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Brownian Motion on a Submanifold

Daniel W. Stroock

Given a submanifold M of a Riemannian manifold N , we give two
different constructions of Brownian motion on M : one by “projec-
tion” onto M of the Brownian motion on N and the other by a
more intrinsic approach. The two procedures lead to very different
ways in which vectors are transported along Brownian paths.

Introduction.

Throughout this note N will denote a complete, connected n-dimensional
Riemannian manifold and M will be a closed m-dimensional, imbedded sub-
manifold of N which is given the Riemannian structure which it inherits
from N . In addition, we will be using ∇N to denote the Levi-Civita on N ,
and ∇M to denote the inherited Levi-Civita on M . Finally, given a piece-
wise smooth path p : [0, t] −→ N , we will use T Np ∈ Hom

(
Tp(0)N ; Tp(t)

)
to

denote parallel transport along p. Similarly, if p takes its values in M , then
T Mp ∈ Hom

(
Tp(0)M ; Tp(t)M

)
will be parallel transport along p as a path in

M .
Our goal is to examine various relations between the Brownian motion

on N and the Brownian motion on M . This sort of analysis was carried out
in Chapters 4 and 5 of [3] when N = R

n. However, even in that case, the
analysis given there is less complete than the one given here.

1. The Shape Operator.

Given x ∈ M , define the shape operator Sx ∈ Hom
(
TxM ; Hom(TxN ; TxN )

)
so that if Xx ∈ TxM , then

Sx(Xx) =
d

dt

(
T Np�[0,t]

)−1 ◦ Πp(t) ◦ T Np�[0,t]Xx

∣∣∣
t=0

, (1.1)

1Research contained in this article was partially supported by NSF grant DMS
#6890947.
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where p ∈ C1
(
[0,∞);M

)
with p(0) = x and ṗ(0) = Xx. To see that Sx(Xx)

is well-defined (i.e., independent of the choice of p), observe that if Y ∈ TN
is any vector field on N , then

∇NXx
(ΠY ) =

d

dt

((
Tp�[0,t]

)−1 ◦ Πp(t) ◦ Tp�[0,t]
)(
Tp�[0,t]

)−1
Yp(t)

∣∣∣
t=0

= Sx(Xx)Yx + Πx∇NXx
Y,

and so
Sx(Xx)Yx = ∇NXx

(ΠY )− Πx∇NXx
Y. (1.2)

In particular,

Y �M ∈ TM =⇒ Sx(Xx)Yx = Π⊥
x∇NXx

Y

= ∇NXx
Y −∇MXx

Y ≡ −H(Xx, Yx), (1.3)

where H is the second fundumental form; and

Y �M ⊥ TM =⇒ Sx(Xx)Yx = −Πx∇NXx
Y. (1.4)

Thus, by choosing Y ∈ TN so that either Y � M ∈ TM or Y � M ⊥ TM ,
we see that

Π⊥
x ◦ Sx(Xx) = Sx(Xx) ◦ Πx and Πx ◦ Sx(Xx) = Sx(Xx) ◦ Π⊥

x . (1.5)

In addition, if Yx ∈ TxM , then we can choose X, Y ∈ TN which agree with
Xx and Yx at x and satisfy X �M, Y �M ∈ TM . Hence, by (1.3),

Sx(Xx)Yx − S(Yx)Xx = Π⊥
x [X, Y ]x = 0,

since ∇N and ∇M are torsion free and [X, Y ]x ∈ TxM . In other words,

Xx, Yx ∈ TxM =⇒ Sx(Xx)Yx = S(Yx)Xx. (1.6)

Lemma 1.7. Given x ∈ M , define ax ∈ Hom
(
TxM ; Hom(TxN ; TxN )

)
so

that
ax(Xx) = Sx(Xx) ◦

(
Πx −Π⊥

x

)
. (1.8)

Then ax(Xx) is skew symmetric on TxN for each Xx ∈ TxM . Next, for
p ∈ C1

(
[0,∞);M

)
, determine

t ∈ [0,∞) �−→ Op(t) ∈ Hom
(
Tp(0)N ; Tp(t)N

)
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by

d

dt

(
T Np�[0,t]

)−1 ◦Op(t) =
(
T Np�[0,t]

)−1 ◦ ap(t)
(
ṗ(t)

)
◦Op(t) with Op(0) = I.

Then, for each t ∈ [0,∞), Op(t) is unitary from Tp(0)N onto Tp(t)N ,

Πp(t) ◦Op(t) = Op(t) ◦ Πp(0) and Π⊥
p(t) ◦Op(t) = Op(t) ◦ Π⊥

p(0).

In fact,
Op(t) � Tp(0)M = T Mp�[0,t].

Proof. Clearly the skew symmetry follows from (1.5).
Next set x = p(0), let Yx ∈ TN be given, and set Y (t) = Op(t)Yx. Then

DN

dt
Y (t) = T Np�[0,t]

d

dt

(
T Np�[0,t]

)−1
Y (t) = ap(t)

(
ṗ(t)

)
Y (t),

where DN

dt denotesN -covariant differentiation along p. Hence, t ∈ [0,∞) �−→
Y (t) ∈ Tp(t)N is characterized as the solution to

DN

dt
Y (t) = ap(t)

(
ṗ(t)

)
Y (t) with Y (0) = Yx. (∗)

In particular, because of the skew symmetry of ap(t)
(
ṗ(t)

)
,

d

dt

∥∥Y (t)
∥∥2 = 2

〈 DN

dt
Y (t), Y (t)

〉
= 0,

and so Op(t) is unitary. Now set Ỹ (t) = Πp(t)Y (t). Then

DN

dt
Ỹ (t) = Sp(t)

(
ṗ(t)

)
Y (t) + Πp(t)ap(t)

(
ṗ(t)

)
Y (t) = ap(t)

(
ṗ(t)

)
Ỹ (t),

where, in the last step, we have again applied (1.5). Thus, by the charac-
terization given in (*), we see that Ỹ (t) = Op(t)Ỹ (0). From this it follows
immediately that Πp(t) ◦Op(t) = Op(t) ◦ Πx, and, obviously, Π⊥

p(t) ◦Op(t) =
Op(t)◦Π⊥

x comes along for free. Finally, to prove that Y (t) = T Mp�[0,t]Yx when
Yx ∈ TxM , simple observe that, because Y (t) ∈ Tp(t)M ,

DN

dt
Y (t) = ap(t)

(
ṗ(t)

)
Y (t) ⊥ Tp(t)M
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follows from (1.5). In other words,

DM

dt
Y (t) = Πp(t)

DN

dt
Y (t) = 0,

and this proves that Y (t) = T Mp�[0,t]Yx. �

Finally, we close this section with the observation that if ϕ ∈ C2(N ; R)
and x ∈M , then

Xx, Yx ∈ TxM =⇒
〈Xx, hessMx ϕYx〉 = 〈Xx, hessNx ϕYx〉+ Sx(Xx)Yxϕ. (1.9)

To see this, simply recall that, for any extension Y of Yx to N with Y �M ∈
TM ,

〈Xx, hessMx ϕYx〉 = XxY ϕ−∇MXx
Y ϕ = XxY ϕ−∇NXx

Y ϕ+ Sx(Xx)Yxϕ

= 〈Xx, hessNx ϕYx〉+ Sx(Xx)Yxϕ.

As a consequence of (1.9) and the representation of Laplacian as the trace
of the Hessian, we obtain

∆Mϕ = TraceM
(
hessNx ϕ

)
ϕ− Bϕ, (1.10)

where, for each x ∈M and orthonormal basis
(
(E1)x, . . . , (En)m

)
in TxN ,

Bx ≡ −
m∑
i=1

S
(
Πx(Ei)x

)
Πx(Ei)x =

m∑
i=1

H
(
Πx(Ei)x,Πx(Ei)x

)
(1.11)

is (apart from normalization) the mean curvature vector (cf. page 49 in [2]).

2. Moving to the Orthonormal Frame Bundle.

In this section we will interpret the results of §1 in terms of the orthonormal
frame bundle (cf. Chapter 8 of [3] for a treatment using the notation adopted
here or [1] for a thorough treatment) O(N ) over N . That is, elements f of
O(N ) are frames (x, ex), where x ∈ N and ex =

(
(E1)x, . . . , (En)x

)
is an

orthonormal basis in TxN . We use π : O(N ) −→ N to denote the fiber map
πf = x, and, for convenience, we identify f with the isometry from Rn onto
TxN given by

fξ =
n∑
i=1

ξi(Ei)x for ξ = (ξ1, . . . , ξn) ∈ R
n.
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Next, recall that O(N ) is a principle bundle over N with fiber the orthogonal
group O(Rn), and, for O ∈ O(Rn), let RO : O(N ) −→ O(N ) be the map
defined so that (ROf) = f(Oξ) for f ∈ O(N ) and ξ ∈ R

n. Further, given
a ∈ o(Rn), define the vertical vector field λ(a) on O(N ) so that

λ(a)f =
d

ds
Resaf

∣∣∣
s=0

;

and, given ξ ∈ R
n, define the canonical horizontal vector field E(ξ) on O(N )

so that E(ξ)f is the horizontal lift to f of fξ ∈ TxM . Finally, the solder form
φ and connection 1-from ω are defined (cf. page 181 in [3]) on TfO(N ) into
R
n and o(Rn), respectively, so that

Xf = E
(
φ(Xf)

)
f
+ λ

(
ω(Xf)

)
f

gives the resolution of Xf into its horizontal and vertical components.
Define Π̂ : π−1(M) −→ Hom(Rn; Rn) so that Π̂f = f−1 ◦Ππ(f) ◦ f. Clearly,

for each f ∈ π−1(M), Π̂f is the orthogonal projection onto the subspace of
ξ ∈ Rn such that fξ ∈ Tπ(f)M . By using the fact (cf. (8.22) in [3]) that, for
any vector field Y on N ,

f−1
(
∇NfξY

)
= E(ξ)fΞY , where ΞY (f) ≡ f−1Yπf, (2.1)

we see that, for fξ ∈ Tπ(f)M ,

f−1∇Nfξ(ΠY ) =
(
E(ξ)fΠ̂

)
f−1Yπf + Π̂f

(
f−1∇NfξY

)
.

Hence, by (1.2),

Ŝf(ξ) ≡ f−1◦Sπf(fξ) ◦ f = E(ξ)fΠ̂

for f ∈ π−1(M) and ξ ∈ f−1(TπfM). (2.2)

Next, observe that π−1(M) is a submanifold of O(N ). In fact, for f ∈
π−1(M) and Xf ∈ TfO(N ), Xf ∈ Tf

(
π−1(M)

)
if and only if Π̂⊥

f φ(Xf) = 0.
Thus, for each ξ ∈ Rn,

f ∈ π−1(M) �−→ Ê(ξ)f ≡ E
(
Π̂fξ

)
f
∈ TfO(N )

is a vector field on π−1(M). Furthermore, if ϕ ∈ C2(N ; R), then, by (2.2),

Ê(ξ)f ◦ Ê(η)(ϕ ◦ π) = E(Πfξ)f ◦ E(Πfη)(ϕ ◦ π) + E
(
Ŝf(ξ)η

)
f
(ϕ ◦ π).
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At the same time, because an alternative way to describe hessNx ϕ is to say
that

hessNx ϕYx = ∇YxgradNϕ,

(2.1) leads to

〈fΠ̂fξ, hessNπfϕfΠ̂fη〉 = E(Πfξ)f ◦ E(Πfη)(ϕ ◦ π).

Hence, after combining this with the preceding, (1.9) says that

〈fΠ̂fξ, hessMπfϕfΠ̂fη〉 = Ê(ξ)f ◦ Ê(η)(ϕ ◦ π), f ∈ π−1(M) (2.3)

In particular, this means that for any orthonormal basis (e1, . . . , en) in Rn,

(
∆Mϕ

)
◦ π =

n∑
i=1

Ê(ei)2ϕ ◦ π on π−1(M). (2.4)

3. Brownian Motion, an Extrinsic Approach.

The formula (2.4) provides the basis for a construction of Brownian motion
on M via “projection” of the Brownian motion on N .

To see what we have in mind, recall (cf. §8.2 in [3]), one way to construct
the Brownian motion on N starting at a point x is to roll a Euclidean
Brownian motion (i.e., a Wiener process) on TxN onto N . That is, if w is a
“piecewise smooth” Wiener path in R

n and f ∈ π−1(x), then we determine
pN( · , f,w) by

ṗN(t, f,w) = E(ẇ)pN (t,f,w) with pN(0, f,w) = f

and set pN(t, f,w) = π ◦ pN(t, f,w). If almost every Wiener path were
actually piecewise smooth, the distribution of w� pN( · , f,w) under Wiener
measure would be the distribution of Brownian motion on M starting at x.
Because almost no Wiener is anywhere smooth, the preceding has to be
interpretted by an appropriate limit procedure in which paths w are first
replaced by polygononal approximations. The result of this procedure is
equivalent to saying that we want to take w � pN( · , f,w) to be the solution
to the Stratonovich stochastic differential equation

dpN(t, f,w) =
n∑
i=1

E(ei)pN (t,f,w) ◦ d
(
ei,w(t)

)
with pN (0, f,w) = f.



Brownian Motion on a Submanifold 171

Indeed, if one ignores problems coming from possible explosion, Itô’s formula
for Stratonovich calculus says that, for any Φ ∈ C2

c

(
O(N ); R

)
,

Φ
(
pN( · , f,w)

)
−
∫ t

0

(
1
2

n∑
1

E(ei)2pN (τ,f,w)Φ

)
dτ

is a martingale under Wiener measure. Thus, since, by another application
of (2.1), (

∆Nϕ
)
◦ π =

n∑
i=1

E(ei)2(ϕ ◦ π),

it is clear that

ϕ
(
pN (t, f,w)

)
−
∫ t

0

(
1
2∆Nϕ

)(
pN (τ, f,w)

)
dτ

is a martingale for each ϕ ∈ C2
c (N ; R). In other words, w� pN ( · , f,w) un-

der Wiener measure has the distribution of a Brownian motion onN starting
at x. Moreover, because pN( · , f,w) is the horizontal lift of pN ( · , f,w) to f

when w is piecewise smooth, it is reasonable to say that horizontal transport
along the Brownian curve pN ( · , f,w) � [0, t] is given by pN(t, f,w) ◦ f−1 even
when w is a generic Wiener path.

With the preceding in mind, we now suppose that x ∈ M and consider
the Stratonovich stochastic differential equation

dqM(t, f,w) =
n∑
i=1

Ê(ei)qM (t,f,w) ◦ d
(
ei,w(t)

)
. (3.1)

By precisely the same arguement as above, only this time using (2.4), we
see that w � qM ( · , f,w) ≡ π ◦ qM ( · , f,w) is distributed under Wiener
measure like a Brownian motion onM starting at x. Furthermore, it is again
reasonable to think of qM( · , f,w) as the horizontal lift to f of qN ( · , f,w).
Thus, qM (t, f,w) ◦ f−1 gives parallel transport along qM ( · , f,w) � [0, t] as a
path in N . However, it does not give parallel transport along qM ( · ,w) as a
path in M . Indeed, it will seldom even take TxM into TqM(t,f,w)M .

A Remark about Explosion: In the preceding discussion, we ignored the
question of explosion. Because we are assuming that M is imbedded in N ,
we can (cf. Theorem 3.64 in [3]) show that explosion never occurs if we can
check that, in the sense of distributions, ∆Mρ ≤ C(1 + ρ) on M for some
C <∞, where ρ(y) = distN(x, y)2 and distN (x, y) denotes the Riemannian
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distance in N between x and y. In view of (1.10), this is tantamount to
testing whether

TraceM
(
hessNρ

)
− Bρ ≤ C(1 + ρ)

in the sense of distributions. By the arguement in §8.4 of [3], the first term
on the left can be handled if there exists an α > 0 such that

m∑
i=1

〈
RN

(
Yy, (Ei)y

)
(Ei)y, Yy

〉
≥ −α

(
1 + ρ(y)

)
‖Yy‖2

for y ∈M and Yy ∈ TyN,
where

(
(E1)y, . . . , (Em)y

)
is used to denote an orthonormal basis in TyM .

Thus, if such an α exists, then non-explosion is guaranteed by the existence
of a β > 0 such that 〈B, gradNρ〉 ≥ −β(1 + ρ).

4. A Second, and More Geometrically Sound, Appraoch.

As we pointed out, although the qM ( · , f,w) is indeed Brownian motion on
M starting at πf, qM ( · , f,w) is the wrong lift of qM ( · , f,w) to f if one is
interested in parallel transport in M , as opposed to N . In addition, because
our construction of the m-dimensional Brownian path qM ( · , f,w) used the
n-dimensional Wiener path w, one suspects that there should be a tighter
construction of Brownian motion on M : a construction which involves only
an m-dimensional Wiener path.

Motivated by the preceding comments, we will now take a different tack.
To understand the origins of this new approach, set (cf. (2.2))

âf(ξ) ≡ Ŝf

(
Π̂fξ

)
◦
(
Π̂f− Π̂⊥

f

)
= f−1 ◦ aπf

(
Ππffξ

)
◦ f for f ∈ π−1(M). (4.1)

Using (1.9), it is a straight-forward matter to check that(
E(ξ) + λ

(
âf(ξ)

))
f
◦
(
E(η) + λ

(
â(η)

))
(ϕ ◦ π)

= 〈fξ, hessMπfϕfη〉 for f ∈ π−1(M) and ξ, η ∈ f−1(TπfM). (4.2)

Indeed, all that one needs to do is remember that vertical vectors kill ϕ ◦ π,
observe that

λ
(
âf(ξ)

)
f
◦ E(η) = E

(
âf(ξ)η

)
f
+ E(ξ)f ◦ λ

(
âf(η)

)
,

and note that, because Π̂⊥
f ξ = 0 = Π̂⊥

f η, âf(ξ)η = Ŝ(ξ)η. In particular, if
(e1, . . . , em) is an orthonormal basis for f−1(TπfM), then

(∆Mϕ) ◦ π(f) =
m∑
i=1

(
E(ei) + λ

(
â(ei)

)2

f
(ϕ ◦ π). (4.3)
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In order to base a construction of Brownian motion on (4.3), we will
make use of the information contained in the following simple lemmas.

Lemma 4.4. Given a piecewise continuously differentiable, continuous q :
[0,∞) −→ π−1(M), determine t ∈ [0,∞) �−→ Ôq(t) ∈ Hom(Rn; R

n) by

d

dt
Ôq(t) = âq(t)

(
φ(q̇(t)

)
Ôq(t) with Ôq(0) = I. (4.5)

Then Ôq(t) is an element of the orthognal group O(Rn) for each t ∈ [0,∞).
Moreover, if q is horizontal (i.e., ω(q̇(t)

)
≡ 0), then (cf. Lemma 1.7)

q(t) ◦ Ôq(t) ◦ q(0)−1 = Oπ◦q(t), t ∈ [0,∞), (4.6)

and so
Π̂q(t) ◦ Ôq(t) = Ôq(t) ◦ Π̂q(0), t ∈ [0,∞). (4.7)

Proof. Without loss in generality, we will assume that q is continuous differ-
entiable everywhere.

Because (cf. the first part of Lemma 1.7) the values of â are always in
the Lie algebra o(Rn) of skew symmetric operators, it is trivial to check
that Ôq(t) ∈ O(Rn) for all t ≥ 0. To check (4.6) when q is horizontal, let
ξ ∈ R

n be given, and set X(t) = q(t)Ôq(t)ξ ∈ Tπq(t)M . Then, because q is
horizontal,

DN

dt
X(t) = q(t)

d

dt
Ôq(t)ξ = q(t)âq(t)

(
φ(q̇(t)

)
Ôq(t)ξ = a

(
(π ◦ q)·(t)

)
X(t).

Since this means that X(t) = Oπ◦q(t)q(0)ξ, (4.6) follows. Finally, (4.7) is
immediate from (4.6) and the corresponding fact (cf. the last part of Lemma
1.7) for Oπ◦q(t). �

Lemma 4.8. Let p ∈ C
(
[0,∞); π−1(M)

)
be a piecewise continuously differ-

entiable, set p = π ◦ p, and let q be the horizontal lift of p to p(0). Then the
following are equivalent:

(1) ω
(
ṗ(t)

)
= âp(t)

(
φ(ṗ(t)

))
for all t ≥ 0 at which p is continuously differ-

entiable,

(2) p(t) = RÔq(t)q(t),

(3) Op(t) = p(t)p(0)−1.
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In particular, any one of these implies that Π̂p(t) = Π̂p(0) for all t ∈ [0,∞).

Proof. Again we may and will assume that p is continuously differentiable
everywhere.

The equivalence of (2) and (3) just a restatement of (4.6), and the final
conclusion is simply a restatement of (3). To prove the equivalence of (1)
and (2), first note that

(1) ⇐⇒ ṗ(t) = E
(
p(t)−1ṗ(t)

)
p(t)

+ λ
(
âp(t)

(
p(t)−1ṗ(t)

))
p(t)

.

Thus, it suffices to show that if r(t) ≡ RÔq(t)q(t), then

ṙ(t) = E
(
r(t)−1ṗ(t)

)
r(t)

+ λ
(
âr(t)

(
r(t)−1ṗ(t)

))
r(t)
.

But ṙ(t) is equal to(
RÔq(t)

)
∗E
(
q(t)−1ṗ(t)

)
q(t)

+ λ
(
Ôq(t)�âq(t)

(
q(t)−1ṗ(t)

)
Ôq(t)

)
r(t)

= E
(
r(t)−1ṗ(t)

)
r(t)

+ λ
(
âr(t)

(
r(t)−1ṗ(t)

))
r(t)
.

�

In order to bring out the goemetric content of the preceding lemmas,
we think of Rm as the subspace of ξ = (ξ1, . . . , ξn) ∈ Rn such that ξi = 0
for m < i ≤ n, take Π̂0 to be orthogonal projection from R

n onto R
m, and

introduce the space

ON (M) ≡
{
f ∈ π−1(M) : Π̂f = Π̂0

}
.

It should be clear that ON (M) is submanifold of O(N ). In fact, it is sub-
bundle whose base is M and fiber is

ORn
(Rm) ≡

{
O ∈ O(Rn) : Π̂0 ◦O = O ◦ Π̂0

}
.

To see this, let x ∈ M be given and note that there exists an open neigh-
borhood U of x in N on which there exist vector fields Ei, 1 ≤ i ≤ n, such
that

(
(E1)y, . . . , (En)y

)
is an orthonormal basis in Ty(N ) for all y ∈ U and

(Ei)y ∈ TyM for all y ∈ U ∩M and 1 ≤ i ≤ m. Now set

fy =
(
y,
(
(E1)y, . . . , (En)y

))
,
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and observe that(
y, O

)
∈ U ×O(Rn) �−→

(
y, ROfy

)
∈ π−1(U)(

y, O
)
∈ (U ∩M)×ORn

(Rm) �−→
(
y, ROfy

)
∈ π−1(U) ∩ ON (M)

are homeomorphic. Finally, let oRn
(Rm) denote the Lie algebra of a ∈ o(Rn)

such that Π̂0a = aΠ̂0, and note that oRn
(Rm) is the Lie algebra for the Lie

group ORn
(Rm).

Lemma 4.9. If f ∈ ON (M) and a ∈ o(Rn), then λ(a)f ∈ TfON (M) if and
only if a ∈ oRn

(Rm). Moreover, if

EM(ξ)f = E(ξ)f + λ
(
âf(ξ)

)
f

for f ∈ ON (M) and ξ ∈ R
m,

then EM (ξ)f ∈ TfON (M). Finally, for f ∈ ON (M) and Xf ∈ TfO(N ),
Xf ∈ TfON (M) if and only if

φ(Xf) ∈ R
m and ωM(Xf) ≡ ω(Xf)− âf

(
φ(Xf)

)
∈ oRn

(Rm),

in which case ξ = φ(Xf) and a = ωM(Xf) are the unique elements of Rm and
oRn

(Rm), respectively, such that Xf = EM(ξ)f + λ(a)f.

Proof. Let f ∈ ON (M). The fact that a ∈ o(Rn) is an element of oRn
(Rm) if

and only if λ(a)f ∈ TfON (M) is just a restatement of the fact that oRn
(Rm)

is the Lie algebra for ORn
(Rm). Next let ξ ∈ R

m. To see that EM (ξ)f ∈
TfON (M), we need only find a continuously differentiable p : [0,∞) −→
ON (M) such that p(0) = f and ṗ(0) = EM(ξ)f. To this end, determine
p : [0,∞) −→ π−1(M) by

ṗ(t) = Ê(ξ)p(t) + λ
(
âp(t)(ξ)

)
p(t)

with p(0) = f.

Clearly ṗ(0) = EM (ξ)f. In addition, ω
(
ṗ(t)

)
= âp(t)

(
φ(ṗ(t)

)
for all t ≥ 0,

and so, by the last part of Lemma 4.8, Π̂p(t) = Π̂p(0) = Π̂0 for all t ≥ 0. Thus
p(t) ∈ ON (M) for all t ≥ 0.

To complete the proof from here, let Xf ∈ TfO(N ) be given. Then
ξ = φ(Xf) and b = ω(Xf) are the unique elements of R

n and o(Rn) such that
Xf = E(ξ)f+λ(a)f. Obviously, Xf ∈ Tfπ

−1(M) if and only if ξ ∈ Rm. Hence,
if Xf ∈ TfON (M), and we write

Xf = EM(ξ)f + λ(b)f,

then a = b− âf(ξ) = ωM(Xf), and, because λ(a)f = Xf−EM (ξ)f ∈ TfON (M),
a ∈ oRn

(Rm). Conversely, if Xf = EM (ξ)f + λ(a)f for some ξ ∈ Rm and
a ∈ oRn

(Rm), then Xf ∈ TfON (M), ξ = φ(Xf), and a = ωM (Xf). �
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We are now in a position to achieve both the goals set at the opening of
the section. Namely, let w( · ) be an Rn-valued Wiener process, and choose
(e1, . . . , en) to be an orthonormal basis in R

n with ei ∈ R
m for 1 ≤ i ≤ m.

Given f ∈ ON (M), determine pM( · , f,w) by the Stratonovich stochastic
differential equation

dpM(t, f,w) =
m∑
i=1

EM (ei)pM(t,f,w) ◦ d(ei,w(t)) with pM(0, f,w) = f.

(4.10)
(Notice that, although w is Rn-valued, only the Rm-component Π̂0w enters
(4.10).) By the first part of Lemma 4.9, so long as it has not exploded,
t � pM(t, f,w) takes its values in ON (M). Furthermore, if pM( · , f,w) ≡
π ◦ pM( · , f,w), then, by (4.3), w � pM ( · , f,w) is a Brownian motion on
M starting at x ≡ πf; and the fact that pM(t, f,w) ∈ ON (M) becomes the
statement that

ΠpM(t,f,w) ◦ pM (t, f,w) = pM(t, f,w) ◦ Π̂f.

In fact, by (3) in Lemma 4.8, we know that

pM(t, f,w)f−1 = OpM( · ,f,w)(t) (4.11)

for piecewise smooth w’s, and so, even when w is a generic Wiener
path, we can use (4.11) to define OpM( · ,f,w)(t), in which case it is clear
that OpM( · ,f,w)(t) � TπfM gives us a notion of parallel transport along
pM( · , f,w) � [0, t] as a path in M .

5. The Relationship between the Constructions in §3 and §4.

It may be useful to point out how pM( · , f,w) and qM( · , f,w) are related.
The idea is that because (cf. Lemma 4.8) t� RÔq(t) converts the horizontal
lift q to O(N ) of a path p : [0,∞) −→M into its horizontal lift to ON (M),
the same ought to be true for Brownian paths.

Thus, choose an orthonormal basis (e1, . . . , en) in R
n so that ei ∈ R

m

when 1 ≤ i ≤ m. Next, given f ∈ ON (M), determine qM( · , f,w) relative to
(e1, . . . , en) by (3.1). At the same time, consider the Stratonovich stochastic
differential equation

dÔ(t, f,w) =
n∑
i=1

âqM (t,f,w)(ei)Ô(t, f,w) ◦ d(ei,w(t)
)

with Ô(0, f,w) = I.
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Obviously, Ô(t, f,w) plays the role of ÔqM(t,f,w) for generic Wiener paths w.
Thus, by Lemma 4.8, we should expect that

w� r( · , f,w)≡ RÔ( · ,f,w)q
M ( · , f,w) (5.1)

should have the same distribution as w � pM( · , f,w). (Indeed, at first,
one might have guessed that r( · , f,w) would be even equal to pM( · , f,w).
However, as we are about to see, that guess ignores a required rotation of
w.) To test this expectation, first note that, as a consequence of (2)⇐⇒ (3)
in Lemma 4.8, we know that r( · , f,w) is a path in ON (M). Second, by Itô’s
formula for Stratonovich calculus,

dr(t, f,w) =
n∑
i=1

(
Ê
(
Ô(t, f,w)�ei

)
r(t,f,w)

+ λ
(
Ô(t, f,w)�âqM(t,f,w)(ei)Ô(t, f,w)

))
r(t,f,w)

◦ d
(
ei,w(t)

)
.

Next observe that

Ô(t, f,w)�âqM (t,f,w)(ei)Ô(t, f,w) = âr(t,f,w)

(
Ô(t, f,w)�ei

)
.

Further, observe that Π̂r(t,f,w) = Π̂0 is equivalent to

Π̂qM(t,f,w)Ô(t, f,w) = Ô(t, f,w)Π̂0. (5.2)

Hence, we have now shown that

dr(t, f,w) =
m∑
i=1

EM
(
Ô(t, f,w)�ei

)
r(t,f,w)

◦ d
(
ei,w(t)

)
=

m∑
i,j=1

EM (ej)r(t,f,w) ◦ d
(
ej ,W(t)

)
,

where

W(t) ≡
n∑
i=1

∫ t

0

(
Ô(τ, f,w)�ei, ej

)
◦ d
(
ei,w(τ)

)
.

Hence, if we can check that Π̂0W = Π̂0w̃ where w̃ is an R
n-valued Wiener

process, we will know that

RO( · ,f,w)q
M ( · , f,w) = pM

(
· , f, w̃

)
, (5.3)
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and therefore that w � RO( · ,f,w)q
M ( · , f,w) does indeed have the same

distribution as w� pM( · , f,w).
To see that Π̂0W is an R

m-valued Wiener path, note that

d
(
Π̂0W

)
=Π̂0Ô(t, f,w)� dw(t)

− 1
2

(
n∑
i=1

Π̂0Ô(t, f,w)�âqM (t,f,w)(ei)ei

)
dt,

where the first term on the left is an Itô differential. Second, by (5.2),

−
n∑
i=1

Π̂0Ô(t, f,w)�âqM (t,f,w)(ei)ei

=
n∑
i=1

Ô(t, f,w)�âqM (t,f,w)(ei)Π̂
⊥
qM(t,f,w)ei.

Finally, because, for each t and w, the expressions in the preceding
are independent of the choice of the orthonormal basis (e1, . . . , en), by
choosing the basis so that each element is either orthogonal to or in
qM (t, f,w)−1TqM (t,f,w)M , we see that the right hand side must vanishes iden-
tically. In other words,

Π̂0W = Π̂0w̃ when w̃(t) ≡
∫ t

0
Ô(τ, f,w) dw(τ). (5.4)

Because Ô( · , f,w) takes its values in O(Rn) and the preceding integral is
taken in the sense of Itô, w̃ is an Rn-valued Wiener process.

Remark: It is amusing to recognize that the difference between w̃(t) and
W(t) is precisely

1
2

∫ t

0
Ô(τ, f,w)�qM (τ, f,w)−1BqM (τ,f,w) dτ

=
1
2

∫ t

0
r(τ, f,w)−1BqM (τ,f,w) dτ,

where (cf. (1.11)) B is the mean curvature vector.

6. A Technical Addendum about Cartan’s Structural
Equations and Gauss’s Formula.

Use O(M) to denote the bundle of orthonormal frames over M , and define
the solder form φ and connection 1-form ω accordingly (cf. page 181 of
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[3]). Next, let (e1, . . . , en) be an orthonormal basis in R
n with ei ∈ R

m

for 1 ≤ i ≤ m. It should be apparent that the map F : ON (M) −→
O(M) which takes f ∈ ON (M) into

(
πf, (fe1, . . . , fem)

)
∈ O(M) is a smooth

surjection which preserves the bundle structure. In addition, one sees that
φM ≡ φ � ON (M) and ωM ≡ Π̂0 ◦ ω ◦ Π̂ are, respectively, the pullbacks
under F of the solder form φ and connection 1-form ω on O(M). Similarly,
for each ξ ∈ Rm, F∗EM (ξ)f is the horizontal lift to F (f) ∈ O(M) of F (f)ξ ∈
TπfM . In other words, F∗EM(ξ) is not only well-defined, it is the canonical
horizontal vector field on O(M) corresponding to (ξ1, . . . , ξm). In particular,
−ω

(
F∗
[
EM (ξ),EM(η)

])
is the curvature 2-form (cf. (8.44) in [3]) on O(M)

at F (f).
All the above considerations should make one suspect that φM and ωM

might satisfy the Cartan Structural equations (cf. page 194 in [3]), and that
the computation of

[
EM (ξ),EM(η)

]
ought to lead to an interesting form of

Gauss’s formula (cf. (3.27) in [2]). The key to verifying these suspicions is
contained in the following lemma.

Lemma 6.1. There is a map

f ∈ ON (M) �−→ ΩM
f ∈ Hom

(
R
m ×R

m; oRn
(Rm)

)
such that, for each (ξ, η) ∈ R

m × R
m[

EM (ξ),EM(η)
]
f
= −λ

(
ΩM

f (ξ, η)
)
f
, f ∈ ON (M). (6.2)

Moreover, for each ξ ∈ Rm and a ∈ o(Rn),

λ(a)fâ(ξ) =
[
âf(ξ), a

]
+ âf(aξ), f ∈ ON (M) (6.3)

Finally, if ξ ∈ R
m and a ∈ oRn

(Rm), then[
λ(a),EM(ξ)

]
f
= EM (aξ)f. (6.4)

Proof. Proving the existence of ΩM with the required properties is equivalent
to checking that

[
EM (ξ),EM(η)

]
f
is vertical. But, by (4.2), we know that

EM(ξ)f ◦ EM (η)(ϕ ◦ π) = 〈fξ, hessMπfϕfη〉,

which, because the connection on M is Levi-Civita’s, means that
π∗
[
EM (ξ),EM(η)

]
f
= 0.
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To check (6.3), simply note that

λ(a)fâ(ξ) =
d

ds
e−saâf

(
esaξ

)
f
esa
∣∣∣
s=0

=
[
âf(ξ), a

]
+ âf(aξ).

To prove (6.4), let a ∈ oRn
(Rm) be given, and use (8.5) and (8.15) in [3]

together with (6.2) above to justify[
λ(a),EM(ξ)

]
f
= E(aξ)f +

[
λ(a), λ

(
â(ξ)

)]
f

= EM (aξ)f + λ
([
a, âf(ξ)

]
+ λ(a)â(ξ)− âf(aξ)

)
f
= EM (aξ)f.

�

To see that Cartan’s structural equations hold for φM and ωM , one can
now use exactly the same procedure as was used on page 194 of [3]. That
is, one calculates dφM(X,Y) and dωM(X,Y) at f ∈ ON (M) by considering
what happens when X and Y are either EM (ξ), for some ξ ∈ Rm. or λ(a), for
some a ∈ oRn

(Rm). By using (8.5) in [3] together with (6.2) and (6.4) above,
these computations lead immediately to the Cartan structural equations:

dφM = −ωM ∧ φM and dωM = ωM ∧ ωM + ΩM ◦ φM , (6.5)

where ΩM ◦ φM(X,Y) ≡ ΩM
(
φM (X), φM(Y)

)
.

Finally, we want to find an expression for ΩM in terms of the curvature
2-form Ω for O(N ). To this end, observe that[

EM(ξ),EM(η)
]

=
[
E(ξ),E(η)

]
+
[
E(ξ), λ

(
â(η)

)]
+
[
λ
(
â(ξ)

)
,E(η)

]
+
[
λ
(
â(ξ)

)
, λ
(
â(η)

)]
. (*)

By definition, [
E(ξ),E(η)

]
= −λ

(
Ω(ξ, η)

)
. (a)

By (8.5) in [3], [
E(ξ), λ

(
â(η)

)]
+
[
λ
(
â(ξ)

)
,E(η)

]
= E

(
â(η)ξ − â(ξ)η

)
+ λ

(
E(ξ)â(η)− E(η)ξ

)
.

Notice that, because fξ, fη ∈ TπfM , (1.6) implies that

âf(ξ)η − âf(η)ξ = f−1
(
S(fξ)fη − S(fη)fξ

)
= 0.
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At the same time, by (2.2),

E(ξ)â(η)− E(η)â(ξ) =
([

E(ξ),E(η)
]
Π̂
)
◦
(
Π̂− Π̂⊥)+ 2

[
Ŝ(η), Ŝ(ξ)

]
= −

[
Π̂,Ω(ξ, η)

]
◦
(
Π̂ − Π̂⊥)− 2

[
Ŝ(ξ), Ŝ(η)

]
.

Thus,[
E(ξ), λ

(
â(η)

)]
+
[
λ
(
â(ξ)

)
,E(η)

]
= −λ

([
Π̂,Ω(ξ, η) ◦ (Π̂− Π̂⊥)

]
+ 2

[
Ŝ(ξ), Ŝ(η)

])
. (b)

Finally, by (6.3),[
λ
(
â(ξ)

)
, λ
(
η
)]

= λ
([
â(ξ), â(η)

]
+ λ

(
â(ξ)

)
â(η)− λ

(
â(η)

)
â(ξ)

)
= −λ

([
â(ξ), â(η)

])
= λ

([
Ŝ(ξ), Ŝ(η)

])
.

Hence, when we put this together with (a) and (b) and plug them into (*),
we conclude that[

EM (ξ),EM(η)
]

= −λ
(
Ω(ξ, η) +

[
Π̂,Ω(ξ, η)

]
◦ (Π̂− Π̂⊥) +

[
Ŝ(ξ), Ŝ(η)

])
= −λ

(
Π̂ ◦ Ω(ξ, η) ◦ Π̂ + Π̂⊥ ◦ Ω(ξ, η) ◦ Π̂⊥ +

[
Ŝ(ξ), Ŝ(η)

])
.

This not only give another proof that
[
EM (ξ),EM(η)

]
is vertical, it shows

that

ΩM (ξ, η) = Π̂ ◦Ω(ξ, η) ◦ Π̂ + Π̂⊥ ◦ Ω(ξ, η) ◦ Π̂⊥ +
[
Ŝ(ξ), Ŝ(η)

]
. (6.6)

To see that (6.6) gives the Gauss formula relating the Riemann curvature
RM on M to the Riemann curvature RN on N , recall (cf. (8.54) in [3]) that
the Cartan structural equations lead to

RN(Xπf, Yπf) = f ◦ Ω
(
f−1Xπf, f

−1Yπf

)
◦ f−1

for all f ∈ O(N ) and Xπf, Yπf ∈ TπfN . In the same way, (6.5) shows that

RM(Xπf, Yπf) = f ◦ Π̂f ◦ ΩM
(
f−1Xπf, f

−1Yπf

)
◦ Π̂f ◦ f−1

for all f ∈ ON (M) and Xπf, Yπf ∈ TπfM . Hence, (6.6) leads to Gauss’s
formula

RM
(
Xx, Yx

)
= Πx ◦

(
RN

(
Xx, Yx

)
+
[
Sx(Xx), S(Yx)

])
� TxM (6.7)

for all x ∈M and Xx, Yx ∈ TxM .
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