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Witten’s gauged linear sigma model [Wi1] is one of the universal
frameworks or structures that lie behind stringy dualities. Its A-
twisted moduli space at genus 0 case has been used in the Mirror
Principle [L-L-Y] that relates Gromov-Witten invariants and mir-
ror symmetry computations. In this paper the A-twisted moduli
stack for higher genus curves is defined and systematically studied.
It is proved that such a moduli stack is an Artin stack. For genus
0, it has the A-twisted moduli space of [M-P] as the coarse moduli
space. The detailed proof of the regularity of the collapsing mor-
phism by Jun Li in [L-L-Y : I and II] can be viewed as a natural
morphism from the moduli stack of genus 0 stable maps to the A-
twisted moduli stack at genus 0. Due to the technical demand of
stacks to physicists and the conceptual demand of supersymmetry
to mathematicians, a brief introduction of each topic that is most
relevant to the main contents of this paper is given in the beginning
and the appendix respectively. Themes for further study are listed
in the end.

Introduction and outline.

Introduction.

Witten’s gauged linear sigma model (GLSM) [Wi1] is one of the universal
frameworks or structures that lie behind stringy dualities. There are many
geometric data that are encoded in a GLSM, in particular a toric variety
X . From a gauged linear sigma model, one can obtain two different field
theories that have the same local but different global field-theoretic contents
as the original theory. These descendant theories are called the A-twist and
the B-twist of the original theory. The moduli space of vacua of the A-
twisted theory is given by solutions to a system of vortex-type equations.
Geometrically each solution corresponds to a system of line bundles-with-
a-section on a curve with these sections satisfying some nondegeneracy or
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nonvanishing conditions. (The background from field and string theory are
summarized in Appendix for mathematicians.)

In general a system of line bundles-with-a-section has nontrivial auto-
morphisms. Thus the correct language to describe and study the related
moduli problem in the algebro-geometric setting is stack. Since the stack
AMg(X) in this moduli problem on one hand is related to curves and on
the other hand arises from the A-twisted theory of a gauged linear sigma
model, we will call it the A-twisted moduli stack for curves (from Witten’s
GLSM).

To really do geometry on a stack, usually one requires it be an algebraic
(Artin or Deligne-Mumford) stack. For such stacks, by passing to a covering
system of atlases, many (down-to-earth) concepts in algebraic geometry for
schemes, notably cycles, intersection of cycles, coherent sheaves, and derived
categories, can also be defined and studied. (A literature guide on stacks
is given in Sec. 1 for physicists.) In Sec. 2, we spell out the definition of
AMg(X) and prove that it is indeed an Artin stack. Hence AMg(X) is an
object that one may hope to do geometries related to curves.

From the other end, recall the moduli stackMg,n(X) of stable maps stud-
ied in Behrend [Be1, Be2], Behrend-Manin [B-M], Fulton-Pandharipande
[F-P], Li-Tian [L-T1, L-T2] . . . and many others since Kontsevich that are
related to Gromov-Witten invariants for algebraic varieties.

It is Witten’s insight [Wi1] and Morrison-Plesser’s later further push
[M-P] with some foundation laid down by Cox [Cox2] that the two mod-
uli stacks AMg(X) and Mg,0(X) should be closely related. In particular
AMg(X) could be as useful in the computation of Gromov-Witten invariants
asMg,0(X) itself.

At the moment the detail of relations between these two stacks has been
carried out for the genus 0 case. Indeed AM0(X), or more precisely its
coarse moduli space, has been used in the Mirror Principle [L-L-Y : I and II]
that relates Gromov-Witten invariants and mirror symmetry computations.
The two moduli stacks AM0(X) and M0,0(X) are related by the natural
morphisms ∐

dMd(X)
↙ ↘

M0,0(X) AM0(X) ,

where
∐
dMd(X) is the moduli stack of genus 0 stable maps into P

1×X with
the degree on the P

1-component being equal to 1,
∐
dMd(X) → M0,0(X)

is the contracting morphism, and
∐
dMd(X) → AM0(X) is the collapsing

morphism, whose regularity was proved by Jun Li. This is explained more
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carefully in Sec. 3 and Sec. 4.
These notes lay down some foundations for several themes to be reported

in the future.

Outline.

1. A brief tour and literature-guide on stacks.
2. From Cox functor to Witten’s A-twisted moduli stack.

2.1 The A-twisted moduli stack AMg(X).
2.2 AMg(X) is an Artin stack.

3. The g = 0 case.
4. The collapsing morphism.
Appendix. Witten’s gauged linear sigma models for mathematicians.

1. A brief tour and literature-guide on stacks.

Basic definitions on stacks needed for the discussions are collected in this
section for introduction of notations and the convenience of readers/string-
theorists.

• Grothendieck topology and site. Let (Sch/S0) be the category of
schemes over a base scheme S0 ([Ha1]). See [G-M : Sec. II.4], [Kr], and [L-
MB : Chapter 9] for the definition - and [Mu1] for why they are needed - of
the following :

◦ Topology = covering system.

– étale topology.

– fppf topology; fppf = faithfully flat (=flat+surjective), + locally of finite
presentation.

– fpqc topology; fpqc = faithfully flat + quasi-compact

◦ Site on (Sch/S0) = usual (Sch /S0) + covering systems.

Notation. Let f : U ′ → U be a covering of U in the site (Sch/S0). We shall
adopt the following notations for the projection maps from fibered products :

U ′′′ := U ′ ×U U ′ ×U U ′ π12, π13, π23—————−→ U ′′ := U ′ ×U U ′ p1, p2———−→ U ′ .

Such compact notations are particularly useful for diagram-chasings.
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• Grothendieck’s theory of descent. Given a covering morphism
f : U ′ → U in the site (Sch/S0), Grothendieck’s theory of descent stud-
ies (1) when and how a geometric object (e.g. a coherent sheaf) on U ′ can
be descended to a geometric object of the same kind on U and (2) when and
how a morphism between descendable geometric objects on U ′ descends to a
morphism between the descent geometric objects on U . This is a big gener-
alization of the local-to-global constructions in geometry. See [Kr : Lecture
4 and Lecture 5] for an introduction and references.

• Stacks. While varieties contain only closed points (= the usual geometric
points when the ground field k is C), schemes (e.g. [E-H] and [Mu4]) contain
also nonclosed points to make doing geometry more natural. Stacks go one
step further to contain “points” with nontrivial automorphisms. A “space”
with such a feature is needed to parameterize geometric objects that can
have nontrivial automorphisms, e.g. curves and coherent sheaves. Assuming
the background on algebraic geometry in [Ha1], then [Mu1], [D-M], [Gó], and
[Ed] (in suggested reading order) together give a concrete and solid intro-
duction of algebraic stacks and their natural appearance in moduli problems
in algebraic geometry; [L-MB] gives the final up-to-date polishment. See
also [Art1], [Art2], [Be2], [Bry], [Gil], [H-M], [Mu3], and [Vi] for more de-
tails. Recall that a groupoid is a category in which all the morphisms are
isomorphisms.

Definition 1.1 [(pre-)stack]. (Cf. [D-M], [Gó], and [Kr].) A stack F over
(Sch/S0) is a category fibered in groupoids pF : F → (Sch/S0) such that the
assignment of the fiber F (U) := p−1

F (U) to each U ∈ (Sch/S0) is a sheaf of
groupoids. I.e. it is an assignment of groupoids

U ∈ (Sch/S0) −→ F (U)

that satisfies the following sheaf axioms : Let f : U ′ → U be a covering of U
in the site (Sch/S0).

(1) (Gluing of morphisms ) Let E1, E2 be objects in F (U) and ϕ ′ :
f∗E1 → f∗E2 be a morphism in F (U ′) such that there exists an isomor-
phism τ : p∗1f

∗E1 → p∗2f
∗E2 in F (U ′′). Then there exists a morphism

ϕ : E1 → E2 in F (U) such that f∗ϕ = ϕ ′.

(2) (Monopresheaf ) Let E1, E2 be objects in F (U) and ϕ, ψ : E1 → E2
be morphisms in F (U) such that f∗ϕ = f∗ψ. Then ϕ = ψ.
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(3) (Gluing of objects) Let E ′ be an object in F (U ′) and τ : p∗1E ′ → p∗2E ′
be an isomorphism in F (U ′′) such that π∗23τ ◦ π∗12τ = π∗13τ in F (U ′′′).
Then there exists an object E in F (U) and an isomorphism σ : f∗E →
E ′ in F (U ′) such that p∗2σ = τ ◦ p∗1σ.

If F satisfies only (1) and (2), then it is called a prestack over (Sch/S0).
In this case, sheafification (official term : stackification) of F gives a stack
canonically associated to a prestack (cf. [Ha1 : II. Proposition-Definition
1.2], [Kr : Lecture 7], and [L-MB : Lemma 3.2].)

Remark 1.1.1 [category fibered in groupoids]. ([D-M : Sec. 4] and [Kr : Lec-
ture 6].) Given a category F over (Sch/S0), pF : F → (Sch/S0), it is
fibered in groupoids over (Sch/S0) if it satisfies the following morphism-
lifting properties :

(1) For any ϕ : U → V in (Sch/S0) and y ∈ F(V ) there is a map f : x→ y

in F with pF(f) = ϕ.

(2) Given a diagram

x
↘f
z

↗gy

in F with its image

U
↘ϕ
W

↗ψV

in (Sch/S0) .

Then for all χ : U → V such that ϕ = ψ◦χ , there is a unique h : x→ y
such that f = g ◦ h and pF(h) = χ.

Such lifting properties in many moduli problems, including the one studied
in the notes, follow automatically by base-change or fibered products. Hence
we will omit mentioning them.

Remark 1.1.2 [algebraic S0-spaces]. For technical reasons in algebro-
geometric study of moduli problems, it is natural to introduce the notion
of algebraic S0-spaces and use them, instead of schemes, to define atlas and
representability of morphisms between stacks, cf. [L-MB : chapters 1 and 10].
Such spaces may be thought of as a collection of étale (instead of Zariski)
local charts for a would-be (generally non-existing) scheme. To keep things
down to earth, we do not adopt this convention in the notes.

• Morphisms between stacks. Let pF : F → (Sch/S0) and pG : G →
(Sch/S0) be stacks over (Sch/S0). A morphism from F to G is a functor
F : F → G between the two categories such that pG ◦F = pF . Explicitly for
moduli stacks, this means that F sends a flat family of one class of geometric
objects to a flat family of another class of geometric objects in a way that
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commutes with base change. F is representable if for all X ∈ (Sch/S0) and
morphism x : X → G, the fibered product (cf. next item) F ×F,G, x X is
also in (Sch/S0). Properties of schemes (e.g. proper, separated, smooth, etc.)
that are stable under base change and of a local nature on the target can
be defined for representable morphisms of stacks via fibered products with
schemes : [D-M : Sec. 4], [Gó : Sec. 2], and [L-MB : Definitions (3.9) and
(3.10.1)].

• Fibered product. [Be2 : Lecture 1, Groupoids], [Gó : Sec. 2.2], and [L-
MB : Sec. (2.2.2)]. Given two morphisms F : X → Z and G : Y → Z of
stacks over (Sch/S0), their fibered product X ×F,Z,G Y (or denoted X ×Z Y
when F and G are clear from the text) is defined to be the stack over
(Sch/S0) with

Objects : Triples (X, Y, α), where X ∈ X , Y ∈ Y, and
α : F (X)→ G(Y ) is an isomorphism in Z .

Morphisms : A morphism from (X1, Y1, α1) to (X2, Y2, α2) is a pair
(ϕX , ϕY) of morphisms ϕX : X1 → X2, ϕY : Y1 → Y2 over
the same morphism f : U → V of schemes in (Sch/S0)
such that the following diagram commutes

F (X1)
F (ϕX )−→ F (X2)

α1 ↓ ↓ α2

G(Y1)
G(ϕY )−→ G(Y2) .

• Isom and Isom . (Cf. [D-M : Definition (I.10)], [Gro : Sec. 4], and [Mu1:
Sec. 3].) Given a pair of families of geometric objects, e.g. stable curves,
πi : Xi → Si, i = 1, 2, then each induces a family of geometric object, still
denoted by πi, over S1 ×S0 S2 via pullback. Let ( Sets ) be the category of
sets. Then Isom (π1, π2) is the functor

Isom(π1, π2) : (Sch /S0) → (Sets )
S �→ {(α, β) |α ∈ Hom(S, S1 ×S0 S2) , β : α∗π1 # α∗π2} .

In case Isom (π1, π2) is a representable functor, the scheme that represents
Isom (π1, π2) will be denoted by Isom (π1, π2). Representability of Isom
in many moduli problems boils down to the representability of the Hilbert
functor or the Quot functor ([Gro]). When the moduli problem is described
by a stack X over (Sch/S0), then πi correspond to morphisms Fi : S → X
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and Isom (π1, π2) = S1 ×F1,X ,F2 S2 . Similarly for Hom and Hom that
replace isomorphisms in the definition of Isom and Isom by morphisms.

Definition 1.2 [Artin stack]. ([Gó : Definition 2.22].) An Artin stack F
over (Sch/S0) is stack F over (Sch/S0) that satisfies additional conditions :

(1) The diagonal morphism ∆F → F ×(Sch/S0)
F is representable, quasi-

compact, and separated.

(2) There exists a scheme U - called an atlas - and a smooth and surjective
morphism u : U → F .

See [L-MB : Definition (5.2)] for the definition of the set of points |F | of a
stack F .

Definiton 1.3 [coarse moduli space]. (Cf. [Gó : Definition 2.6] and [Vi :
(2.1) Definition].) A coarse moduli space for a stack F is a scheme Z together
with a morphism φ : F → Z such that

(i) if Z ′ is another scheme that admits a morphism φ′ : F → Z ′ then there
is a unique morphism of schemes η : Z → Z ′ with φ′ = η ◦ φ , (i.e. Z
corepresents F ).

(ii) for any algebraically closed field k, the induced map on k-points |φ | :
|F |(k)→ Z(k) is bijective.

(Thus, when exists, Z is unique up to a canonical isomorphism.)

• Quotient stack. [Be2 : Lecture 1, Example 18.3 and Example 20.4 ],
[Gó : Example 2.14], and [L-MB : Sec. (2.4.2)]. For S0 = Spec k, where k is
a ground field, let G be an algebraic group over k. The quotient stack of a
G-action on a k-scheme X is denoted by [X/G]. It is the stackification of the
prestack pre[X/G] over (Sch/k). An object of the groupoid pre[X/G](U),
U ∈ (Sch/k), is a diagram

P
f−→ X

↓
U ,

where P is a principalG-bundle over U and f is aG-equivariant k-morphism.

2. From Cox functor to Witten’s A-twisted moduli stack.

Notations and terminologies of toric geometry used here follow mainly [Fu],
see also [Oda].
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2.1. The A-twisted moduli stack AMg(X).

Let N # Z
n be a lattice, M be its dual lattice, ∆ be a fan in NR, ∆(1) be

the 1-dimensional cones of ∆, and nρ be the generator of ρ∩N for ρ ∈ ∆(1).
Let X be the smooth toric variety associated to ∆ and Y be a scheme over
S. Recall the following definition from [Cox2] :

Definition 2.1.1 [∆-collection]. A ∆-collection (Lρ, uρ, cm)ρ,m on Y/S
consists of line bundles Lρ on Y flat over S, sections uρ ∈ H0(Y, Lρ) indexed
by ρ ∈ ∆(1), and a collection of isomorphisms cm : ⊗ρL⊗〈m,nρ〉

ρ # OY
indexed by m ∈M such that

(i) Compatibility : cm ⊗ cm′ = cm+m′ for all m,m′ ∈M .

(ii) Nondegeneracy : The map∑
σ∈∆max

⊗ρ�⊂σu∗ρ : ⊕σ∈∆max ⊗ρ�⊂σ L−1
ρ → OY

is surjective, where u∗ρ : L−1
ρ → OY is the dual mor-

phism of uρ : OY → Lρ.

An isomorphism (Lρ, uρ, cm)ρ,m
∼→ (L′

ρ, u
′
ρ, c

′
m)ρ,m consists of isomorphisms

γρ : Lρ
∼→ L′

ρ which carry uρ to u′ρ and cm to c′m.

Explanation/Fact 2.1.2 [Cox]. For the application in this article, we
will consider only the case when the set { nρ }ρ spans NR. In this case
X = (C∆(1) − V (I))/G , where C

∆(1) = SpecC[xρ : ρ ∈ ∆(1)], I is the ideal
generated by

∏
ρ�⊂σ xρ, σ ∈ ∆max, and G = Hom Z(Pic (X),C×) acts on

C
∆((1) via the exact sequence

1 −→ G −→ Hom Z(Z∆(1),C×) −→ TN −→ 1 .

The following statements either are explicitly in or follow immediately from
[Cox2].

(1) The isomorphisms cm.

(1.1) Lρ are unrelated abstract line bundles on Y/S. To relate the
collection of sections uρ to a map from Y to C

∆(1), some data
is needed that enables one to compare sections in different Lρ -
more precisely, the induced sections from uρ on isomorphic tensor
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products of Lρ -. The data cm gives exactly this information
up to the G-action. Condition (i) (Compatibility) is the cocycle
conditions that make sure this comparison of sections on different
Lρ is consistent among themselves.

(1.2) Given {Lρ}ρ and two choices {cm}m and {c′m}m, there exist au-
tomorphisms γρ on Lρ that carry {cm}m to {c′m}m. Thus, up
to isomorphisms, there is exactly one way to compare the line
bundles Lρ.

Reason. (Cf. [Cox2 : Theorem 1.1, proof].) A pair of collections of
isomorphisms ({cm}m, {c′m}m) determines a morphism α : M →
H0(Y,O ∗

Y ). From the long exact sequence

0→Hom(Pic X, H0(Y,O ∗
Y ))→Hom(Z∆(1), H0(Y,O ∗

Y ))→Hom(M, H0(Y,O ∗
Y ))

→Ext1(PicX, H0(Y,O ∗
Y )) (=0) →···

induced from the short exact sequence

0→M → Z
∆(1) → PicX → 0 ,

one concludes that α can be lifted to a morphism α̃ : Z
∆(1) →

H0(Y,O ∗
Y ). The morphism α̃ defines then a collection of auto-

morphisms γρ on Lρ, ρ ∈ ∆(1), that carry {cm}m to {c′m}m .

�

(2) The nondegeneracy condition. Recall (e.g. [Ha1: Appendix A.3]) that,
given a section uρ : OY → Lρ, the zero-sheme of uρ is defined by the
ideal sheaf u∗ρ(L−1

ρ ). Thus, Condition (ii) (Nondegeneracy) of a ∆-
collection means exactly that, for any open immersion U ↪→ Y such
that Lρ|U is trivialized by an isomorphism Lρ|U # OU , the image of
the induced map U → C

∆(1) lies completely in C
∆(1) − V (I).

Explanation/Fact 2.1.2 : Item (2), [Wi1] and [M-P] together lead to the
following definitions.

Definition 2.1.3 [weak ∆-collection]. (1) A weak ∆-collection on Y/S
is a set of data (Lρ, uρ, cm)ρ,m as in Definition 2.1.1 with Condition (ii)
(Nondegeneracy) replaced by
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(ii ′) Nonvanishing : The map∑
σ∈∆max

⊗ρ�⊂σu∗ρ : ⊕σ∈∆max ⊗ρ�⊂σ L−1
ρ → OY

is not a zero-morphism when restricted to each ir-
reducible component of fibers Ys over s ∈ S.

Isomorphisms of such data are defined the same as in Definition 2.1.1.

(2) Let (Lρ, uρ, cm) (resp. (L′
ρ, u

′
ρ, c

′
m)) be a weak ∆-collection on Y/S (resp.

Y ′/S ′). Then a morphism from (Y/S, (Lρ, uρ, cm)) to (Y ′/S ′, (L′
ρ, u

′
ρ, c

′
m)) is

a pair (f, γ), where f : Y → Y ′ fits into a commutative diagram

Y
f−→ Y ′

↓ ↓
S

f−→ S ′

and γ : (Lρ, uρ, cm) ∼→ f∗(L′
ρ, u

′
ρ, c

′
m) on Y/S.

Definition 2.1.4 [quasistable curves over S]. (Cf. [Ca].) A prestable
(i.e. reduced connected nodal) curve is called quasistable if it is semistable
and all its destabilizing chains have length 1. A quasistable curve over S is
a flat family π : C → S of quasistable curves over S. Define QMg to be the
category fibered in groupoids of quasistable curves over (Sch/S0).

Definition/Lemma 2.1.5 [AMg(X) stack]. Let (Sch/S0) be equipped
with the fpqc or the fppf topology. Define AMg(X) to be the category over
(Sch/S0) whose fiber over U ∈ (Sch/S0) is given by the groupoid

AMg(X)(U) = {weak ∆-collections on quasistable curves C over U } .

Then AMg(X) is a stack. We shall call it the A-twisted moduli stack asso-
ciated to X for genus g curves.

Remark 2.1.6. Compared with [Wi1 : Sec. 3.4] and [M-P : Sec. 3.7] summa-
rized in Appendix, AMg(X) is related to the moduli space of the A-twisted
gauged linear model in the higher genus case.

Definition/Lemma 2.1.5 follows from the proof of the effectiveness of a
descent datum in the case of quasi-coherent sheaves on schemes in (Sch/S0)
and will be proven after the necessary Fact 2.1.7, Fact 2.1.8, and Corollary
2.1.9.
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Recall from [Kr] the proof of the following fact: (See also [SGA1].)

Fact 2.1.7 [descent of quasi-coherent sheaves]. Let f : U ′ → U be a
fpqc or fppf morphism in (Sch/S0). Recall the projection maps from Sec. 1

U ′′′ := U ′ ×U U ′ ×U U ′ π12, π13, π23—————−→ U ′′ := U ′ ×U U ′ p1, p2———−→ U ′ .

(a) Descent of quasi-coherent sheaves. Let E ′ be a quasi-coherent OU ′-
module and τ : p∗1 E ′ → p∗2 E ′ be an isomorphism that satisfies π∗23τ ◦
π∗12τ = π∗13τ . Then there exists a quasi-coherent OU -module E on U

together with an isomorphism σ : f∗ E → E ′ such that p∗2σ = τ ◦ p∗1σ.
The sheaf E is unique up to a canonical isomorphism.

(b) Descent of morphisms. Let (E ′, τ) and (F ′, υ) be descent data and
(E , σ) and (F , ρ) be their respective descent as in Item (a). Let h′ :
E ′ → F ′ be a morphism that satisfies p∗2h′ ◦ τ = υ ◦ p∗1h′. Then there
exists a unique morphism h : E → F such that ρ ◦ f∗h = h′ ◦ σ.

Sketch of proof. Consider the following stricter version of Statement (b) :

(b∗) Let E and F be quasi-coherent sheaves on U and h′ : f∗ E → f∗F be a
morphism of OU ′-modules such that p∗1h

′ = p∗2h
′. Then there exists a

unique morphism h : E → F such that f∗h = h′.

Via diagram chasings, Statement (b) follows from Statement (b∗) and the
existence part of Statement (a). The proof now consists of three steps.

(1) Case : f = faithfully flat morphism between affine schemes.

(1.a) Descent of quasi-coherent sheaves.

Define f := f ◦ p1 (= f ◦ p2) and let p �1, p
�
2 : OU ′ → OU ′′ be the defining

ring morphism of structure sheaves associated to p1, p2 respectively. Then
their difference p �1−p

�
2 defines an OU -module morphism q : f∗OU ′ → f∗OU ′′ .

These morphisms induce natural morphisms p̂1 : E ′ → p∗1 E ′ and p̂2 : E ′ →
p∗2 E ′ by pulling back global sections.

Let Θ := τ ◦ p̂1 − p̂2 : E ′ → p∗2 E ′. Then the descent E of the descent
datum (E ′, τ) is given by E = f∗ KerΘ. By definition E fits into the following
exact sequence of OU -modules

0 −→ E ι−→ f∗ E ′
Θ−→ f∗ (p∗2 E ′) .
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τ determines an isomorphism k : f∗ f∗ p∗2 E ′ → p2∗ f
∗
f∗ E ′ and an automor-

phism h on f∗ f∗ E ′. These fit into a commutative square of OU ′-modules

0 −→ f∗ E f∗ι−→ f∗ f∗ E ′
f∗Θ−→ f∗ f∗ p∗2 E ′

↓ h ↓ k

0 −→ E ′ f̃−→ f∗ f∗ E ′
q̃−→ p2∗ f

∗
f∗ E ′ ,

where f̃ and q̃ are natural morphisms induced by f and q respectively and
both horizontal complexes are exact. This determines an isomorphism σ :
f∗ E → E ′ that satisfies the conditions in Statement (a). It has the property
that if s′ is a global section in Ker Θ and s is its corresponding global section
in E , then σ(f∗s) = s′. Uniqueness of E up to a canonical isomorphism
follows from Item (1.b∗) below.

(1.b∗) Descent of morphisms.

The following natural sequence of OU -modules induced by f and q is exact

0 −→ F f̂−→ f∗ f∗F
q̂−→ f∗ f

∗F .

Hence for any global section s in E , let f∗(s) be the corresponding global
section in f∗ E , then h′(f∗(s)) = f∗(t) for a unique global section in F .

One can now define the descent morphism h : E → F by setting h(s) = t.
By definition f∗h = h′. Since f∗ is an exact and faithful functor, such h is
unique.

(2) Statements for reductions.

Let R
f1−→ S

f2−→ T be a chain of morphisms of schemes in (Sch/S0). By
chasing the following two diagrams :

R×S R×S R −→ R×T R×T R −→ S ×T S ×T S
↓↓↓ ↓↓↓ ↓↓↓

R×S R −→ R×T R −→ S ×T S
↘↘ ↓↓ ↓↓

R
f1−→ S

f2−→ T

and

(R×S R)×T (R×S R) # (R×T R)×S×T S (R×T R)
↓↓ ↓↓

R×S R −→ R×T R ,
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where all the morphisms are natural projection maps from fibered products,
one concludes the following statements for reduction :

Reduction (2.1). Suppose that (b∗) holds for f1 and that for any quasi-
coherent sheaves A, B on S ×T S, the map

η∗ : Hom S×T S(A,B)→ HomR×TR(η∗A, η∗B)

is injective, then (b∗) holds for f2 if and only if (b∗) holds for f2 ◦ f1.

Reduction (2.2). Suppose that (b∗) holds for f1 as well as any pull-back
of f1. Suppose also that (a) and (b) hold for f1, then (a) and (b) hold for f2
if and only if (a) and (b) hold for f2 ◦ f1.

(3) General case by reductions.

For a general fpqc or fppf morphism f : U ′ → U between S0-schemes, let
{ Vi }i∈I be a Zariski affine cover of U and for each i ∈ I let { V ′

i,j }j∈Ji be a
Zariski affine cover of f−1(Vi). If f is fpqc, then Ji can be assumed to be a
finite set. Then for each i the map fi :

∐
j V

′
i,j → Vi is a faithfully flat affine

morphism and hence (a) and (b) hold for fi. Applying Reduction (2.1) and
Reduction (2.2) to chains of morphisms∐

i,j

V ′
i,j

∐
i fi−→

∐
i

Vi −→ U and
∐
i,j

V ′
i,j −→ U ′ f−→ U ,

one concludes that (a) and (b) hold for f . If f is fppf, then Vi,j := f(V ′
i,j)

are open in U . For each i, {Vi,j}j is a Zariski open cover of Vi and each
morphism V ′

i,j → Vi,j is fpqc. Applying Reduction (2.1) and Reduction to
(2.2) to chains of morphisms∐

j

V ′
i,j −→

∐
j

Vi,j −→ Vi ,
∐
i,j

V ′
i,j −→

∐
i

Vi −→ U ,

and ∐
i,j

V ′
i,j −→ U ′ f−→ U ,

one concludes that (a) and (b) hold for f . This concludes the sketch. �

Recall that QMg is the category fibered in groupoids of quasistable
curves over (Sch/S0).

Fact 2.1.8 [QMg Artin]. ([Be1].) QMg is an Artin stack for all g ≥ 0.
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Explanation. This follows from [Be1 : Preliminaries on prestable curves]
since QMg is an open substack of the Artin stack of prestable curves. �

Corollary 2.1.9 [line bundle with a section]. The category fibered
in groupoids of line bundles with a section on quasistable curves over S0-
schemes is a stack.

Proof. Since QMg is an Artin stack, a descent datum for quasistable curves
descends effectively. If f : S1 → S2 is a fppf morphism and C2 is a quasistable
curve over S2, then C1 := f ∗C2 = S1 ×S2 C2 is a quasistable curve over S1

and the morphism f : C1 → C2 from fibered product is also fppf. We shall
apply Fact 2.1.7 and its proof to f : C1 → C2.

Given a descent data (E ′, τ) on C1 with E ′ invertible, let E be its descent
on C2. Since f∗E # E ′ and f is fppf, E must be invertible as well.

C1
f−→ C2

↓ π1 ↓ π2

S1

f
−→ S2

Thus Fact 2.1.7 remains true if quasi-coherent sheaves are replaced by in-
vertible sheaves (cf. [Mu1 : Theorem 90 (Hilbert-Grothendieck)]).

In the construction of the descent of quasi-coherent sheaves and their
morphisms for the affine case in the proof of Fact 2.1.7, one observes that
if a global section s′ is added to a descent datum (E ′, τ) that satisfies the
gluing condition given by τ , then it must lies in KerΘ and hence descends
to a global section s in E . Furthermore, the statements in Item (1.b∗) in that
proof imply that such s is unique. I.e. the descent remains effective with a
section added to the data. Consequently, Statement (a) and Statement (b)
in Fact 2.1.7 hold for descent data of invertible sheaves with a section when
f is a faithfully flat morphism between affine schemes. Now observe that in
the remaining part of the proof of Fact 2.1.7, precisely two things are used
repeatedly :

(i) going-down : effective descent by a morphism, for which Statement
(a) and Statement (b) are known to hold,

(ii) going-up : pulling back a descent datum.

Whenever a going-down is employed, the existence and uniqueness of descent
global section are known to hold by earlier reductions from the affine case
while a going-up takes any part of descent data to the unique corresponding
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part of descent data automatically. Thus the whole proof of Fact 2.1.7 goes
through without change. This proves the lemma. �

Proof of Definition/Lemma 2.1.5. Follow the notations from previous dis-
cussions. Since the nonvanishing condition of weak ∆-collections is an open
condition, we only need to show that the data without this condition give a
stack.

(a) Descent of weak ∆-collections. For each ρ ∈ ∆(1) the existence and
uniqueness of descent of the descent data (L′

ρ, u
′
ρ ; τρ) on C1 to (Lρ, uρ ; σρ)

on C2 follow from Corollary 2.1.9. Similarly for morphisms between two
such descent data. Each (⊗ρL′

ρ
⊗〈m,nρ〉,⊗ρτρ⊗〈m,nρ〉), as well as (OC1, Id),

is a descent datum of line bundles on C1. Their descent on C2 are
given by (⊗ρLρ⊗〈m,nρ〉,⊗ρ σρ⊗〈m,nρ〉) and (OC2, Id) respectively. Thus c′m :
⊗ρL′

ρ
⊗〈m,nρ〉 → OC1 , as an isomorphism between two descent data of line

bundles, descends to a unique isomorphism cm : ⊗ρLρ⊗〈m,nρ〉 → OC2. This
shows that a descent datum of weak ∆-collection on quasistable curves de-
scends effectively.

(b) Descent of morphisms. Since a descent datum of isomorphisms from
a weak ∆-collection to another is really that for line bundles, it descends
uniquely.

This concludes the proof. �

2.2. AMg(X) is an Artin stack.

Proposition 2.2.1 [AMg(X) Artin]. The A-twisted moduli stack
AMg(X) for genus g quasistable curves is an Artin stack.

Proof. We check the properties that the diagonal morphism needs to satisfy
and construct an atlas for AMg(X) via a relative construction.

(a) Representability, quasi-compactness, and separatedness of the diagonal
morphism.

These properties are reflected in the corresponding properties of the Isom -
functor (cf. [Gó : Sec. 2.2]), which we will now check.

(a.1) Representability of IsomU(F1,F2). Let U ∈ (Sch/S0) and F1,
F2 ∈ AMg(X)(U) with the underlying quasistable curves over U denoted
by π1 : C1 → U , π2 : C2 → U respectively. Let IsomU (F1,F2) be the
functor on (Sch/U) associating to each U -scheme f : U ′ → U the set of
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U ′-isomorphisms from f∗F1 to f∗F2. By passing through a standard limit,
one may assume that the base schemes U and U ′ are Noetherian and of
finite type over S0 (cf. [L-MB : Théorème (4.6.2.1), proof]). There is a
natural morphism of functors IsomU(F1,F2) → IsomU (C1, C2), whose fiber
over an isomorphism ϕ : f∗C1 → f∗C2 over f : U ′ → U is the set of isomor-
phisms from f∗F1 to ϕ∗f∗F2 on f∗C1. From [Gro] and Fact 2.1.8 the functor
IsomU (C1, C2) is represented by a scheme IsomU (C1, C2) quasi-compact and
separated over U . Let h0 : Isom U(C1, C2) → U be the natural morphism,
then there is a canonical isomorphism Φ : h∗0C1

∼→ h∗0C2. Denote h∗0C1 over
Y0 := Isom U (C1, C2) by C̃1. Consider the functor Isom C̃1/Y0

(h∗0F1,Φ∗h∗0F2).
From [Gro : Sec. 4] (also [L-MB : Théorème (4.6.2.1), proof]), if one just fo-
cuses on the part of collections of line bundles {Lρ}ρ in weak ∆-collections,
then the Isom -functor is represented by an open subscheme Y2 of a scheme
Y1 that is affine and of finite type over Y0. The additional data : sections uρ
and trivialization isomorphisms cm of ⊗ρL⊗〈m,nρ〉

ρ , specify a locally closed
subscheme Y3 of Y2. Thus Isom C̃1/Y0

(h∗0F1,Φ∗h∗0F2) is represented by Y3

over Y0. In summary,

Y3
h3−→ Y2

h2−→ Y1
h1−→ Y0 = IsomU (C1, C2)

h0−→ U .
locally
closed
immersion

open
immersion

affine,
of
finite
type

quasi-
compact,
separated

Noetherian

Let p : Y3 → Y0 be the composition h1 ◦h2 ◦h3, then there is a canonical
isomorphism Ψ : p∗F1 → p∗Φ∗F2 over p∗h∗0C1/Y0.

Claim. The functor IsomU (F1,F2) is represented by Y3.

Proof. One checks the functorial properties for a scheme that represents
an Isom -functor. Let g : U ′ → U be a U -scheme and γ̃ : g∗F1 → g∗F2

be an isomorphism. Let γ : g∗C1 → g∗C2 be the underlying isomorphism
of quasistable curves over U ′. Then one may rewrite γ̃ as an isomorphism
γ̃ : g∗F1 → γ∗g∗F2 on g∗C1. Since Y0 represents the functor IsomU (C1, C2),
there is a unique U -morphism h : U ′ → Y0 such that (γ : g∗C1 → g∗C2) is the
pullback of the canonical isomorphism (Φ : h∗0C1 → h∗0C2) over Y0. Since h0 ◦
h = g, the data (γ̃ : g∗F1 → γ∗g∗F2) is the same as γ̃ : h∗h∗0F1 → h∗Φ∗h∗0F2.
Since Y3 is the scheme that represents the functor Isom C̃1/Y0

(h∗0F1,Φ∗h∗0F2),

there is a unique Y0-morphism h̃ : U ′ → Y3 (i.e. a lifting of h) such that γ̃ is
the pullback of Ψ via h̃. This shows that IsomU (F1,F2) = Hom ( · , Y3) and
hence Y3 represents IsomU(F1,F2). �
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(a.2) Separatedness. Recall the schemes Yi and the morphisms hi between
them from the discussion in Part (a.1). From Hartshorne [Ha] : (i) affine
morphisms (cf. h1) are separated [Ha : II. Exercise 5.17(b)], (ii) open and
closed - and hence locally closed - immersions (cf. h2, h3) are separated
[Ha : II. Corollary 4.6(a)], and (iii) composition of separated morphisms is
separated, it follows that Y3 → U is separated since h0 is separated.

(a.3) Quasi-compactness. Recall again from Hartshorne [Ha : II. Exercise
3.3(a)] that a morphism of schemes is of finite type if and only if it is locally
of finite type and quasi-compact. Since all the morphisms hi are of finite
type, so is their composition Y3 → U , which then must be quasi-compact.

These together justify that the diagonal morphism is representable,
quasi-compact, and separated.

(b) Construction of an atlas.

We follow a relative construction, which is completed in three steps.

(b.1) Atlas U0 for QMg. It follows from the discussion in [Be1] that an
atlas for QMg can be chosen as follows. Observe that for C a quasistable
curve of genus g ≥ 0, the number of unstable components of C is bounded
strictly by 1, for g = 0, 1, and 3g − 3, for g ≥ 2, and the number of
marked points on C needed to stabilize all these components is bounded
by n0 = 3 for g = 0, 1 for g = 1, and 3g − 3 for g ≥ 2. Let Mq

g,n0

be the open substack of the Deligne-Mumford stack Mg,n0 that consists of
stable curves of genus g with n0 marked points such that when these marked
points are forgotten, the underlying curves are quasistable. Then Mq

g,n0
is

a Deligne-Mumford stack and the morphism F : Mq
g,n0
→ QMg induced

by forgetting the marked points is representable, smooth, and surjective.
(Indeed, if V ∈ (Sch/S0) and (π : C → V ) ∈ QMg(V ), then the fibered-
product morphismMq

g,n0
×F,QMg,π V → V is the restriction of the morphism

of S0-schemes
( C ×V · · · ×V C︸ ︷︷ ︸

n0-many times

)(0) −→ V

to an open subscheme of (C ×V · · · ×V C)(0), where (C ×V · · · ×V C)(0) is the
fibered product C ×V · · · ×V C with all the diagonals of the fibered product
×V and the locus of nodes of fibers of C → V removed.) This re-justifies
that QMg is an Artin stack. Recall the Hilbert scheme construction in
[ F-P : Sec. 2 ] (with P

r therein set to P
0 = {pt}) that realizes Mg,n0 as a

quotient stack of a quasi-projective variety U acted on by an algebraic group.
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(Caution that a “quasistable curve” in [F-P] is a “prestable curve” in [Be1]
and the current article.) There is an open subset U0 in U whose geometric
points corresponds to quasistable curves. This U0 is then an atlas for QMg.
Since it comes from a Hilbert scheme construction, the associated flat family
of quasistable curves π : C0 → U0 is projective. We shall fix a relative very
ample line bundle on C0/U0.

(b.2) Atlas U1 for WDXC0/U0
. Consider now the stackWDXC0/U0

over (Sch/S0)
of weak ∆-collections on C0/U0. Define an atlas V for a stack S in the
same way as that for an Artin stack, namely a morphism V → S that is
representable, smooth, and surjective. Then an atlas for WDXC0/U0

can be
constructed by a sequence of relative constructions given in the following
steps.

(b.2.1) The Quot-scheme construction for an atlas V1 for the Artin stack
Bun 1(C0/U0) of line bundles on C0 flat over U0 (cf. [Gómez : Sec. 2.3,
Example 2.24] and [L-MB : Example (4.6.2)]). V1 can be decomposed
into a disjoint union of components labelled by the degree of the line
bundles on fiber of C0 → U0 since the degree determines the Hilbert
polynomial of line bundles on curves of fixed genus. By construction
there are a natural quasi-projective morphism V1 → U0 and a tauto-
logical line bundle L̃ on V1 ×U0 C0 over V1.

(b.2.2) An atlas V2 for the stack Bun 1,s(C0/U0) of line bundles with a
section on C0/U0 is given by the scheme

V2 := Hom (V1×U0
C0)/V1

(OV1×U0
C0 , L̃) .

It is affine and surjective over V1, ([Gro : Sec. 4] and [L-MB : Sec.
(4.6.2)]). The fibered product

V3 := V2 ×U0 · · · ×U0 V2︸ ︷︷ ︸
|∆(1)|-many times

gives an atlas for the stack of |∆(1)|-tuple of line bundles with a section
on the same quasistable curve.

(b.2.3) The tensor product conditions ⊗ρ L⊗〈m,nρ〉
ρ # OC in a weak ∆-

collection on a quasistable curve C are locally closed conditions. To-
gether they determine a locally closed subscheme V4 in V3. Fix a
basis for the M -lattice, then over V4 ×U0 C0 there is a rankM -tuple
of line bundles (L̃m)m defined by (⊗ρL⊗〈m,nρ〉

ρ )m, where m runs over
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the fixed basis. To add in the data of the choices of trivialization
cm : ⊗ρ L⊗〈m,nρ〉

ρ # OC , one takes the scheme

V5 := ⊕m∈basis Isom (V4×U0
C0)/V4

(L̃m , OV4×U0
C0 ) ,

which is an affine bundle over V4 with fiber the abelian group∏rank M Spec k[t, t−1].

(b.2.4) Finally, let U1 be the open subscheme in V5 that corresponds to
the nonvanishing condition of a weak ∆-collection. Note that we start
with V1 that is smooth and surjective over the stack Bun 1(C0/U0).
As we start to enlarge Bun 1(C0/U0) to tuples of line bundles, choice
of sections, and so on or doing restriction by imposing open, closed
or locally closed conditions, these extra data or restrictions do not
have nontrivial automorphisms. Thus they do not influence the repre-
sentability and the smoothness of the morphism of resulting Vi to the
related stack in the discussion. Also, by construction they are surjec-
tive. Thus U1 is an atlas for the stackWDXC0/U0

. By construction there
is a natural morphism U1 → U0.

(b.3) U1 as an atlas for AMg(X). By construction there is a relative weak
∆-collection F1 on the quasistable curve C1/U1. This gives a morphism f1 :
U1 → AMg(X). Let F be a relative weak ∆-collection on a quasistable curve
CW over W ∈ (Sch/S0). This specifies a morphism fW : W → AMg(X).
By the functorial properties of Isom and the morphism U1 → U0, one has
the following natural morphisms

Isom(C1/U1, CW/W ) = U1 ×U0 Isom(C0/U0, CW/W ) π−→ Isom(C0/U0, CW/W )

and

π∗
1C1 # π∗π∗

10 C0
α := π∗(α0)∼−→ π∗

2 CW # π∗π∗
20CW

\ /
Isom(C1/U1, CW/W )

π1 ↙ ↘ π2

U1 W

π−→

π∗
10 C0

α0∼−→ π∗
20 CW

\ /
Isom(C0/U0, CW/W ) .

π10 ↙ ↘ π20

U0 W
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It follows that

U1 ×f1,AMg(X), fW
W = Isom (F1,FCW /W )

= Isom π∗1C1/Isom(C1/U1, CW /W ) (π∗1F1, α
∗π∗2 FW )

= Isom
(

(F1)C1/U1/U0
, (α∗

0π
∗
20FW )(π∗10 C0)/U0

)
= U1 ×WDX

C0/U0

Isom (C0/U0, CW/W )

smooth and surjective−→ Isom (C0/U0, CW /W ) = U0 ×QMg
W

smooth and surjective−→ W .

This shows that U1 is an atlas for AMg(X) and we conclude the proof. �

Remark 2.2.2. The above type of relative construction can be found also in
the study of relative GIT construction of universal moduli spaces, e.g., [Hu]
and [Pa].

3. The g = 0 case.

Since CP1 is rigid, the problem may be treated as in the study of bun-
dles on a fixed variety. AM0(X) is then the stackification of the prestack
preAM0(X), whose fiber preAM0(X) over S ∈ (Sch/S0) is the groupoid

preAM0(X)(S) = {weak ∆-collections on S × CP1 over S } .

On the other hand one has the construction of Morrison-Plesser [M-P :
Sec. 3.7], as is used in [L-L-Y : II, Sec. 2.4, Example 4]. In this section we
shall discuss how Morrison-Plesser’s construction is related to Cox’s work
and the stack AM0(X) adapted from Sec. 2. We shall assume that X = X∆

is convex throughout this section. In particular, this implies that every entry
dρ of a multi-degree d = (dρ)ρ in the discussions are all nonnegative integers.

The small universal weak ∆-collection à la Morrison-Plesser.

Fix a presentation : P
1 = ProjC[z0, z1] , C[z0, z1] = ⊕l≥0Ml , OP1(l) =

C[z0, z1](l)∼ and H0(P1,O
P
1)(l) = Ml for l ≥ 0 , cf. [Ha1]. Then the

graded C-algebra structure Ml1 · Ml2 → Ml1+l2 induces a set of canonical
isomorphisms of sheaves O

P
1(l1)⊗OP

1(l2)→ OP
1(l1 + l2). Since multiplica-

tion among Ml’s is associative with respect to these isomorphisms, one has
also canonical isomorphisms O(l1) ⊗ · · · ⊗ O(ls) → O(l1 + · · · + ls) . This
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implies that, if one lets ∆(1) = { ρ1i }i
∐
{ ρ2j }j such that

∑
im1idρ1i =∑

jm2jdρ2j for some m1i, m2j ≥ 0, then there is a canonical isomorphism⊗
i OP1(dρ1i)

⊗m1i #
⊗

j OP1(dρ2j)
⊗m2j . (Cf. [Cox1 : Proposition 1.1].)

Definition 3.1 [set of canonical isomorphisms]. We shall call the above
set of isomorphisms the set of canonical isomorphisms among tensor products
of O

P
1(l)’s with respect to the fixed presentation.

Let d = (dρ)ρ∈∆(1), with dρ nonnegative integers, be a multi-degree and
define

Yd := ⊕ρH0(P1,O(dρ)) with the above fixed presentation .

Recall the abelian group G and the quotient X = (C∆(1) − V (I))/G from
Explanation/Fact 2.1.2. Then each element of Yd corresponds to a morphism
P

1 → C
∆(1) up to a C

×-action on C
∆(1) by t · (xρ)ρ = (t dρxρ)ρ. Define Fd

to be the subvariety of Yd that consists of elements whose corresponding
map P

1 → C
∆(1) has image contained in V (I) . Since V (I) is a union of

coordinate subspaces in C
∆(1) and hence invariant under the above C

×-
action, Fd is well-defined. The G-action on C

∆(1) induces a G-action on Yd
that leaves Fd invariant. Thus, one can define the quotient

Wd = Md := (Yd − Fd)/G .

Cf. Appendix, [M-P : Sec. 3.7]; also [L-L-Y : II, Sec. 2.4, Example 4].
Let F := (Lρ, uρ, cm)ρ,m be a weak ∆-collection on P

1 of multi-degree d.
Then (cm)m determines isomorphismsLρ # OP1(dρ), compatible with the set
of canonical isomorphisms, up to an ambiguity parameterized by G. Thus F
corresponds to a G-orbit OF in Yd . The nonvanishing condition for F is that∑

σ∈∆max
⊗ρ�⊂σu∗ρ : ⊕σ∈∆max ⊗ρ�⊂σ L−1

ρ → O
P
1 is not a zero-morphism.

Since V (I) is defined by the ideal I = (
∏
ρ�⊂σ xρ | σ ∈ ∆max ) and the divisor

on C
∆(1) defined by xρ corresponds to the subscheme on P

1 defined by uρ,
the nonvanishing condition means precisely that OF ⊂ Yd − Fd .

Regard the sections of O
P
1(dρ) as subschemes of the total space

SpecSym•(OP1(dρ)∨) of OP1(dρ). Then as in the case of Hilbert schemes one
obtains the universal tuple of sections (ũρ)ρ of the line bundles ( Õ(dρ) )ρ over
(Yd−Fd)×P

1 from the pullback of the projection map (Yd−Fd)×P
1 → P

1.
The set of canonical isomorphisms in Definition 3.1 gives a canonical set
of isomorphisms (c̃m)m. Since Yd − Fd corresponds to tuples (uρ)ρ of sec-
tions that satisfy the nonvanishing condition, (Õ(dρ), ũρ, c̃m)ρ,m is a weak
∆-collection on (Yd − Fd)× P

1 over Yd − Fd.
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Definition 3.2 [small universal weak ∆-collection].

F̃d := ( Õ(dρ), ũρ, c̃m )ρ,m

is called the small universal weak ∆-collection on (Yd−Fd)×P
1 over Yd−Fd .

Remark 3.3 [universal property]. Since the line bundles Õ(dρ) in F̃d are fixed
and c̃m is determined once a presentation of P

1 is chosen, F̃d indeed comes
from a restriction of the universal subscheme over a Hilbert scheme. It thus
inherits a similar universal property as Hilbert schemes.

The (C×)|∆(1)|-action on Yd − Fd lifts to a (C×)|∆(1)|-action on (Yd −
Fd)× P

1 by acting on P
1 by the identity. The latter then lifts to an action

on each Õ(dρ) that leaves ũ invariant. This is the unique lift that has this
property. Since G is a subgroup of (C×)|∆(1)|, G lifts to a unique action on
(Õ(dρ), ũρ)ρ as well. By the very definition of G, this G-action commutes
with (c̃m)m .

Definition 3.4 [canonical G-action]. The above G-action on
(Õ(dρ), ũρ, c̃m)ρ,m is called the canonical lifting of the G-action on Yd −Fd.

The big universal weak ∆-collection à la Cox.

We follow the notations in the previous theme. Fix a basis of the M -lattice.
Define

Ξ d = ⊕mIsomO
P1 (⊗ρOP

1(dρ)⊗〈m,nρ〉 , O
P
1 ) and Ŷd := Yd ⊕ Ξ d ,

where m runs over the fixed basis of M . Let κ : Ŷd → Ξ d be the natu-
ral projection. Then, similar to the discussion in the previous theme, one
has the (C×)∆(1) := Hom Z(Z∆(1),C×)-action on Ŷd induced from that on
C

∆(1). Recall TN from Definition/Fact 2.1.2, then TN acts on Ξ d freely
and transitively and in such a way that κ is ((C×)∆(1), TN)-equivariant and
that the G-subaction on Ŷd leaves each preimage of κ invariant. Since the
nonvanishing condition in a weak ∆-collection has nothing to do with the
isomorphism data (cm)m, it specifies the open (C×)∆(1)-invariant subvariety
Ŷd − F̂d, where F̂d := Fd × Ξ d.

Following the same construction as in the previous theme, one has a big
universal weak ∆-collection

F̃ big
d :=

(
Õ(dρ)big , ũ big

ρ , c̃ big
m

)
ρ,m
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on ((Ŷd− F̂d)×P
1)/(Ŷd− F̂d) and the canonical lifting of the (C×)∆(1)-action

on the total space of line bundles (Õ(dρ)big)ρ.

Remark 3.5 [Morrison-Plesser v.s. Cox ]. From these very explicit construc-
tions, one observes that a fixed presentation as in the previous theme selects
a distinguished point (ccan

m )m in Ξ and Yd − Fd = κ−1((ccan
m )m) . The small

universal weak ∆-collection F̃d on ((Yd − Fd)× P
1)/(Yd − Fd) is the restric-

tion of the big universal ∆-collection F̃ big
d on ((Ŷd − F̂d)× P

1)/(Ŷd − F̂d) to
((Yd−Fd)×P

1)/(Yd−Fd) . The Isom construction in Sec. 2.2, adjusted for
the fixed P

1, gives Ŷd − F̂d.

Relation with AM0(X).

The two quotient stacks [(Ŷd− F̂d)/(C×)∆(1)] and [(Yd−Fd)/G] are isomor-
phic since the TN -action on Ξ d is transitive and free. The following lemma
relates this quotient stack with AM0(X).

Lemma 3.6 [AM0(X)]. The Artin stack AM0(X) is the quotient stack∐
d [(Yd − Fd)/G], for which

∐
d(Yd−Fd) is an atlas and

∐
d Wd is the coarse

moduli space. In particular, AM0(X) is a smooth Artin stack.

We check this at the prestack level. The statement then follows upon
stackification.

Proof. The proof is divided in two parts.

(a) AM0(X) as a quotient stack. Let preAM0(X) =
∐
d preAM0(X)d,

where d runs over all the admissible multi-degrees. We shall construct mor-
phisms of prestacks

J
(1)
d : preAM0(X)d −→ pre[(Yd − Fd)/G]

and
J

(2)
d : pre[(Yd − Fd)/G] −→ preAM0(X)d

so that J(2)
d ◦ J(1)

d and J
(1)
d ◦ J(2)

d induce auto-equivalences of related fiber
groupoids. (In other words, J(1)

d is an isomorphism of prestacks with inverse
given by J(2)

d .)

(a.1) Construction of J(1)
d . Recall first the following standard construction

that will be used repeatedly in the discussion:
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Let L× be the principal C
×-bundle on S from deleting the zero-section

of a line bundle L on S. The projection map L× → S pulls back L

to a line bundle L̃ on the total space Tot (L×) of L×. The natural
inclusion map L0 ↪→ L gives rise to a nowhere-zero global section in L̃
over Tot (L×) and hence a canonical trivialization of L̃.

Given a weak ∆-collection F = (Lρ, uρ, cm)ρ,m on (S × P
1)/S, each Lρ

defines a principal C
×-bundle L×

ρ over S × P
1 by deleting the zero-section

of Lρ. The isomorphism of line bundles cm : ⊗ρL⊗〈m,nρ〉
ρ # OS×P1 in-

duces an isomorphism of principal C
×-bundles over S×P

1 by the restriction
⊗ρ(L×

ρ )⊗〈m,nρ〉 → O×
S×P1 = (Gm)S×P1 of cm. This then induces a morphism,

still denoted by cm, from the composition

cm : ⊕ρL×
ρ −→ ⊗ρ(L×

ρ )⊗〈m,nρ〉 −→ O×
S×P

1 .

This gives rise to a principal G-bundle on S × P
1 defined by the kernel (i.e.

the preimage of the section (1, . . . , 1)) of the morphism (cm)m over S × P
1 :

Ker
(

(cm)m : ⊕ρ L×
ρ → (O×

S×P1)⊕n = (TN)S×P
1

)
,

where m runs over elements in a fixed basis of M and n is the rank of M .
A principal G-bundle over S, p : PGS → S, is obtained by restricting the
above principal G-bundle over S × P

1 to a horizontal slice, e,g. S × {0}.
(Note that any two such restrictions are isomorphic. The inverse of any
such restriction of Lρ gives the line bundles on S needed to twist Lρ so
that the result is a pullback line bundle from that on P

1.) Consider the
pullback weak ∆-collection p∗F on (PGS × P

1)/PGS . The identity morphism
of line bundles (Lρ|S×{0})ρ → (Lρ|S×{0})ρ specifies a canonical trivialization
p∗(Lρ|S×{0}) # OPG

S ×{0} on the horizontal slice PGS × {0} of PGS × P
1 over

PGS . This implies that p∗(Lρ)ρ is isomorphic to the pullback of (OP1(dρ))ρ
by the projection map PGS × P

1 → P
1.

Furthermore, a generalization of the standard constructions recalled at
the beginning to the tuple of line bundles (Lρ|S×{0})ρ, its associated principal
(C×)n-bundles and its sub G-bundle, one deduces that the above trivializa-
tion over the slice PGS × {0} fixes an isomorphism (p∗Lρ)ρ # (O

P
1(dρ))ρ.

Pulling back now the sections uρ of Lρ, one thus obtains a PGS -family
p∗(Lρ, uρ)ρ of line bundles on P

1 with a section. It follows from the universal
property of Yd −Fd inherited from that of Hilbert schemes that there exists
a unique morphism ζF : PGS → (Yd − Fd) with p∗(Lρ, uρ)ρ = ζ∗F F̃d . By
construction ζF is G-equivariant and p∗(cm)m = ζ∗F c̃m. The correspondence
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F → ζF gives a morphism of prestacks

J
(1)
d : preAM0(X)d→ pre[(Yd − Fd)/G] .

(a.2) Construction of J
(2)
d . To construct J

(2)
d : pre[(Yd − Fd)/G] →

preAM0(X), observe that if PGS is a principal G-bundle on S with a G-
equivariant morphism ζ : PGS → (Yd − Fd), (i.e. an object in the groupoid
pre[(Yd − Fd)/G](S)) then ζ∗F̃d is a weak ∆-collection on (PGS × P

1)/PGS .
Since there is a canonical G-action on F̃d, the G-action on PGS also lifts
canonically to ζ∗F̃d. The quotient by this action gives then a weak ∆-
collection F on (S × P

1)/S. i.e. an object in preAM0(X)d(S). This gives a
morphism J

(2)
d : pre[(Yd − Fd)/G]→ preAM0(X)d.

(a.3) Isomorphisms of stacks. It remains to show that J(1)
d (or J(2)

d ) is an
isomorphism of stacks. This means that J(2) ◦J(1) sends a weak ∆-collection
on (S × P

1)/S to an isomorphic weak ∆-collection on (S × P
1)/S, which

follows from the very explicit construction of J(1)
d and J

(2)
d . Similarly for

J
(1)
d ◦ J

(2)
d .

(b) Wd as the coarse moduli space.

(b.1) Construction of a morphism AM0(X)d→Wd. A morphism

preAM0(X)d −→ Wd

is already given/hidden in [L-L-Y : II. Sec. 2.5, Lemma 2.7, proof] as follows.
Let O(dρ) be the pullback of O

P
1(dρ) to S×P

1 via the projection map. Given
a weak ∆-collection F = (Lρ, uρ, cm)ρ,m on S × P

1 over S of multi-degree
d, since Lρ is isomorphic to O(dρ) along each P

1-fiber of the projection
morphism S×P

1 → S, Lρ and O(dρ) differ by a twist from a line bundle on
S. Let U := {Uα}α∈A be an open cover of S such that all these twisting line
bundles are trivial when restricted to any Uα. For each Uα ∈ U , the data
(Lρ, uρ)ρ determines non-uniquely a (u′ρ)ρ ∈ ⊕ρH0(S×P

1,O(dρ)) over Uα×
P

1 by looking at the zero-divisor/locus of uρ on S × P
1. The ambiguities of

(u′ρ)ρ come from the identification of Lρ and O(dρ) when restricted to Uα×P
1

and are parameterized by (tρ)ρ ∈ (C×)|∆(1)| that satisfy
∏
ρ t

〈m,nρ〉
ρ = 1 for all

m ∈ M . Thus, for each Uα, (u′ρ)ρ, though nonunique, determines a unique
Uα-family of G-orbits on ⊕ρH0(P1,O(dρ)). The nonvanishing condition on
(u′ρ)ρ inherits from that of F . By repeating the same argument for Uα ∩Uβ ,
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Uα, Uβ ∈ U , and consider the open immersions Uα ←↩ Uα ∩ Uβ ↪→ Uβ,
one concludes that these Uα-families of G-orbits coincide on intersections
Uα ∩ Uβ . Thus one obtains a well-defined morphism S → Wd. Another
construction can be obtained from the discussion of Part (a) as follows.
F determined a principal G-bundle PGS on S with a unique G-equivariant
morphism PGS → Yd − Fd. Taking quotient by G on both sides, one then
obtains a morphism S → Wd determined by F . Either way, one obtains a
morphism

preφ : preAM0(X)d −→ Wd

and hence a morphism

φ : AM0(X)d −→ Wd .

(b.2) The coarse moduli space conditions. From the definition of Wd and
points of a stack, |φ|(k) : |AM0(X)d|(k)→ Wd(k) is bijective for any alge-
braically closed field k.

To see that Wd corepresents AM0(X)d, first observe that there is a
distinguished weak ∆-collection on (Wd × P

1)/Wd constructed as follows.
Consider the diagonal action of G on (Yd − Fd) × (Yd − Fd). The diagonal
∆(Yd−Fd) of (Yd − Fd) × (Yd − Fd) is invariant under this G-action. The
quotient gives a fibration of ((Yd − Fd)× (Yd − Fd))/G → Wd with generic
fiber Yd −Fd. The diagonal ∆(Yd−Fd) descends to a section of this fibration,
which corresponds to a weak ∆-collection L̃ on Wd × P

1. By construction
φ(L̃) = IdWd

.
Now suppose that W ′

d is another scheme with a morphism

φ′ : AM0(X)d −→ W ′
d .

Then a morphism of schemes η : Wd → W ′
d can be defined via a morphism,

also denoted by η, of their respective functor of points

η : Hom (− , Wd) −→ Hom (− , W ′
d)

defined by the composition

(f : S →Wd) �−→ f∗L̃ ∈ AM0(X)d(S) �−→ (φ′(f∗L̃) : S →W ′
d) .

Given L ∈ AM0(X)d(S), let f = φ(L) ∈ Hom (S,Wd) and f ′ = φ′(L) ∈
Hom (S,W ′

d). Observe that L and f∗L̃ are fiberwise isomorphic weak ∆-
collections on (S × P

1)/S. Moreover, since L and f∗L̃ as bundles on S × P
1
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differ only by a twist from line bundles on S, there is an étale chart π : S̃ → S
of S such that L and f∗L̃ are isomorphic when lifted to the induced étale
chart S̃×P

1 of S×P
1. Since φ′ induces |φ′| that sends points of |AM0(X)d|

to closed points of W ′
d that corresponds to Speck → W ′

d, where k is an
algebraically closed field, the two morphisms η(f), φ′(L) : S →W ′

d coincides
on the geometric points of S and their lifting to S̃ → W ′

d are identical
as scheme morphisms. Consequently, η(φ(L)) = η(f) = φ′(L) as scheme
morphisms. Since this applies for all S and L, η ◦ φ = φ′ and, hence, Wd

corepresents AM0(X)d.

(b.1) and (b.2) together show that
∐
dWd is the coarse moduli space for

AM0(X) and we conclude the proof. �

4. The collapsing morphism.

In this section, we re-run the proof of Jun Li of Lemma 2.7 in Mirror Principle
II, with the A-twisted moduli stack AM0(X) of Sec. 3 soldered into the
discussion. All the schemes in the discussion are over C.

Background.

Fact 4.1 [rank 1 sheaf]. ([Ha2]; also [Fr], [Huy-L], and [Od-S].) Any rank
1 torsion-free coherent sheaf on a locally factorial scheme Y must be of the
form IZ ⊗ L, where IZ is the ideal sheaf of a subscheme Z of codimension
≥ 2 in Y and L is a line bundle on Y . Such a decomposition is unique up
to isomorphisms of OY -modules.

Fact 4.2 [Hartogs extension theorem]. ([Ii].) Let Y be a Noetherian
normal scheme and Z be a closed subset of codimension ≥ 2 in Y . Then
H0(Y − Z,OY ) = H0(Y,OY ).

Corollary 4.3 [determinant]. Let L be a rank 1 coherent sheaf on a locally
factorial scheme Y . Then there exists a canonical morphism L → detL of
OY -modules.

Proof. Recall the definition and the relations of det and Div in [K-M]. From
the exact sequence 0 → TorL → L → L/TorL → 0 , one has detL =
det (TorL)⊗det (L/TorL). Since L/TorL is torsion-free, L/TorL = IZ⊗L̂
canonically, where IZ is the ideal sheaf of the subscheme of codimension ≥ 2
in Y (from the flattening stratification, cf. [Mu3], of L/TorL ) on which the
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fiber dimensions of L/TorL jump up and L̂ is a line bundle on Y . These give
rise to a sequence of canonical morphisms/identifications of OY -modules :

L → L/TorL = IZ ⊗ L̂ → L̂ = det
(
IZ ⊗ L̂

)
→ det

(
IZ ⊗ L̂

)
⊗ det TorL # detL ,

where we have used the facts : (i) det IZ = OY , (ii) det TorL = O(DivTorL)
and DivTorL ≥ 0, and (iii) there are canonical inclusions OY ↪→ OY (D) ↪→
KY for D ≥ 0, where KY is the sheaf of total quotient rings of Y . The
composition of this sequence of canonical morphisms gives the canonical
morphism of OY -modules L → detL claimed. �

Lemma 4.4 [push-pull of weak ∆-collection]. (1) Let f : Y → Y ′

be a projective birational morphism between schemes of the same uniform
dimension. Assume that Y ′ is irreducible and that f is an isomorphism
outside a closed subscheme of codimension ≥ 2 in Y ′ - in notation, f |U :
U

∼→ U ′ -. Let (Lρ, uρ, cm)ρ,m be a weak ∆-collection on Y and define
L′
ρ := det f∗Lρ. Then there exists a unique weak ∆-collection (L′

ρ, u
′
ρ, c

′
m) on

Y ′ that extends the weak ∆-collection (f |U)∗(Lρ, uρ, cm)ρ,m|U on U ′.

(2) Let f : Y = Y0∪Y1∪· · · → Y ′ be a projective morphism between schemes
of the same uniform dimension that satisfies

(i) Y ′ is a Noetherian integral (separated ) scheme which is regular in
codimension-1 (cf. [Ha1 : II.6]),

(ii) the restriction f : Y0 → Y ′ is an isomorphism outside a closed sub-
scheme of codimension ≥ 2 in Y ′ - in notation, f |U : U ∼→ U ′ -, and

(iii) each Yi, i = 1, . . ., is mapped to a codmension-1 subscheme D′
i in Y ′,

whose corresponding divisor is also denoted by D′
i , (i.e. Yi → D′

i is a
flat family of curves).

Let (Lρ, uρ, cm)ρ,m be a weak ∆-collection on Y such that none of uρ|Yi are
zero-sections, where ρ ∈ ∆(1) and i = 1, . . . , and let L′

ρ := det f∗Lρ. Then
there exists a canonically constructed weak ∆-collection (L′

ρ, u
′
ρ, c

′
m)ρ,m on

Y ′ that extends the weak ∆-collection (f |U−Y1∪···)∗(Lρ, uρ, cm)ρ,m|U−Y1∪··· on
U ′ −D1 ∪ · · · .

Proof. For Statement (1), observe that ⊗ρL′
ρ
⊗〈m,nρ〉 # OY ′ as abstract OY ′-

modules since the former is an invertible OY ′-module that is free outside a
locus of codimension≥ 2 in Y ′. The isomorphisms (f |U)∗cm extend to unique
isomorphisms ⊗ρL′

ρ
⊗〈m,nρ〉 # OY ′ by Hartogs extension theorem since, once
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fixing a trivialization of the two rank-1 globally freeOY ′-modules in question,
(f |U)∗cm is given by multiplication of a regular function. The sections u′ρ are
given by the canonical morphism H0(Y, Lρ) → H0(Y ′, L′

ρ) arising from the
combination of the definition of f∗ and the canonical morphism f∗Lρ → L′

ρ =
det f∗Lρ . The cocycle conditions c′m1

⊗ c′m2
= c′m1+m2

follow by continuity.
For Statement (2), let us first show that ⊗ρL′

ρ
⊗〈m,nρ〉 # OY ′ as abstract

OY ′-modules. By the assumption in Statement (2), Yi → Di, i = 1, . . . ,
are flat families of curves and the relative degree of rel-degDi(Lρ|Y i) is well-
defined. Moreover, recalling the definition of Div, one concludes that

L′
ρ = det f∗Lρ = det

(
(f |Y0 )∗(Lρ|Y0)

)
⊗ OY ′

⎛⎝ ∑
i=1, ...

reldeg Di (Lρ|Yi) · Di

⎞⎠
since all uρ|Yi are non-zero sections. By definition, the restriction
(Lρ|Yi , uρ|Yi , cm|Yi)ρ,m of (Lρ, uρ, cm)ρ,m to each component Yi of Y is a weak
∆-collection on Yi. In particular, cm|Yi : ⊗ρ Lρ| 〈m,nρ〉

Yi
# OYi and∑

ρ∈∆(1)

〈m, nρ〉 · rel-degDi (Lρ|Yi) = 0 .

Furthermore, the restriction f |Y0 : Y0 → Y ′ is in the situation of Statement
(1) and one can define the weak ∆-collection (L′

ρ,0, u
′
ρ,0, c

′
m,0)ρ,m on Y ′ as in

Statement (1) as the push-forward of (Lρ, uρ, cm)ρ,m|Y0 via f |Y0 . It follows
that

⊗ρ∈∆(1) L
′
ρ
⊗〈m,nρ〉 = ⊗ρ∈∆(1) L

′
ρ,0

⊗〈m,nρ〉 c′m,0−→ OY ′ .

This defines also the sought-for c′m. The sections u′ρ and the cocycle condi-
tions on c′m follow by the same reasoning as in the case of Statement (1).
This concludes the proof. �

The collapsing morphism.

Proposition 4.5. Let X be a convex smooth toric variety and Md(X) be the
moduli stackM0,0(P1×X, (1, d)) of genus 0 stable map into P

1×X of degree
(1, d). Then there exists a natural morphism Υ : Md(X) → AM0(X)d of
stacks.

Remark 4.6. Composition of Υ with the morphism φ : AM0(X)d →Wd in
the proof of Lemma 3.6 gives the morphism ϕ : Md(X) → Wd in [L-L-Y :
II, Sec. 2.5, Lemma 2.7].
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Proof of Proposition. We split the discussions to two cases.

Case (1) : Md(X) is a compactification of the component of
Hom (P1, P1 × X) that corresponds to genus 0 curves in
P

1 ×X of degree (1, d).

Let (Sch/C) be the category of Noetherian schemes of finite type over C

and ξ be an object in Md(X)(S) given by

F : X −→ S × P
1 ×X

↘ ↙
S .

Let pi (resp. pij) be the composition of F with the projection of S×P
1×X

to its i-th component (resp. the product of its i-th and j-th components).
Assume first that (S, ξ) is an atlas of Md(X), then S is smooth and

outside a divisor DS of S (i.e. the boundary locus of S) the defining family
of stable maps over S parameterizes morphisms from P

1 into P
1 × X . The

map
p12 : X −→ S × P

1

is a projective birational morphism that is an isomorphism outside a locus of
codimension ≥ 2 in S ×P

1. Let (Lρ, zρ, cm)ρ,m be the universal ∆-collection
on X and

(Lρ,ξ, uρ,ξ, cm,ξ)ρ,m = p∗3(Lρ, zρ, cm)ρ,m .

Then (Lρ,ξ, uρ,ξ, cm,ξ)ρ,m is a ∆-collection on X over S. The construction
satisfies the base change property that, if f : T → S be a morphism of
C-schemes, then there is a canonical isomorphism of ∆-collections

(Lρ,f∗ξ, uρ,f∗ξ, cm,f∗ξ)ρ,m # (f × Id
P
1)∗(Lρ,ξ, uρ,ξ, cm,ξ)ρ,m .

In particular, if one equipsMd(X) with the étale topology, then one obtains a
∆-collection on the stack Md(X) by considering the étale morphisms among
atlases.

Let Lρ,ξ = p12∗Lρ,ξ. Since p12 is an isomorphism over the complement
U ′ of a codimension ≥ 2 locus in S × P

1, by Lemma 4.4 (1) there exists a
unique weak ∆-collection of the form (detLρ,ξ, σρ,ξ, c ′m,ξ) on S × P

1 (over
SpecC) such that the restriction of p12∗ over U ′ is an isomorphism of weak
∆-collections on U ′ (over SpecC). Since each fiber P

1 of S×P
1 over S comes

from pinching rational subcurves of the corresponding fiber of X over S and
the restriction of (detLρ,ξ , σρ,ξ, c ′m,ξ) to a fiber P

1 defines a morphism from
P

1 to X (of possibly lower multi-degrees), (detLρ,ξ, σρ,ξ, c ′m,ξ) must satisfy



A-Twisted Moduli Stack from GLSM 263

the nonvanishing condition of Definition 2.1.3 when restricted to each fiber
P

1 of S×P
1 over S. Consequently, (detLρ,ξ , σρ,ξ, c ′m,ξ) is a weak ∆-collection

on S × P
1 over S as well and one obtains a map

Ω : { atlases (S, ξ) of Md(X)} −→ AM0(X)d

that commutes with the étale base change among atlases of Md(X).
Fix now an atlas (T, ξT ) for Md(X) and let ξ ∈ Md(X)(S) for a general

S ∈ (Sch/C). Since Md(X) is a smooth Deligne-Mumford stack, the pair
(ξT , ξ) determines a commutative diagram

S ′ := Isom (ξT , ξ)
α−→ S

↓ β ↓
T −→ Md(X) ,

where α is étale and surjective. The canonical isomorphism α∗ξ # β∗ξT
induces a canonical isomorphism

α∗(Lρ,ξ, uρ,ξ, cm,ξ)ρ,m # β∗(Lρ,ξT , uρ,ξT , cm,ξT )ρ,m .

The weak ∆-collection β∗Ω(T, ξT) on (S ′ × P
1)/S ′ is a descent datum with

respect to α and hence descends to a weak ∆-collection on (S × P
1)/S.

One can check that different choices of atlases (T, ξT ) give rise to the same
descent on (S × P

1)/S, thus one obtains a well-defined morphism of stacks
from Md(X) to AM0(X)d. This concludes the proof for Case (1).

Case (2) : General Md(X).

Again, let S be an atlas of Md(X), which is smooth. Then there is a strat-
ification of S labelled by the dual graphs of the prestable domain curves
of stable maps in question. We shall assume that the graph for the maxi-
mal stratum is not a point, i.e. we are not in Case (1). Then the projective
morphism p12 are now in the situation of Statement (2) of Lemma 4.4. Con-
vexity of X implies that the restriction of uρ,ξ, as defined analogous to the
discussion in Case (1), to each component of X is not a zero-section. The
proposition now follows from Lemma 4.4 (2) and the same argument as in
Case (1) above. �

We conclude the notes with three themes along the line for further study.

Theme 1. Further properties and details of the A-twisted moduli stack
AMg(X).
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Theme 2. Construction of natural morphisms between the moduli stack of
stable maps and the A-twisted moduli stack that generalize the construction
in [L-L-Y].

Theme 3. Generalization of the twisted moduli stack AMg(X) to the case
of open strings, e.g. [G-J-S].

Appendix. Witten’s gauged linear sigma models for mathe-
maticians.

Witten’s gauged linear sigma model (GLSM) [Wi1] is one of the universal
frameworks or structures that lie behind stringy dualities (e.g. [Gre]). A
mathematical review of the related part of [Wi1] (cf. also [M-P]) to the
current work is given in this appendix.

• Introduction to the superland. [Po2 : vol. II. Appendix B] (resp.
[Fr]) gives a concise introduction of spinor representations, supersymmetry
(SUSY), supermultiplets, and superfields and their component fields from a
string theorist’s (resp. mathematician’s) aspect. A formulation of super-
spaces/manifolds/schemes that is close in spirit to Grothendieck’s formula-
tion of algebraic geometry is given in [Ma : Chapter 4]. This formulation pro-
vides a geometry behind the standard text [W-B] on supersymmetry. Kähler
differentials and tangent vectors can be defined as in [Ha1]. Fermionic inte-
gration is discussed in [We : Sec. 26.6] and [W-B : IX], whose mathematical
formulation Berezin integral is discussed in [Fr] and [Ma]. R-symmetry is
discussed in [Fr : Lecture 3] and [We]. Central extensions of a supersymme-
try algebra and its BPS representations are discussed in [Fr], [Po2 : vol II],
and [We]. Super linear algebra, in particular the parity change functor

∏
, is

discussed in [Fr : Lectures 1 and 2] and [Ma : Chaper 3]. See also [Arg] and
[DEFJKMMW].

• Supermanifolds and line bundles. For the purpose of this article
we have reduced the role played by the parity change functor

∏
in the

description as much as possible. All the modules are left modules.

(1) ([Ma : Sec. 4.1]; also [Ha1].) A supermanifoldX = (X,OX) (in smooth,
analytic, or algebraic category) is a Z/2Z-graded ringed topological
space (X,OX) such that

(a) The stalk OX,x of OX at any point x ∈ X is a local ring.
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(b) X is covered by a collection of open sets {Uα}α∈I such that each
(Uα,OM |Uα) is isomorphic to (U 0

α , Sym•
O

U0
α

(
∏
Eα) ), where U 0

α

is an ordinary manifold (in the corresponding category), Eα is
an ordinary locally free coherent OU 0

α
-module, and

∏
Eα is the

OU 0
α
-module Eα with odd parity.

(c) Xrd is a manifold (in the corresponding category), cf. Remark
below.

Remark. Let OX = O(0)
X ⊕ O

(1)
X be the decomposition of OX into the

even (i.e. grade 0) and the odd (i.e. grade 1) component and JX :=
O(1)
X +(O(1)

X )2 (the ideal of “superfuzz”, cf. [Fr : Lecture 1]). Then Xrd

is by definition the submanifold of X associated to JX . Note also that
Sym•(

∏
Eα) #

∧• Eα as OU 0
α
-modules with all the parities after tensor

products erased. X is called decomposable if in Condition (b) one can
choose Uα = X for some α. In this case there is a surjective affine
morphism X → Xrd such that the composition Xrd ↪→ X → Xrd is the
identity map.

(2) A line bundle L on X is a locally free rank 1 OX-module. Associated
to L is a finite filtration of OX -modules : L ⊃ L · JX ⊃ L · J 2

X ⊃
· · · ⊃ 0 . Global sections of the associated graded object GrL :=
⊕ i (L·J iX/L·J i+1

X ) are called component sections of L. The restriction
Lrd of L toXrd is a usual line bundle onXrd. WhenX is decomposable,
GrL # OM ⊗ Lrd as OXrd

-modules with all the parities erased. One
may define also the Picard group Pic (X) of X .

• N : the count of minimal collections. ([Fr : Lecture 3] and [Po2 : vol.
II, Appendix B].) The real dimension of a minimal real spin representation
at d-dimensional Minkowski space is given by

d 1 2 3 4 5 6 7 8 9 10 11 12
dim R 1 1 2 4 8 8 16 16 16 16 32 64

.

In even dimensions, there are two such irreducible representations, distin-
guished by left and right . The N that appears in every SUSY literatures
counts the number of collections of the odd generators of a SUSY algebra
with each collection in a minimal spinor representation of the Lorentz sub-
algebra of the SUSY algebra.

Example A.1 [d = 4, N = 2]. The complexified d = 4, N = 2 SUSY alge-
bra (as in the Seiberg-Witten theory) contains 8 odd generators in collections
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of 4. Each collection of odd generators spans an irreducible representation,
2 or 2′, of Spin (1, 3) # SL(2,C). For d = 4, though there are two dif-
ferent minimal spinor representations, they give the same complexification
2 + 2′. In physics literature SUSY algebras are ususally complexified; thus
it is not necessary to distinguish whether it is 2 or 2′ that appears in the
SUSY algebra at d = 4. In contrast, at d = 2, complexifications of 1 and
1′ give inequivalent representations of Spin (1, 1) and the distinction of left
and right is necessary. E.g. N = (1, 1) and N = (0, 2) label different com-
plexified SUSY algebras at d = 2 with 2 odd generators. The distinction is
also needed at d = 10, cf. the mod-8 periodicity of many properties of spinor
representations.

• Physical supermanifolds. For simplicity and sufficiency of this pa-
per, we shall assume that the supermanifold X is decomposable, i.e. OX =
Sym•

OXrd
(
∏
E) for some locally free OXrd

-module E . To link X with super-
symmetry from physics, it is then required that Xrd is a Lorentzian manifold
and E is a spinor bundle on Xrd. Superfields on X are defined to be global
sections of locally free sheaves, e.g. OX = Sym•

OXrd
(
∏
E), on X .

Example A.2 [d = 4, N = 1]. (1) The supergeometry. Xrd = the
Minkowski space (with coordinates x = (x0, x1, x2, x3)) equipped with
the standard metric of signature (−1, 1, 1, 1) and E = (OXrd

⊗ 2) C =
(OXrd

) C ⊗C (2 + 2′), the complexified spinor bundle on Xrd. Fix a set of
(anticommuting) generators θα, θ

α̇
, α = 1, 2, for

∏
E as an (OXrd

) C-module.
Recall the decomposition (2 + 2′)

∧
(2 + 2′) = 1 + 1 + 4, where 1 is the

(complexified) 1-dimensional trivial representation and 4 is the (complexi-
fied) vector representation of SO (1, 3), the Pauli matrices σm, m = 0, 1, 2, 3
and the ε matrices (cf. [W-B : Appendix B] and [Fr : Lecture 3]). Then
a superfield from (OX)C can be expressed as (cf. [W-B : Appendix A] for
summation conventions)

F (x, θ, θ) = f(x) + θφ(x) + θχ(x) + θθm(x) + θθn(x) + θσmθvm(x)

+θθθλ(x) + θθθψ(x) + θθθθd(x)

with the component fields from representations of SO (1, 3) :

1 θ θ θθ θθ θσmθ θθθ θθθ θθθθ

f(x) φ(x) χ(x) m(x) n(x) vm(x) λ(x) ψ(x) d(x)
1 2 2′ 1 1 4 2′ 2 1
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(cf. [W-B : Eq.(4.9)]). The d = 4, N = 1 SUSY algebra can be realized
as an algebra of (differential) operators acting an F (x, θ, θ). In particular
the four odd generators are realized as : (This is what physicists call SUSY
generators of the SUSY algebra.)

Qα =
∂

∂θα
−
√
−1 σmαα̇ θ

α̇ ∂

∂xm

and
Qα̇ = − ∂

∂θ
α̇

+
√
−1 σmαα̇ θ

α ∂

∂xm
, α, α̇ = 1, 2 ,

([Wi1 : Eq.(2.1)] and [W-B : Eq.(4.4)]).

(2) Chiral superfields and chiral multiplets. A superfield Φ (resp. Φ) that
satisfies

Dα̇Φ = 0 ( resp. DαΦ = 0 ) ,

where

Dα =
∂

∂θα
+
√
−1 σmαα̇ θ

α̇ ∂

∂xm
and Dα̇ = − ∂

∂θ
α̇
−
√
−1 σmαα̇ θ

α ∂

∂xm
,

is called chiral superfield (resp. antichiral superfield). In terms of

ym = xm +
√
−1θσmθ

in the coordinate ring of X , such Φ (resp. Φ) can be expressed as

Φ(y, θ) = φ(y) +
√

2 θψ(y) + θθF (y)

(resp.
Φ(y, θ) = φ(y) +

√
2 θψ(y) + θθF (y) ,

) in component fields. The part (φ, ψ) is a section of the vector bundle
associated to a d = 4, N = 1 chiral multiplet representation (cf. [Fr : Lecture
5, Table 7]). When the Lagrangian for d = 4, N = 1 SUSY quantum field
theory (SQFT) is considered, the equation of motion for (φ, ψ) will involve
differential operators while that for F will be purely algebraic. We say that
φ and ψ are dynamical component fields and F an auxiliary component field
in the chiral multiplet Φ.

(3) Vector superfields and vector multiplets. A superfield V that satisfies the
reality condition

V = V † ,



268 C.-H. Liu, K. Liu, and S.-T. Yau

where V † is the Hermitian conjugate of V ([W-B : Appendix A]), is called a
vector superfield. In the Wess-Zumino gauge, its component field expansion
is

V = −θσmθvm +
√
−1 θθθλ−

√
−1 θθθλ+

1
2
θθθθD ,

([W-B : Eq.(6.6)] and [Wi1 : Eq.(2.11)]). The dynamical components
(λ, λ, vm) is a section of the vector bundle associated to the d = 4, N = 1
massless vector multiplet representation (cf. [Fr : Lecture 5, Table 7]) while
D is an auxiliary component, which plays an important role in defining the
vacuum manifolds in each phase of a gauged linear sigma model [Wi1].

• Dimensional reduction (d = 4, N = 1) ⇒ (d = 2, N = (2, 2)) and
R-symmetry. (Cf. [DEFJKMMW], [H-V], [We], and [Wi1].)

(1) The d = 4, N = 1 SUSY algebra is given by generators with (anti-)
commutation relations : ((ηmn) = Diag (−1, 1, 1, 1).)

[Lmn, Lm′n′ ] = ηnm′Lmn′ − ηmn′Lnn′ − ηn′mLm′n + ηn′nLm′m ,

( Lorentz algebra )
[Lmn, Pm′ ] = ηm′nPm − ηm′mPn ( vector representation )

[Lmn, Qα] = (σmn) β
α Qβ , [Lmn, Qα̇] = Qβ̇ (σmn)β̇

α̇ ,

( spinor representation )
{Qα, Qα̇} = 2σm

αα̇Pm (Clifford-type algebra )
{Qα, Qβ} = {Qα̇, Qβ̇} = 0
[J,Qα] = Qα , [J,Qα̇] = −Qα̇ (R-symmetry U(1) )
[Pm, Pn] = [J, Pm] = [J, Lmn] = 0 .

(m, n, m′, n′ = 0, 1, 2, 3 ; α, β = 1, 2 ; α̇, β̇ = 1̇, 2̇ , [W-B : Eq.(A.14)] . )

It is customary to call Qα, Qα̇ the SUSY generators of the SUSY
algebra.

(2) The dimensional reduction of the d = 4, N = 1 SUSY algebra to d = 2
is obtained by considering the subalgebra that leaves a specified R

1+1

subspace, e.g. the (x0, x3)-coordinate plane, in R
1+3 invariant. This

corresponds to setting the extra conditions

P1 = P2 = L01 = L02 = L13 = L23 = 0

to the d = 4, N = 1 SUSY algebra since these generators generate
Lorentz transformations that do not leave the (x0, x3)-coordinate plane
invariant. The resulting algebra is the d = 2, N = (2, 2) SUSY algebra.
Its generators with renamings are
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L := L03, H := −P0, P := P3,

Q− := Q1, Q+ := Q2, Q− := Q1̇, Q+ := Q2̇,

J1 := J, J2 := − 2
√
−1L12 ,

with commutation relations :
[L,H ] = −P , [L, P ] = −H ,

[L,Q+] = 1
2Q+ , [L,Q−] = − 1

2Q− , [L,Q+] = 1
2Q+ , [L,Q−] = − 1

2Q− ,
{Q+, Q+} = 2 (H − P ) , {Q−, Q−} = 2 (H + P ) ,
[J1, Q+] = Q+ , [J1, Q−] = Q− , [J1, Q+] = −Q+ , [J1, Q−] = −Q−
[J2, Q+] = Q+ , [J2, Q−] = −Q− , [J2, Q+] = −Q+ , [J2, Q−] = Q−
Q2

+ = Q2− = Q
2

+ = Q
2

− = 0
{Q−, Q+} = {Q−, Q+} = {Q+, Q−} = {Q−, Q+} = 0 ,
[H, P ] = [J1, H ] = [J1, P ] = [J1, L] = 0
[J2, H ] = [J2, P ] = [J2, L] = [J1, J2] = 0 .

Q− and Q− (resp. Q+ and Q+) are the d = 2, N = (2, 0) (resp.
N = (0, 2)) SUSY generators and the Lorentz generator L12 in the
original algebra has now become the second R-symmetry generator J2

of the new SUSY algebra.

Define

JL = 1
2 (J2 − J1) , ( left-moving R-symmetry generator )

JR = 1
2 (J2 + J1) . ( right-moving R-symmetry generator )

Then
[JL, Q−] = −Q− , [JL, Q−] = Q− , [JL, Q+] = 0 , [JL, Q+] = 0
[JR, Q−] = 0 , [JR, Q−] = 0 . [JR, Q+] = Q+ , [JR, Q+] = −Q+ ,

(3) The dimensional reduction of a superfield on d = 4 Minkowski space-
time to d = 2 superfields is obtained by setting two spatial directions,
say x1 and x2, to be constant and take fields to depend only on x0 and
x3. Recall Example A.2. Then the rule of conversion of fields from
d = 4, N = 1 to d = 2, N = (2, 2) are given by :

y0 := x0 , y1 := x3 , (for space-time coordinates)
σ := (v1 −

√
−1v2)/

√
2 , σ := (v1 +

√
−1v2)/

√
2

(reduced vector components in d = 4
⇒ complex scalars in d = 2){

(ψ−, ψ+) := (ψ1 , ψ2) , (ψ−, ψ+) := (ψ1, ψ2) ,
(ψ

−
, ψ

+
) := (ψ1̇ , ψ2̇) , (ψ

−
, ψ

+
) := (ψ1̇, ψ2̇) .

(for spinorial components)
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The d = 2N = (2, 2) chiral superfields and vector superfields can be
obtained from d = 4, N = 1 ones via these conversions, cf. Example
A.2 and the next item.

•Gauged linear sigma models. ([Wi1 : Sec. 2].) Given d = 2, N = (2, 2)
chiral superfields (Φi here is the Φ0 in [Wi1 : Eq.(2.13)])

Φi = φi +
√

2θ+ψi,+ +
√

2θ−ψi,− + θ2Fi , i = 1, . . . , n ,

in d = 2, N = (2, 2) chiral coordinates (Φi here is the Φ0 in [Wi1 : Eq.(2.13)])

( y0 −
√
−1(θ−θ− + θ+θ

+) , y1 +
√
−1(θ−θ− − θ+θ+) ) ,

vector superfields, in Wess-Zumino gauge, (cf. connections)

Va = −
√

2 (θ−θ
+
σa + θ+θ

−
σa) + (θ−θ

−
+ θ+θ

+
)va,0 − (θ−θ

− − θ+θ+)va,1

+
√
−2 θ+θ−(θ

+
λa,+ + θ

−
λa,−)−

√
−2 θ

+
θ
−

(θ−λa,− + θ+λa,+)

−2 θ+θ−θ
+
θ
−
Da ,

a = 1, . . . , n − d ,

gauge group U(1)n−d (parameterized by (t1, . . . , tn−d)), and a U(1)n−d-
action on Φi by

Φi −→
(
n−d∏
a=1

t
Qi,a
a

)
Φi .

Define ([Wi1 : Eq.(2.16)]), (cf. curvatures)

Σa :=
1√
2
D+D−Va

= σa −
√
−2θ+λa,+ −

√
−2 θ

−
λa,− +

√
2θ+θ

−
(Da −

√
−1va,01)

−
√
−1 θ

−
θ−(∂0 − ∂1)σa −

√
−1θ+θ

+
(∂0 + ∂1)σa

+
√

2θ
−
θ+θ−(∂0 − ∂1)λa,++

√
2θ+θ

−
θ
+
(∂0 + ∂1)λa,−− θ+θ

−
θ−θ

+
(∂2

0 − ∂2
1)σa ,

where va,01 = ∂0va,1 − ∂1va,0 . The associated gauged linear sigma model is
a 2-dimensional supersymmetric quantum field theory (SQFT) with action

L = L kinetic + LW + L gauge + LD,θ ,



A-Twisted Moduli Stack from GLSM 271

where

L kinetic =
∫
d2y d4θ

n∑
i=1

Φi exp

[
2
n−d∑
a=1

Qi,aVa

]
Φi ,

LW = −
∫
d2y dθ+ dθ−W (Φi)|θ+=θ

−
=0
− ( Hermitian conjugate ) ,

L gauge = −
n−d∑
a=1

1
4 e2a

∫
d2y d4θΣa Σa ,

and

LD,θ =
n−d∑
a=1

∫
d2y (−raDa+

θa
2π
va,01)

=
√
−1 ta
2
√

2

∫
d2y dθ+ dθ

−Σ|
θ−=θ

+
=0
−
√
−1 ta
2
√

2

∫
d2y dθ− dθ+Σ|

θ+=θ
−

=0

with
ta =

√
−1 ra +

θa
2π

.

The real-valued numerical parameters ea, ra, and θa are called the coupling
constants of the theory.

Performing the Fermionic integrations
∫
d4θ,

∫
dθ+dθ−, and

∫
dθ

+
dθ

−

renders L a complicated expression in terms of component fields on Φi and
Va ([Wi1 : Eq.(2.19), Eq.(2.21), and Eq.(2.23)]). The d = 2, N = (2, 2)
SUSY algebra without R-symmetry generators can be realized as an alge-
bra of derivations acting on Va and on Φi with gauge transformations taken
into account while the R-symmetry acts on fields via global abelian transfor-
mations on the fields. In particular, the SUSY transformations in terms of
component fields are given in [Wi1 : Eq.(2.12) and Eq.(2.14)] (Cf. Example
A.2 (1), [W-B Chapters III-VII], and [We : Sec. 2.7.8]). The action L is
invariant under these transformations (and hence supersymmetric).

• Wick rotation. Field theories on Riemannian manifolds behave better
than those on Lorentzian manifolds. A Wick rotation is meant to be an
analytic continuation between theories in the two categories (e.g. [P-S]).
Some of its geometry is studied in [Liu]. In the current case of flat space-
times, such an analytic continuation is realized by setting y0 = −iy2 and
taking (y1, y2) as the coordinates of the Wick rotated d = 2 space-time. The
latter has the Euclidean metric −(dy0)2 + (dy1)2 = (dy2)2 + (dy1)2 and the
tangent bundle group SO (1, 1) now becomes SO (2).
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• The A-twist and the B-twist. ([Wi2], [Wi1], [DEFJKMMW : vol.
2, Witten’s lecture, Sec. 14.3], and [F-S : Chapter 7].) Consider the two
different twisted embeddings of the d = 2 rotation algebra, generated by L,
into the d = 2, N = (2, 2) SUSY algebra :

A-twist : L �→ LA := L− 1
2JL + 1

2JR

B-twist : L �→ LB := L+ 1
2JL + 1

2JR .

Since both JL and JR commute with all the SUSY algebra generators except
Q± and Q±, the commutation relation of LA and LB with SUSY algebra
generators are the same as those for L except the following ones :

[LA, Q+] = Q+ , [LA, Q−] = 0 , [LA, Q+] = 0 , [LA, Q−] = −Q− ,

[LB , Q+] = Q+ , [LB, Q−] = −Q− , [LB , Q+] = 0 , [LB , Q−] = 0 .

This implies that all the SUSY generators are now of integral spin with
respect to either of the twisted tangent bundle groups.

From the commutation relations of the Lorentz generator with SUSY
generators, the supermanifolds associated to the Wick-rotated d = 2, N =
(2, 2) SUSY algebra are

X =
(
C, Sym•∏(

(K
1
2
C)⊕2 ⊕ (K

− 1
2

C )⊕2

))
,

where C is a Riemann surface and KC is the canonical line bundle of C
while the supermanifolds associated to either A-twisted or B-twisted SUSY
algebra are

X twist =
(
C, Sym•∏(

O ⊕2
C ⊕KC ⊕K−1

C

))
.

When C is the complex plane, a cylinder, or an elliptic curve, K
± 1

2
C ∼ OC

admit nontrivial global sections. Thus both SQFT and its twists can be

built on such C. For general C, K
± 1

2
C have no global sections except the

zero-section and, hence, only twisted SQFT can be defined on C.

• Phase structure. ([Wi1] and [M-P] for GLSM; [Al], [Arg], [Po1], [R-
S-Z], and [W-K] for general field-theoretical aspects.) When the coupling
constants (ea, ra, θa)a in the action L of the gauged linear model given earlier
vary, the nature of the field theories may also vary. Thus (ea, ra, θa)a can
be thought of as the coordinates for a space MGLSM that parameterizes a
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family of d = 2 field theories. MGLSM is called the (Wilson’s) theory space
of the model. Quantities (e.g. 2-point functions) of the field theories may be
turned into defining geometric data (e.g. Zamolodchikov metric) onMGLSM .
There exists a stratification of MGLSM according to the nature of the field
theory a point inMGLSM parameterizes. Each stratum of this stratification
is called a phase of the GSLM. In general, for quantum considerations of
the theory, cutoffs (e.g. of energy) may have to be introduced. These cutoff
parameters may also be added in to enlarge the theory space. (Cf. The
recent work of Borchard [Bo] enlarges Wilson’s theory space by adding also
the space of renormalization prescriptions. His work should be important to
understanding the quantum phase structure on the theory space.)

• The moduli space of the A-twisted theory in the geometric phase.
Either twist breaks half of the 4 supersymmetries in general. The resulting
d = 2 SQFT has the same expression as the action L but each of the com-
ponent fields in the superfield involved lives in a new bundle determined
by the twisted spin discussed in Item (The A-twist and the B-twist) above.
For the A-twist, the remaining supersymmetries of the twisted gauged linear
sigma model are generated by Q− and Q+ . These are the SUSY generators
that are of A-twisted spin 0. Recall the realization of SUSY algebra with
R-symmetry generators removed as an algebra of derivations acting on fields.
A field configuration that is annihilated by both Q− and Q+ is called a su-
persymmetric field configuration of the twisted gauged linear sigma model.
When the gauge coupling constants ea are all set equal to some e and the
superpotential W is set to zero, the bosonic part of SUSY configurations
for the A-twisted theory are given explicitly by the solutions to the follow-
ing system of equations ([Wi1 : Eq.(3.33), Eq.(3.34), Eq.(3.35)] and [M-P :
Eq.(3.54 a-d)])

dσa = 0 , a = 1 , . . . , n− d ,∑n−d
a=1 Q

a
i σa φi = 0 , i = 1 , . . . , n ,
Dz φi = 0 , i = 1 , . . . , n , ( ∗1 )

Da + va,12 = 0 , a = 1 , . . . , n− d , ( ∗2 )

with Dz a covariant derivative constructed from the U(1)n−d gauge connec-
tion (va,1, va,2)a and

Da = −e2
(

n∑
i=1

Qai |φi|2 − ra

)
from the equation of motion for Da.
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When (ra)a is in the geometric phase, for which the solution set to the
subsystem {Eq.(∗1), Eq.(∗2)} is non-empty, the only solution for σa is σa =
0 for all a. Following the study in [Brad], [B-D], and [GP] on vortex-type
equations, Witten and Morrison-Plesser thus conclude that the moduli space
of the A-twisted theory for (ra)a in this phase is given by

∐
�d M�d =

{ common solutions to
Eq. (∗1) and Eq. (∗2)

}
{ unitary abelian gauge transformations

and global complex abelian transforma-
tions

}

=
{

solutions to Eq. (∗1) that satisfy
appropriate stability condition

}/{ complex abelian gauge
transformations

}
= the toric variety

∐
�d
(Y�d
− F�d

) /G ,

where Y�d, F�d, and G are explained in Explanation/Fact 2.1.2 and Sec. 3 in
terms of toric geometry ([M-P : Sec. 3.1]). (Cf. See also [Fr : Lecture 4 and
Lecture 5] on the moduli space of vacua of a SQFT.)

As already mentioned in [M-P : Sec. 3.7], the above construction, in
particular the moduli space

∐
�d
M�d

, has a generalization to higher genus
Riemann surfaces as well, following [Cox2]. The main theme of this paper
is the study of this generalization of

∐
�d
M�d

to higher genus.
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[B-D] S.B. Bradlow and G.D. Daskalopoulos, Moduli of stable pairs for
holomorphic bundles over Riemann surfaces, Internat. J. Math. 2
(1991), pp. 477 - 513.

[B-M] K. Behrend and Yu. Manin, Stacks of stable maps and Gromov-
Witten invariants, Duke Math. J. 85 (1996), pp. 1 - 60.

[Ca] L. Caporaso, A compactification of the universal Picard varieties
over the moduli space of stable curves, J. Amer. Math. 7 (1994),
pp. 589 - 660.

[Cox1] D.A. Cox, The homogeneous coordinate ring of a toric variety, J.

Alg. Geom. 4(1995), pp. 17 - 50.

[Cox2] ——–, The functor of a smooth toric variety, Tôhoku Math. J. 47
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[Gó] T.L. Gómez, Algebraic stacks, Proc. Indian Acad. Sci. Math. Sci.
111 (2001), pp. 1 - 31.

[Gre] B.R. Greene, String theory on Calabi-Yau manifolds, in Fields,
strings, and duality - TASI 1996, C. Efthimiou and B.R. Greene
eds., World Scientific 1997.

[Gro] A. Grothendieck, Techniques de construction et théorèmes
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