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1. Introduction.

We consider solutions u of the logarithmic fast diffusion equation

∂u

∂t
= ∆ logu (1.1)

on the plane R2, with initial data f ≥ 0 of finite mass. ∆ denotes the
Euclidean Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2

with respect to the standard metric ds2 = dx2+dy2. It has been observed by
S. Angenent and L. Wu [17], [18] that equation (1.1) represents the evolution
of the conformally equivalent metric g with

ds2 = u (dx2 + dy2)

under the Ricci Flow, which evolves a metric ds2 = gij dx
idxj by its Ricci

curvature Rij with
∂gij
∂t

= −2Rij. (1.2)

The equivalence follows easily from the observation that the conformal metric
gij = u Iij has scalar curvature R = −(∆ logu)/u and in two dimensions
Rij = 1

2 Rgij. We use this equivalence to deduce geometric estimates on the
solution u near its vanishing time T .

Equation (1.1) arises also in physical applications, as a model for long
Van-der-Wals interactions in thin films of a fluid spreading on a solid surface,
if certain nonlinear fourth order effects are neglected [6], [2], [3]. In that
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framework u(x, t) denotes the height of the liquid film at the point x and
the instant t.

Equation (1.1) can be also understood as the formal limit, as m→ 0, of
the fast diffusion equation

∂u

∂t
= ∆

(
um

m

)
(1.3)

as shown in [12] and [16]. Notice that the exponent m = 0 in dimension
n = 2 is critical for equation (1.3), since m = (n− 2)/n defines the critical
exponent for (1.3) in the sense of [11].

We will consider solutions with finite total mass

A =
∫

R2

u dxdy <∞.

Geometrically A is the area of the plane in the conformal metric g. Since
u goes to zero when (x, y) tends to infinity, the equation is not uniformly
parabolic. The equation becomes singular, when u tends to zero. This results
in many interesting phenomena, in particular solutions are not unique [7].
It is shown in [7] that given an initial data f ≥ 0 with finite mass and a
constant λ ≥ 0, there exists a solution uλ of equation (1.1) with initial data
uλ(·, 0) = f , satisfying

d

dt

∫
R2

uλ(x, t) dx = −2π(2 + λ).

The solution uλ exists up to the exact time Tλ, which is determined in terms
of the initial mass and λ by

Tλ =
1

2π(2 + λ)

∫
R2

f(x) dx.

We restrict our attention to the maximal solutions u of (1.1), which
vanish at the exact time

T =
1
4π

∫
R2

f(x) dx.

Geometrically this corresponds to the condition that the conformal metric
is complete.

Our results consist of upper and lower bounds on the geometric width w
of the solution and on the maximum curvature R. Precise pointwise bounds
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on the solution u near its vanishing time were derived in the rotationally
symmetric case by King [13].

Before we state our main results, let us define the width w of a solution
u. Let F : R

2 → [0,∞) denote a proper function on the plane, i.e., a closed
function F such that F−1(a) is compact for every a ∈ [0,∞). We define the
width of F to be the supremum of the lengths of the level curves of F

w(F ) = sup
c
L {F = c}.

Then, we define the width w of a metric on the plane to be the infimum

w = inf
F
w(F )

over all smooth proper functions F . Note that for a solution u the length of
a curve Γ in the conformal metric is just

L(Γ) =
∫

Γ

√
u dσ

where dσ is the standard Euclidean length in the plane. Thus the width w
of the metric ds2 = u (dx2 + dy2) on the plane is given by

w = inf
F

sup
c

∫
Γ

√
udσ.

As we noted already, the maximal solution will exist only up to some time
T < ∞ when the area A goes to zero. We recall [7] that for the maximal
solution

dA

dt
= −

∫
Rda = −4π

so that T = A0/4π, where A0 is the initial area, and at each time

A = 4π (T − t).

Our estimates will only depend on the time to collapse T − t. However,
they do not scale in the usual way. We will first show that the width w is
proportional to T − t.

Theorem 1.1. There exist constants γ > 0 and C <∞ for which

γ (T − t) ≤ w ≤ C (T − t) (1.4)

on 0 < t ≤ T .
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Let us note that in the case where the solution u = u(r, t) is radially
symmetric the width w of the metric is given by 2πr

√
u, and hence (1.4)

implies the pointwise bound

γ (T − t) ≤ max
r≥0

r
√
u(r, t) ≤ C (T − t)

on the solution u.
We will also show that the maximum curvature R is proportional to

1/(T − t)2. This implies that the blow up of the curvature is of type II.

Theorem 1.2. There exist constants γ > 0 and C <∞ with

γ

(T − t)2 ≤ Rmax ≤
C

(T − t)2 (1.5)

on 0 < t ≤ T .

Lets us note that since R = −(∆ logu)/u the bound on R also provides
information about the pointwise behavior of u near its vanishing time T .

Acknowledgment. We are grateful to Peter Li for many useful suggestions
and enlightening discussions in the course of this work.

2. The Upper Bound on the width w.

In this section we will prove the upper bound

w ≤ C (T − t) (2.1)

on the width w. The proof involves the construction of a Busemann function
F with

w(F ) ≤ C A (2.2)

where A denotes the area of the plane under a conformal metric g. This is
just a statement about the geometry of metrics on the plane with finite area
and scalar curvature bounded below, and uses no other fact about the flow.

Let g be a metric on the plane with finite area and sectional curvature
K ≥ −1. Schoen and Yau [15] prove that for any complete metric g on a
manifold M of dimension n with Ricci curvature bounded below by

Ric ≥ −(n − 1) k2
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for a constant k, if s(Q) = d(P,Q) is the geodesic distance to a fixed point
P , then at any point where s is smooth

∆gs ≤ (n− 1) [ k+
1
s

].

In our case, where n = 2, k = 1, we obtain the inequality

∆gs ≤ 1 +
1
s
. (2.3)

However (2.3) does not make sense at points in the cut locus set Cut(P )
of P where s is not smooth. Nevertheless, one can follow the argument in
[15] (Chapter I, Proposition 1.1) to show that (2.3) holds globally in the
distributional sense. For the convenience of the reader, we will next present
an outline of this argument.

For any point P on our surface Σ (equivalent to R2 equipped with the
metric g) we define the map s(Q) = d(P,Q) for all Q ∈ Σ, where d(·, ·)
denotes the geodesic distance with respect to the metric g. Then s(Q) is a
Lipschitz continuous function on Σ, and hence differentiable almost every-
where.

Consider the exponential map expP : TPΣ→ Σ. For a vector X ∈ TPΣ
with ‖X‖ =< X,X >

1
2 = 1, let γ(t) be the unique geodesic starting from P

along the directionX (i.e., γ(0) = P , γ ′(0) = X). Then we have expP (tX) =
γ(t), for t > 0. When t is small, γ is the unique minimal geodesic joining
P and expP (tX), also d expP |tX : TtX(TPΣ)→ Tγ(t)(Σ) is an isomorphism.
However, as t increases these properties may be violated. Let

t0 = sup{ t > 0 : γ is the unique minimal geodesic joining P and γ(t)}.

If t0 < ∞, then γ(t0) is called a cut point of P . The set of all cut points
of P is called the cut locus and denoted by Cut(P ). If we denote by SP =
{X ∈ TP (Σ) : ‖X‖ = 1 }, it is clear that for any X ∈ SP there can be at
most one cut point on the geodesic expP (tX), t > 0. If expP (t0X) = Q is
a cut point of P then we set ζ(X) = d(P,Q); if there is no cut point we
set ζ(X) = ∞. Since Σ is 2-dimensional, we can identify X ∈ SP with the
angle θ ∈ [0, 2π) of X from a fixed direction. Hence ζ can be identified as a
2π-periodic function ζ̄(θ), θ ∈ R. Define

EP = { tX : 0 ≤ t < ζ(X), X ∈ SP } = { (ρ, θ) : ρ < ζ̄(θ) }.

Then it can be shown that expP : EP → expP (EP ) is a diffeomorphism.
Clearly, Cut(P ) = ∂expP (EP ). Also, Cut(P ) has 2-dimensional measure
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zero. In addition, it can be shown that the function ζ(X) = ζ̄(θ) is smooth
and corresponds to points of the cut locus with exactly two distinct mini-
mizing geodesics, except of a set Λ′ (corresponding to the singular part of
the cut locus Λ) which has Hausdorff measure H1(expP (Λ′)) = H1(Λ) = 0.

We are now ready to show that (2.3) holds in the sense of distributions.
Let

Ω = expP (EP ). (2.4)

Then Σ = Cut(P ) ∪ Ω and the exponential map expP : EP → Σ \ Cut(P )
provides a maximal normal coordinate chart at P . Let φ ∈ C∞

0 (Σ), with
φ ≥ 0. Since Cut(P ) has measure zero we have∫

Σ
s∆φ =

∫
Ω
s∆φ.

Set C = Cut(P )\Λ (the regular part of the cut locus). The set C corresponds
to an open set C′ in θ where ζ̄(θ) is smooth.

Approximate the function ζ̄(θ) by a sequence of smooth functions ζ̄ε(θ),
such that ζ̄ε ↑ ζ̄. Since ζ̄ is smooth on C′, we have that ζ̄ε → ζ̄ in C∞ on
compacts of C′. Setting

Ωε = expP (Eε
P ); Eε

P = { (ρ, θ) : ρ < ζ̄ε(θ) }

it is clear that ∫
Ωε

s∆gφ→
∫

Ω
s∆gφ, as ε→ 0.

On the other hand, since s is smooth on Ωε, we may apply Green’s formula
to get ∫

Ωε

s∆gφ =
∫

Ωε

φ∆gs +
∫
∂Ωε

s
∂φ

∂νε
−
∫
∂Ωε

φ
∂s

∂νε
. (2.5)

The last term in the above identity is nonnegative since the star-shapeness
of Eε

P implies that ∂s/∂νε > 0 on ∂Ωε. To control the other boundary term,
we write ∂Ωε = Cε ∪Λε, with Cε, Λε approximating the regular part C and
singular part Λ of the cut locus respectively, and H1(Λε) → 0 as ε → 0
(since H1(Λ) = 0). Then∫

Λε

s
∂φ

∂νε
→ 0, as ε→ 0

since H1(Λε)→ 0, and∫
Cε

s
∂φ

∂νε
→
∫
C

s
∂φ

∂νε
= 0, as ε→ 0
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because of cancellation in pairs (since points in C have exactly two distinct
minimizing geodesics). Hence, by taking the limit ε → 0 in (2.5) and using
the a.e pointwise bound (2.3) we conclude that∫

Σ
s∆gφ =

∫
Ω
s∆gφ =

∫
Ωε

∆gs φ ≤
∫

Ω
(1 +

1
s
) φ

for all φ ∈ C∞
0 (Σ), φ ≥ 0, showing that (2.3) holds globally on Σ in the

distributional sense.
We will now follow a similar approximation as above to show that if

s(Q) = d(P,Q) is the distance to a fixed point P , then for any constant
c > 0 ∫

s≤c
∆gs = L({ s = c}) (2.6)

with L({ s = c}) denoting the geodesic length of the set { s = c} in the
metric g. Let Ω be defined by (2.4) and set Ω(c) = Ω ∩ {s ≤ c}. Then

Ω(c) = expP ({ (ρ, θ); ρ < η(θ) })

with η̄(θ) = min(ζ̄(θ), c), ζ̄ defined as above. In addition∫
s≤c

∆gs =
∫

Ω(c)
∆gs.

Consider next the sets:
A = { the points where s = c in Σ \ Cut(P ) }
B = { the points where s = c on the regular part of Cut(P ) }
C = { the points where s < c on the regular part of Cut(P ) }
D = { the points where s ≤ c on the singular part of Cut(P ) }.
Notice that the sets A and C correspond (via the exponential map expP )

to open sets A′ and C′ in θ such that η̄ = c is constant in A′ and smooth in
C′. Hence, we can approximate the function η̄(θ) by a sequence of smooth
functions η̄ε ↑ η̄ such that η̄ε = c in A′ and η̄ε → η̄ in C∞ on compacts of
C′. Set

Ωε(c) = expP ({ (ρ, θ); ρ < η̄ε(θ) }).

Since s is smooth on Ωε(c), we may apply Green’s formula to get∫
Ωε(c)

∆gs =
∫
∂Ωε(c)

∇gs ·N. (2.7)
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By the previous discussion, we may express ∂Ωε(c) as ∂Ωε(c) = Aε ∪ Bε ∪
Cε ∪Dε such that H1(Bε ∪Dε)→ 0, as ε→ 0 and∫

Aε

∇gs ·N →
∫
A
∇gs ·N =

∫
{s=c}

∇gs ·N = L({s = c})

(since ∇gs ·N = 1) while∫
Cε

∇gs ·N →
∫
C
∇gs ·N = 0

due to cancellation in pairs. Hence we conclude (2.6).

Next choose an origin 0 and a sequence of points Pj → ∞, and for any
point Q define the Busemann function

F (Q) = lim
j→∞

(sj(Q)− sj(0))

where sj(Q) = d(Pj, Q) is the distance to the point Pj . By the triangular
inequality

|d(Pj, Q)− d(Pj, 0)| ≤ d(0, Q).

Hence, the Busemann function F (Q) is well defined. Let us denote by Fj(Q)
the function

Fj(Q) = sj(Q)− sj(0).

Then by (2.3) the estimate

∆gFj ≤ 1 +
1

sj(Q)

holds in the distributional sense. Hence, we may apply (2.6) to get that

L({Fj = c }) =
∫∫

{Fj≤c }
∆gFj ≤

∫∫
{Fj≤c }

(
1 +

1
sj(Q)

)
da.

Taking the limit j →∞, and using that on the complete metric g, the limit
limj→∞ sj(X) =∞, we finally obtain the bound

L{F = c } ≤
∫∫

{Fj≤c }
1 da = A{F ≤ c }

where L{F = c } is the length of the level curve of F and A{F ≤ c } is
the area inside. If the sectional curvature K satisfies K ≥ −κ, instead of
K ≥ −1, we obtain the bound

L{F = c } ≤
√
κA{F ≤ c } (2.8)
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since the sectional curvature K scales like 1/L2.
It is shown in [8] that for any solution u to the Ricci flow on the plane,

the scalar curvature R = 2K evolves by

∂R

∂t
= ∆gR+R2.

It follows by the maximum principle that the minimum scalar curvature
satisfies

R ≥ −1
t
.

Observing that R = −(∆ logu)/u, the above bound is nothing but the well
known Aronson-Bénilan inequality [1] ut ≤ 1/t. If we are at least half-way
to the time of collapse t ≥ T/2, then R ≥ −2/T and K ≥ −1/T . Hence, by
(2.8)

w(F ) = sup
c
L{F = c } ≤ 1√

T
sup
c
A{F ≤ c } ≤ 4 π√

T
(T − t)

which gives the desired bound

w = inf
F
w(F ) ≤ C (T − t).

3. The lower bound on the width.

The lower bound w ≥ γ (T − t) on the width w will follow from the isoperi-
metric estimate similar to the one in [9], but with different scaling to reflect
the behavior at infinity. Any simple curve Γ with length L(Γ), divides the
plane into two regions, one inside Γ with area Ain(Γ) and one outside with
area Aout(Γ). We define the isoperimetric ratio

I(Γ) = L(Γ)
(

1
Ain(Γ)

+
1

Aout(Γ)

)
and let

I = inf
Γ
I(Γ)

be the smallest isoperimetric ratio over all curves Γ. In the case of S2 we
used in [9] the natural scaling L(Γ)2, since area scales like length squared;
but here we see that L(Γ) is proportional to Aout.

Lemma 3.1. For any maximal solution u to the Ricci flow on the plane
satisfying u ≤ C0/(r2 log2 r), at t = 0, the isoperimetric ratio I is bounded
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below, up to the collapsing time T , i.e., there exists a constant α > 0 for
which

I(t) := inf
Γ
L(Γ)

(
1

Ain(Γ)
+

1
Aout(Γ)

)
≥ α > 0 (3.1)

on 0 ≤ t ≤ T .

Before we proceed with the proof of the Lemma, let us state, for the
convenience of the reader, an a’priori pointwise estimate on the solution u,
from above an below, shown in [16].

Proposition 3.2 ([16]). For any maximal solution to equation (1.1) on the
plane, satisfying the initial bound

u ≤ C0

r2 log2 r
, at t = 0, (3.2)

there exists uniform positive constants C and c and constants R(t), depend-
ing on t, such that the pointwise bounds

u ≤ C

r2 log2 r
, r > 1 (3.3)

and
u ≥ c

r2 log2( r
R(t))

r > R(t) (3.4)

hold for all 0 ≤ t ≤ T , up to the vanishing time T of u.

Proof of Lemma 3.1. The bound from above (3.3) shows that the area
outside of radius r > 1 is bounded above by

Aout ≤
C

log r

while the lower bound (3.4) shows that any curve enclosing the origin at
radius no more than r, with r >> R(t), has length

L(Γ) ≥ c

log r + logR(t)
.

Hence, for each time 0 < t < T , as r → ∞, the isoperimetric ratio remains
bounded below away from zero, uniformly in time. Moreover, I is bounded
below away from zero at any time t < T . We only need to show that I(t)
does not decay to zero, as t → T , assuming that at each time t < T , the
minimum of the isoperimetric ratio I(t) is achieved at a curve Γ.
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To this end, we will prove any 0 < t < T , I(t) satisfies the differential
inequality

dI(t)
dt
≥ −C I3 (3.5)

for some constant C < ∞. This will prevent I(t) from going down to zero
at the time T .

Let Γ be an optimal curve at time t, with 0 < t < T and let Γ(s) be
the parallel curve to Γ at distance s, outside for s > 0 and inside for s < 0.
Then, as shown in [9], the length L of Γ satisfies the parabolic equation

∂L

∂t
=
∂2L

∂s2
(3.6)

under the Ricci Flow. We also have

∂Ain
∂s

= L and
∂Aout
∂s

= −L.

Moreover, for the Ricci Flow (with R = 2K)

∂Ain
∂t

= −2
∫∫

in

K da and
∂Aout
∂t

= −2
∫∫

out

K da.

By the Gauss-Bonnet Theorem, we have∫
in
K da+

∫
Γ
k ds = 2π

and ∫
out

K da−
∫

Γ
k ds = 0.

since the inside disc has Euler class 1 and the outside annulus has Euler class
0. Hence, from the above formulas, we conclude

−1
2
∂Ain
∂t

+
∫

Γ
k ds = 2π

while
1
2
∂Aout
∂t

+
∫

Γ
k ds = 0.

Moreover, the first variation formula for arc-length gives

∂L

∂s
=
∫

Γ
k ds.
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Combining these results gives

∂Ain
∂t

= 2
∂L

∂s
− 4π and

∂Aout
∂t

= −2
∂L

∂s
.

Now we can compute the evolution of I . Since

log I = logL+ log(Ain +Aout)− logAin − logAout

we find that

1
I

∂I

∂t
=

1
L

∂L

∂t
− 4π
Ain + Aout

−
2 ∂L
∂s − 4π
Ain

+
2 ∂L
∂s

Aout
(3.7)

while
1
I

∂I

∂s
=

1
L

∂L

∂s
+ 0− 1

Ain
L+

1
Aout

L (3.8)

and

1
I

∂2I

∂s2
− 1
I2

(
∂I

∂s

)2

=
1
L

∂2L

∂s2
− 1
L2

(
∂L

∂s

)2

+
L2

A2
in

+
L2

A2
out
− 1
Ain

∂L

∂s
+

1
Aout

∂L

∂s
.

(3.9)

At the maximum of I we have ∂I/∂s = 0. Hence, (3.8) gives

∂L

∂s
= L2

(
1
Ain
− 1
Aout

)
(3.10)

Combining (3.7), (3.9) and (3.10) we obtain

1
I

(
∂I

∂t
− ∂2I

∂s2

)
≥ 1
L

(
∂L

∂t
− ∂2L

∂s2

)
+ L2

[(
1
Ain
− 1
Aout

)2

−
(

1
A2

in
+

1
A2

out

)]
.

(3.11)

Equations (3.6) and (3.11) imply

1
I

(
∂I

∂t
− ∂2I

∂s2

)
≥ L2

[(
1
Ain
− 1
Aout

)2

−
(

1
A2

in
+

1
A2

out

)]
. (3.12)

We can easily estimate(
1
Ain
− 1
Aout

)2

−
(

1
A2

in
+

1
A2

out

)
≥ −C

(
1
Ain

+
1

Aout

)2
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and finally obtain the inequality

1
I

(
∂I

∂t
− ∂2I

∂s2

)
≥ −C L2

(
1
Ain

+
1

Aout

)2

= −C I2

or
∂I

∂t
≥ ∂2I

∂s2
− C I3. (3.13)

Since, ∂2I/∂s2 ≥ 0 at the minimum curve Γ, we finally obtain the desired
inequality (3.5) which is equivalent to

d

dt

(
1
I2

)
≤ 2C.

Integrating in time, and using that I ≥ α0, at t = 0, we find that

I(t) ≥ I0√
1 + 2CI2

0 t

with I0 = I(0). Since I0 is bounded from above and below by a uniform
constant the bound (3.1) readily follows. This finishes the proof of Lemma
3.1.

To show the lower bound on the width w ≥ γ (T − t), notice first that
for any proper function F the area inside the level set {F = c} is mono-
tone increasing in c going from 0 to A, while the area outside is monotone
decreasing from A to 0. So from some value of c they will be equal

Ain{F = c } = Aout{F = c } =
A

2
.

But

L{F = c }
[

1
Ain{F = c } +

1
Aout{F = c }

]
≥ I.

Thus, for some c, we have

L{F = c } ≥ I A
4
.

Since I ≥ α and A = 4π (T − t), we finally obtain

w ≥ απ (T − t) = γ (T − t)

with γ = απ > 0. This completes the proof of Theorem 1.
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4. The upper bound on the curvature.

The upper bound Rmax ≤ C/(T − t)2 follows from the estimate on a poten-
tial function introduced by H.-D. Cao [4]. Let

r =
∫
Rda∫
1 da

be the average scalar curvature. Since∫
Rda = 2

∫
K da = 4 π

and
d

dt

∫
1 da = −

∫
Rda

we find
dr

dt
= r2.

Definition 4.1. The potential f̄ is the solution of the equation

∆gf̄ = R− r (4.1)

with mean value zero.

The existence and uniqueness of the potential function f̄ is shown in the
next Proposition.

Proposition 4.2. Assume that the metric gij = u dxi dxj satisfies the point-
wise bounds on R2

c min(1,
1

|x|2 log2 |x|
) ≤ u ≤ C min(1,

1
|x|2 log2 |x|

). (4.2)

for some positive constants c, C. Then, equation (4.1) admits a solution f

which is unique up to a constant. Moreover, each solution f satisfies the
gradient estimate

|Dgf | ≤M (4.3)

for some constant M , depending only on c and C.
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We notice that equation (4.1) is equivalent to equation

∆f = (R− r) u on R
2 (4.4)

with ∆ denoting the Euclidean Laplace operator. The forcing term h :=
(R− r) u has finite mass and zero mean. Moreover, since R is bounded and
u satisfies (4.2), h satisfies the bound

|h| ≤ C min(1,
1

|x|2 log2 |x|
). (4.5)

Proposition 4.3. Under the above assumptions on h, there exists a unique
up to a constant solution of equation

∆f = h on R
2.

Moreover, each solution f satisfies the gradient estimate

|Df | ≤M min(1,
1

|x| log |x|) (4.6)

for some constant M depending on C and c.

Since
|Dgf | =

1√
u
|Df |

and u satisfies the bounds (4.2), Proposition 4.2 readily follows from Propo-
sition 4.3.
Proof of Proposition 4.3. The uniqueness of f , up to a constant, is a
direct consequence of Liouville’s Theorem.

For existence, we define f as the Newtonian Potential of h, namely

f(x) =
∫

R2

log |x− y| h(y) dy. (4.7)

Then, f is well defined since h is locally bounded and satisfies the bound
(4.5). To obtain the gradient estimate we differentiate (4.7) with respect to
xi and use the fact that h has mean zero to show that

Dif(x) =
∫

R2

(
xi − yi
|x− y|2 −

xi
|x|2

)
h(y) dy.

It is clear that Dif is locally bounded, since h is locally bounded and inte-
grable. We will next show that

|Dif | ≤
M

|x| log |x| , |x| >> 1.
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Set
k(x, y) =

xi − yi
|x− y|2 −

xi
|x|2 .

We then express∫
R2

k(x, y) h(y) dy =

(∫
|x−y|≤ |x|

2

+
∫

|x|
2
<|x−y|<2|x|

+
∫
|x−y|≥2|x|

)
k(x, y) h(y) dy

and we estimate the three integrals separately. For the first and the last
integral we simply use the estimate

|k(x, y)| ≤ 1
|x− y| +

1
|x| .

When |x− y| ≤ |x|/2, then |y| ≥ |x|/2, and hence

|h(y)| ≤ C

|x|2 log2 |x|
.

Hence

I1 := |
∫
|x−y|≤ |x|

2

k(x, y) h(y) dy | ≤ C

|x|2 log2 |x|

∫
|x−y|≤ |x|

2

(
1

|x− y| +
1
|x|

)
dy

showing that

I1 ≤
C

|x| log2 |x|
.

When |x− y| ≥ 2|x|, then |y| ≥ |x| and |k(x, y)| ≤ 2/|x|. Hence

I3 := |
∫
|x−y|≥2|x|

k(x, y) h(y) dy | ≤ 2
|x|

∫
|y|≥|x|

C

|y|2 log2 |y|
dy

showing that

I3 ≤
C

|x| log |x| .

Finally, to estimate I2 we set

φ(w) =
wi
|w|2

so that
k(x, y) = φ(x− y)− φ(x).
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Hence, for y in the set |x|
2 < |x− y| < 2|x|, we have

|k(x, y)| ≤ max
|x|/2≤|w|≤2|x|

|∇φ(w)| · |y|.

Since |∇φ(w)| ≤ 16/|w|2, we obtain the estimate

|k(x, y)| ≤ C

|x|2 · |y|.

This gives

I2 := |
∫

|x|
2
≤|x−y|≤2|x|

k(x, y) h(y) dy | ≤ C

|x|2
∫
|y|≤3|x|

|y| h(y) dy.

Using once more the bound (4.5) we conclude that

I2 ≤
C

|x| log2 |x|
.

Combining all three estimates, we finally obtain (4.6).
We will next compute the evolution of the potential f̄ with zero mean.

Proposition 4.4. The potential f̄ evolves by

∂f̃

∂t
= ∆gf̃ + r f̃ − b

where

b =
∫
|Dgf̃ |2 dµ∫

1 dµ
(4.8)

with dµ = u dxidxj.

Proof. Since ∆gf̃ = R − r, differentiating in time and using the evolution
equations of the metric g and the curvature R, we compute

∆g (
∂f̃

∂t
) = ∆g ( ∆gf̃ + r f̃ ).

Hence
∂f̃

∂t
= ∆gf̃ + r f̃ − b

for some number b which is constant in space and depends only on time. It
is easy to compute that b is given by (4.8).
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Proposition 4.5. The potential

f = f̄ + α(t)

with

α(t) =
1
q

∫ t

0
b(t) q(t) dt, q(t) = e−

∫ t
0 r(t)dt (4.9)

evolves by
∂f

∂t
= ∆gf + r f (4.10)

and satisfies the gradient estimate (4.3).

Proof. By (4.9) we easily compute that

α′ = −q
′

q
α+ b

with
q′

q
= −r.

Hence
α′ = r α + b

implying that

∂f

∂t
=
∂f̃

∂t
+ α′ = (∆gf̃ + r f̃ − b) + (ra+ b) = ∆gf + r f

as desired. Since α depends only on time, the gradient bound (4.3) still
holds.

Now, using the evolution equation (4.10) we find that

∂

∂t
|Dgf |2 = ∆g|Dgf |2 − 2 |D2

gf |2 + 2r |Dgf |2

and use

|D2
gf |2 =

◦
|D2

gf |2 +
1
2

(∆gf)2

where ∆g is the trace of D2
gf and

◦
|D2

gf |2 is the trace free part of the Hessian,
to conclude that

∂

∂t
(|Dgf |2 +R− r) = ∆g(|Dgf |2 −R+ r)− 2

◦
|D2

gf |2 + 2r (|Dgf |2 +R− r).
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Since
◦

|D2f |2 ≥ 0, the maximum principle shows that

d

dt
log (|Dgf |2 + R− r)max ≤ 2r.

Since dr/dt = r2 and r→∞, as t→ T , we have r = 1/(T − t) exactly. Thus

r =
d

dt
log

1
T − t

and hence
log (|Dgf |2 + R− r)max − 2 log

1
T − t

is decreasing in time. This proves that

|Dgf |2 + R− r ≤ C

(T − t)2

implying the curvature bound

R ≤ r +
C

(T − t)2 .

Using that r = 1/(T − t) ≤ C/(T − t)2, we finally obtain the bound

R ≤ C

(T − t)2

as desired.

5. The lower bound on the curvature.

The lower bound R ≥ c/(T − t)2 will be obtained by combining the upper
bound on the width w ≤ C (T − t), shown in section 2, with a result on
formation of singularities on the Ricci flow in [8]. We know that R→∞ as
t → T < ∞, since otherwise by the existence of W.S. Shi [14] on complete
solutions of the Ricci flow, the solution would continue past T . Moreover,
from [10] we can form a limit of dilations of the solution to obtain a blow-up
of the singularity which is either of type I (R (T − t) ≤ C) or of type II
(R (T − t)→∞), as t→ T .

Now type I cannot occur; for if R (T − t) ≤ C and A ≤ C (T − t), the
type I limit should be a positive solution for −∞ < t < T with positive
curvature R > 0 and finite area, which would necessarily be compact, and
hence a sphere S2 or projective space RP 2 instead of the plane R

2.
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Suppose then that we obtain a limit solution of type II. Thus is a complete
solution with R > 0 and R ≤ 1 everywhere for −∞ < t <∞, and R = 1 at
the origin and at time t = 0. Since the maximum curvature is attained, by
[10] this solution is a Ricci soliton, i.e. a solution gij satisfying

Mij := DiDjf −
1
2

∆f · gji = 0.

It moves only by diffeomorphism, so its shape remains unchanged. It is
shown in [9] that in dimension 2 the only soliton solution is a cigar, which
at time t = 0 looks like

ds2 =
dx2 + dy2

1 + x2 + y2

and flows by conformal dilation. It is asymptotic to a flat cylinder at infinity,
with maximum curvature at the origin. Since the cigar occurs as a limit of
blow-ups of the original solution, this means that for time t near T the
solution is as close as we wish to a scaling of the cigar by a constant factor
over as large a compact set around 0 as we wish. This easily implies that
the width w is as close as we wish to 2π/

√
R or else greater, since that is the

width of a sequence of cigars of maximum curvature R at the origin. But
this show that

2π − ε√
R
≤ w ≤ C (T − t)

from which we get
R ≥ c

(T − t)2 .

This completes the proof of Theorem 1.2.
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