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1. Introduction.

The use of non-linear parabolic equations (the heat flow method) to find
solutions of corresponding elliptic equations goes back to Eells-Sampson in
1964. In their seminal paper [ES], Eells and Sampson introduced the heat
flow for harmonic maps to establish the existence of smooth harmonic maps
from a compact Riemmanian manifold into a Riemmanian manifold having
non-positive section curvature. In general, the heat flow for harmonic maps
even on two dimensional manifolds may develop singularity at finite time (cf.
[CDY]). Struwe [St1] established the existence of the unique global weak
solution, which is smooth with exception of at most finitely many points, to
the heat flow for harmonic maps in two dimensions. The harmonic map flow
in two dimensions is very similar to the Yang-Mills flow in four dimensions.
It is desirable to have a similar picture for Yang-Mills flow.

In this paper, we consider the Yang-Mills flow in a vector bundle over
four dimensional manifolds. Let X be a compact 4-dimensional Riemannian
manifold and let E → X be a vector bundle with a compact Lie group G.
Let A be a connection on E. The Yang-Mills functional is

YM(A) =
∫
X
|FA|2dvX ,

where FA = dA+A ∧ A is the curvature of A in E.
A connection A is said to be a solution to the Yang-Mills (heat) flow if

it satisfies the following equation:

∂A

∂t
= −D∗

AFA. (1.1)

The study of the Yang-Mills flow (1.1) has been of great interests. Don-
aldson [D] first introduced the Yang-Mills flow to study the existence of
Hermitian Yang-Mills metrics of holomorphic vector bundles and proved the
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global existence of the regular solution to the Yang-Mills flow over a Her-
mitian holomorphic vector bundle on a Kähler surface X assuming that the
initial unitary connection A0 has curvature FA0 of type (1, 1). Rade [R] es-
tablished the global existence of the Yang-Mills flow in a vector bundle on
three dimension compact Riemannian manifolds. Struwe [St3] (also [Sc1])
proved the global existence of the unique weak solution to the Yang-Mills
flow in vector bundles on four dimension manifolds, where the weak solution
is regular always from finite singularities. It remains a challenging question
whether the Yang-Mills flow in four dimensional manifolds develop singu-
larity at finite time. Schlatter, Struwe and Tahvildar-Zadeh [SST] proved
the global existence of the SO(4)-equivariant Yang-Mills flow on R4, which
provides some evidences that the Yang-Mills flow in four dimensions may
not blow up in finite time. In this paper, we will prove the global existence
of the m-equivariant Yang-Mills flow on R

4 (see Theorem 4.1).
The motivation of this paper is based on the fundamental relationship

between m-equivariant gauge fields on S4 and monopoles on the hyperbolic
3-space H

3, described by Atiyah [A]. To study them-equivariant connections
on S4, the Yang-Mills functional over S4 can be reduced to the Yang-Mills-
Higgs functional in hyperbolic 3-space H

3. Using m-equivariant connections
over S4, L.M. Sibner, R. J. Sibner and K. Uhlenbeck [SSU] proved the ex-
istence of non-self dual Yang-Mills connections over S4. Braam [B] studied
the magnetic monopoles on complete three manifolds. Based on these ideas,
we also reduce the Yang-Mills flow to the Yang-Mills-Higgs flows in the H

3.
In this paper, we investigate the Yang-Mills flow in a vector bundle over

three dimensional complete manifolds, which include hyperbolic 3-space H
3.

Now, let (M, g) be a complete 3-dimensional Riemannian manifold with
curvature bounded by K > 0 and we assume that

inf
x∈M
|B1(x)| > 0,

where |B1(x)| stands for the volume of the unit geodesic ball B1(x) with
respect to g. Let E → M be a vector bundle with a compact Lie group G.
In the sequel we take G to be SU(2) or SO(3) for simplicity. Let A be a
connection on E and let Φ be a Higgs field, i.e. a section of Ω0(adE). The
Yang-Mills Higgs functional is

YMH(A,Φ) =
∫
M
|FA|2 + |DAΦ|2dvM ,

where FA is the curvature of A, DA denotes the covariant derivative on
sections associate to A and dvM denotes the volume form of M .
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A solution of the Yang-Mills-Higgs flow consists of a connection A and a
section Φ satisfying

∂A

∂t
=−D∗

AFA − J;

(1.2)
∂Φ
∂t

=−D∗
ADAΦ,

where
J = J(DA,Φ) = −[DAΦ,Φ].

Initial conditions for the flow (1.2) are given by

A(x, 0) = A0(x), Φ(x, 0) = Φ0(x) for x ∈M, (1.3)

where A0 and Φ0 are a given connection and a section respectively.
The study of the Yang-Mills-Higgs flow on a complete manifold is of inde-

pendent interests, as the study of the harmonic map flow from on complete
manifolds (cf. [LT]). Not much is known for the Yang-Mills-Higgs flow (1.2)
in a general noncompact 3-manifoldM . Only in the case of M = R3, Hassell
in [Ha] proved the global existence of the Yang-Mills-Higgs flow assuming
that the initial values are sufficiently small.

In this paper, we first establish the global existence of the Yang-Mills-
Higgs flow (1.2) over a complete three-manifold (see Theorem 3.7). To prove
the local existence for (1.2), we use a trick of De Turck [De]. We consider the
gauge equivalent heat flow corresponding to (1.2) through gauge transforma-
tions. We also improve the idea of Struwe [St3] to deal with the initial value
(A0,Φ0) ∈ H1,2 by considering a background connection B and section Ψ,
which are solutions of linear parabolic equations (see (2.3) and (2.9)). We
would like to point out that the Weizenböck formula plays an important
role. To prove the global existence of (1.2), we use a covering argument
to obtain a global estimate (see Lemma 3.5), which is used to extend the
smooth solution of (1.2) to any finite time without any singularity. Finally,
we apply these results to M = H

3 and obtain the global existence of smooth
solutions to the m-equivariant Yang-Mills flow on R4 (see Theorem 4.1).
Our proof also yields non-self dual Yang-Mills connections on S4 by the heat
flow method (see Theorem 4.2). The existence of such connections were
previously constructed in [SSU] by the elliptic method.

The paper is organized as follows. In section 2, we prove the local exis-
tence of the Yang-Mills-Higgs flow (1.2) in complete three dimensional man-
ifolds. In section 3, we establish the global existence of the Yang-Mills-Higgs
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flow (1.2) in complete three dimensional manifolds. In section 4, we prove
the global existence of smooth solutions to the m-Yang-Mills flow over R4.

Acknowledgment. Most of the work was carried out when the first author
was an ARC fellow at the Australian National University. Partial work was
also done when the first author visited the MIT in May 2001 and in Nov.
2002. The first author gratefully acknowledges the hospitality and support
of the MIT.

2. Local existence.

In this section, we will establish the local existence of the Yang-Mills-Higgs
flow (1.2) with initial value (1.3).

We recall from [He, Chapter 3, Theorem 3.2 and Proposition 3.7] the
following property of the Sobolev space in a complete manifold:

Let M be a smooth, complete Riemannian n-manifold with Ricci curva-
ture bounded from below. Assuming that

inf
x∈M
|B1(x)| > 0,

where |B1(x)| stands for the volume of B1(x) with respect to the metric g.
Then the Sobolev embedding is true, i.e. for u ∈ H1,p(M), there exists a
constant A > 0 such that(∫

M
|u|q dvM

)1/q

≤ A
[(∫

M
|∇u|p dvM

)1/p

+
(∫

M
|u|p dvM

)1/p
]
,

for all p ≤ q ≤ np
n−p .

Moreover, let (M, g) be a smooth, complete Riemannian n-manifold with
positive injective radius, and we assume that the set of smooth functions with
compact support in M is dense in H1,p(M) for any p ≥ 1.

The space of the connection on E is an affine space

D = {A = Aref + a; a ∈ Ω1(adE)},

where Aref is a given smooth connection such that

|Aref | ≤ C, |∇Aref | ≤ C,
∫
M
|Fref |2 dvM ≤ C,

∫
M
|∇Fref |2 dvM ≤ C,

where C is a fixed constant.
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A connection A on E is related to a covariant derivative ∆A. Let ad E
be the adjoint bundle whose sections s ∈ Ω0(adE) locally can be represented
by the map s ∈ Uα → g, the Lie algebra of G, where {Uα} is a cover of M .

The Sobolev space of H l,p(Ωi(adE)) consists of the g-valued i-forms φ in
the adjoint bundle adE with measure coefficients such that

‖φ‖H l,p(Ωi(E)) =

(
l∑

k=0

‖∇krefφ‖
p
Lp(Ωi(E))

)1/p

.

We denote by 〈·, ·〉 the pointwise inner product. Since A is compatible
with the metric, for any φ, ψ ∈ Ωi(adE) we have

d 〈φ, ψ〉 = 〈∇Aφ, ψ〉+ 〈φ,∇Aψ〉 .

It implies the Kato inequality |d|φ|| ≤ |∇Aφ|. Then for any φ ∈ H1,p(Ωi),
we have(∫

M
|φ|q dvM

)1/q

≤ A
[(∫

M
|∇Aφ|p dvM

)1/p

+
(∫

M
|φ|p dvM

)1/p
]

for p ≤ q ≤ np
n−p .

From now on, let n = 3.
We recall a covering result for a complete manifold (cf. [He, Chapter 1,

Lemma 1.1] in the following:

Lemma 2.1. Let (M, g) be a smooth, complete Riemannian 3-manifold with
curvature bounded by some constant K > 0, and let ρ > 0 be given. There
exists a set {xi} of points in M such that for any r ≥ ρ,

(i) the family {Br(xi)} is a uniformly locally finite covering of M , with
the property that at any point x ∈ M at most N of the balls Br(xi) meet
where N ≤ ( 8r

ρ )3e−4
√

2Kr.

(ii) for any i �= j, Bρ/2(xi) ∩ Bρ/2(xj) = ∅.
In the sequel, we also assume that the Riemannian curvature Rm of M

is bounded, i.e., |Rm| ≤ K for some positive constant K.
For each connection DA, we have the Hodge Laplacian �A = D∗

ADA +
DAD

∗
A and another crude Laplacian ∇∗

A∇A on Ωi(adE). We recall the well-
known Weizenböck formula (cf. [La]) as follows: for any φ ∈ Ωi(adE), we
have

∇∗
A∇Aφ = �Aφ+ FA#φ+ Rm#φ, (2.1)
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where we do not need the explicit formula of the two terms F#φ and Rm#φ,
which are multi-linear combination of smooth coefficients satisfying

|F#φ| ≤ C|F | |φ|, |Rm#φ| ≤ C|Rm||φ|

for some constant C > 0.
As a consequence of the Weizenböck formula (2.1), the same proof as in

[St3] yields the following:

Lemma 2.2. Let DA = Dref +A, where A ∈ C1(Ω1(adE)) and ‖A‖C1(M ) ≤
K1 for some positive constant K1. There exist constants C1 = C1(η) and
C2 = C2(K,K1) such that for any φ ∈ H2,2(Ωi(adE)),

‖φ‖2H2,2(Ωi(adE)) ≤ C1‖ �A φ‖2L2(Ωi(adE))) +C2‖φ‖2L2(Ωi(adE)).

For any T > 0, we consider the space

VT = VT
(
Ωi(adE)

)
= L2

(
[0, T ];H2,2(Ωi(adE)

)
∩H1,2

(
[0, T ];L2

(
Ωi(adE)

))
and employ the standard notation of Lp-Lq-norm,

‖φ‖Lp,q([0,T ];Ωi(adE)) :=
(∫ T

0
‖φ‖q

Lp(Ωi(adE))
dt

)1/q

for 1 ≤ p, q <∞. Moreover, we denote by the norm of the space VT

‖φ‖2VT
:= ‖ d

dt
φ‖2L2,2([0,T ];Ωi(adE)) + ‖φ‖2L2([0,t];H2,2(Ωi(adE))).

As in [St3], VT is continuously embedded in

L∞ (
[0, T ];H1,2

(
Ωi(adE)

))
,

and as pointed in [St3], with

sup
0≤t≤T

‖φ(·, t)‖2H1,2(Ωi(adE)) ≤ ‖φ(0)‖2H1,2(Ωi(adE)) + 2‖φ‖2VT
. (2.2)

Moreover, as in [St3], we have

Lemma 2.3. Let DA = Dref + A, A ∈ C1(Ω1(adE)) with ‖A‖C1(M ) ≤ K1

for some K1 > 0. Then there exist a constant C3 = C3(K,K1), depending
on K and K1, and a finite number T1 = T1(‖A‖C1(M ), E) > 0, depending on
‖A‖C1(M ), such that for any φ ∈ VT

‖φ‖2VT
≤ C3

[
‖( d
dt

+�A)φ‖2L2,2([0,T ];Ωi(adE)) + ‖φ(0)‖2H1,2(Ωi(adE))

]
.
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Let us assume that in (1.3), A0 and Φ0 are smooth, A0 ∈ H1,2(Ω1(adE))
and Φ0 ∈ H1,2(Ω0(adE)) is bounded. By the density result of the Sobolev
space, there exists a connection A1, which has compact support in M , such
that ‖A1 −A0‖H1,2(Ω1(adE)) is sufficiently small.

In order to prove the local existence of the heat flow (1.2) with (1.3), we
consider the following initial value problem:

∂B

∂t
= −�A1 B, in M × (0,∞)

B(0) = B0, in M, (2.3)

where B0 = A0 −A1 with DA1 = Dref + A1.
Then we have

Lemma 2.4. Let D1 = Dref + A1 be a smooth connection satisfying above
conditions and assume that B0 is smooth and also in H1,2. Then the initial
problem (2.3) has a unique, global solution B(x, t) where B(x, t) is smooth
in M × (0,∞), B(x, t) ∈ L2([0, T ], H2,2(adE)) ∩ C0([0, T ];H1,2(adE)) ∩
H1,2([0, T ];L2(adE)) for any T <∞. Moreover, there exits a constant C(T )
such that for any t ∈ [0, T ]

‖B(·, t)‖H1,2(Ω1(adE)) ≤ C(T )‖B0‖H1,2(Ω1(adE)). (2.4)

Proof. Let us first consider the problem (2.3) inM×[0, T ] with initialB(0) =
B0, where B0 is smooth, |B(0)| and |∇B0| are bounded by some positive
constant. By the Weizenböck formula (2.1), we obtain

�A1B = ∇∗
A1
∇A1B +Rm#B + FD1#B +A1#∇B

= ∇∗∇B + f(A1,∇A1, B,∇B),

where the term f(A1,∇A1, B,∇B) := Rm#B + ∇A1#B + A1#∇B +
A1#A1#B is multi-linear. Due to the assumption on A1 and the curva-
ture Rm, we have

|f(A1,∇A1, B,∇B)| ≤ C(|B|+ |∇B|).

Let H(x, y, t) be the heat kernel of M as in [LT]. Through the heat kernel,
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equation (2.3) becomes

B(x, t) = −
∫ t

0

∫
M

H(x, y, t− s)
[
�M −

∂

∂s

]
B(y, s) dvM(y)ds

= −
∫ t

0

∫
M
H(x, y, t− s)f(A1,∇A1, B,∇B)(y, s) dvM(y)ds,

where �M is the Laplacian-Beltrami operator on M . A similar iteration
argument to one in [LT, Theorem 3.3] yields the local existence of the unique
smooth solution B of the problem (2.3) with initial value B0.

Now, we prove the global existence of the unique solution to equation
(2.3) with B(0) = B0. Let T > 0 be the maximum time such that B is a
smooth solution to equation (2.3) in M× [0, T ) with initial value B(0) = B0.

Let φ ∈ C∞
0 (B2R) be a cut-off function with 0 ≤ φ ≤ 1, |dφ| ≤ CR−1,

and φ = 1 in BR. Using the Weizenböck formula (2.1), we have

d

dt

∫
M
φ2|B|2 dvM = 2

∫
M
φ2

〈
∂B

∂t
, B

〉
dvM = −2

∫
M
φ2 〈�A1B,B〉 dvM

= −2
∫
M
φ2
〈
∇∗
A1
∇A1B,B

〉
dvM +

∫
M
φ2 〈Rm#B + FA1#B,B〉 dvM

≤ −2
∫
M
φ2|∇A1B|2dvM +

∫
M
〈∇A1B, φdφB〉 dvM +C

∫
M
|φ|2|B|2 dvM .

for any t < T . This implies that for any t < T ,∫
BR

|B(t)|2 dvM ≤
∫
B2R

|B0|2 dvM −
∫ t

0

∫
BR

|∇A1B|2dvM dτ

+C

∫ t

0

∫
B2R

|B(τ)|2 dvM dτ.

By Lemma 2.1, for any 2R ∈ (0, R0], there exists a cover {BR(xi)}∞i=1 of
M with the property that at any point x ∈M at most N of the balls B2R(xi)
meet where R0 > 0 is sufficiently small and N is a constant depending on
K. By a covering argument, we have∫

M
|B(t)|2 dvM ≤ C

∫
M
|B0|2 dvM −

∫ t

0

∫
M
|∇A1B|2dvM dτ

+C1

∫ t

0

∫
M
|B(τ)|2 dvM dτ.

By Gronwall’s inequality, we obtain∫
M
|B|2 dvM ≤ CeC1t

∫
M
|B0|2 dvM (2.5)
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for all t < T . Let φ be again the above cut-off function in B2R. Then we
apply the Weizenböck formula (2.1) again to obtain

d

dt

∫
M

φ2|∇A1B|2 dvM = 2
∫
M

φ2

〈
∇A1

∂B

∂t
,∇A1B

〉
dvM

= −2
∫
M
φ2
〈
�A1B,∇∗

A1
∇A1B

〉
dvM −

∫
M
φ 〈�A1B,∇φ∇A1B〉 dvM

= −2
∫
M
φ2|∇∗

A1
∇A1B|2 dvM +

∫
M

〈
Rm#B + FA1#B,∇∗

A1
∇A1B

〉
dvM

−
∫
M
φ
〈
∇∗
A1
∇A1B + Rm#B + FA1#B,∇φ∇A1B

〉
dvM

≤ −
∫
BR

|∇∗
A1
∇A1B|2 dvM +C

∫
B2R

|B|2 dvM + C

∫
B2R

|∇A1B|2 dvM .

Integrating (2.6) from [0, t] with t < T , one obtains from (2.5) that∫
BR

|∇A1B(t)|2 dvM ≤
∫
B2R

|∇A1B0|2 dvM +C
∫ t

0

∫
B2R

(|B|2+ |∇A1B|2 dvM ,

(2.6)
for t < T . By a covering argument, we have∫
M
|∇A1B(t)|2 dvM ≤ C

∫
M
|∇A1B0|2 dvM +C

∫ t

0

∫
M

(|B|2 + |∇A1B|2) dvM .
(2.7)

Combining (2.5) with (2.7), we apply Gronwall’s inequality again to obtain

‖B(t)‖H1,2 ≤ C‖B0‖H1,2 , (2.8)

for any t < T . By Lemma 2.3, there exists a constant uniform constant C
such that for any t < T ,

‖B‖Vt ≤ C‖B0‖H1,2(Ω1(adE)),

so the solution of B can be extended to in the space VT and B is smooth
of (2.3) at t = T . By the local existence at t = T , there exists a solution of
(2.3) in M × [T, T + δ). This implies that T = +∞.

Since B0 ∈ H1,2, there exists a smooth sequence B
(m)
0 with compact

support in M such that B(m)
0 converges strongly to B0 in H1,2. By the above

result, there exists a global unique smooth solutionB(m) of the problem (2.3)
with initial values B(m)

0 . By Lemma 2.3, there exists a uniform T1 > 0 and
constant C2 such that

‖B(m)‖VT1
≤ C2‖B(m)‖H1,2(Ω1(adE)).
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Letting m→∞, there exists a local solution B of (2.3) in the space VT1 for
some T1 > 0 with B(0) = B0 in H1,2.

This yields the global existence of the unique solution to (2.3) in VT for
any finite time T > 0, i.e.

B ∈ C0
(
[0, T );H1,2(Ω1(adE))

)
∩ L2

(
[0, T );H2,2(Ω1(adE))

)
,

which are smooth for t ≥ 0 since B0 is smooth. (2.4) follows (2.2). This
proves our claim. �

Let Ψ be a section in Ω0(adE) such that

∂Ψ
∂t

+�1Ψ = 0 (2.9)

with initial value Ψ(0) = Φ0. For all T > 0, the similar proof as in Lemma 3
yields the global existence of a solution Ψ ∈ VT of equation (2.9) inM×[0, T ]
with initial value Ψ(0) = Φ0. Using (2.9), we easily obtain

∂

∂t
|Ψ|2 + d∗d|Ψ|2 = 2

〈
∂Ψ
∂t

+�1Ψ,Ψ
〉
− 2|D1Ψ|2 ≤ 0.

Then we apply the maximum principle to obtain

sup
M
|Ψ(t)| ≤ sup

M
|Ψ(0)| = sup

M
|Φ0|.

Let B be solutions to (2.3) with initial value B0 = A0−A1 and let Ψ be
a solution to (2.9) with initial value Φ0. Following De Turck [De], we make
the trick

DA = D1 +B + a,Φ = Ψ + v,

where D1 = Dref +A1 and A1 is a smooth connection with compact support
in M in (2.3) so that ‖A1 −A0‖H1,2(Ω1(adE)) is sufficiently small.

Let us consider a gauge equivalent flow for Yang-Mills-Higgs equations
as in [D]:

∂A

∂t
=
∂(B + a)

∂t
= −D∗

AFA + J +DA(−D∗
Aa), (2.10)

∂Φ
∂t

=
∂(Ψ + v)

∂t
= −D∗

ADAΦ + [D∗
Aa,Φ] (2.11)

with initial conditions
a(0) = 0, v(0) = 0.

Then we have



Yang-Mills Flow 193

Theorem 2.5. Let M be a complete noncompact Riemannian 3-manifold
with curvature bounded by K > 0 and let E → M be a vector bun-
dle with compact Lie group G. Assume that the initial connection A0 ∈
H1,2(Ω1(adE)) is smooth and the section Φ0 ∈ H1,2(Ω0(adE)) is smooth
and bounded in M . Then there exists T0 > 0 such that the Cauchy problem
(2.10)-(2.11) has a unique regular solution on M × [0, T0).

Proof. Let B̃ = A1 + B, where B is the solution of (2.3). Note

FA = FB̃ +DAa+ a#a.

Then
D∗
AFA = D∗

ADAa +D∗
B̃
F ∗
B̃

+ a#Fb +D∗
A(a#a).

We compute

�Aa = �1a− ∗(B + a) ∗ (D1a+ (B + a) ∧ a) +D∗
1[(B + C) ∧ a]

+ (B + a) ∗D1 ∗ a+ (B + a) ∧ a) +D1[∗(B + a) ∗ a], (2.11)

where �1a = D∗
1D1a+D1D

∗
1a. Similarly, we have

�AΦ = �1Φ+∆1B#Φ+∆1Φ#B+∆1a#Φ+B#B#Φ+B#a#Φ+a#a#Φ.

By the above notations, equations (2.10)-(2.11) are equivalent to the follow-
ing System: {

∂a
∂t +�1a = f1 + f2
∂v
∂t +�1v = g1 + g2

(2.12)

with initial values a(0) = 0 and v(0) = 0, where

f1 := −∂B
∂t
−D∗

1FB̃ +B#FB̃ +D1Ψ#Ψ + B#Ψ#Ψ,

g1 := ∆1B#Ψ +D1Ψ#B +B#B#Ψ,

f2(a, v,∆1a,∇1v) := FB̃#a+ B#∆1a+ ∆1B#a +B#B#a
+ ∆1a#a+B#a#a + a#a#a+ ∆1v#Ψ + ∆1Ψ#v
+ ∆1v#v + a#Ψ#Ψ + a#v#Ψ +B#Ψ#v + a#v#v,

and

g2(a, v,∆1a,∇1v) := ∆1B#v +D1v#B +D1a#v + B#B#v
+B#a#(Ψ + v) + a#a#(v + Ψ) +D1#a#(Ψ + v) +B#a#(Ψ + v).
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Using Lemma 2.3 with the fact that a(0) = 0 and v(0) = 0, it follows from
(2.2) that

‖a‖L∞([0,T ];H1,2(Ω1(ad E)) ≤ 2‖a‖VT
≤ C‖∂a

∂t
+�1a‖L2,2([0,T ];Ω1(adE)), (2.13)

‖v‖L∞([0,T ];H1,2(Ω0(ad E)) ≤ 2‖v‖VT
≤ C‖∂v

∂t
+�1v‖L2,2([0,T ];Ω0(adE)), (2.14)

for all T with 0 < T ≤ T1, where T1 is fixed in Lemma 2.3 depending on
‖A1‖C(M ).

Note that ‖B0‖H1,2 is sufficiently small. Thus, letting T > 0 small
enough, we apply Lemma 2.3 to obtain that ‖B‖H1,2 is sufficiently small.

Now we will find a small T to obtain a-priori bounds of solution (a, v) ∈
VT × VT .

Firstly we estimate terms in f2 and g2. By the Sobolev inequality, we
have

‖FB̃#a‖L2,2(0,T ;M ) ≤ C‖FB̃‖H1,2‖a‖L∞(H1,2)

≤ C(T‖FD1‖H1,2 + ‖B‖L2(H2,2))‖a‖VT
≤ ε‖a‖VT

for T ≤ T2, where T2 is a very small constant depending only on D1 and
‖B0‖H1,2 and ε.

Note that |Ψ| is bounded by some constant C. Therefore for a sufficiently
small T2 > 0, we apply Sobolev’s inequality to obtain

‖a#Ψ#Ψ‖L2,2 ≤ C‖a‖L∞,4‖Ψ‖L2(H1,2) ≤ CT‖Ψ0‖H1,2 ≤ ε‖a‖VT

where we use the fact a(0) = 0 if T ≤ T2.
By a similar argument as in [St3], there exists a very small T2 depending

only ε, D1 and ‖A0‖H1,2

‖f2‖L2,2 ≤ ε(‖a‖VT
+ ‖v‖VT

) ‖g2‖L2,2 ≤ ε(‖a‖VT
+ ‖v‖VT

),

if ‖a‖VT
≤ ε and ‖v‖VT

≤ ε.
We can select a sufficiently small T3 = T3(ε) > 0 depending on T1 and

‖B0‖H1,2 such that for all T ≤ T3,

‖f1‖L2,2([0,T ];adE) + ‖f1‖L2,2([0,T ];adE) ≤
ε

2C
.

Therefore, we have

‖a‖VT
≤ C

∥∥∥∥dadt +�1a

∥∥∥∥
L2,2

≤ C‖f1‖L2,2 + Cε (‖a‖VT
+ ‖v‖VT

) ,
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‖v‖VT
≤ C

∥∥∥∥dvdt +�1v

∥∥∥∥
L2,2

≤ C‖g1‖L2,2 +Cε (‖a‖VT
+ ‖v‖VT

) .

For a small T ≤ T4 = min{T1, T2, T3} and a sufficiently small ε with
Cε ≤ 1/2, we obtain a-priori estimate of a and v in VT .

Let
UTε := {(a, v) ∈ VT × VT

∣∣ ‖a‖VT
+ ‖v‖VT

≤ ε}. (2.15)

Given any (a, v) ∈ UTε , there is a unique weak solution (b, w) to the
equations {

∂b
∂t +�1b = f1 + f2(a, v,∆1a,∇1v),
∂w
∂t +�1w = g1 + g2(a, v,∆1a,D1v),

with initial values b(0) = 0 and w(0) = 0. Write (b, w) = L(a, v). Then
(2.13), (2.14), and (2.15) give us that

‖b‖VT
+ ‖w‖VT

= ‖L(a, v)‖VT×VT
≤ ε.

Thus L : UTε → UTε .
Moreover, there exists a number θ with 0 < θ < 1 such that for two

(a, v), (d, z) ∈ UTε

‖L(a, v)− L(d, z)‖VT×VT
≤ θ‖(a− d, v− z)‖VT×VT

.

Using the contraction mapping theorem on UTε ⊂ VT × VT , there exists a
unique weak solution (a, v) ∈ VT × VT of (2.12). By the general theory of
quasi-linear parabolic equations, the solution (a, v) is smooth for t > 0 since
f1 and g1 are smooth for t > 0, for example, see [LSU]. �

As a consequence of Theorem 2.5, we establish the local existence of the
heat flow (1.2) with initial value (1.3):

Theorem 2.6. Let M be a complete non-compact Riemannian 3-manifold
with curvature bounded by K > 0 and let E → M be a vector bun-
dle with compact Lie group G. Assume that the initial connection A0 ∈
H1,2(Ω1(adE)) and the section Φ0 ∈ H1,2(Ω0(adE)) are smooth. Moreover,
|Φ0| is bounded in M . Then there exists a number T0 > 0, such that the
heat flow (1.2) with initial value (1.3) has the unique regular solution on
M × [0, T0).

Proof. By Theorem 2.4, let (A,Φ) be a solution to (2.10)-(2.11) inM×[0, T0),
i.e.

∂A

∂t
= −D∗

AFA + J(DA,Φ) +DA(−D∗
Aa),
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∂Φ
∂t

= −D∗
ADAΦ + [D∗

Aa,Φ]

with initial value A(0) = A0 and Φ(0) = Φ0, where A = A1 + B + a, A1 is
chosen before (2.3) and B is a solution to the Cauchy problem (2.3).

Let S(t) be a family of gauge transformations and consider the initial
value problem for S(t):

∂S

∂t
= S ◦ (−DAa), S(0) = I. (2.16)

The initial problem (2.16) can easily be solved uniquely for small time 0 ≤
t < T0. Let S(t) be a family of gauge transformations which is a smooth
solution of (2.16), i.e.

S−1 ◦ ∂S
∂t

= −D∗
Aa.

Then DĀ = S−1∗DA and Φ̄ = S−1 ◦ Φ satisfy the heat flow (1.2), i.e.

∂Ā

∂t
= −D∗̄

AFĀ − J;

∂Φ̄
∂t

= −D∗̄
ADĀΦ̄.

This proves our claim. �

3. Global existence of Yang-Mills-Higgs flow in 3 manifolds.

In this section, we establish the global existence of the Yang-Mills-Higgs
flow in three dimensional manifolds M . In the sequel, we denote by (·, ·) the
L2-product in E.

We easily have (cf. [Ho])

Lemma 3.1.

DAJ = DA[DAΦ,Φ] = [FAΦ,Φ]− 2DAΦ ∧DAΦ, (3.1)

D∗
AJ = [�AΦ,Φ], (3.2)

where J = J(DA,Φ) = −[DAΦ,Φ].

Using the heat flow (1.2), we have

dF (DA(t))
dt

=
dF (DA + ε∂D/∂t)

dε

∣∣∣
ε=0

= DA
∂A

∂t
= −DA(D∗

AFA + J). (3.3)
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Then we have the following energy estimate:

Lemma 3.2. Let (A,Φ) be a smooth solution to the Yang-Mills-Higgs flow
(1.2) on M× [0, T ] and the solution (A,Φ) is gauge-equivalent to (Ā, Φ̄) with
Ā ∈ VT , Φ̄ ∈ VT . Then for t1 ≤ T , we have

YMH(DA,Φ)(t1) + 2
∫ t1

0

∫
M

(∣∣∣∣∂Φ
∂t

∣∣∣∣2 + |D∗
AFA + J|2

)
dvM dt

= YMH(D0,Φ0). (3.4)

Proof. Since (A,Φ) is gauge-equivalent to (Ā, Φ̄) ∈ VT , it follows from (3.3)
that

1
2
d

dt

∫
M
|FA|2 dvM =

(
DA(

∂A

∂t
), FA

)
=
(
∂A

∂t
, D∗

AF

)
.

For any a ∈ Ω1(adE), we have

DaΦ = dΦ + [a,Φ].

Then we have
〈a(Φ), DAΦ〉 = 〈a, J〉 . (3.5)

Using the heat flow (1.2), one obtains from (3.5) that

1
2
d

dt

∫
M
|DAΦ|2 dvM =

(
∂(DAΦ)
∂t

, DAΦ
)

=
(
∂DA

∂t
◦ Φ +DA ◦

∂Φ
∂t
, DAΦ

)
= − (D∗

AFA + J, J)−
∫
M
|∂Φ
∂t
|2 dvM .

Therefore

1
2

∫
M
|FA|2 + |DAΦ|2 dvM = −

∫
M

(
|D∗

AFA + J|2 + |∂Φ
∂t
|2
)
dvM .

For each t1 ≤ T , the desired energy estimate follows from integrating the
above identity with respect to t from 0 to t1. �

Lemma 3.3. (Maximum Principle) Let (A,Φ) be a smooth solution to (1.2)
on M × [0, T ] with initial value (1.3). Then for t ≤ T

sup
x∈M
|Φ(x, t)| ≤ sup

x∈M
|Φ0(x)|. (3.6)
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Proof. Since (A,Φ) is a smooth solution to the heat flow (1.2), we easily
obtain

(
∂

∂t
+∇∗∇)|Φ|2 = −2|DAΦ|2 ≤ 0.

The desired result follows from the standard maximum principle. �

In order to prove the existence of global regular solution to the heat flow
(1.2), we need a local estimate in the following:

Lemma 3.4. Let DA = Dref +A with the curvature FA. Then there exists
a small R0 such that for a ∈ Ωp(adE), a geodesic ball BR of radius R < R0

with center 0, we have

‖a‖2L6(BR/2)
+ ‖∇Aa‖2L2(BR/2)

≤C(‖DAa‖2L2(BR) + ‖D∗
Aa‖2L2(BR))

+C(1 +R−2)‖a‖2L2(BR) (3.7)

for some constant C > 0.

Proof. Let φ ∈ C∞
0 (BR) be a cut-off function with 0 ≤ φ ≤ 1, |dφ| ≤ CR−1,

and φ = 1 inside BR/2. Then we apply the Weintzenböke formula (2.1) to
find

‖∇Aa‖2L2(BR/2)
≤ ‖∇A(φa)‖2L2 = (∇∗

A∇A(φa), φa)

= ‖DA(φa)‖2L2+‖D∗
A(φa)‖2L2+(FA#φa, φa)+(Rm#φa, φa) .

By Hölder’s and Sobolev’s inequalities, we obtain

(FA#φa, φa) ≤ C4|BR|1/6‖FA‖L2(BR)‖φa‖2L6

≤ C4R
1/2YMH(u0, D0)1/2

(
‖∇A(φa) ‖2L2 + ‖φa ‖2L2

)
,

where C4 is a constant depending on the Sobolev constant and E, the last
inequality comes from energy inequality Lemma 3.1. Thus

‖∇A(φa) ‖2L2(BR/2)
≤C

(
‖DAa‖2L2(BR)+‖D

∗
Aa‖2L2(BR)+(1 + R−2)‖a‖2L2(BR)

)
,

by choosing a sufficiently small R with R ≤ R0 = 1
4C2

4YMH (u0,D0)
. �

Next lemma is a key to establish a global solutions of the heat flow.
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Lemma 3.5. Let (A,Φ) be a smooth solution to (1.2) on M × [0, T ) with
initial condition (1.3). Then

∂

∂t
FA = −DA(D∗

AFA + J) ∈ L2
(
[ε, T ];L2

(
Ω1(adE)

))
and

DA
∂Φ
∂t

= −DAD
∗
ADAΦ ∈ L2

(
[ε, T ];L2

(
Ω0(adE)

))
for any small constant ε > 0.

Proof. For simplicity, let D = DA, F = FA and DΦ = DAΦ.
Using (1.2), we have

∂J

∂t
= [(D∗F + J) ◦Φ,Φ] + [D

∂Φ
∂t
,Φ] + [DΦ,

∂Φ
∂t

].

Let φ ∈ C∞
0 (B2R) be a cut-off function with φ = 1 in BR.

Using the equation (3.3) and Lemma 3.3, one obtains from (1.2) that∥∥∥∥φ∂F∂t
∥∥∥∥2

L2

=−
(
φ2(D∗F+J), D∗

(
∂F

∂t

))
+2

(
φdφ(D∗F+J),

∂F

∂t

)
=−

(
φ2(D∗F+J),

∂

∂t
(D∗F+J)− ∂D

∂t
#F− ∂J

∂t

)
+2

(
φdφ(D∗F+J),

∂F

∂t

)
≤−1

2
d

dt
‖φ(D∗F+J)‖2L2 +C

∫
M

φ2(|F |+|DΦ|)
(
|D∗F+J|2 +

∣∣∣∂Φ
∂t

∣∣∣2) dvM

+C‖φ(D∗F+J)‖2L2 +
1
4

∥∥∥∥φD∂Φ
∂t

∥∥∥∥2

L2

+
1
2

∥∥∥∥φ∂F∂t
∥∥∥∥2

L2

+C‖ |dφ|(D∗F+J)‖L2.

(3.8)

Using the heat flow (1.2), we obtain from (3.9) that∥∥∥∥φD∂Φ
∂t

∥∥∥∥2

L2

=
(
φ2D

∂Φ
∂t
,−DD∗DΦ)

)
=
(
φ2

[
∂(DΦ)
∂t

− ∂D

∂t
Φ
]
, −DD∗DΦ

)
≤ −

(
φ2D∗ ∂(DΦ)

∂t
, D∗DΦ

)
+ 2

∫
M

|φ||dφ||∂(DΦ)
∂t

||D∗DΦ| dvM

+C

∫
M
φ2|D∗F + J|

∣∣∣∣φD∂Φ
∂t

∣∣∣∣ dvM
≤ −1

2
d

dt
‖φD∗DΦ‖2L2 + C

∫
M
φ2|D∗F + J|

∣∣∣∣D∂Φ
∂t

∣∣∣∣ dvM



200 M.-C. Hong and G. Tian

+
(
φ2∂D

∂t
#DΦ, D∗DΦ

)
+C

∫
M
|φ||dφ|

(
|D(

∂Φ
∂t

)|+|∂A
∂t
||Φ|

)
|D∗DΦ| dvM

≤− d
dt
‖φD∗DΦ‖2L2+

1
4

∥∥∥∥φD∂Φ
∂t

∥∥∥∥2

L2

+C
∫
M
φ2|DΦ|(|D∗F+J|2+|D∗DΦ|2) dvM

+ C‖φ(D∗F + J)‖2L2 + C‖φD∗DΦ‖2L2 +C‖|dφ|(D∗F + J)‖2L2

+ C‖|dφ|D∗DΦ‖2L2. (3.9)

Combining (3.9) with (3.8), we find∥∥∥∥φ ∂∂tF
∥∥∥∥2

L2

+
∥∥∥∥φD∂Φ

∂t

∥∥∥∥2

L2

≤ − d
dt

(
‖φD∗DΦ‖2L2 + ‖φ(D∗F + J)‖2L2

)
+ C

∫
M
φ2(|F |+ |DΦ|)

(
|D∗F + J|2 + |D∗DΦ|2 +

∣∣∣∂Φ
∂t

∣∣∣2) dvM

+ C‖φ(D∗F + J)‖2L2 + C‖φD∗DΦ‖2L2

+ C‖|dφ|(D∗F + J)‖2L2 + C‖|dφ|D∗DΦ‖2L2. (3.10)

By Lemmas 3.1 and 3.3, we have

|D∗J|2 ≤ C|D∗DΦ|2|Φ|2 ≤ C|D∗DΦ|.

Thus, applying Hölder’s inequality, we obtain∫
M
φ2(|F |+ |DΦ|)

(
|D∗F + J|2 + |D∗DΦ|2

)
dvM

≤
∫
B2R

(|F |+ |DΦ|)
(
|D∗F + J|2 + |D∗DΦ|2

)
dvM

≤CYMH(Φ, D)1/2R1/2

(∫
B2R

(
|D∗F + J|6 + |D∗DΦ|6

)
dvM

) 1
3

.

Note that D∗D∗F = 0. Then applying Lemma 3.4 to the above inequality,
we obtain∫

M
φ2(|F |+ |DΦ|)

(
|D∗F + J|2 + |D∗DΦ|2

)
dvM

≤ CR1/2

∫
B4R

(
|D(D∗F + J)|2 + |D∗J|2 + |DD∗DΦ|2

)
dvM

+ CR1/2

∫
B4R

(1 +R−2)
(
|D∗F + J|2 + |D∗DΦ|2

)
dvM



Yang-Mills Flow 201

≤ CR1/2
(
‖D(D∗F + J)‖2L2 + ‖DD∗DΦ‖2L2(B4R)

)
+CR1/2(1 + R−2)

(
‖D∗F + J‖L2(B4R) + ‖D∗DΦ‖2L2(B4R)

)
. (3.11)

Combining (3.10) with (3.11), we have(∥∥∥∥ ∂∂tF
∥∥∥∥2

L2(BR)

+
∥∥∥∥φD∂Φ

∂t

∥∥∥∥2

L2(BR)

)

≤ − d
dt

(
‖φD∗DΦ‖2L2 + ‖φ(D∗F + J)‖2L2

)
+ CR1/2

(
‖D(D∗F + J)‖2L2 + ‖DD∗DΦ‖2L2(B4R)

)
+C(1 + R−2)

(
‖D∗F + J‖L2(B4R) + ‖D∗DΦ‖2L2(B4R)

)
. (3.12)

For a given τ > 0, we can find t0 ∈ (0, τ ] such that

‖D∗F + J‖2L2(t0) ≤ 2τ−1

∫ τ

0
‖D∗F + J‖2L2 dt ≤ 2τ−1

∫ T

0
‖D∗F + J‖2L2 dt

‖D∗DΦ‖2L2(t0) ≤ 2τ−1

∫ τ

0
‖D∗DΦ‖2L2 dt ≤ 2τ−1

∫ T

0

∫
M

∣∣∣∂Φ
∂t

∣∣∣2dvM dt.

By Lemma 3.2, we have∫ T

0

(
‖D∗F + J‖2L2 + ‖DΦ‖2L2 +

∥∥∥∥∂Φ
∂t

∥∥∥∥2

L2

+ ‖F‖2L2

)
dt <∞.

By Lemma 2.1, for any 4R ∈ (0, R0], there exists a cover {BR(xi)}∞i=1 of
M with the property that at any point x ∈M at most N of the balls B4R(xi)
meet where R0 > 0 is sufficiently small and N is a constant depending on
K.

Integrating both sides of (3.12) from t0 to T in each ball BR(xi) and
putting all estimates in all balls BR(xi) together, we choose R to be suffi-
ciently small (e.g. R1/2CN < 1/8) to obtain∫ T

τ

(
‖D(D∗F + J)‖2L2 +

∥∥∥∥D∂Φ
∂t

∥∥∥∥2

L2

)
dt ≤ C(τ, T ).

Since τ is arbitrarily small, together with Lemma 3.2 the last inequality
proves our claim. �
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Lemma 3.6. Let (A,Φ) be a smooth solution of (1.2) on M × [0, T ). Then
(A,Φ) extends to the space C([τ, T ];H1,2(Ω1(ad E))× H1,2(Ω0(ad E))) for
any τ > 0.

Proof. Let τ > 0 be any small constant. By Lemma 3.2, we have∫ T

0

∫
M
|∂A
∂t
|2 dx dt ≤ 1

2
YMH(D0,Φ0),

which implies A ∈ C0([0, T ];L2). By Lemmas 3.4 and 3.5, we apply the
second Bianchi identity D∗

AD
∗
AF = 0 to obtain∫ T

τ

∫
M
|∂A
∂t
|6dvM dt

≤ C
∫ T

τ

∫
M

(|DA(D∗
AFA + J)|2 + |D∗

A(D∗
AFA + J)|2 + |∂A

∂t
|2) dvM

≤ C
∫ T

τ

∫
M

|DA(D∗
AFA + J)|2 + | �A Φ|2 + |∂A

∂t
|2 dvM dt ≤ C(τ, T ).

Then we have A ∈ C0([τ, T ];Lq) for any q ∈ [2, 6]. Moreover, we have

d

dt
(DrefA) =

d

dt
FA +

d

dt
A#A ∈ L2([τ, T ];L2)

which implies DrefA ∈ C0([τ, T ];L2). Then we employ Lemma 3.6 to find

d

dt
(D∗

refA) = D∗
ref (

d

dt
A) = A#D∗

A(F + J) +D∗
AJ ∈ L2([τ, T ];L2),

where we use the second Bianchi identityD∗
AD

∗
AFA = 0. By Lemmas 3.4-3.5,

we have

‖A(t1)−A(t2)‖H1,2≤C(‖D∗
ref [A(t1)−A(t2)]‖L2 + ‖Dref [A(t1)−A(t2)]‖L2

+ ‖A(t1)− A(t2)‖L2),

which implies that A ∈ C0([τ, T ];H1,2(Ω1(adE)) for any τ > 0. Similarly,
by Lemma 3.6, Φ ∈ C0([0, T ];L2).

∂DAΦ
∂t

=
∂A

∂t
Φ +DA

∂Φ
∂t
∈ L2([τ, T ], L2)

since Φ is bounded. Using Lemmas 3.4-3.5 again, Φ∈C0([τ, T ];H1,2(Ω0(adE)))
for any τ > 0. This proves our claim. �
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Theorem 3.7. Let M be a complete noncompact Riemannian 3-manifold
with curvature bounded by K > 0 and let E → M be a vector bun-
dle with compact Lie group G. Assume that the initial connection A0 ∈
H1,2(Ω1(adE)) is smooth, the section Φ0 ∈ H1,2(Ω0(adE)) is smooth and
bounded in M . Then for any finite time T > 0, the heat flow (1.2) with
initial value (1.3) has a regular solution on M × [0, T ].

Proof. By the local existence, there exists a finite T <∞ such that the heat
flow (1.2) with initial value (1.3) has a smooth solution DA(t) = Dref +A(t)
and Φ(t) in M × [0, T ). By Lemma 3.7, there exists a connection DA(T ) =
Dref + A(T ) with A(T ) ∈ H1,2(Ω1(adE)) such that

lim
t→T

A(t) = A(T ), lim
t→T

Φ(t) = Φ(T ),

in H1,2. Letting t1 < T be sufficiently close to T . By the local existence
(Theorem 2.5) at the time t = t1, there exists a T0 such that the heat flow
(1.2) with initial value at t = t1 has a smooth solution in M × (t1, t1 + T0).
We know that T0 depends only on ‖A(t1)‖H1,2 and D1. As t1 is closed
to T enough, ‖A(t1) − A(T )‖H1,2 is sufficiently small. We choose D1 =
Dref +A1 by A(T ) such that ‖A1−A(T )‖H1,2 is sufficiently small and find a
T0 depending on D1 and A(T ) with t1 + T0 > T such that the heat flow has
a smooth solution in M × [t1, t1 + T0]. Therefore we can extend the solution
(DA, φ) to any finite T <∞. This proves our claim. �

At the end of this section, we analyze the asymptotical behavior of solu-
tions of the Yang-Mills-Higgs flow (1.2) as t→∞.

Theorem 3.8. Let (A,Φ) be a smooth solution of the Yang-Mills-Higgs
flow in M × [0,∞). Then there exists a suitable sequence {tk} such that
as tk → ∞, (A(·, tk),Φ(·, tk)) strongly converges in H1,2, up to a gauge
transformation, to (A∞,Φ∞) which is a solution of the Yang-Mills-Higgs
equations

−D∗
AFA = J, in M ;

(3.13)
−D∗

ADAΦ = 0, in M.

Proof. By the energy estimate, there exists a suitable sequence tk such that
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as tk →∞, ∫
M
|∂A
∂t

(·, tk)|2 + |∂Φ
∂t

(·, tk)|2 dvM → 0.

Moreover, we know∫
M

|FA(tk)|2 + |DA(tk)Φ|2 dvM ≤ YMH(DA0,Φ0), (3.14)

∫
M
|D∗

AFA(·, tk)|2 dvM +
∫
M
| �A Φ|2 dvM ≤ C (3.15)

for some constant C independently of k.
Let r be a positive number to be fixed in the sequel. By Lemma 2.1, there

exists a sequence {xi} of points ofM such that {Br(xi)} is a uniformly locally
covering of M , with property that at any point x ∈M at most N of the balls
meets, whereN is a finite number depending on r and Br/2(xi)∩Br/2(xj) = ∅
for any i �= j.

Note DAFA = 0. Using Lemma 3.4, we obtain∫
Br/2(xi)

|∇AFA|2 dvM ≤ C
∫
Br(xi)

|D∗
AFA|2 +C(1 + r−2)

∫
Br(xi)

|FA|2 dvM ,

for r < R0. By a covering argument, it follows from (3.14)-(3.15) that∫
M
|∇AFA|2(·, tk) dvM +

∫
M
|∇2

AΦ|2(·, tk) dvM ≤ C.

By Hölder’s inequality, we have∫
Br(xi)

|FA(tk)|3/2 dvM ≤ Cr3/4YMH(DA0,Φ0)3/4 = ε0,

choosing r ≤ ( ε0C )4/3YMH(DA0,Φ0)−1 for a very small ε0. It follows from
Theorem 3.6 in [U] that there exists a gauge tranformation σk such that
σk(A(tk)) weakly converges to A∞ inH2,2 and σk(Φ(tk)) weakly converges to
Φ∞ in H2,2. Therefore (σk(A(tk)), σ(Φ(tk)) converges to (A∞,Φ∞) strongly
in H1,2. Moreover, (A∞,Φ∞) is a smooth solution of Yang-Mills-Higgs equa-
tions (3.13). �

Remark. Actually, (σk(A(tk)), σ(Φ(tk)) converges to (A∞,Φ∞) in C∞ (cf.
[HT]). One can expect to prove uniqueness of the limit solution (A∞,Φ∞)
(cf. [R], [Si]). The space of solutions of Yang-Mills-Higgs equations (3.13)
is path connected.
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4. The m-equivariant Yang-Mills flow on R4.

In this section, we will discuss the m-equivariant Yang-Mills flow on R
4.

Following the descriptions of Atiyah [A], we introducem-equivariant con-
nection on S4 below as in [SSU]. Since Yang-Mills equations in four man-
ifolds are conformally invariant, we can change the conformal structure on
S4 = R4 ∪ {∞}. If we consider R4 = R2 × R2, introduce poplar coordinates
in the first factor, we have

R
4 = {(r, α, (y1, y2)) : r ≥ 0, α ∈ [0, 2π), (y1, y2) ∈ R

2}.

The metric in R
4 is

ds2 = dr2 + r2dα2 + dy2
1 + dy2

2.

The action of U(1) is

q(t)(r, α, y1, y2) = (z, α+ t(mod2π), y1, y2).

This implies the conformal equivalence

U(1) = R
4 − {r = 0} = R

4 − R
2 = S4 − S2.

The S2 is precisely the fixed point set of the action of U(1) on S4.
To define a U(1) invariant connection on S4 with structure group SU(2),

a representation s : U(1) → G gives the gauge transformations of connec-
tions, i.e.

q(t)∗DB = s(t)−1 ◦DB ◦ s(t).

We trivialize on R
4 and assume s(t) = eîmt some integer m. Here {̂i, ĵ, k̂}

are a standard basis for su(2). In some gauge, we can write

D = d+ B̂,

where
B̂ = e−îmα(φ̂dα+A)eîmα.

here q(t)∗A = A and φ̂ ◦ q(t) = φ̂. The Higgs filed φ must be asymptotic
to zero as r → 0 and the integer m describes the representation of class of
U(1)→ SO(3) of the symmetry group in the fibre of the gauge group over the
fixed point set. We call such connections on S4 m-equivariant connections.

The usual gauge change by s = eîmt takes the connection d + B̂ to the
connection d + B, where B = Φdα + A, which is singular along the entire
plane r = 0. Here Φ = φ̂ −mî.
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The Yang-Mills functional DB = d+ B on R
4 (or S4) is reduced to the

Yang-Mills-Higgs functional on H3, i.e.

YM(B) =
∫

R4

|FB|2 dx1dx2dy1dy2

= 2π
∫

R2

∫ ∞

0

[r|FA|2 + |DAΦ|2r−1] dr dy1dy2

= 2π
∫

H3

|DAΦ|2
H3 + |FA|2H3 dvH3 = 2πYMH(A,Φ). (4.1)

The Yang-Mills equation on R
4

−D∗
BFB = 0 (4.2)

is reduced to the following Yang-Mills-Higgs equations on H
3:

−D∗
AFA − J = 0;

(4.3)
−D∗

ADAΦ = 0.

with |Φ(x)| → m as |r| → 0.
The corresponding heat flow (1.1) on R4 is also reduced to the heat flow

on H
3

∂A

∂t
= −D∗

AFA − J;

(4.4)
∂Φ
∂t

= −D∗
ADAΦ,

with smooth initial value D0 = Dref +A0 and Φ0 where A0 ∈ H1,2(H3) and
Φ0 ∈ H1,2(H3). Let (DA,Φ) be a global solution to the heat flow (4.4). For
the integer m, let Φ̂ = Φ +mî. Since DAΦ = DAΦ̂, (DA, Φ̂) is also solution
of (4.4) with initial value (D0,Φ0 +mî) where (A0,Φ0) ∈ H1,2.

Since H3 is a complete three manifold which has constant curvature, by
Theorem 3 we have a global existence of the Yang-Mills-Higgs flow (4.4) on
H3, so we have also a global existence of the Yang-Mills flow (1.1).

Theorem 4.1. Let B0 = A0 +Φ0dα be a given m-equivariant connection in
R4 with (A0,Φ0 − îm) ∈ H1,2 and Φ0 → îm as r → 0 for some integer m.
Then there exists a global solution to the Yang-Mills flow (1.1) on R4 with
initial value B0.
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Proof. Applying Theorem 3.8 to the case M = H
3, there exists a global

smooth solution (A,Φ) of the heat flow (4.4) in H3 × (0,∞) satisfying

(A,Φ−mî) ∈ C0([0,∞);H1,2(H3)) ∩H1,2([0,∞);L2(H3)).

At each finite time t > 0, we apply Lemma 3.2 for M = H
3 to obtain∫

R4

|FB |2 dx1dx2dy1dy2 = 2π
∫

H3

|DAΦ|2
H3 + |FA|2H3 dvH3 < +∞.

Let B = A+ Φdα. Then B(t) is the solution of (1.1) in R4\R2× (0,∞). We
will extend B from R

4\R2 to R
4.

For each R̃ > 0, we have∫ T

0

∫
R4∩BR̃

|∂B
∂t
|2dx ≤ 2π

∫ T

0

∫
R2

∫ R̃

0

r2
[
|∂A
∂t
|2
H3 + |∂Φ

∂t
|2
H3

]
drdy1dy2

r3
<+∞,

for any T > 0. This implies that

∂B

∂t
∈ L2([0,∞), L2

loc(R
4)).

Since B satisfies the Yang-Mills flow (1.1) on R
4, a local energy estimate

yields∫ T

0

∫
BR(x)

|∂B
∂t
|2dx dt ≤

∫
B2R(x)

|FB0|2dx+C

∫
B2R(x)

|FB(T )|2 dx

for every x and a fixed R > 0. A simple covering argument on R
4 gives us∫ T

0

∫
R4

|∂B
∂t
|2dx dt ≤ C

∫
R4

|FB0|2 dx+C

∫
R4

|FB(T )|2 dx < +∞.

It follows from Theorem 4.1 of [SS] that there exists a limit holonomy of Φ,
i.e., Φ→ îm as r → 0, where m is the integer due to the assumption of Φ0.
Using Theorems 5.1-5.2 of [SS], B(t) can be extended from H1,2(R4\R2)
to H1,2(R4) since m is an integer. Therefore we get a solution B of the
Yang-Mills flow (1.1) in R4 × (0,∞) such that B is smooth in R4\R2 and
B ∈ C0([0,∞), H1,2(R4) ∩ H1,2([0,∞), L2(R4)). We claim the singular set
R2 = {(r, α, (y1, y2)) ∈ R4 : r = 0} of the weak solution is removable by the
heat flow (1.1) in R4. Since B = A + Φdα is gauge-equivalent to a smooth
solution B̃ = Ã+ Φ̃dα in R

4\R2 × [0, T ] such that (Ã, Φ̃) ∈ VT (H3) satisfies
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equations (2.10)-(2.11) in H
3 × [0, T ] for some T < ∞. For each R̃ > 0, we

find∫ T

0

∫
R4∩BR̃

(|B|2 + |∇2B|2) dx1dx2dy1dy2

≤2π
∫ T

0

∫
R2

∫ R̃

0
r2
[
|Ã|2

H3 + |Φ̃|2
H3 + |∇2Ã|2

H3 + |∇2Φ̃|2
H3

] drdy1dy2
r3

< +∞,

This means that for any ball BR̃ ⊂ R4 and T > 0, (Ã, Φ̃) ∈ VT (BR̃ × [0, T ])
satisfy equations (2.10)-(2.11). Since equations (2.10)-(2.11) are parabolic,
(Ã, Φ̃) is smooth across the singular set R2 = {(r, α, (y1, y2)) ∈ R4 : r = 0}
(see [LSU] or [St3]). This proves our claim. �

Next, we apply Theorem 4.1 to study the non-self dual Yang-Mills con-
nection. On S4, the self-dual Yang-Mills (instanton) equations are

∗FB = FB . (4.5)

On H
3, the magnetic monopole equations are

DAΦ = ∗FA. (4.6)

If (A,Φ) is a magnetic monopole, then∫
H3

|FA|2H3 + |DAΦ|2
H3dvH3 = 2

∫
H3

|FA|2H3dvH3 = 4km,

where k is the winding number of Φ, or the number of zeros of Φ. The
integer number m, the mass of the monopole, is the asymptotic value of |Φ|2
at infinity.

Now we prove the existence of non self-dual connection by obtaining a
sequence connections B(tj) of the Yang-Mills flow (1.2) over R4 with tj →∞
instead of obtaining a sequence Bj by the Ljusternik-Schnirelmann theory.

Theorem 4.2. (Sibner-Sinber-Uhlenbeck) There exists a nontrivial, non-
self dual m-equivariant Yang-Mill connection B in the trivial bundle over
S4.

Proof. There exists a non-contractible loop in U/G of H1,∞ connections
Bγ0 = Aγ0 + Φγ

0dα , γ ∈ [0, 2π], on a trivial bundle (see [SSU, Lemma 2]),
satisfying

YM(Bγ0 ) < 8πm.
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Moreover, Bγ0 is smooth in H
3 except the sphere R = ε, and also Lipshitz

continuous across the sphere R = ε where R =
√
r2 + |y|2, Φγ

0 is bounded
and has no zero point in H

3. By an argument of regularization, we can
assume that Bγ0 = Aγ0 + Φγ

0dα are smooth in H
3. We set (Aγ0 ,Φ

γ
0) as initial

values for the heat flow (4.4). Then there exist global smooth solutions
(Aγ ,Φγ) of the heat flow (4.4) in H

3× [0,∞) with initial values (Aγ0 ,Φ
γ
0). By

the energy inequality, there exists a suitable sequence of tk →∞ such that
(Aγ ,Φγ)(·, tk), up to a gauge transformation, strongly converges to (Aγ∞,Φγ∞)
in H1,2, where (Aγ∞,Φγ∞) are solutions of (4.3) in H3. For each γ, we claim
that (Aγ∞,Φγ∞) must not be any non-trivial monopole, i.e. self-dual solution
of (4.6). If (Aγ∞,Φγ∞) is a non-trivial monopole, the number k of zeros of
the Higgs field Φγ

∞ must be great than 2 since Φγ
0 has no zero point. Then

YMH(Aγ∞,Φγ∞) = 4kπm contradicts to the fact that YHM(Aγ0 ,Φ
γ
0) < 8πm.

We assume that for every γ and for any sequence tk, (Aγ ,Φγ)(·, tk)
strongly converges in H1,2 to the trivial monopole (i.e. k = 0). Then for
every γ, (Aγ ,Φγ)(·, t) strongly converges to the trivial monopole in H1,2 as
t → ∞. It implies that loops (Aγ ,Φγ)(·, t) shrink to the trivial monopole.
This contradicts to the fact that the loops are not contractible in U/G.
Therefore there exists a nontrivial non-self-dual solution of (4.3) in H3. Us-
ing the removable codimension two singularity theorem of [SS], B = A+Φdα
can be extended to a smooth solution, which is neither self-dual nor antiself-
dual, of the Yang-Mills equation (4.2). �
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