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Convex Hypersurfaces of Prescribed Weingarten

Curvatures

Weimin Sheng, Neil Trudinger, and Xu-Jia Wang

In this paper we study the existence of closed convex hypersur-
faces in the Euclidean space Rn+1 with a Weingarten curvature
prescribed as a function of their unit normal.

1. Introduction.

In this paper we study the existence of closed convex hypersurfaces in the
Euclidean space Rn+1 such that a Weingarten curvature, regarded as a func-
tion of their unit normal, is equal to a given positive function on the unit
sphere Sn. Two classical problems of this type, namely the Christoffel prob-
lem [6] and the Minkowski problem [16], which address respectively the
cases of harmonic and Gauss curvature, were completely solved in the 1970’s
[7,9,17]. Besides the harmonic and Gauss curvatures, the most interesting
Weingarten curvatures are probably the mean curvature, or more generally
the k-curvatures (1 ≤ k ≤ n)

f(κ) = σk(κ) =
∑

i1<···<ik
κi1 · · ·κik , (1.1)

and the norm of the second fundamental form

f(κ) = (κ2
1 + · · ·+ κ2

n)
1/2 (1.2)

where κ = (κ1, · · · , κn) denotes the principal curvatures of the hypersurface
M. We will prove

Theorem 1.1. Let f be the Weingarten curvatures given in (1.1) or (1.2).
Then for any positive function ϕ ∈ C2(Sn), there exists a linear function a
on Sn such that the equation

f(κ) = ϕ ea (1.3)
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has a smooth, uniformly convex solution M⊂ R
n+1.

Theorem 1.1 extends a recent existence result in [13], where the existence
was proved for the k-curvature (1.1) under the assumption that ϕ is invariant
under an automorphic group on Sn without fixed point. One can choose the
linear function a = 0 under this assumption. Theorem 1.1 holds for more
general Weingarten curvatures, see Remarks 2.2 and 2.3. The existence
of convex hypersurfaces with prescribed curvatures is an area of extensive
study. We refer reader to [10,11,13,14] and the references therein.

The problem of prescribing the norm of the second fundamental form can
be viewed in some sense as an extension of the isometric embedding problem
(prescribing the first fundamental form), of which a typical problem is the
Weyl problem [3], which asks whether the unit sphere S2 with a metric of
positive Gauss curvature can be isometrically embedded as a closed convex
surface in R3.

The function ea in (1.3) can be interpreted as a balance condition for the
Weingarten curvature f(κ). Indeed a solution of (1.3) is a soliton to the flow

Ẋ = log(f(κ)/ϕ). (1.4)

When f(κ) = σn(κ) is the Gauss curvature, (1.4) is the logarithmic Gauss
curvature flow studied in [5]. It was proved there that for any convex hyper-
surface N , there is a unique constant θ > 0 and a unique vector a ∈ Rn+1

such that Mt − ta converges to a convex hypersurface, which is a solution
of (1.3) with a(x) = 〈a, x〉, where Mt is the solution of (1.4) with initial
conditionMt|t=0 = θN .

To prove Theorem 1.1 we will use as in [17] the support function ofM,
given by

h(x) = sup{〈x, p〉 : p ∈M} x ∈ Sn, (1.5)

and reduce the problem to an elliptic equation for h on Sn. We extend h to
R
n+1 such that it is a homogeneous function of degree 1. Then h is convex

andM can be recovered from h by

M = {Dh(x) : x ∈ Sn}. (1.6)

Direct computation [17,18] shows that the eigenvalues of the matrix {∇2h+
hI} are the principal radii of M, where ∇ is the covariant derivative on
Sn (under a local orthonormal frame), and I is the unit matrix. Denote
by λ = (λ1, · · · , λn) the eigenvalues of {∇2h + hI}. Then equation (1.3) is
equivalent to

f̂(λ(∇2h + hI)(x)) = ψ(x) on Sn (1.7)
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with ψ = (ϕ ea)−1, where

f̂(λ) =
[
f(

1
λ1
, · · · , 1

λn
)
]−1

. (1.8)

Another special class of Weingarten curvatures occurs when f(κ) =
σk(λ), the kth elementary symmetric polynomial of λ, where 1 ≤ k ≤ n,
λ = (λ1, · · · , λn), and λi = κ−1

i (i = 1, · · · , n) are the principal radii ofM.
The intermediate Christoffel-Minkowski problem is to find closed convex hy-
persurfaces satisfying

σk(λ) = ϕ, (1.9)

where ϕ is a given positive function on the unit sphere Sn. When k = 1 and
k = n, (1.9) is respectively the Christoffel and the Minkowski problem, and
has been resolved in [7,9,17]. For the intermediate Christoffel-Minkowski
problem, we have the following result.

Theorem 1.2, Let ϕ be a smooth, positive function on the unit sphere Sn.
Suppose ϕ−1/k is convex and ϕ satisfies∫

Sn

xiϕ(x)dx = 0, ∀ i = 1, · · · , n+ 1. (1.10)

Then there is a smooth, uniformly convex hypersurface M satisfying (1.9).

Theorem 1.2 was proved in [14] under the following additional condition.

Condition (A). There is a family of smooth, positive functions {ϕt : t ∈
[0, 1]}, which depends continuously on t, such that ϕ0 ≡ 1, ϕ1 = ϕ, and for
all t ∈ [0, 1], ϕ−1/k

t is convex and ϕt satisfies (1.10).

Condition (A) was removed by a curvature flow method [2], which uses
the a priori estimates and the analysis of asymptotic behavior of solutions.
In this paper we verify this condition directly.

The operator in (1.9) is of divergence form and its linearized operator
is self-adjoint. By the Aleksandrov-Fenchel inequality [18], its kernel is the
linear space spanned by the linear functions {x1, · · · , xn+1}, which is inde-
pendent of the support function h. Hence (1.10) is a necessary condition for
the solvability of the Christoffel-Minkowski problem. From the Aleksandrov-
Fenchel inequality one also obtains the uniqueness of solutions to (1.9).

It follows that when k = n, the linear function a in Theorem 1.1 is
uniquely determined by∫

Sn

xi
ϕ(x) ea(x)

dx = 0 i = 1, · · · , n+ 1. (1.11)
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For other Weingarten curvatures in (1.1) and (1.2), the operator f̂ is not in
divergence form and the linear functions {x1, · · · , xn+1} are in general not in
the kernel of the adjoint linearized operator. Hence (1.11) is not a necessary
condition for equation (1.3) anymore. See also discussions in [13]. We remark
that the uniqueness of solutions for general Weingarten curvatures is open
in general, except in dimension two [1].

This paper is organized as follows. In Section 2 we use a priori estimates
and a degree theory, which was used in [13], to prove Theorem 1.1. The
main new estimate of the paper is that for supSn |a|, which will be given in
Section 3. In section 4, we verify condition (A).

2. Proof of Theorem 1.1.

In this section we use the degree theory to prove Theorem 1.1. We will
consider the equation

f(κ) = ϕ (2.1)

for more general Weingarten curvatures. We assume that f is defined on
the positive cone Γ+ = {κ ∈ Rn : κi > 0 for i = 1, · · · , n}, and satisfies the
following conditions.

[F1] f(κ+ µ) > f(κ), for all κ ∈ Γ and µ ∈ Γ+.

[F2] f is invariant under any permutation of (κ1, · · · , κn).

[F3] f(0) = 0 and for any κ ∈ Γ+,

f(κ1, · · · , κn + t)→ +∞ as t→ +∞.

[F4] The function f̂(λ) given in (1.8) is concave on the positive cone Γ+.

The norm of the second fundamental form satisfies [F1]-[F4] [10]. For
the k-curvature (1.1), we redefine

f(κ) = [σk(κ)]1/k (2.2)

so that it also satisfies [F1]-[F4]. Other Weingarten curvatures satisfying the
above assumptions are, for example,

f(κ) =
[∑

κα1
1 · · ·καn

n

]1/k
, (2.3)

where the sum is taken over all nonnegative integers α1, · · · , αn with∑
αi = k, see [10]. Note that the curvature (2.3) is also a function of

the k-curvatures, given by (2.2).
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For any t ∈ [0, 1], we denote

Ft[∇2h+ hI ] = (1− t)σ1/n
n (λ) + tf̂(λ), (2.4)

where λ = λ(∇2h+ hI) are the eigenvalues of the matrix {∇2h+ hI}.
Denote by Φ the set of positive, uniformly convex, C3 smooth functions

on Sn. For any positive constant R > 1, let ΦR ⊂ Φ be given by

ΦR = {u ∈ C3(Sn) : u > R−1, (∇2u + uI) > R−1I, ‖u‖C3(Sn) < R}.

We also denote by Φ0 ( Φ0
R, resp.) the set of functions u ∈ Φ (u ∈ ΦR, resp.)

which satisfy ∫
Sn

xiu(x) = 0 ∀ i = 1, · · · , n+ 1. (2.5)

Note that if u ∈ C2(Sn) satisfies (∇2u + uI) > 0, then u is convex on Sn

and it is a support function of a convex hypersurfaceM given by (1.6).

Remark 2.1. For any u ∈ C2(Sn), there is a unique linear function a defined
in Rn+1 with a(0) = 0, such that u + a satisfies (2.5). Obviously the func-
tion a depends continuously on u. If u is the support function of a convex
hypersurface M and it satisfies (2.5), one easily verifies that the origin is
located in the interior ofM.

Lemma 2.1. For any positive functions ψ, v ∈ C2(Sn), and for each t ∈
[0, 1], there is a unique solution h ∈ C3,α(Sn) (α ∈ (0, 1)) to the equation

F [∇2h+ vI ] = eh−vψ (2.6)

such that the matrix {∇2h + vI} > 0, where F [∇2h + vI ] = Ft[∇2h + vI ]
and

F [∇2h + vI ] = (1− t)σ1/n
n (λ(∇2h + vI)) + tf̂ (λ(∇2h + vI)).

Proof. The proof is similar to that in [13], where the case F [∇2h + vI ] =
σ

1/k
k (λ(∇2h+ vI)) is considered (with eh−v replaced by h/v). We sketch the

proof and indicate some minor changes.
First we prove that there is a positive constant C > 0 such that

−C ≤ h ≤ C. (2.7)

Indeed, suppose h attains a maximum at x0. Then at x0,

eh−vψ = F [∇2h + vI ] ≤ F [vI ],
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which yields the second inequality in (2.7). Similarly we obtain the first
inequality.

Next we prove

sup{λi(∇2h + vI)(x) : x ∈ Sn, i = 1, · · · , n} ≤ C, (2.8)

Suppose the supremum in (2.8) is attained at x0 and i = 1. By choosing
a proper local orthonormal frame we may suppose that the matrix {hij} =
{∇i∇jh} is diagonal at x0, where ∇i = ∇ei denotes the covariant derivative.
Denote F ij = ∂

∂wij
F [wij]. By [F1], {F ij} is positive definite. Hence by

exchanging derivatives we have

0 ≥ F ii∇2
i (h11 + v) (2.9)

= F ii∇2
1(hii + v)− 2F ii(hii + v) + (2h11 + 2v − v11 + vii)F ii.

By the concavity of F we have

F ii∇2
1(hii + v) ≥ ∇2

1[e
h−vψ],

F ii(hii + v) ≤ F [∇2h+ vI ] = eh−vψ.

We claim that for any constant b > 0, there exists a constant δ > 0, such
that ∑

f̂i(λ) ≥ δ ∀ λ ∈ Γb, (2.10)

where f̂i(λ) = ∂
∂λi

f̂(λ) and Γb = {λ ∈ Γ : f̂(λ) = b}. Indeed, denote
db = sup{|λ− λ′| : λ ∈ Γb, λ′ ∈ ∂Γ+}. Then it suffices to prove d2b ≤ C.
But this follows from the facts that Γ+ is a convex cone and that f̂ = 0 on
∂Γ+ by [F3].

By (2.10) we have
∑
F ii ≥ δ. Therefore if h11 + 2v − v11 + vii > 0, we

have
0 ≥ ∇2

1[e
h−vψ]− eh−vψ + δh11

and so (2.8) holds. If h11 + 2v − v11 + vii ≤ 0, we also obtain (2.8).
By assumption [F3], we have f̂(λ) = 0 on ∂Γ+. By (2.7), F [∇2h + vI ]

has a positive lower bound. By (2.8), λi are upper bounded. Hence by the
continuity of the function (1− t)σ1/n

n + tf̂ , there is a positive constant C > 0
such that

inf{λi(∇2h+ vI)(x) : x ∈ Sn, i = 1, · · · , n} ≥ C. (2.11)

Namely the principal curvatures of the corresponding convex hypersurfaces
are bounded.
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With estimates (2.8) and (2.11), equation (2.6) becomes a uniformly el-
liptic equation. Hence by the Evans-Krylov regularity theory [12], we obtain

‖h‖C3(Sn) ≤ C. (2.12)

The existence of solutions to (2.6) then follows from the continuity
method. Indeed, write (2.6) in the form

logF [∇2h+ vI ] = h− v + logψ.

The linearized operator is

L[u] =
∑

aijuij − u. (2.13)

The coefficient before u is negative. Hence the comparison principle holds
and the operator L is invertible. Hence the continuity method applies and
also the solution is unique. �

By Lemma 2.1 we introduce a mapping Tt (t ∈ [0, 1]) as follows. For any
positive function v ∈ C2(Sn), by Lemma 2.1 there is a unique solution h to

Ft[∇2h+ vI ] = eh−vψt, (2.14)

where ψt = (1− t) + tψ. By Remark 2.1, there is a unique linear function a
with a(0) = 0 such that h− a satisfies (2.5). We define Tt(v) = h− a.

This mapping is similar to that in [13], where u/v is used instead of eu−v .
Obviously Tt is continuous in t. If h is a fixed point of Tt, it satisfies the
equation

Ft[∇2h+ hI ] = ψt e
a on Sn. (2.15)

To prove that the fixed points of Tt (t ∈ [0, 1]) are uniformly bounded, we
need to restrict to curvature functions (2.2) or (1.2).

Lemma 2.2. Suppose the curvature function f is given by (2.2) or (1.2).
Then there exists R > 0 depending only on n, infSn ψ and supSn |∇2ψ|, such
that if h is a solution of (2.15) and h satisfies (2.5), then h ∈ Φ0

R.

Proof. In Section 3 we will prove supSn |a| ≤ C for some constant C > 0
depending only on n, infSn ψ and supSn |∇2ψ|. Once this is established, we
can derive estimates (2.8) and (2.11), with v replaced by h, in a similar way
as above. Indeed, when v is replaced by h, (2.9) becomes

0 ≥ F ii∇2
1(hii + h)− F ii(hii + h) + (h11 + h)F ii
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and so one obtains (2.8). Note that by (2.5) and (2.8) we have h ≥ 1/R for
some R > 0 depending on the constant C in (2.8). We omit the details here.
�

By Lemmas 2.1 and 2.2, the mapping Tt has no fixed points on the
boundary of Φ0

R when R is sufficiently large. Hence the degree deg(I −
Tt,Φ0

R, 0) is well defined if R is large enough, and is independent of t ∈ [0, 1],
where I is the identity mapping.

When t = 0, a fixed point of T0 satisfies the equation

[σn(λ(∇2h+ hI))]1/n = ea on Sn. (2.16)

By the necessary condition (1.11), we see that if (2.16) has a solution, then
the linear function a is a constant. Recall that a(0) = 0. We have a ≡ 0.
By (2.5) and the uniqueness of solutions to the Minkowski problem, we have
h ≡ 1. Hence T0 has a unique fixed point.

Similarly as in [13], see also [15], one can prove that the degree deg(I −
T0,Φ0

R, 0) = −1. Hence deg(I−T1,Φ0
R, 0) = −1. Namely Theorem 1.1 holds.

Remark 2.2. Although Theorem 1.1 treats the k-curvature and the norm of
second fundamental form only, it is also true for some other Weingarten cur-
vatures, such as (2.3). Indeed Theorem 1.1 holds for any curvature function
satisfying [F1]-[F4], provided one can prove an upper bound for supSn |a| for
any solution h of (2.15).
Remark 2.3. If ϕ is an even function, we can restrict ourself to the set of
even functions. Then automatically a = 0 in (2.15) and so Lemma 2.2 holds.
Hence Theorem 1.1 holds for all Weingarten curvatures satisfying [F1]-[F4]
if ϕ is even.

3. Proof of Lemma 2.2.

We have two different proofs for Lemma 2.2. One is based on the maxi-
mum principle and the other reduces to estimation on the Gauss curvature
equation. We will give a detailed proof for the first case and sketch the
second.

For any given t ∈ [0, 1], we denote

ĝ(λ) = (1− t)σ1/n
n (λ) + tf̂ (λ)

and F [∇2h + hI ] = ĝ(λ), where λ = λ(∇2h + hI) = (λ1, · · · , λn) are the
eigenvalues of {∇2h + hI}. We will always assume that λ1 ≥ · · · ≥ λn. To
prove Lemma 2.2 we need only to prove
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Lemma 3.1. Suppose the curvature function f is given by (2.2) or (1.2).
Suppose ψ ∈ C2(Sn) is a positive function. If the equation

F [∇2h + hI ] = eaψ(x) on Sn (3.1)

admits a convex solution, then

sup
x∈Sn

|a(x)| ≤ C (3.2)

for some C > 0 depending only on n, infSn ψ and supSn |∇2ψ|.
To prove Lemma 3.1, we choose a proper coordinate system such that

a(x) = αxn+1, α ≥ 0. (3.3)

Then it suffices to prove α < C.
Let M be the corresponding hypersurface. Let Ω be the projection of

M on {xn+1 = 0}. We divide

M =M+ ∪M− ∪ M̃,

such that the Gauss mapping image of M+ and M− are respectively the
upper and lower hemispheres, and M̃ = ∂M+(= ∂M−). ThenM+ satisfies

g(κ) = ϕ e−α|γn+1|, (3.4)

where ϕ = ψ−1, γn+1 is the component of the unit outer normal of M in
xn+1 direction,

g(κ) = [ĝ(
1
κ1
, · · · , 1

κn
)]−1.

Similarly,M− satisfies
g(κ) = ϕ eα|γn+1|. (3.5)

Lemma 3.2. Let ε0 = 1
2n . For any large constant λ0 > 0, there exists a

constant α0 > 0 such that if α > α0, the least eigenvalue λn of the matrix
{∇2h+ hI} satisfies

λn ≥ λ0 ∀ x ∈ Snε0, (3.6)

where Snε0 = Sn ∩ {xn+1 ≥ 1− ε0}.

Proof. We denote by L = F ij∇2
ij the linearized operator of F , and denote

wij = hij + hδij , W =
∑
wii. At any fixed point, by choosing a proper
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coordinate system, we may assume wij is diagonal. Then we have by the
Ricci identity,

Wii = (Σjwjj)ii = ∆(wii)− nwii +W.

Hence
L(W ) = F iiWii = F ii∆(wii)− nwiiF ii +WF ii. (3.7)

Taking two covariant derivatives of equation (3.1) and using the concavity
of F , we have

F ii∆(wii) ≥ Σj∇2
j (e

aψ).

Also by the concavity of F ,

F iiwii ≤ F [∇2h + hI ] = eaψ(x).

We thus obtain

L(W ) ≥
∑
i

∇2
i (e

aψ)− neaψ +W
∑

F ii

≥ −Cαea +W
∑

F ii, (3.8)

where we assume α > 1. We claim that there exists θ > 0 such that∑
F ii ≥ θ ĝ(λ)

λn
. (3.9)

Indeed, denote ĥ(λ) = [λ1 · · ·λn]1/n and h(κ) = [ĥ(κ)]−1, where κi = 1/λi,
i = 1, · · · , n. By definition,

ĝ(λ) = tf̂ (λ) + (1− t)ĥ(λ) =
t

f(κ)
+

1− t
h(κ)

.

We have
ĝλi(λ) = tf−2fκi(κ)κ

2
i + (1− t)h−2hκi(κ)κ

2
i .

Note that F ii = ĝλi. Hence (3.9) holds if∑
fi(κ)κ2

i ≥ θκnf(κ),∑
hi(κ)κ2

i ≥ θκnh(κ).

The first inequality holds as the curvature is given by (2.2) or (1.2). The
second one holds with θ = 1/n as h(κ) = [κ1 · · ·κn]1/n. Hence (3.9) holds.

From (3.9) it follows that

L(W ) ≥ −Cαea + C1
λ1

λn
ea. (3.10)
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Now let us suppose that W attains its maximum at some point x0. Then
L(W ) ≤ 0 at x0. Hence we have λ1

λn
≤ Cα at x0, i.e.,

λn ≥
λ1

Cα
. (3.11)

Noting that ĝ is homogeneous of degree 1, we have, at any point on Sn,

λn = ĝ(λn, · · · , λn)/ĝ(1, · · · , 1) ≤ Cĝ(λ1, · · · , λn) = Cψeαxn+1.

Hence at x0 we have λ1 ≤ Cαeα. We obtain sup
∑
wii ≤ Cαeα on Sn. It

follows that
λ1 ≤ Cαeα on Sn. (3.12)

Noting also that at any point in Snε0 ,

Ce(1−ε0)α ≤ ĝ(λ) ≤ ĝ(λ1, · · · , λ1) = λ1ĝ(1, · · · , 1),

we have
λ1 ≥ Ce(1−ε0)α. (3.13)

On Snε0, we have the eigenvalues λ1 ≥ · · · ≥ λn and the corresponding
principal curvatures κ1 = λ−1

1 ≤ · · · ≤ κn = λ−1
n . In order to prove λn is

large, we only need to prove κn is small onM+
ε0 = {p ∈M+ : G(p) ∈ Snε0},

where G is the Gauss mapping.
From (3.12), for any point p0 ∈M+

ε0, we have λ1 ≤ Cαeα, hence

κ1 ≥ ε =:
C

α
e−α (3.14)

If κn is not sufficient small at p0, we may assume for simplicity that kn = 1
at p0. Hence by (3.4) and the estimate (3.14),

g(ε, · · · , ε, 1)≤ g(κ1, · · · , κn−1, κn) = ϕe−α|γn+1| ≤ Ce−α(1−ε0). (3.15)

We have

g(κ1, · · · , κn) =
[

1− t
σ

1/n
n (κ)

+
t

f(κ)

]−1

=
f(κ)σ1/n

n (κ)

(1− t)f(κ) + tσ
1/n
n (κ)

.

Hence by (3.15),

f(κ)σ1/n
n (κ) ≤ Ce−α(1−ε0)

[
(1− t)f(κ) + tσ1/n

n (κ)
]

at κ = (ε, · · · , ε, 1).
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If the curvature function f is given by (2.2), we obtain

ε
n−1

n ε
k−1

k ≤ Cεαeαε0
[
(1− t)ε

k−1
k + tε

n−1
n
]
,

or equivalently
C ≤ αeαε0

[
(1− t)ε1/n + tε1/k

]
.

Since ε0 = 1
2n and ε = C

α e
−α, we obtain

C ≤ αe−α/2n.

This is a contradiction when α is sufficiently large.
If the curvature function f is given by (1.2),then we have

ε
n−1

n ≤ Cεαeαε0
[
(1− t) + tε

n−1
n
]
,

or equivalently
C ≤ αeαε0

[
(1− t)ε1/n + tε

]
.

We also reach a contradiction if α is sufficiently large. �

For the curvatures given in (2.2) and (1.2), one has
∑
F ii ≥ C > 0 and

the estimate (3.12) follows from (3.8). Our proof of (3.12) applies to other
curvature functions.

Proof of Lemma 3.1. By Lemma 3.2, if α is sufficiently large, so is the the
least eigenvalue of the matrix {∇2h + hI} on the set Snε0 , where ε0 = 1

2n .
Namely all of the principal radii of M+ are large, and so the principal
curvatures ofM+ are small. It follows that the inscribed ball BR(x0) of Ω,
where Ω is the projection ofM+ on {xn+1 = 0}, is large.

On the other hand, consider the partM−, which is a graph of a convex
function u0 defined on Ω, and satisfies equation (3.5). Let us consider the
equation{

g(κ) = δ in BR/2(x0),
u = max{u0(x) : x ∈ BR/2(x0)} on ∂BR/2(x0),

(3.16)

where δ > 0 is a constant, and g is as in (3.4). Obviously (3.16) has unique
solution uδ which is rotationally symmetric (with center at x0). Hence the
graph of uδ is a piece of sphere. Let δ0 be the largest constant such that
(3.16) admits a solution. Then the graph of uδ0 is a hemisphere. Obviously
δ0 → 0 as R→∞.



Convex Hypersurfaces of Prescribed Weingarten Curvatures 225

By equation (3.5), the function u0 satisfies g(κ) ≥ inf ψ > 0. Let R be
sufficiently large such that δ0 < inf ψ. By the boundary condition in (3.16),
we have uδ0 ≥ u0 on ∂BR/2(x0) and there is a point y0 ∈ ∂BR/2(x0) such
that uδ0(y0) = u0(y0). By the comparison principle, we have uδ0 ≥ u0. It
follows that ∂γu0(y0) ≥ ∂γuδ0(y0) = ∞, where γ is the unit outer normal.
We reach a contradiction. �

We sketch our second proof of Lemma 3.1. Let us first consider the
k-curvature (1.1). Let M+, M−, and Ω be as before. Let

E = {x ∈ R
n :

∑
i

(xi/ai)2 = 1} (3.17)

be the minimum ellipsoid of Ω with 0 < a1 ≤ · · · ≤ an. Then we have, when
choosing the origin properly, 1

nE ⊂ Ω ⊂ E. Let M′ be the projection of
M+ on the subspace {xk+1 = · · ·= xn = 0}. Then we have

f(κ′(M′)) ≤ f(κ(M+)) (3.18)

where κ′ = (κ1, · · · , κk) are the principal curvatures of M′. Since f(κ′) =
σk(κ′) is the Gauss curvature ofM′, if the linear function a is given by (3.3)
for some sufficiently large α > 0, we have

a1 · · ·ak >> 1. (3.19)

Namely ai1 · · ·aik >> 1 for any 1 ≤ i1 < · · · < ik ≤ n.
Next we consider the pieceM−, which satisfies equation (3.5) with α ≥ 0.

Let M− be the graph of a convex function u0. For any 1 ≤ i1 < · · · < ik ≤
n, let κi1···ik denote the Gauss curvature of the restriction of M− on the
subspace determined by the {xi1, · · · , xik}-axes. Then∑

i1<···<ik
κi1···ik ≥ σk(κ) ≥ ϕ. (3.20)

Hence there exists an index set {1 ≤ i1 < · · · < ik ≤ n} such
that κi1···ik ≥ inf ϕ/Cn,k on a set G ⊂ 1

nE with Lebesgue measure
|G| ≥ |E|/(nnCn,k), where Cn,k = n!

k!(n−k)! . There is no loss of gen-
erality in assuming that {i1, · · · , ik} = {1, · · · , k}. Then there exists a
point y = (0, · · · , 0, yk+1, · · · , yn) ∈ 1

nE such that the Gauss curvature
of M′ = M− ∩ P is larger than inf ϕ/Cn,k on a set G′ ⊂ Ω ∩ P with
Lebesgue measure |G| ≥ δ0a1 · · ·ak for some δ0 > 0, where P is the hy-
perplane {xk+1 = yk+1, · · · , xn = yn}. Let M′ be the graph of a convex
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function u′. Then

detD2
x′u

′

(1 + |Du′|2)(k+2)/2
≥ inf ϕ/Cn,k in G′,

where x′ = (x1, · · · , xk). Taking integration we find that |G′| ≤ C, which is
in contradiction with (3.19).

For the curvature (1.2), we have

1
n

[σ1(κ)]2 ≤ κ2
1 + · · ·+ κ2

n ≤ [σ1(κ)]2.

As we need to prove (3.2) uniformly for any t ∈ [0, 1], we need to replace the
operator in (2.4) by

Ft[∇2h+ hI ] = (1− t)ĥ(λ) + tf̂ (λ), (3.21)

where ĥ(λ) = 1/σ1(κ). For the operator in (3.21), the argument in §2 is still
valid.

We remark that for the estimate (3.2), both proofs above may be ex-
tended to other Weingarten curvatures. But whether (3.2) holds for any
curvature satisfying [F1]-[F4] is still unknown.

4. Verification of condition (A).

Lemma 4.1. For any smooth, positive function ϕ on Sn, there exists a
unique vector y ∈ Rn+1 such that∫

Sn
xiϕ(x)ey·xdx = 0 ∀ i = 1, · · · , n+ 1. (4.1)

Lemma 4.1 follows from Theorem A in [5]. It can also be proved directly
as follows.

Proof. Let T0 : Rn+1 → B1(0) be a mapping such that T0(0) = 0 and ∀ x �= 0,

T0(x) =
2
π

x

|x| arctg|x|.

Next we define a mapping T1 : Rn+1 → Rn+1 such that ∀ y ∈ Rn+1,

T1(y) = (ξ1(y), · · · , ξn+1(y)), ξi(y) =
∫
Sn
xiϕ(x) ey·x.
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Then there exists a constant R > 0 such that

〈y, T1(y)〉 > 0 if |y| ≥ R, (4.2)

where 〈x, y〉 = x · y is the inner product. We modify T1 by letting T̂1(y) =
T1(y) if |y| ≤ R and

T̂1(y) = t
y

|y| |T1(y)|+ (1− t)T1(y)

if |y| ≥ R, where t = 2
πarctg(|y| − R). Then we have

T̂1(y)
|T̂1(y)|

→ e if |y| → ∞ and
y

|y| → e (4.3)

for any unit vector e ∈ Sn.
Denote T = T0 · T̂1 · T−1

0 . Then T is a mapping from B1 to B1. By
(4.3) we can extend T to Sn = ∂B1 continuously such that T is the identity
mapping on Sn. Hence we must have T (B1) = B1 and so there is a point y
such that T (y) = 0, namely T̂1(y) = 0. By (4.2), T̂1(z) �= 0 if |z| ≥ R. Hence
|y| < R and so (4.1) holds at y.

For the uniqueness, we compute the Jacobi matrix

∂yiξj(y) =
∫
Sn

xixjϕ(x)ey·x. (4.4)

The Jacobi matrix is symmetric. We claim it is positive definite. Indeed, let
A = {aij} be an orthogonal matrix such that A{∂yiξj(y)}A′ is diagonal at a
given point y. Denote ỹ = Ay and

ξ̃i(ỹ) =
∫
Sn

x̃iϕ(A′x̃) eỹ·x̃.

Then

{∂ỹi
ξ̃j(ỹ)} = {

∫
Sn

x̃ix̃jϕ(A′x̃)eỹ·x̃}

= {
∫
Sn

x̃ix̃jϕ(x)ey·x} = A{∂yiξj(y)}A′

Hence it is positively definite. If y0 and y1 are two points such that ξi(y0) =
ξi(y1) = 0 for i = 1, · · · , n+ 1, let yt = (1− t)y0 + ty1. Then

ξ(y1)− ξ(y0) =
∫ 1

0
{∂yiξj(yt)}dt (y1 − y0) �= 0.



228 W. Sheng, N. Trudinger, and X.-J. Wang

We reach a contradiction. �

We will first show that there exists a family of continuous, positive func-
tions {ϕt : t ∈ [0, 1]} verifying Condition (A).

Let g be a function on R1, given by

g(t) =

{
t if t > 0,
0 if t ≤ 0.

For any z ∈ Rn+1, denote

hz(x) = g(z · x). (4.5)

Let ϕ be a smooth positive function on the unit sphere Sn such that
ϕ−1/k is convex. Denote ψ = ϕ−1/k and ψz = ψ + hz. Then ψz is convex.
Denote ϕz = ψ−k

z and

ξi(z) =
∫
Sn

xiϕz(x)dx i = 1, · · · , n+ 1. (4.6)

Lemma 4.2. There exists a unique z ∈ B1(0) such that ξi(z) = 0 ∀ i =
1, · · · , n+ 1.

Proof. First we prove the existence. Let T0 be the mapping given in the
proof of Lemma 4.1. We define a mapping T1 : Rn+1 → Rn+1 such that for
any z ∈ R

n+1, y = T1(z) is the unique point such that
∫
Sn xiϕz(x)ey·x = 0

for all i = 1, · · · , n+1. Denote T = T0 ·T1 ·T−1
0 . Then T is a mapping from

B1 to B1.
We claim that T can be extended continuously to ∂B1 such that it is

the identity mapping on ∂B1, from which the existence part of Lemma 4.2
follows. Indeed, let z0 ∈ ∂B1 be a boundary point. Choosing a proper
coordinate system we may suppose that z0 = (1, 0, · · · , 0). Let {zk} be
a sequence in B1 converging to z0, and denote ẑk = T−1

0 (zk) and yk =
(yk1 , · · · , ykn+1) = T1(ẑk). Then at any point x in the hemisphere Sn ∩ {x1 >
0}, ψẑk(x) → ∞ and ϕẑk(x) → 0 as k → ∞. On the other hand, for any
δ > 0, there is a k0 > 1 such that ϕẑk(x) ≥ infSn ϕ on Sn ∩ {x1 < −δ} for
all k ≥ k0. It follows that |yki | ≤ C for any i = 2, · · · , n+ 1 and k ≥ k0, and
yk1 →∞ as k →∞. Hence T (zk)→ (1, 0, · · · , 0).

Next we prove the uniqueness. Suppose to the contrary that there exist
z0 �= z1 such that ξi(z0) = ξi(z1) = 0 for all i = 1, · · · , n+ 1. If the origin
lies on the line segment z0z1, namely if z1 = αz0 for some constant α, we
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may suppose by choosing a proper coordinate system that zi = (ai, 0, · · · , 0)
with a0 < a1. Denote zt = tz1 + (1− t)z0. Then

d

dt
ξ1(zt) = −k

∫
Sn
x1ψ

−k−1
zt (

d

dt
hzt) = −k

∫
Sn

zt

x2
1ψ

−k−1
zt ,

where Snz = {x ∈ Sn : x · z > 0}. Hence ξ1(zt) is strictly decreasing in t,
which is in contradiction with ξ1(z0) = ξ1(z1) = 0.

If the origin is not on the line segment z0z1, then as in the proof of
Lemma 1, the Jacobi matrix

∂ziξj(z) = −k
∫
Sn

z

xixjψ
−k−1
z , z �= 0, (4.7)

is symmetric and negative definitive, and

ξ(z1)− ξ(z0) =
∫ 1

0
{∂ziξj(zt)}dt (z1 − z0) �= 0.

We also reach a contradiction. �

Lemma 4.3. Let ϕ be a function as in Theorem 1.2. Then there exists a
family of continuous positive functions verifying condition (A).

Proof. Denote ψ0(x) = |x| and ψt(x) = (1− t)ψ0(x) + tψ(x). Denote ψtz =
ψt + hz and ϕtz = (ψtz)

−k. Let

ξti(z) =
∫
Sn

xiϕ
t
z(x)dx i = 1, · · · , n+ 1.

By Lemma 4.2, for any t ∈ (0, 1), there is a unique zt such that ξti(zt) = 0
for all i = 1, · · · , n+ 1. The uniqueness in Lemma 4.2 also implies that zt is
continuous in t. This is because if there are two sequences tk → t0 ∈ [0, 1]
and t̂k → t0, then by the uniqueness, both ztk and ẑtk converge to the
same limit. Denote ϕt = ϕtzt . Then {ϕt} is a family of continuous positive
functions verifying condition (A). �

Verification of Condition (A). In Lemma 4.3 we have proved the existence
of continuous ϕt such that ϕ−1/k

t is convex and (1.10) holds. To prove the ex-
istence of smooth ϕt satisfying these conditions, we need some modifications
of the definition of the function hz in (4.5).
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Let {gt(x1) : x1 ∈ [−1, 1], t ≥ 0} be a family of smooth, nonnegative
functions satisfying the following conditions:
(i) g0 ≡ 0, gt is increasing in t, and gt = εt + tx1 when x1 > 0, where
εt ≤ min(t2, ε∗) for some sufficiently small ε∗ > 0.
(ii) gt is increasing in x1, and is convex in the sense that ĝt(x) = gt(x1) is
convex as a function on Sn. Note that the convexity of gt is equivalent to
that d2

dθ2
gt(cos θ) + gt ≥ 0.

(iii) ∂
∂tgt(x1) < ε∗ when x1 ≤ 0.

Denote
hz(x) = g|z|(

z

|z| · x). (4.8)

The function hz in (4.8) is a small perturbation of that in (4.5). Indeed, if
εt ≡ 0, then (4.5) and (4.8) are the same. Note that the smoothness of gt
implies that εt > 0 if t > 0.

Define ψz and ϕz as in Lemma 4.2. With hz given in (4.8), the existence
part in Lemma 4.2 can be proved in the same way. By assumptions (i)-(iii),
the uniqueness part in the proof of Lemma 4.2 is also valid. Hence from
the proof of Lemma 4.3, we obtain a family of smooth ϕt which verifies
Condition (A). �
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