \)E(x,t,-)\)' =1, (7.4)

Proof. Tt is easy to see that (1) and (2) are equivalent and (3) implies (2).
To prove (2) implies (3), we let F(xz,t,\) = (E(x,t,—\))~!. Then

FYdF = -0, =6\, F(0,0,\) =1

Hence E = F|, ie., E(x,t,\)E(x,t, —A)t = 1. We have shown before that
0 = —05 implies that E(z,t, \)*E(z,t,\) =L 0

Proposition 7.2. Let (a,u,v) be a solution of the —1 flow equation asso-
ciated to SU(2), and s the wave map constructed from (a,u,v) in Theorem
4.2. If a,v € P and u € K, then s is a wave map into S>.

Proof. By Proposition 7.1, the trivialization E of the Lax pair corre-
sponding to (a,u,v) satisfies the reality condition (7.4). This implies that
E(x,t,r) € SU(2) for all r € R and FE(x,t,1)"t = E(z,t,—1)". The wave
map constructed in Theorem 4.2 is

s(z,t) = E(z,t,—1)E(x,t,1)" = E(z,t, 1) E(z,t, —1)%.

But y € SU(2) lies in S? given in (7.1) if and only if y* = y. So s(z,t) lies
in S2. Because S? is totally geodesic in SU(2), s is a wave map into S2. 0

The following Proposition was proved in [5].

Proposition 7.3. Let (a,u,v) be a solution of the —1 flow equation associ-
ated to SU(2) and a,v € P and u € K, and s the wave map corresponding
to (a,u,v) in Theorem 4.2. Then:

(1) If z ='ip is pure imaginary and @ = m, then (a, @, V) = gipx ® (a,u,v)
is again a solution of the —1 flow with u € KC, v € P, and gi; - ® s 1
a wave map into S2.



376 C.-L. Terng and K. Uhlenbeck

(2) If 7 =, then (a,,9) = go.r® (g—z.x® (a,u,v)) is a solution of the —1
flow with 4 € KC, 0 € P, and g, ® (9g—z.~ ® S) is a wave map into S2.

Example 7.4. SGE and wave maps into S? ([2, 3, 5]).
Let su(2) = K 4+ P, where K and P are given by (7.2). Let

o 0 % 1 fcosq sing
_ 3 . _ 2 = .
a = diag(i, —1), wu (_%5 0 ) ;v 1 (sinq — cosq

Note a,v € P and u € K. A direct computation implies that:

(1) (a,u,v) is a solution of the —1 flow equation associated to SU(2) if
and only if ¢ is a solution of the sine-Gordon equation (SGE):

gen = sing. (7.5)
Hence solutions of the SGE give rise to wave maps into S2.

(2) Let (a,u,?) = gis,x ® (a,u,v). If 7=, then

- 0 %5 - 1 (cosq sing
u= de U= 4 \sing — g
- 0 sin ¢ cos ¢

for some ¢. So ¢ is again a solution of the SGE. Let g;s » ® ¢ denote g.
(3) Gis.x @0 is the traveling wave solution of the SGE:
a(€,m) = dtan~} (),
and geio . ® (g_.—io  0) is the breather solution of the SGE:

p— ( sin @ sin(t cos 6) )

cos 6 cosh(z sin 0)

where x,t are space and time coordinates.

This solution is periodic in time, and hence called a breather. But wave
map equation is invariant if we exchange the space and time variables. So a
breather solution can also be viewed as periodic in space instead.

Since wave maps into S? is a special cases of wave maps into SU(2),
as a consequence of Theorem 6.1 and Proposition 7.3 we get the following
Theorem:

Theorem 7.5. We use the same assumption as in Theorem 6.1. If z9; =
—Z2j—1, l.e., Toj = —roj_1 and pgj = pgj—1 for all 1 < j < k, then sy is a
homoclinic 2k-soliton wave map from S* x R into S2.

When k£ = 1, the above Theorem was proved by Shatah and Strauss in

[3]-
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8. Wave maps into compact symmetric spaces.

In section 7, we embed S? as a totally geodesic submanifold of SU(2) = S3.
By viewing S? as the symmetric space SU(2)/SO(2), we give conditions on
solutions of the —1 flow equation whose image lies in S2. In fact, this same
method works for any compact symmetric space. In particular, we apply this
method to construct homoclinic periodic 2k-soliton wave maps into CP™ and
4k-soliton wave maps into S™.

First we give a short review of symmetric spaces. Let G be a complex
semi-simple Lie group, and 7 and ¢ involutions of G such that

(i) the differential 7, = d1. and o, = do. at the identity e are conjugate
linear and complex linear Lie algebra involution on G respectively, i.e.,
Ti () = ar(€) and o, (af) = ao. (&) for all « € C and € € G,

(ii) o =T70.

Let U denote the fixed point set of 7 in GG. Such U is called a real form of
G. Since T and o commute, o(U) C U. Let K denote the fixed point set
of o in U, and P the —1 eigenspace of o, on Y. Then U/K is a symmetric
space, and U = K + P satisfying

K.K]ck, [K,PlcP, [P,P|CKk.

Let D be a domain in C that is invariant under complex conjugation.
We say that g: D — G and & : D — G satisfy the U-reality condition if

T(g(N) =g(A), T(E(N) =€), (8.1)
and satisfy the U/ K -reality condition if

{T<9<X>> =g(\), o(g(=\) = g(\),

v (8.2)
T(E(A) =8(A),  0x(&(=A)) = &(N)

respectively.
Let * denote the U-action on U defined by g * h = gho(g)~!. Then the
stablizer at the identity e is K. So the orbit at e,

M, ={go(g)"' | g€ U}, (8.3)

is diffeomorphic to U/ K. It is known that M, is isometric to the symmetric
space U/K (for a proof see [4]):
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Proposition 8.1. The U-orbit M, = U x e is totally geodesic submanifold
of U and is an isometric embedding of the symmetric space U/K into U.

The embedding of U/K given in the above Proposition is called the
Cartan embedding. The embedding of S? in SU(2) = S3 given by (7.1) is
the Cartan embedding of M, in SU(2), where gggg = 52 is the symmetric
space given by 7(g) = (¢*)~! and o(g) = (¢") 7"

The —1 flow equation associated to U is the equation (4.1) for (a,u,v):
R? — H;?’:lu, and has a Lax pair 0y = (a\ 4+ u) dz + A"'v dt. Our com-
putations and results for SU(2) and S? = gggg
for any compact Lie group U and symmetric space U/K. For example, the
following can be proved in a similar manner:

in previous sections work

1. The Lax pair #) of the —1 flow equation associated to U satisfies the
U-reality condition (8.1), i.e.,

T«(03) = 0.

2. Theorem 4.2 holds by replacing SU(n) by U. In other words, we have
a correspondence between solutions of the —1 flow equation associated
to U and wave maps into U.

3. Since any compact Lie group U can be embedded as a subgroup of
SU(N) for some N, to construct explicit solutions of the —1 flow equa-
tion, we only need to find product of simple elements (i.e., of the form
(5.2)) that satisfies the U-reality condition.

4. The linearization of the wave map equation from S' x R! into U at
the stationary wave map so(z,t) = €% with >™ =1 is

ftt - gacac + [a, 53}]

Its stable and unstable modes can be computed using roots of U.

5. Propositions 7.1 and 7.2 hold if we replace SU(2) and gggg by U and

%. The proofs are similar.
6. There are analogous Theorem 6.1 and Theorem 7.5 for U and U/K.

Next we give two examples:
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Example 8.2. Wave maps from S' x R! to CP"*!
Let G = SL(n,C), J = diag(1,...,1,—1), and 7,0 : G — G defined by

(y) = ()™, o(y)=JyJ L

A direct computation shows that both 7 and ¢ are group homomorphisms,
72 = 02 = 1d, and 70 = o7. The fixed point set of 7 in G is U = SU(n),
and the fixed point set of o in U is S(U(1) x U(n —1)). The £1 eigenspace
of o, inU is

{50
S

Here My ;(K) is the space of k x j matrices with entries in K. The sym-

¢ €u(n—1), c € C pure imaginary, tr(§) +c = 0}

ve Mlx(n_U(@} .

metric space corresponding to 7, ¢ is Wf+%(1)) =Cpr1.
Let D € gl(n— 1,@), v E M(n—l)xl(c)a v E Mlx(n—l)(c)a c € C. Then

g= (lv) I;) € SU(n) if and only if
DD + bbt =1,
vD! + bt = 0,
[[oll? +]ef? = 1.

(g)! = I—2bbt  2bc
ORI =\ —aekt 20e2—1)"

The map from the symmetric space M, to CP"~! (the space of complex
linear lines in C") defined by

I—20b"  2be ) cf 2
—2¢bt  2|c]2 -1 2le)?> — 1
is an isometry from M, to CP"™!.

In order to construct explicit wave maps into CP"~!, we look for a prod-
uct of simple elements,

g - g2177r1 o 'ngJrr?

that satisfies the extra reality condition

g(=A) = a(g(N)).
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It can be checked that the simple element g, . does not satisfy this extra
reality condition. But we can find product of two simple elements do. Let

7w denote the Hermitian projection onto C (12)), where w € C"! and ¢ € C

so that ||w||? = |c|? = 1. A direct computation implies

1 (wat we
=5 (% B) .
1 (wa'  —we _— w
o(n) = 3 (—cu_)t e ) = projection onto C (—c) . (8.4b)

Since (Z) and (iﬂc) are perpendicular with respect to the Hermitian inner

product, we have
wo(m)=o(m)m = 0. (8.5)

S0 g2 and g_, 5(r) commute. Let

hz,w = 9279 —2,0(m)- (8'6)

Note
o(rt)=c(I—n)=1-0o(r) = (o(x))*.

Use (8.5), o(nt) = o(m)* and a direction computation to prove that h, .

SU(n) ))-reality condition:

satisfies the SUm-1)xU1)

RV RO =1, h(=X) = a(h())). (8.7)

We apply Backlund transformations given by these elements to the station-
ary wave maps (closed geodesics) to construct homoclinic wave maps from
ST x R to CP 1.

Let ap € P so that €*™ = I, m an integer, and a = mag. Since
ap € su(n), there exists A € SU(n) and C = diag(icy,...,ic,) so that
ap = ACA™L. Because 2™ =1, all ¢; must be integers. Note (a,0,a) is a
solution of the —1 flow equation associated to SU(n) with a € P, and the
corresponding wave map constructed in Theorem 4.2 is

fo(z,t) =729 = Ae72® A~ € M, = CP" !,

Choose 21, ...,z; € C so that
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as in Example 5.4. Let

P ® (a,u,0) = gzn ® (2 0() ® (a5 U, V),
(a7 uj?”j) = thJF i ( e (h‘ZLTF i (av 0, a)) o ')7
fi= hzjr® (- o(hzynefo) )

The computation in Example 5.4 and the proof of Theorem 6.1 implies that
fx is a homoclinic 2k-soliton wave map from S* x R! to SU(n). But each
h., x; satisfies the reality conditions (8.7). Use a proof similar to that of
Proposition 7.3(2) to see that v; € P and u; € K and the wave map corre-
sponding to (a, uj, v;) lies in M, = CP""!. So f; is a wave map from S! xR
to SU(n) whose image lies in CP"~!. By Theorem 6.1, f; is a homoclinic
wave map from S! x R to CP" 1.

Example 8.3. Wave maps from S' x R! to RP"~! and §"!
Let G = SO(n,C),

T(9) =g, olg)=JgJ ",

where J = diag(1,...,1,—1). It can be checked easily that both 7 and o
are group homomorphisms of G, 72 = ¢? = Id and 70 = o71. The fixed
point set of 7 in G is U = SO(n), and the fixed point set of ¢ in U is
S(O(1) x O(n —1)). The +1 eigenspace of o, in U is

/c_{<8 2) §€so(n—1)}
={(5 )

The symmetric space corresponding to 7, o is #&%(1)), which is RP"~1.

ve Mlx(n_U(R)}.

Let g = (lv) I;) € SO(n) with D € gl(n — 1,R), b € M¢_1)x1 * (R),
v € Mixmn-1)(R), and ¢ € R. A direct computation gives
(g1 = (120 2
ORI = —aert 22 —1)

So the Cartan embedding is
M, ={go(g)™" = gJgJ ™" | g € SO(n)}

[—2bb"  2bc
- {< —2cbt 2¢% - 1) ‘ b€ Mu_1)x1(R), c € R, ¢ +|[b]|* = 1}‘
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The map from

(

to M, defined by
b '_> I — 2bb! 2bc
c —2cbt 2¢2 -1
is a double covering. This shows that M, is isometric to RP" 1.
To construct explicit wave maps into S”~! from a stationary wave map

into S™~!, we need to find rational maps g from S? to SO(n, C) that satis-

Wf+%(l))-reality conditions:

ceR, be R, |¢)?> +|p||? = 1}

fying g(oo0) =1 and the

gNgN) =1 g(=A) = Jg(N)J L. (8.8)

This is equivalent to find rational maps from S? to GL(n,C) that satisfies

gN*gA) =1, gNgN) =1 g(=X) =Jg\)J " (8.9)

We have seen in Example 8.2 that h,, defined by (8.6) satisfies the first
and third conditions of (8.9), but in general it does not satisfies the second
condition. However, let w € R** and b € R so that ||w|| = |b| = 1, and 7

the projection onto C (%) A direct computation shows that

_ (ww' —ibw () = 7
™= bt ) , o(m)=r.

By (8.5), we have

It is easy to check that

¢z,7r = hz,ﬂ'h—f,ﬂ' =9zn9—279-z79z,7

satisfies all conditions in (8.9). Note ¢ has four simple poles, z, —z, z, —Z.
Let ag € P so that €™ = 1. Then (a,0,a) is a solution of the —1

flow equation associated to SO(n) whose corresponding wave map is the

stationary wave map into My: so(z,t) = e72%0%, Let m an integer, and

a = mag.
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Let .
io; _ it Uy
)

Z; =€
J m

where r; is an integer. Let
¢ i (av Uu, ’U) = hz,ﬂ' o (h—i,ﬂ' o (av u, ’U))
Use similar reasoning as in Example 8.2 to see that wave map

Sj = ¢z]-,7r o ( ' '(¢z1,7r °30) o )

is a homoclinic 4;j-soliton wave map from S! x R! to RP"~!. Moreover, the
last column of s; gives a homoclinic wave map from S* x R! to S~

9. Wave maps from R"! to SL(2,R).

It is known that the Cauchy problem for wave map equation from RM! to
any complete Riemannian manifold has long time existence ([1]). We will
show that this is no longer true when the target manifold is the pseudo-
Riemannian manifold SL(2,R). In fact, we use Bécklund transformations
to construct smooth initial data with finite energy and constant boundary
condition at +o0o so that the Cauchy problem for wave maps into SL(2,R)

1. has long time existence, or
2. develops singularities in finite time.

First note that Theorem 4.2 holds if we replace SU(n) by any group
(. But Bécklund transformations for the —1 flow equation associated to
SL(2,R) is different from the SU(n) case. Let aj,ay € C, and 7 a linear
projection of C" (i.e., 7 is complex linear and 72 = 7). Let

a1 — oo,

hoq,ag,ﬂ'()\) :I+ )\_al v 9 (91)
where 7/ =1 — 7. Then
1 Qg — Qg
Pay (X)) =1+ Ny u

Bécklund transformations are given as follows (cf. [5]):
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Theorem 9.1. Let (a,u,v) be a smooth solution of the —1 flow equation
associated to SL(n,C), 0y = (aX + u) d¢ + vA~ldn its Lax pair, and E
the trivialization of ). Let m be the projection of C", Vi = Im(n), and
Vo = Ker(m). Set

f/z(fv 77) - E(f, m, ai)_l(W)v for i = 1,2

Suppose Vi(€,1) N Va(€,n) = {0} for (£,n) lies in an open subset O of R2.
Let 7(&,n) denote the linear projection onto V;(€,n) along Va(€,7), and

u -
-1
- a1 — Qg | a1 — Qg
v=|(1I- TlolI- T
aq aq

= (—a1 7+ a7 )v(—a 7r—|—0421 N.

Then (a,a,?) is a smooth solution of the —1 flow equation associated to
SL(n,C) defined on O. Moreover, the trivialization of the Lax pair of
(a,q,) is

E(gv m, )‘) = ha1,a2,7r()‘)E(£a m, )‘)hahag,fr(ac,t)()‘)_l'

We use hqg, a7 ® (@, u,v) to denote (a, @, D).

If (a,u,v) is a solution of the —1 flow equation associated to SL(n,R),
then hay ay,r ® (@, u,v) is also a solution of the —1 flow equation associated
to SL(n,R) provided that a1, a2 € R and 7 = 7.

Example 9.1. Let a = diag(1,—1). Then (a,0,a) is a solution of the —1
flow equation associated to SL(2,R) and the corresponding wave map is

s(z,t) = 729, Let aj, a0 € R, v = (21) € R? vy = (Zl) € R?, and 7
2 2
the projection of C? onto Cv; along Cv,. Let
(@, 0, D) = hay agx ® (a,0,a).
Use Theorem 9.1 and a direct computation to get

- 1 CldQ@A —cldle_B
mw = —
CldgeA — ngle_A CQdQCB —Clee Al

where

A=(ay—a)é+ (apt —arh)n, B=(ax+a)é+ (ag' +a7 ).
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The new solution (a, @, ¥) is expressed in terms of 7(&, n) as given in Theorem
9.1. The wave map corresponding to (a, @, v) is

g(fa 77) = E(f, m, _1)E(£7 m, 1)_1

_ —ax (1 + 041)(1 — 042) - 2(041 - 042)77((32‘, t)
=h=1e ( (I+a2)(1— )

) eaTh(1) 7,

where h(\) = hay ay,x(A). If 7 has singularities, then (a, @, ©) and § have too.
Note that we can choose «; and v1,v2 so that ha, ayx ® (a,0,a) is singular
somewhere or is smooth on the whole R, But such wave maps do not have
good boundary behavior when x — 4o0.

Example 9.2. We construct wave maps whose image lies in the subgroup
Rt = {diag(e’,e”") | t € R}
of SL(2,R). Let h(&) and k(n) be smooth real valued functions, and
a(§) = I'(§)diag(1, —1), b(n) = K'(n)diag(1, —1).

Then (a,0,b) is a solution of the —1 flow equation associated to SL(2,R),
its Lax pair is ) = a(&)\ d€ + b(n)A~! dn, and the trivialization of 6 is

E(&,n,\) = diag(eh(f)/\*—k(ﬁ)/\_l’ e—(h(f)/\-f-k(??)/\_l))'
The corresponding wave map is
s(&m) = B(&n, —1)E(§,n,1)7" = diag(e MO+, 2REOFTHM)) = (9.2)

Since the subgroup RT is abelian, the equation for wave maps into R™
is the linear wave equation. Hence every wave maps into RT is of the form
given in (9.2) for some smooth one variable real valued functions h, k.

Example 9.3. We compute Backlund transformation of the wave maps
given in Example 9.2. Let aj,as € R, and 7 the projection of C? onto

Cyy along Cys, where y; = (;1) and yo = (;2) are in R%2. To get
1 2

hay.asx ® (a,0,b), we first compute
cle_A1
d16A1 ’

— Ay
(e = B&na9 ) = ().
2€

J1(&n) = E&n, 1) (1)
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where

A = h(&)a; +k(n)a;t fori=1,2.
Let 7(&,n) be the projection onto Cg (£, n) along Cga(&,n). Then

1 (cldge_A1+A2 —clcge_(A1+A2)>
17 )

ﬁ- pu—
W d1d26A1 +42 —62d16A1 —A2

(9.3)

where
W .= CldQC_Al +4z _ CleeA1 _AQ.

So (a, @, 0) := hay.asx ® (a,0,b) is given by

The trivialization of (a, @, D) is
E(fa m, )‘) = ha1,a2,7r()‘)E(£v 7, )\)h;iag,fr(fm)()\)’
and the corresponding wave map is

(1 + 061)(1 — Oég) — 2(0&1 — 062)7~T
(I+a2)(1—ay)

where h(\) = hay ap.r(A) and Ag(€,n) = djag(e—(h(f)-f—k(??))’ e(h(§)+k(77)))'
It can be easily checked that

s(6.) = h(-1)4o ) Aoh(1)7,

(i) (&, m) has singularity at (£o,70) if and only if W (&y, n9) = 0. For

example, if 492 > 0, then 7 has singularities at points on the curve
cady

C1 d2

BO(ar — )+ Ky ey - i (22 ) =0 (0a)

62d1

(i) If % < 0, then W never vanishes. So 7 is smooth for all (&, 7).

Now suppose that both h and k is in L?, i.e, h, k, h', k' are square in-
tegrable. If W(x,tg) # 0 for all z € R, then the formula for 7 implies
that

lim (x,to) = ———— (Cld2 o) =
|z]—00 70 CldQ — C2d1 d1d2 —d162
So

. ~ . (1‘1’0&1)(1-0&2) —2(0&1 —062)77' _
Jim St t) = (- (e 2T
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is a constant
Rewrite the left hand side of (9.4) in space time coordinates x, t, and set

F(a,) = (o1 — an)h((w+6)/2) = (o7 = g h((z — 1)/2) = 3 In (%)

For case (i), we can choose a1, as € R and h, k in L? so that f(x,0) never
vanishes for all z € R, but vanishes at some (z9,ty) for some ty > 0. We
check that the wave map §(x,0) is smooth with finite energy and constant
boundary condition, but it develops singularities in finite time.

For case (ii), we have proved that 5(x, t) has constant boundary condition
for all t. Claim that the energy of s is finite. To see this, note that by
Theorem 4.2 we have

tr(§_1§§, §_ls§) =4 tr(a,a),

tr(5715,,515,) = 4 tr(0,9)

But tr(9,9) = tr(b,b), which is finite. Thus § is smooth, lim,_ 5(x,t) is
a fixed constant for all ¢, and has finite energy.
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