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On Dimension Reduction in the Kähler-Ricci Flow

Huai-Dong Cao

We extend the method of dimension reduction of Hamilton for the
Ricci flow to the Kähler-Ricci flow. In the case of complex dimen-
sion n = 2, we prove a dimension reduction theorem for complete
translating Kähler-Ricci solitons with nonnegative bisectional cur-
vature. For n > 2, we also prove a dimension reduction theorem
for complete ancient solutions of the Kähler-Ricci flow with non-
negative bisectional curvature under a finiteness assumption on the
Chern number cn1 .

1. Introduction.

In minimal surface theory and harmonic map theory, there is a well-known
general principle of dimension reduction which is very useful in studying
singularities. The basic idea is that one first takes a limit of a sequence
of dilations to model a singularity (blow-up), and then takes a sequence of
origin going out to infinity and shrinking back down (blow-down) to get a
new limit of lower dimension. In [13], Richard Hamilton showed us how to
carry out this general idea of dimension reduction to solutions of the Ricci
flow on Riemannian manifolds with nonnegative curvature operator and lo-
cal injectivity radius estimate (cf. Section 22 of [13]), and used it to prove
important results about singularity formations of the Ricci flow. See also the
recent work of Chen-Tang-Zhu [6] for a very nice application of Hamilton’s
dimension reduction result to the Kähler-Ricci flow on noncompact complex
surfaces with positive bisectional curvature and maximal volume growth.
For studying formations of singularities of the Kähler-Ricci flow in complex
dimension n ≥ 2, it has been very desirable but a challenge to extend Hamil-
ton’s dimension reduction for the Ricci flow to solutions of the Kähler-Ricci
flow with positive holomorphic bisectional curvature, a weaker assumption
than nonnegative curvature operator.

In the proof of Hamilton’s dimension reduction result for the Ricci flow,
the assumption of nonnegative curvature operator is used in an essential way
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in both finding a flat curvature direction of the blow-down limit, and the
splitting of flat factors. In the Kähler case, the splitting theorem for com-
plete solutions of the Kähler-Ricci flow with nonnegative bisectional curva-
ture (cf. Theorem 2.1) was observed by the author back in mid 80’s. The
main difficulty has been how to produce a flat direction in blow-down limits
to allow the splitting when we only have nonnegative bisectional curvature.
In this paper we resolve this difficulty completely in the case of of complex
dimension n = 2 and show how the dimension reduction of Hamilton for the
Ricci flow can be extended to the Kähler case for 2-dimensional translating
Kähler-Ricci solitons (cf. Theorem 1.1). For n > 2, we also prove a di-
mension reduction result for ancient solutions of the Kähler-Ricci flow with
nonnegative bisectional curvature under a certain finiteness assumption of
the Chern number integral cn1 (Theorem 1.2). When n = 2, we are able to
show that the second Chern number integral is well defined (cf. Proposition
4.1) for translating Kähler-Ricci solitons of nonnegative bisectional curva-
ture. By exploring the relation between the integrands of the Chern numbers
c21 and c2, we show that c21 is automatically bounded.

A complete solution to the Kähler-Ricci flow

∂

∂t
gij̄(x, t) = −Rij̄(x, t) (1)

is a time-dependent family of complete Kähler metrics g =
∑
gij̄(x, t)dzidzj̄

on a complex manifold Xn, either compact or noncompact, and some time
interval satisfying Eq. (1), where Rij̄(x, t) denotes the Ricci tensor of the
metric g at time t.

Definition (cf. Section 16 of [13]) A solution g to the Kähler-Ricci flow
(1), where either the complex manifold X is compact or at each time t the
metric g is complete with bounded and nonnegative bisectional curvature, is
called a singularity model or limit solution of Eq.(1) if it is non flat and of
one of the following three types:

Type I: X is either compact or noncompact and g exists on an ancient
time interval −∞ < t < Ω for some constant Ω with 0 < Ω <∞, and
the scalar curvature R satisfies the inequality

R(x, t) ≤ Ω/(Ω− t)

everywhere with equality at some origin point O at time t = 0.

Type II : X is noncompact and g exists on the eternal time interval
−∞ < t < +∞, and

R(x, t) ≤ 1
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everywhere with equality at some origin point O at time t = 0.

Type I and Type II singularity models above typically arise as limit of blow-
ups of maximal solutions to Eq.(1) of the corresponding type. We remark
that Type II limit solutions of nonnegative bisectional curvature are neces-
sarily translating Kähler-Ricci solitons by our previous work [3] (see Prop.
3.1). Our first result is the following dimension reduction theorem for 2-
dimensional Type II singularity models:

Theorem 1.1 Let g be a Type II singularity model, or equivalently a trans-
lating Kähler-Ricci soliton, of the Kähler-Ricci flow (1) on a noncompact 2-
dimensional complex surface X2 and the eternal time interval −∞ < t <∞,
complete with bounded and nonnegative bisectional curvature at each time.
If g satisfies the local injectivity radius estimate

injX(x, t) ≥ β/
√
R(x, t) (2)

for all x ∈ X2 and some constant β > 0 independent of x, then there exists
a sequences of dilations of g which converges to a limit ĝ, which is again
a complete solution to the Kähler-Ricci flow (1) on some noncompact com-
plex surface X̂2 and ancient time interval −∞ < t < Ω, with nonnegative
bisectional curvature. Moreover, (X̂2, ĝ) splits as a quotient of the product
C×CP1 of flat complex plane C and the complex projective plane CP1.

When a complete noncompact Riemannian manifold (Mm, g) of real di-
mension m has nonnegative Ricci curvature, the ratio V (Bs)/sm, where
V (Bs) is the volume of geodesic ball of radius s centered at some origin
point O ∈ M , is monotone decreasing in s by the volume comparison the-
orem. So one can consider the asymptotic volume ratio (cf. Hamilton [13],
P.74)

νM = lim
s→∞V (Bs)/sm.

The definition of νM is independent of the choice of the origin O. Note that
νM > 0 if and only if (Mm, g) has Euclidean volume growth.

Corollary 1.1 There exists no 2-dimensional Type II singularity models with
bounded and nonnegative bisectional curvature, and with Euclidean volume
growth. In other words, the asymptotic volume ratio ν of any 2-dimensional
Type II singularity model with nonegative bisectional curvature must be zero.

Remark 1: Corollary 1.1 was first proved by Chen-Zhu [7].
Our second result is a dimension reduction for ancient solutions:

Theorem 1.2 Let g be a complete ancient solution to the Kähler-Ricci flow
on a noncompact complex manifold Xn (n ≥ 2) and time interval −∞ <
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t < T (0 < T ≤ ∞), with bounded and nonnegative bisectional curvature, and
positive Ricci curvature at each time. Assume that the following conditions
are satisfied:

(i) Finite asymptotic scalar curvature ratio (ASCR):

A ≡ lim sup
s→∞

Rs2 =∞

at t = 0. Here s denotes the distance function on X from some fixed
origin point;

(ii) Local injectivity radius estimate: there exists a constant β > 0 such
that ∀x ∈ Xn and t,

injX(x, t) ≥ β/
√
R(x, t);

(iii) Finite Chern number: cn1 (X) ≡
∫
X Rc

n <∞.

Then there exists a sequences of dilations of g which converges to a limit
ĝ, which is again a complete solution to the Kähler-Ricci flow (1) on some
noncompact complex manifold X̂n and ancient time interval −∞ < t < Ω,
with nonnegative bisectional curvature. Moreover, the limit (X̂n, ĝ) splits as
a quotient of a product Ck × N̂n−k with k ≥ 1 flat in the direction of Ck,
and where the interesting factor N̂n−k has positive Ricci curvature, and is
either a Type I limit solution, or Type II limit solution with cn−k1 (N̂) =∞.

Remark 2: We conjecture that the only possible factor N̂ in Theorem 1.2 is
of Type I. Moreover, we conjecture that there is no noncompact Type I limit
solutions with nonnegative bisectional curvatue and positive Ricci curvature.
Note that Hamilton (Section 26 of [13]) proved that in complex dimension
one, the only Type I ancient solution is either the complex projective plane
CP1, or flat complex plane C and its quotients.

Remark 3: If g is a Type I or Type II singularity model, then assumption (i)
in Theorem 1.2 holds automatically. Note also that if g comes as a blow-up
limit of a solution to the Kähler-Ricci flow (1) on a compact Kähler manifold
then condition (iii) in Theorem 1.2 is automatically satisfied.
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to thank both IPAM and NCTS for their hospitality and financial support.
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2. A splitting theorem for the Kähler-Ricci flow.

In this section we state a splitting theorem for solutions of the Kähler-Ricci
flow (1) with nonnegative bisectional curvature. The result is a natural
analogue to the splitting theorem of Hamilton [9] for solutions of the Ricci
flow on Riemannian manifolds with nonnegative curvature operator. This
splitting theorem will be useful in subsequent sections, in particular in the
proof of our dimension reduction theorems.

Theorem 2.1 Let g be a complete solution of the Kähler-Ricci flow (1)
on a noncompact simply connected complex manifold Xn of dimension n

and some open time interval I, with bounded and nonnegative holomorphic
bisectioanl curvature. Then either g is of positive Ricci curvature for all
x ∈ X and all t ∈ I, or (X, g) splits holomorphically isometrically into a
product Ck ×Nn−k (k ≥ 1) flat in Ck direction and N being of nonnegative
holomorphic bisectioanl curvature and positive Ricci curvature.

Proof: The proof can proceed essentially along the same line as in [9], except
one needs to use strong maximum principle for noncompact manifolds similar
to those in [11,12]. For simplicity, we only present the proof in the compact
case.

First we claim that for any t0, there exists a time interval t0 < t < t0 +δ,
on which the rank of the Ricci tensor Rij̄ is constant and the null space of
Rij̄ is invariant under parallel translation and invariant in time. First, recall
that the Ricci tensor satisfies the evolution equation:

∂

∂t
Rij̄ = ∆Rij̄ + Φij̄, (3)

where Φij̄ = Rij̄kl̄Rlk̄. Let 0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σn be the eigenvalues of the
Ricci tensor. Then σ1 + · · ·+σk is a concave function of Rij̄ and is invariant
under parallel translation, since

σ1 + · · ·+ σk = inf{tr(Rij̄|E : E ⊂ TX is any subspace of dim k}.

Note that dim of the null space of Rij̄ is ≥ k if and only if σ1 + · · ·+σk = 0.
If σ1 + · · ·+ σk > 0 at one point at t = t0, then by the strong maximum
principle, it is positive everywhere for all t > t0. So it follows that rank of
Rij̄ remains constant on some time interval t0 < t < t0 + δ.

Next, let v be any smooth section of the holomorphic tangent bundle TX
in the null space of Rij̄ on t0 < t < t0 + δ. Then

0 =
∂

∂t
(Rij̄v

ivj̄) = (
∂

∂t
Rij̄)v

ivj̄ + Rij̄(
∂vi

∂t
vj̄ + vi

∂vj̄

∂t
).
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Since Rij̄v
i = Rij̄v

j̄ = 0, the last term vanishes. Also

0 = ∆(Rij̄v
ivj̄) = (∆Rij̄)v

ivj̄ +DkRij̄(v
j̄Dk̄v

i + viDk̄v
j̄)

+Dk̄Rij̄(v
j̄Dkv

i + viDkv
j̄) +Rij̄(Dkv

iDk̄v
j̄ +Dk̄v

iDkv
j̄)

+ Rij̄(v
j̄∆vi + vi∆vj̄)

and again the last term disappears. Since

0 = Dk(Rij̄v
i) = (DkRij̄)vi +Rij̄Dkv

i,

and
0 = Dk(Rij̄v

j̄) = (DkRij̄)vj̄ +Rij̄Dkv
j̄,

etc., we get from the evolution equation (3)

Rij̄(Dkv
iDk̄v

j̄ +Dk̄v
iDkv

j̄) + Φij̄v
ivj̄ = 0.

Since Rij̄ ≥ 0 and Φij̄ = Rij̄kl̄Rlk̄ ≥ 0, we must have v also in the null
space of Φij̄ and Dkv

i, Dkv
j̄ etc in the null spaces of Rij̄ for all k. This shows

that the null space of the Ricci tensor is invariant under parallel translation
and null(Rij̄)⊂ null(Φij̄).

Finally, to see the null space of the Ricci tensor is also invariant in time,
note first that ∆vi and ∆vj̄ lies in the null space of the Ricci tensor. Then

0 = Dk(Rij̄Dk̄v
i) = DkRij̄Dk̄v

i +Rij̄DkDk̄v
i,

and
0 = Dk̄(Rij̄Dkv

i) = Dk̄Rij̄Dkv
i + Rij̄Dk̄Dkv

i

and so
DkRij̄Dk̄v

i +Dk̄Rij̄Dkv
i = 0.

Then

0 = ∆(Rij̄v
i) = (∆Rij̄)v

i +
1
2
(DkRij̄Dk̄v

i +Dk̄Rij̄Dkv
i)

and hence (∆Rij̄)v
i = 0. Then

0 =
∂

∂t
(Rij̄v

i) = Rij̄
∂vi

∂t
+ (∆Rij̄ + Rij̄kl̄Rlk̄)v

i.

Now Rij̄kl̄Rlk̄v
i = 0 whenever v is in the null space of Rij̄. Thus Rij̄v

i = 0,
and ∂v/∂t lies in the null space of the Ricci tensor as well. This shows the
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null space of the Ricci tensor is invariant in time. Therefore, either the null
space of the Ricci tensor is trivial, or, by the De Rham decomposition theo-
rem (see e.g. Theorem 8.1 in [14]) and induction on the dimension of the null
space, the underlying complex manifold X splits holomorphically isometri-
cally into a product of some flat complex Euclidean space Ck and another
factor Nn−k whose Ricci tensor is everywhere positive. This completes the
proof of Theorem 2.1.

Remark: A similar argument of the proof has been used recently by Ni-
Tam in their work [16] on a Liouville type theorem for plurisubharmonic
functions.

3. Type II singularity models and Kähler-Ricci solitons.

In this section, we collect some known results about Type II singularity
models and translating Kähler-Ricci solitons.

An important class of Type II singularity models is given by translating
Kähler-Ricci soliton (KRS), which is an eternal solution g moving along the
Kähler-Ricci flow (1) under a one-parameter family of biholomorphisms of
a noncompact complex manifold X generated by some holomorphic vector
field V on X . That is we have g(t) = φ∗(t)g(o), where φ(t) = exp{−tV } is
the one-parameter family of automorphisms of X . Equivalently, for each t,
we have

Rij̄ = LV gij̄,

the Lie derivative of g in the direction of V . Thus in local holomorphic
coordinates, translating KRSs are characterized by equations

Rij̄ = Dj̄Vi = DiVj̄, and DjVi = Dj̄Vī = 0.

Note that the condition DjVi = 0 is equivalent to saying that the vector
field V is holomorphic. If the vector field V is the gradient of a real-valued
smooth function f on X so that V i = gij̄∂j̄f , then we call g a gradient
translating KRS and f a potential function of the soliton. In this case, the
above soliton equation becomes

Rij̄ = DiDj̄f, and DiDjf = 0.

It turns out all Type II singularity models with nonnegative curvature arise
this way:

Proposition 3.1 (Cao [3]) Any Type II singularity model (X, g) of the
Kähler-Ricci flow (1) with nonnegative holomorphic bisectional curvature
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and positive Ricci curvature is necessarily a translating Kähler-Ricci soli-
ton. Furthermore, if X is simply connected, then g is a gradient soliton.

The proof of Proposition 3.1 follows from our Li-Yau-Hamilton estimate
[1,3] (also called differential Harnack estimate) for the Kähler-Ricci flow and
the strong maximum principle argument.

In complex dimension one there is only one (up to scaling) translating
KRS of positive curvature, called cigar soliton, found by Hamilton [10]. The
metric is defined on the complex plane C and can be written explicitly, at
t = 0, as

ds2 =
|dz|2

1 + |z|2 .

The cigar soliton has maximal curvature at the origin and is asymptotic to
a flat cylinder at the infinity. Later in [2], the author found for each n ≥ 2
a translating KRS on Cn, invariant under the unitary group and of positive
sectional curvature. Furthermore, this rotationally symmetric soliton has
the following geometric properties: curvature at geodesic distance s from the
origin decays like 1/s; while volume of geodesic ball of radius s centered at
the origin grows like sn. In general, the special nature of translating KRSs
also allow us to draw some very nice conclusions about both its complex
analytic and geometric properties:

Proposition 3.2 (Cao-Hamilton [4]) Let (Xn, g) be a translating gradient
KRS with positive Ricci curvature such that the scalar curvature R assumes
its maximum 1 in space-time. Let f be a potential function of g. Then f
is a strictly convex exhaution function on X . In particular, X is a Stein
manifold diffeomorphic to R2n.

A fact important in the proof of Proposition 3.2 is that the potential
function f satisfies the equation

R+ |Df |2 = 1.

A straightforward modification of a result of Hamilton (Theorem 20.2 in
[13]) yields

Proposition 3.3 Let (Xn, g), n ≥ 2, be a translating KRS with bounded and
nonnegative bisectional curvature such that the scalar curvature R assumes
its maximum in space-time. For any (small) constant ε > 0, if there exists a
positive constant Cε such that the (1 + ε)-asymptotic scalar curvature ratio

A1+ε = lim sup
s→∞

R(x)s1+ε(x) < Cε,



On Dimension Reduction in the Kähler-Ricci Flow 313

then g must be flat. In particular, if g is non-flat, then A1+ε = ∞ for any
ε > 0.

Note in particular the asymptotic curvature ratioA ≡ A2 must be infinite
for any translating KRS of nonnegative bisectional curvature.

4. The proof of main results.

Proof of Theorem 1.1: Let (X2, g) be a Type II singularity model as
in the statement of Theorem 1.1. For simplicity we assume X2 is simply
connected, otherwise we can replace it by its universal cover. First we claim
the Ricci curvature of g must be strictly positive at all points and all time.
If the Ricci curvature is not strictly positive at some point x0 and some
time t0, then by the splitting theorem 2.1, (X2, g) splits as a quotient of
a product of the flat complex plane C with a complete Riemann surface Σ
of positive Gaussian curvature. Note g restricted to Σ remains a Type II
singularity model satisfying the local injectivity radius estimate. But the
only Type II singularity model on a Riemann surface with positive Gaussian
curvature is the cigar soliton, which does not satisfy the local injectivity
radius estimate. A contradiction. Therefore the Ricci curvature of g is
strictly positive everywhere.

Now, it follows from Proposition 3.1 that the Type II limit solution
(X2, g) is a translating gradient Kähler-Ricci soliton with bounded non-
negative holomorphic bisectional curvature and positive Ricci curvature.
Then by Proposition 3.3, we know that asymptotic scalar curvature ratio
A = A2 <∞. Therefore, we can apply Lemma 22.2 of Hamilton [13] to find
a sequence of points xj ∈ X going to infinity at time t = 0, a sequence of
radii rj > 0, and a sequence of positive numbers δj → 0 such that

(a) R(x, 0) ≤ (1 + δj)R(xj, 0) for all x in the ball Brj(xj, 0) of radius rj
around xj at time t = 0;

(b) r2jR(xj, 0)→∞;

(c) if sj is the distance of xj from some origin O at time t = 0, then
λj = sj/rj →∞;

(d) the balls Brj(xj, 0) are disjoint.

We can then blow down (X2, g) as in [13] by taking a sequence of dilations
of (X2, g) around the sequence of points xj which we take as our new origins
Oj, and we shrink down instead of expanding to make the scalar curvature



314 H.-D. Cao

R(xj, 0) dilate to equal 1 at (Oj, 0). The balls Brj (xj, 0) are then dilated to
the balls centered at the origin Oj of radii r̂j = r2jR(xj, 0)→∞ by property
(b). Property (a) gives good bounds on the curvature in these balls at time
t = 0, while the same bounds for t ≤ 0 follows from the fact that the scalar
curvature R(x, t) of g is pointwise increasing in time, a consequence of our
Li-Yau type estimate for R(x, t) (see [1,3]). The local injectivity radius
estimate (2) now becomes

injBrj
(Oj, g) ≥

β√
R(Oj, 0)

since it is invariant under dilation.
Now we have everything we need to take a limit of the dilations of (X2, g)

around the points (xj, 0), dilating time like distance squared and keeping
t = 0 as t = 0 in the new limit, which is denoted by (X̂2, ĝ), where ĝ is a
complete solution to the Kähler-Ricci flow (1) on the limiting noncompact
complex surface X̂2 with the limiting origin point Ô and an ancient time
interval−∞ < t ≤ Ω, for some Ω > 0 by Shi’s short time existence result [17],
and with bounded and nonnegative holomorphic bisectional curvature such
that the scalar curvature R̂(x, t) ≤ 1 everywhere for t ≤ 0 and R̂(Ô, 0) = 1
at the origin at time t = 0.

The next step is to produce a Ricci-flat direction at Ô in the blow-down
limit (X̂2, ĝ). First we prove a proposition, which is of independent interest
and will be important in showing the Ricci tensor R̂ij̄ of ĝ must have a null
vector at Ô ∈ X̂2.

Proposition 4.1 Let Θ denote the second Chern form of (X2, g) at t = 0.
Then, the second Chern number integral

c2(X) =
∫
X

Θ

of (X2, g) is well defined. In fact, c2(X) ≤ 1.

Proof: It is well-known that for any Kähler surface of nonnegative holo-
morphic bisectional curvature, the second Chern form, or equivalently the
Gauss-Bonnet-Chern integrand, Θ of (X2, g) is pointwise nonnegative. In
fact, Θ can be expressed explicitly as

Θ =
1

8π2
(R2 + |Rm|2 − 2|Rc|2)dµ

=
1

4π2
(R11̄11̄R22̄22̄ + 2R2

11̄22̄ + |R12̄12̄|2 + 2|R11̄12̄|2 + 2|R22̄12̄|2)dµ. (4)
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Here dµ is the volume form of g at t = 0. Thus, in order to prove c2(X)
is well defined, it suffices to prove the integrals c2(Ui) =

∫
Ui

Θ is uniformly
bounded for some exhaution sequence of subsets Ui of X2.

Since (X2, g) is a gradient KRS, by Proposition 3.2, there exists a strictly
convex exhaustion potential function f on X . Taking Ui = {f ≤ i}, then as
is well-known, we have

c2(Ui) =
∫
Ui

Θ = χ (Ui) + {boundary contribution}

where χ (Ui) denotes the Euler characteristic of the set Ui. Now ∂Ui has
positive definite second fundamental form and it can be shown (see e.g.
Section 4 in [8]) that the boundary term above is nonpositive . Therefore

c2(Ui) ≤ χ (Ui) .

But by Proposition 3.2, X is diffeomorphic to R4 and each Ui is diffeomor-
phic to the unit ball. Thus χ (Ui) = 1 for all i which implies c2(X) ≤ 1.

Now we can prove

Lemma 4.2 The Ricci tensor of ĝ must have a zero eigenvalue at the origin
Ô ∈ X̂2 at time t = 0.

Proof of Lemma 4.2: We prove by contradiction. Suppose Lemma 4.2
is not true. Then before taking the blow-down limit, there must exist a
positive number ε > 0 and a subsequence, again indexed by j, of {xj} in X
such that

εj =
σj

R(xj, 0)
≥ ε for all j = 1, 2, · · · , (5)

where we denote by σj the minimum of the Ricci curvature of g at xj at
t = 0.

We are going to show this leads to a contradiction by closely examing
the relation between Chern numbers c2 and c21.

On one hand, by the local derivative estimate of Shi [17] (or Theorem
13.1 in [13]) and properties (a) and (b), we have at t = 0 the estimate

sup
x∈Brj (xj ,0)

|∇Rm(x, 0)|2 ≤ CR2(xj, 0)

(
1
r2j

+R(xj, 0)

)
≤ 2CR3(xj, 0) , (6)

where Rm is the curvature tensor of g and C > 0 is a universal constant.
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For any x ∈ Brj (xj, 0) ⊂ X , we obtain from (5) and (6) that the mini-
mum of the Ricci curvature σmin(x) at x, satisfies

σmin(x) ≥ σj −
√

2CR3/2(xj, 0)d0(x, xj)

≥ R(xj, 0)
(
ε−
√

2C ·
√
R(xj, 0) · d0(x, xj)

)
(7)

≥ ε

2
R(xj, 0)

whenever
d0(x, xj) ≤ lj =:

ε

2
√

2C ·
√
R(xj, 0)

.

Thus, from property (a) and (7), there exists j0 > 0 such that for any j ≥ j0
and x ∈ Blj(xj, 0), we have the estimate

ε

2
R(xj, 0) ≤ σmin(x) ≤ 2R(xj, 0) (8)

in the geodesic ball Blj(xjk , 0).
Hence

Rcg
2(x) ≥ (

ε

2
)2R2(xj, 0)dµ

for all x ∈ Blj (xj, 0).
Therefore,

∞∑
j=j0

∫
Blj

(xj ,0)
Rcg

2 ≥ C(ε)
∞∑
j=j0

R2(xj, 0) · C1

(
ε

2
√

2C ·
√
R(xj, 0)

)4

= C(ε)
∞∑
j=j0

C1ε
4

C2
(9)

= +∞

On the other hand, if we diagonalize the Ricci tensor at each point x, we
have

Rcg
2(x) =

1
π2
R11̄(x)R22̄(x)dµ (10)

=
1
π2

(R11̄11̄R22̄22̄ +R11̄11̄R11̄22̄ +R2
11̄22̄ + R11̄22̄R22̄22̄ + R2

22̄22̄)dµ.

From (4), (5), and (10), it is easy to check that there exists a constant
C′(ε) such that

Rcg
2(xj) ≤ C′(ε)Θ(xj)
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for all j. It then follows that
∞∑
j=j0

∫
Blj

(xj ,0)
Rcg

2 ≤ C′(ε)
∞∑
j=j0

∫
Blj

(xj ,0)
Θ < C′(ε)c2(X) < C′(ε),

which contradicts (9). Thus the proof of Lemma 4.2 is completed.

Now, it follows from Lemma 4.2 and Theorem 2.1 that, since ĝ is nonflat,
the universal cover of X̂2 splits holomorphically isometrically as a product
of the flat complex plane C and a Riemann surface Σ of positive Gaussian
curvature. The factor Σ may not be yet of Type I or Type II, but we can take
a further limit of dilation, as in [13], also by shrinking, to get yet another
limit N which will be either of Type I or Type II. However, N cannot be
Type II, because otherwise N has to be the cigar soliton, but cigar soliton
does not satisfy the local injectivity radius estimate. So N must be of Type
I. Then by a result of Hamilton [13] (Theorem 26.1) the only Type I ancient
solutions to the Ricci flow on a Riemann surface which are complete with
bounded curvature are the (round) Riemann sphere, or the flat complex
plane C and its quotients. Since N has positive curvature, it must be the
Riemann sphere CP1.

Now a sequence of dilations of (X2, g) converges to a quotient of (X̂2, ĝ),
which splits into C× Σ, and a sequence of dilations of C × Σ converges to
C × CP 1. Again, since a dilation of a dilation is a dilation, and a limit
of limits is a limit by picking an appropriate subsequence. Thus a limit of
dilations of (X2, g) converges to C×CP 1. �
Proof of Corollary 1.1: Suppose we have a 2-dimensional Type II sin-
gularity model (X2, g) with νX > 0. Using the convex exhaustion function
f in Proposition 3.2 and modifying an argument of Cheeger-Gromov-Taylor
[5], it follows that the local injectivity radius estimate (ii) holds for (X2, g).
Hence, according to Theorem 1.2, a sequence of dilations of g converges to a
limit ĝ on some noncompact complex manifold X̂ . Furthermore (X̂2, ĝ) is a
quotient of the product C×CP1 of flat complex plane C and the complex
projective plane CP1 so that ν

X̂
= 0. On the other hand, we must have

ν
X̂
> 0 since the condition of having Euclidean volume growth is clearly

preserved under dilations and taking limits. A contradiction. �
Proof of Theorem 1.2: We can proceed similarly as in the proof of Theo-
rem 1.1. Let g be the ancient solution to the Kähler-Ricci flow (1) satisfying
all the assumptions in Theorem 1.2. Since the asymptotic scalar curvature
ratio A =∞, we can apply Lemma 22.2 of Hamilton [13] and get blow-down
limit (X̂n, ĝ) as in the proof of Theorem 1.1.
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Lemma 4.3 The Ricci tensor of ĝ must have a zero eigenvalue at the origin
Ô ∈ X̂n at time t = 0.

Proof of Lemma 4.3: We again prove by contradiction. Suppose Lemma
4.3 is not true so that condition (5) in the proof of Lemma 4.2 holds. We
are going to show this leads to a contradiction to assumption (iii).

On one hand, as in the proof of Lemma 4.2, we have the estimate

ε

2
R(xj, 0) ≤ σmin(x) ≤ 2R(xj, 0)

in the geodesic ball Blj(xjk , 0) and hence

Rcg
n(x) ≥ (

ε

2
)nRn(xj, 0)dµ

for all x ∈ Blj(xj, 0). Here dµ is the volume form of g at t = 0. It then
follows that

cn1 (X) ≥
∞∑
j=j0

∫
Blj

(xj ,0)

Rcg
n

≥ C(ε)
∞∑
j=j0

Rn(xj, 0) · C1

(
ε

2
√

2C ·
√
R(xj, 0)

)2n

= C′(ε)
∞∑
j=j0

C1ε
2n

Cn

= +∞,

which is a contradiction to assumption (iii), and the proof of Lemma 4.3 is
completed.

Now the blow-down limit (X̂n, ĝ) has a Ricci-flat direction, hence split-
ting theorem 2.1 applies and the universal cover of X̂ splits holomorphically
isometrically as a product of flat Cl and a factor Nn−l of nonnegative bi-
sectional curvature and positive Ricci curvature. The factor N may not be
yet of Type I or Type II, but we can take a further limit of dilation, as in
[11], also by shrinking, to get yet another limit Ñ which will be either of
Type I or Type II. If Ñ is of Type I, or Type II with cn−l1 (Ñ) = ∞, then
we are done. If Ñ is of Type II but with cn−l1 (Ñ) <∞, then we can repeat
the dimension reduction process above to split out more flat factors until we
arrive at some factor N̂n−k (k ≥ l) which is either of Type I, or of Type II
with cn−k1 (N̂ ) =∞.
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Now a sequence of dilations of (Xn, g) converges to a quotient of (X̂n, ĝ),
which splits into Cl×Nn−l, and a sequence of dilations of Cl×Nn−l converges
to Cl × Ñn−l, and a sequence of dilations of Cl × Ñn−l converges to Ck ×
N̂n−k. Since a dilation of a dilation is a dilation, and a limit of limits is
a limit by picking an appropriate subsequence. Thus a limit of dilations of
(Xn, g) converges to Ck× N̂n−k, where N̂n−k is either of Type I, or of Type
II with cn−k1 (N̂) =∞. �
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