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1. Introduction.

Complete noncompact Riemannian manifolds with nonnegative sectional
curvature arise naturally in the Ricci flow when one takes the limits of
dilations about a singularity of a solution of the Ricci flow on a compact
3-manifold [H-95a]. To analyze the singularities in the Ricci flow one needs
to understand these manifolds in depth. There are three invariants, asymp-
totic scalar curvature ratio, asymptotic volume ratio and aperture, that have
been used to study the geometry of these manifolds at infinity.

Let (Mn, g) be a complete noncompact Riemannian manifold with non-
negative sectional curvature and let O ∈M be some point which we call the
origin. The asymptotic scalar curvature ratio (ASCR) is defined by

ASCR (M, g) = lim sup
d(x,O)→∞

R (x) · d (x, O)2 , (1)

where R is the scalar curvature. ASCR is a measure of how non-flat the
manifold is at infinity. Since the sectional curvature is nonnegative, there is
a positive constant c depending only on n such that

c−1 · lim sup
d(x,O)→∞

|Rm (x)| · d (x, O)2 ≤ ASCR (M, g)

≤ c · lim sup
d(x,O)→∞

|Rm (x)| · d (x, O)2

where Rm is the Riemann curvature tensor. In the literature sometimes

lim sup
d(x,O)→∞

|Rm (x) | · d (x, O)2

is used as the definition of ASCR. It is clear that ASCR is independent of
the choice of origins and is invariant under scaling.

59



60 B. Chow and P. Lu

ASCR has been used to study gap theorems. In particular, in [ESS-89]
Eschenburg, Schroeder and Strake proved that if

(
M2k+1, g

)
is a complete

noncompact odd-dimensional Riemannian manifold with positive sectional
curvature, then ASCR(M, g) > 0. These types of results are generally
referred to as gap theorems since they show the existence of a gap between
flat R

n and metrics of positive curvature on R
n. Gap theorems have been

proved by Greene-Wu [GW-82], Kasue and Sugahara [KS-87], and Drees
[D-94]. For a survey of the history of gap theorems related to the notion
of ASCR, see [G-97]. ASCR has also been used to study the structure of
manifolds at infinity [PT-01].

Below we give a few examples about how ASCR is used in singularity
analysis in the Ricci flow.

1. In [H-95a] Hamilton showed that for a solution to the Ricci flow on a
compact 3-manifold forming a Type II singularity and satisfying an in-
jectivity radius estimate, there exists a sequence of dilations converging
to a complete solution

(
M3∞, g∞ (t)

)
defined for all t ∈ (−∞,∞) with

nonnegative bounded sectional curvature and attaining its maximum
of the scalar curvature on space and time. In [H-93b] it is shown using
the differential Harnack inequality of Li-Yau-Hamilton type [H-93a]
that the universal covering solution

(
M̃3∞, g̃∞ (t)

)
of such a solution

must be a stationary solution (also called Ricci solitons) of the Ricci
flow in the space of metrics modulo diffeomorphisms flowing along a
gradient vector field, that is, there exists a 1-parameter family of dif-
feomorphisms ϕt : M̃3∞ → M̃3∞ such that g̃∞ (t) = ϕ∗

t (g̃∞ (0)) and
the 1-parameter family of vector fields X (t) generated by ϕt are the
gradients of functions f (t) . In §20 of [H-95a] it is shown that such a
Ricci soliton must have ASCR(g (t)) =∞ for all t ∈ (−∞,∞).

2. In §22 of [H-95a] Hamilton showed using a geometric result about
bumps of curvature from §21 of [H-95a] that if a complete solution
to the Ricci flow with bounded curvature has ASCR(g (t)) =∞, then
one can perform dimension reduction. In particular, provided there
is a local injectivity radius estimate, there exists a sequence of points
{yα}α∈N

inM3 with limα→∞ dg(0) (yα, O) =∞ such that the sequence
of dilated solutions on balls

{(
Bgα(0) (yα, rα) , gα (t)

)
, yα

}
α∈N

, where

gα (t) = R (gα) (yα, 0)g
(
t ·R (gα)−1 (yα, 0)

)
and limα→∞ r2αR (gα) (yα, 0) = ∞, converges to complete solution to
the Ricci flow (P∞, k∞ (t) , y∞) with bounded nonnegative sectional
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curvature which splits metrically as the product of R and a solution on
a surface with positive curvature. This is why it is important to know
when a noncompact ancient solution has infinite asymptotic scalar cur-
vature ratio, when this is true one should be able to perform dimension
reduction.

3. In §5.3 of [H-97] it is shown that for an ancient solution (M, g (t)) to the
Ricci flow which is complete with bounded positive curvature operator
and satisfies certain pinching conditions, then ASCR(M, g (t)) =∞ if
and only if for some fixed time the solution metric has an arbitrarily
necklike end (see §2 below for a definition).

The asymptotic volume ratio is defined by

AV R (g) � lim
r→∞

Vol [B (O, r)]
rn

,

where B(O, r) = {x : d(O, x) < r}. It is also used in singularity analysis
in the Ricci flow. In particular, in §19 of [H-95a] Hamilton showed that a
complete ancient Type I-like solution to the Ricci flow with bounded positive
curvature operator and finite ASCR must have AVR(g (t)) > 0 for all t. He
also showed there that the scalar curvature decays exactly quadratically:

0 < c ≤ R (x, t) dg(t) (x, O)2 ≤ C

where c and C depend on O and t.
This paper arises from exploring the following idea inspired by the work

of Hamilton [H-97]. If a piece of a positively curved complete noncompact
manifold is sufficiently close to a long standard cylinder, then its asymptotic
scalar curvature ratio is large.

2. Main results.

To state the main result of this paper we need to define the so-called (ε, k, L)-
necks. First we recall a few basic definitions concerning necks from §3.2
of [H-97]. A topological neck in a differentiable manifold Mn is a local
diffeomorphism

N : Sn−1 × [a, b]→Mn,

for some a < b.
Let g be a Riemannian metric onM and g � N ∗ (g) be the pulled-back

metric on on Sn−1× [a, b] . A neck is called normal if it satisfies the following
five conditions.
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1. (good slices) Each slice Sn−1 × {z} ⊂ Sn−1 × [a, b] , z ∈ [a, b] , has
constant mean curvature with respect to g.

2. (good parametrizations of the slices) The identity map

ι :
(
Sn−1 × {z} , ḡ

)
→
(
Sn−1 × {z} , g

)
is harmonic for all z ∈ [a, b] , where ḡ is the standard metric.

3. (taking in account that conformal maps of S2 are harmonic)
When n = 3 the center of mass of S2 × {z} ⊂ R

3 × {z} with respect
to g is the origin: ∫

S2×{z}
�x dAg (�x) = �0 ∈ R

3

for all z ∈ [a, b], where dAg is the area form.

4. (good spacing of the slices) The spacing of the slices are normalized
using volume by

Vol
(
Sn−1 × [z, w] , g

)
= ωn−1

∫ w

z
r (y)n dy,

where

r (y) �
(

Area
(
Sn−1 × {y} , g

)
ωn−1

) 1
n−1

is called the mean radius.

5. (aligning the parametrizations) If V̄ is a Killing vector field on a
slice

(
Sn−1 × {z} , ḡ

)
, then the unit normal vector field ν of S2×{z} ⊂

R3 × {z} with respect to g satisfies∫
Sn−1×{z}

ḡ(V̄ , ν)dAḡ = 0

for all z ∈ [a, b].

Note that in condition 4 it is important that the power of r(y) is n, not
n− 1.

A neck is called (ε, k)-cylindrical if
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1. (conformally close to cylindrical in C0) the metric

ĝ (θ, z) � r (z)−2 g (θ, z)

satisfies
|ĝ − ḡ|ḡ ≤ ε,

2. (conformally close to cylindrical up to Ck)∣∣∇̄j ĝ∣∣
ḡ
≤ ε

for all 1 ≤ j ≤ k, where ∇̄ is the covariant derivative with respect to
ḡ,

3. (mean radius changes slowly)∣∣∣∣dj log r (z)
dzj

∣∣∣∣ ≤ ε
for all 1 ≤ j ≤ k.

A neck N in a manifold Mn is called an embedded neck if N : Sn−1 ×
[a, b]→Mn is an embedding.

Definition 1. (i) A map N : Sn−1 × [a, b]→ M is called an (ε, k, L)-neck
if it is a normal (ε, k)-cylindrical neck and b− a ≥ 2L.

(ii) A complete Riemannian manifold (M, g) with exactly one topological

end is called to have an arbitrarily necklike end if for every (ε, k, L) there
exists an (ε, k, L)-neck in (M, g).

Definition (ii) is from §5.3 of [H-97] (p. 71). We write (ε1, k1, L1) �
(ε2, k2, L2) if ε1 ≤ ε2, k1 ≥ k2 and L1 ≥ L2. In the next lemma we collect a
few simple properties of (ε, k, L)-necks.

Lemma 2. (i) (ε, k, L)-necks are scale-invariant, i.e., if N : Sn−1 × [a, b]→
(Mn, g) is an (ε, k, L)-neck then N : Sn−1 × [a, b]→ (Mn, λ2 · g) is also an
(ε, k, L)-neck for any λ > 0.

(ii) If N : Sn−1 × [a, b] → M is an (ε1, k1, L1)-neck and (ε1, k1, L1) �
(ε2, k2, L2), then N is an (ε2, k2, L2)-neck.

(iii) If Sn−1
r is the sphere of radius r, then for all ε > 0 and k ∈ N the

product manifoldM = Sn−1
r × [−rL, rL] has an (ε, k, L)-neck given by the

obvious map.
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The main result of this paper is the following theorem which will be
proved in §4.

Theorem 3. For every odd integer n ≥ 3 and every positive C0 <∞ there
exists (ε0, k0, L0) such that if (Mn, g) is a complete, orientable, noncom-

pact Riemannian manifold with bounded positive sectional curvature and
M contains an embedded (ε, k, L)-neck with (ε, k, L) � (ε0, k0, L0) , then

ASCR (g) ≥ C0.

The main result may be thought of as a odd-dimensional quantitative ver-
sion of the “only if” part of Theorem 3.1 in §5.3 of [H-97], which states that
a complete noncompact ancient solution to the Ricci flow on a four-manifold
with bounded positive curvature operator satisfying certain pinching condi-
tions has an arbitrarily necklike end at sometime if and only if the asymptotic
scalar curvature ratio is infinite. In particular, we obtain a weaker charac-
terization of ASCR(g (t)) = ∞, which is one of the ingredients used in the
proof of Theorem 4 below.

The main result has the following useful consequence in dimension three.
Recall that an ancient solution is called Type-I like if

sup
Mn×(−∞,0]

|t| · |Rm (x, t)| <∞.

Theorem 4. If
(
M3, g (t)

)
,−∞ < t < ω, is a complete noncompact ancient

Type I-like solution to the Ricci flow with bounded positive sectional curva-
ture on an orientable 3-manifold, then ASCR(g (t)) =∞ for all t ∈ (−∞, ω) .

We shall prove this theorem in §5. This answers a conjecture of Hamilton
when n = 3. In §22 of [H-95a] (p. 93) he writes:

We do not know any examples of complete noncompact an-
cient solutions of positive curvature operator with Rs2 <∞ and
R|t| <∞, and we conjecture none exist, since the curvature has
had plenty of space and time to dissipate.

Conjecture 5. There does not exist complete noncompact ancient Type

I-like solutions to the Ricci flow with bounded positive curvature operator.

By the theorem above such solutions, if they were to exist, must necessar-
ily have infinite asymptotic scalar curvature ratio. When n = 2 it is proved in
Theorem 26.1 of [H-95a] that there does not exist complete noncompact an-
cient Type I-like solutions to the Ricci flow with positive sectional curvature.
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For the mean curvature flow, which in general has very similar properties as
the Ricci flow, there are no complete noncompact strictly convex Type I-like
ancient solutions by Huisken’s classification using his monotonicity formula
[Hu-90].

3. Relative volumes and necks.

The main result of this section, Proposition 10 below, is to combine the
relative volume comparison theorem (Lemma 12) and the existence of an
embedded (ε, k, L)-neck to show that there are small relative volumes. Note
that this result holds in both odd and even dimensions.

3.1. Busemann functions.

Let (Mn, g) be a complete noncompact Riemannian manifold. Given a point
Q ∈M and a ray γ emanating from Q, the Busemann function bγ : M → R

associated to γ is defined by

bγ(x) � lim
t→+∞[t− d(γ(t), x)].

Let R be the set of all rays emanating from Q. The Busemann function
bQ : M → R with the base point Q is defined by

bQ(x) = sup
γ∈R

bγ(x)

We collect some well-known properties of Busemann functions on complete
noncompact Riemannian manifolds with nonnegative sectional curvature in
the following lemma (for a proof see, for example, [CG-72] and [LT-87]).

Lemma 6. Let (Mn, g) be a complete noncompact Riemannian manifold

with nonnegative sectional curvature. Then
(i) The Busemann function bQ is proper, Lipschitz with Lipschitz con-

stant 1 and bounded from below.
(ii) The sublevel sets Cr � {x ∈M : bQ (x) ≤ r} are compact and totally

convex.
(iii) Let Sr � b−1

Q (r) denote level set of the Busemann function. Then

for any r1 ≤ r2

Sr1 = {x ∈ Cr2 : d (x, Sr2) = r2 − r1} .

(iv) |bQ (x) | ≤ d (x, Q), which implies B (Q, r) ⊂ Cr.
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The following lemma says that any sufficiently long minimal geodesic
segment emanating from Q can be well approximated by a ray emanating
from Q and that the Busemann function is similar at infinity to the distance
function to the base point Q (see Li-Tam [LT-87] Theorem 2.3 on p. 177,
Kasue [K-88] Lemma 1.4 on p. 598, Drees [D-94] Lemma 1 on p. 80 and for
an exposition see [CKE]). For the convenience of the reader we give a proof
here.

Lemma 7. Let (Mn, g) be a complete noncompact Riemannian manifold

with nonnegative sectional curvature. Define θ : [0,∞)→ [0, π] by

θ(r) = sup
σ∈S(r)

inf
γ∈R
�Q(σ′(0), γ ′(0)),

where S(r) is the set of all minimal geodesic segments σ of length L(σ) ≥ r
emanating from Q. Then

(i) θ(r) is a nonincreasing function of r and

lim
r→+∞ θ (r) = 0.

(ii) The function bQ and d (·, Q) are asymptotically equal, more precisely

(1− θ [d (x, Q)]) · d (x, Q) ≤ bQ (x) ≤ d (x, Q) (2)

for all x ∈M.

Proof. (i) From the definition it is clear that θ(r) is a nonincreasing function
of r. If limr→∞ θ (r) �= 0, there exists ε > 0, a sequence of points pi ∈ M
with d(pi, Q) ↗ +∞, and minimal geodesic segments σi joining Q and pi
parametrized by arc length such that

�Q(σ′i(0), γ ′(0)) ≥ ε

for each i and all rays γ ∈ R. By the compactness of the unit sphere in
TQM, there is a subsequence such that limj→+∞ σ′ij(0) � V∞ exists. Let
σ∞ : [0,+∞) → M be the unique geodesic with σ∞(0) = Q and σ′∞(0) =
V∞. It is clear that σ∞ ∈ R. In particular the condition

�Q(σ′ij(0), σ′∞(0)) ≥ ε

is impossible for large enough j. (i) is proved
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(ii) For any x ∈ M let σ be a minimal geodesic from Q to x and
r = d(x, Q). Since R is a closed set, there is a ray γ ∈ R such that
�Q(σ′(0), γ ′(0)) ≤ θ(r). Then it follows from sectional curvature KM ≥ 0
and Toponogov’s comparison theorem that d(x, γ(r))≤ θ(r) · r. Hence

bQ(x) ≥ bγ(x) ≥ r − d(x, γ(r))≥ (1− θ(r)) · r.

The lemma is proved. �

3.2. Necks in manifolds with positive sectional curvature.

We call a neck N : Sn−1× [a, b]→M absolute (ε, k)-cylindrical if it satisfies
the following two inequalities.

1. ∣∣∣∣∣ 1
r2
(
a+b
2

) · g − ḡ∣∣∣∣∣
ḡ

≤ ε on Sn−1 × [a, b] (3)

where r
(
a+b
2

)
is the mean radius of Sn−1 × {a+b2 }.

2. ∣∣∣∣∣∇̄j
(

1
r2
(
a+b
2

) · g)∣∣∣∣∣
ḡ

≤ ε on Sn−1 × [a, b] (4)

for all 1 ≤ j ≤ k, where ∇̄ is the covariant derivative with respect to
ḡ.

We call a topological neck an absolute (ε, k, L)-neck if it is a normal abso-
lute (ε, k)-cylindrical neck and b− a ≥ 2L. When (ε1, k1, L1) � (ε2, k2, L2) ,
an absolute (ε1, k1, L1)-neck is an absolute (ε2, k2, L2)-neck. The following
result, whose proof is given in Appendix A, holds for necks in arbitrary
Riemannian manifolds.

Lemma 8. Given (ε, k, L) , there exists ε′ = ε′(ε, k, L) ≤ ε such that if

N : Sn−1 × [a, b]→M is an (ε′, k, L)-neck, then N is an absolute (ε, k, L)-
neck.

Let N : Sn−1 × [−L, L] → Mn be an embedded neck in a complete
noncompact Riemannian manifold (Mn, g) with positive sectional curvature.
By Gromoll and Meyer [GM-69],Mn is diffeomorphic to Rn. Thus it follows
from the solution of the Schoenflies Conjecture in dimension n �= 4 [M-59],
[B-60] that the center sphere N

(
Sn−1 × {0}

)
bounds a differentiable ball in
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Mn when n �= 4. When n = 4 Hamilton proved the following lemma (see
Theorem 1.1 in §7 of [H-97], the proof there works for all n ≥ 2).

Lemma 9. There exists (εa, ka, La) having the following property. For any
(ε, k, L) � (εa, ka, La) and any complete noncompact Riemannian manifold

(Mn, g) with positive sectional curvature which has an embedded (ε, k, L)-
neck N : Sn−1 × [−L, L]→Mn, the center sphere N

(
Sn−1 × {0}

)
bounds

a differentiable ball inMn.

3.3. Necks and relative volumes.

Let ωn−1 be the volume of the sphere Sn−1 of radius 1, and εb � ε′( 1
10 , 1, Lb)

be a function of Lb as in Lemma 8.

Proposition 10. For any δ > 0 there is Lb ≥ max(La, 16) having the fol-
lowing property. For any (ε, k, L) � (min(εa, εb), ka, Lb), if there is an em-

bedded (ε, k, L)-neck N in a complete noncompact Riemannian manifold
(Mn, g) with positive sectional curvature

N : Sn−1 × [−L, L]→ (Mn, g),

then without any loss of generality we may assume that the component of
M− N

(
Sn−1 × [−Lb, Lb]

)
bounded by N (Sn−1 × {−Lb}) is diffeomorphic

to a ball and for any Q ∈ N (Sn−1 × {−Lb}) and there exists r0 > 0 such
that for any R2 ≥ R1 ≥ r0 the following relative volume estimate holds:

Vol
[
B(Q,R2)\B(Q,R1)

]
ωn−1

n · (Rn2 −Rn1 )
≤ δ. (5)

Remark 11. The r0 > 0 we shall choose has the property that for all R2 ≥
R1 ≥ r0, B(Q,R2)\B(Q,R1) is contained in the component (diffeomorphic

to Sn−1 ×R) ofM−N
(
Sn−1 × [−Lb, Lb]

)
bounded by N (Sn−1 × {Lb}).

Recall that a geodesic is called normal if it is parametrized by arc length.
To prove this proposition we need the following form of the relative volume
comparison theorem (see Theorem 3.1, p. 226 in Zhu [Z-97]). Let Γ be any
measurable subset of the unit sphere Sn−1

p ⊂ TpM. Given r ≤ R, let

AΓ
r,R(p) �

⎧⎨⎩x ∈M :
r ≤ d(x, p) ≤ R and there exists a
normal minimal geodesic γ from
γ (0) = p to x satisfying γ ′(0) ∈ Γ

⎫⎬⎭ .
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Fix any point pH in the simply-connected space form of dimension n and
of constant sectional curvature H, let AΓ

r,R(pH) be the corresponding set in
the space form. Clearly AΓ

r,R(p) ⊂ B(p, R)\B(p, r), and if Γ = Sn−1
p then

AΓ
r,R(p) = B(p, R)\B(p, r).

Lemma 12. (Bishop-Gromov relative volume comparison theorem) Let

(Mn, g) be a complete Riemannian manifold with RicM ≥ (n − 1)H. If
r ≤ R, s ≤ S, r ≤ s, R ≤ S and Γ is as above, then

Vol(AΓ
s,S(p))

VolH(AΓ
s,S(pH))

≤
Vol(AΓ

r,R(p))

VolH(AΓ
r,R(pH))

,

where VolH is the volume in the space form.

Proof of Proposition 10. By multiplying the metric g by a positive
constant if necessary, we may assume that the center sphere N (Sn−1×{0})
has mean radius r(0) = 1. Note that N remains an (ε, k, L)-neck after the
scaling and the desired estimate (5) does not change after the scaling. Let
N b = N |Sn−1×[−Lb,Lb] : Sn−1 × [−Lb, Lb] → M. It is clear that N b is a
(ε, k, Lb)-neck.

It follows from Lemma 9 thatM−N b
(
Sn−1 × [−Lb, Lb]

)
has two com-

ponents U1 and U2, where U1 is diffeomorphic to an open ball Bn and
without loss of generality we may assume bounds N b

(
Sn−1 × {−Lb}

)
, and

U2 is diffeomorphic to Sn−1 × R and bounds N b
(
Sn−1 × {Lb}

)
. Let

Q ∈ N b(Sn−1 × {−Lb}). Define for R2 > R1 > 0

Γ =

⎧⎨⎩ γ ′(0) ∈ Sn−1
Q :

there is x such that R1 ≤ d(Q, x) ≤ R2

and there is exactly one normal minimal
geodesic γ from γ(0) = Q to x.

⎫⎬⎭ .

Then AΓ
R1,R2

(Q) is a subset of B(Q,R2)\B(Q,R1) and

Vol
[
AΓ
R1,R2

(Q)
]

= Vol
[
B(Q,R2)\B(Q,R1)

]
(6)

since
[
B(Q,R2)\B(Q,R1)

]
\AΓ

R1,R2
(Q) is contained in the set of cut locus

points of Q, which has measure zero.
Let H = 0. The corresponding space form is Euclidean space, and

Vol0(AΓ
R1,R2

(0)) =
m(Γ)
n
· (Rn2 − Rn1 )

where m(Γ) is the measure of Γ in Sn−1
Q . We will apply Lemma 12 to (6)

to prove (5). Thus we need to find for comparison another relative volume
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which is less or equal to δ. We will find this other relative volume by using
the embedded neck.

Choose r0 large enough (depending on the neck N b and the manifold
M), so that B (Q, r0) ⊃ U1 ∪ N b

(
Sn−1 × [−Lb, Lb]]

)
. This implies that if

R2 > R1 > r0, then AΓ
R1,R2

(Q) ⊂ U2.
For any normal minimal geodesic γ0 : [0, �0] → M with γ0(0) = Q,

γ0 (�0) ∈ AΓ
R1,R2

(Q) and γ ′0(0) ∈ Γ, then γ0 will intersect N b
(
Sn−1 × {0}

)
at some (exactly one) point, say γ0(w0), and we claim that

w0 ≥
9
10
Lb . (7)

To see the claim, since εb � ε′( 1
10 , 1, Lb), by Lemma 8 N b is an absolute(

1
10 , 1, Lb

)
-neck and hence (here we use the assumption that mean radius

r(0) = 1)
9
10
| • |Nb∗g

≤ | • |g ≤
11
10
| • |Nb∗g

(8)

where N b∗g is the push-forward metric. From γ0 (w0) ∈ N b
(
Sn−1 × {0}

)
and

Q = γ0 (0) ∈ N b
(
Sn−1 × {−Lb}

)
we have

dNb∗ ḡ (γ0 (0) , γ0 (w0)) ≥ Lb.

Hence

w0 = dg (γ0 (0) , γ0 (w0)) ≥
9
10
dN∗ḡ (γ0 (0) , γ0 (w0)) =

9
10
Lb.

We now claim that (this is only a rough estimate)

w0 + 10 ≤ r0. (9)

Since M\B(Q, r0) ⊂ U2, we have

r0 ≥ dg (Q,U2) ≥ dg(Q,N b(Sn−1 × {Lb}).

Since any minimal geodesic from Q to any p ∈ N b(Sn−1×{Lb}) must inter-
sect N b(Sn−1 × {0}), we have

dg(Q,N b(Sn−1 × {Lb}) ≥ dg(Q,N b(Sn−1 × {0})
+ dg(N b(Sn−1 × {0}, N b(Sn−1 × {Lb}).

By (8) the diameter

diamg(Sn−1 × {0}) ≤ 11
10
· diamNb∗g(S

n−1 × {0}) =
11π
10

,
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it follows

dg(Q,N b(Sn−1 × {0}) ≥ dg(Q, γ(w0))−
11π
10

= w0 −
11π
10

.

From (8) we have

dg(N b(Sn−1 × {0}, N b(Sn−1 × {Lb})

≥ 9
10
· dNb∗g(N

b(Sn−1 × {0}, N b(Sn−1 × {Lb}) =
9
10
· Lb

Hence
w0 −

11π
10

+
9
10
· Lb ≤ r0.

The claim follows since Lb ≥ 16.
Now we choose the r, R, s and S in Lemma 12 as

r � w0 − 2, R � w0 + 2, s � R1, S � R2.

It is clear from the choice of Lb ≥ 16 and r0 < R1 that r ≤ R ≤ s ≤ S. We
claim

Sublemma

AΓ
w0−2,w0+2(Q) ⊂

{
x ∈M : dg

(
x,N b

(
Sn−1 × {0}

))
≤ 6

}
,

where Γ is the set defined above.

Remark 13. Intuitively, the set {x ∈ M : dg
(
x,N b

(
Sn−1 × {0}

))
≤ 6} is

close to a standard cylinder of length 12 and radius 1.

Problem 14. Given R1 and R2, let Γ be defined as above.

Proof of sublemma. Let R1, R2, Γ and w0 be as above. Note that γ0(w0) ∈
N b

(
Sn−1 × {0}

)
and Γ corresponds to R1 and R2. Given any point x ∈

AΓ
w0−2,w0+2(Q), let γ : [0, �1] → M be a normal minimal geodesic with

γ(0) = Q, γ ′(0) ∈ Γ, γ (�1) ∈ B(Q,R2)\B(Q,R1) and γ (�x) = x for some
�x ∈ [w0 − 2, w0 + 2] . The geodesic γ exists since x ∈ AΓ

w0−2,w0+2(Q) implies
there exists a normal minimal geodesic γ̄ : [0, �x] → M with γ̄ ′ (0) ∈ Γ,
γ̄ (�x) = x and �x ∈ [w0 − 2, w0 + 2] . Since γ̄ ′ (0) ∈ Γ, γ̄ extends to a normal
minimal geodesic γ as above. From γ (�1) /∈ B(Q,R1), we have �1 ≥ R1 >

r0. Then γ (�1) /∈ U1 ∪ N b
(
Sn−1 × [−Lb, Lb]

)
and hence γ will intersect
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N b
(
Sn−1 × {0}

)
at some point γ (wx) (for the same reason as before as

applied to γ0). That is,

γ(wx) ∈ N b
(
Sn−1 × {0}

)
.

Since the mean radius of N b
(
Sn−1 × {0}

)
is 1, we have by (8)

dg(γ(wx), γ0(w0)) ≤
11π
10

.

Hence we get

|wx −w0| ≤
11π
10
≤ 4. (10)

From the triangle inequality

|dg(Q, γ(wx))− dg(Q, γ0(w0))| ≤ dg(γ(wx), γ0(w0)).

On the other hand

w0 − 2 ≤ dg(Q, x) = �x ≤ w0 + 2. (11)

Combining (10) and (11) we get

|lx −wx| ≤ 6, (12)

which implies
dg(γ(wx), x) = dg (γ (wx) , γ (�x)) ≤ 6.

Since γ(wx) ∈ N
(
Sn−1 × {0}

)
,

dg(N b
(
Sn−1 × {0}

)
, x) ≤ 6.

This completes the proof of the sublemma. �

It follows from the sublemma and (8) that

Vol
[
AΓ
w0−2,w0+2(Q)

]
≤ Vol

(
{x ∈M : dg(x,N b

(
Sn−1 × {0}

)
) ≤ 6}

)
≤ Vol

(
{x ∈M : dNb∗g(x,N

b
(
Sn−1 × {0}

)
) ≤ 10

9
· 6}

)
≤
(

11
10

)n
· VolNb∗g

(
{x ∈M : dNb∗g(x,N

b
(
Sn−1 × {0}

)
) ≤ 10

9
· 6}

)
=
(

11
10

)n
· ωn−1 · 1n ·

10
9
· 12.
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We now finish the proof of the proposition. Applying Lemma 12 we get

Vol [B(Q,R2)\B(Q,R1)]
m(Γ)
n · (Rn2 −Rn1 )

≤
Vol

(
AΓ
w0−2,w0+2(Q)

)
m(Γ)
n · ((w0 + 2)n − (w0 − 2)n)

since w0 − 2 ≤ w0 + 2 ≤ r0 ≤ R1 ≤ R2. Replacing the common factor m(Γ)
by ωn−1 and applying the estimate above, we get

Vol [B(Q,R2)\B(Q,R1)]
ωn−1

n · (Rn2 − Rn1 )
≤

Vol
(
AΓ
w0−2,w0+2(Q)

)
ωn−1

n · ((w0 + 2)n − (w0 − 2)n)

≤
(

11
10

)n · ωn−1 · 10
9 · 12

ωn−1

n · ((w0 + 2)n − (w0 − 2)n)
.

We have proved by using (7)

Vol [B(Q,R2)\B(Q,R1)]
ωn−1

n · (Rn2 −Rn1 )
≤

(
11
10

)n · ωn−1 · 10
9 · 12

ωn−1

n · (( 9
10Lb + 2)n − ( 9

10Lb − 2)n)
. (13)

If we choose Lb ≥ max(La, 16) satisfying(
11
10

)n · ωn−1 · 10
9 · 12

ωn−1

n · (( 9
10Lb + 2)n − ( 9

10Lb − 2)n)
≤ δ, (14)

and choose εb = ε′( 1
10 , 1, Lb), then the proposition follows from (13) and

(14).

4. Proof of the main result.

The main part of this section is devoted to estimate the relative volume in
(5) from below by ASCR when R1 and R2 is large and dimension n is odd;
see Proposition 21 below. The main result Theorem 3 is proved at the very
end of this section.

4.1. Asymptotic scalar curvature ratio.

Let (Mn, g) be a complete, noncompact Riemannian manifold with positive
sectional curvature and Q ∈M. Define a function a : R̄+ → R̄+ by

a(r)2 = sup
x∈M\B(Q,r)

R (x) d (x, Q)2 , (15)
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a function κ(r) : R̄
+ → R̄

+ by

κ(r) = sup
x∈M\B(Q,r)

R (x) ,

and a function ρ(r) : R̄
+ → R̄

+ by

ρ(r) � πr

4a(r)
.

The following lemma is clear.

Lemma 15. (i) a(r) is positive and monotone nonincreasing.

(ii) ASCR(g) = limr→∞ a(r)2.
(iii) κ(r) · r2 ≤ a(r)2.

To prove Proposition 21, we assume ASCR(g) < +∞ since otherwise
the proposition is clearly true. For any η1 ∈ (0, 1) there is r1 = r1(η1,M)
such that

a(r) ≤
√
ASCR(g) + η1, for all r ≥ r1.

Clearly we have

a(r)
r
→ 0+ as r → +∞,

ρ(r)→ +∞ as r → +∞
r

ρ(r)
≤ 4(

√
ASCR(g) + η1)

π
for r ≥ r1. (16)

4.2. The hypersurfaces Ŝr(ρ).

Let Sr be the level set of the Busemann function bQ (defined in §3.1) and Cr
be the sublevel set of the Busemann function bQ. If Sr is smooth, we define
b̂Q � bQ, Ĉr � Cr and Ŝr � Sr. If Sr is not smooth, since M has positive
sectional curvature so bQ is strictly convex [GW-74], we can smooth bQ (see,
for example, p. 158 of [ESS-89] or [GW-76]). For any positive η2 ≤ 1 there
is a smooth and strictly convex function b̂Q such that∣∣∣̂bQ(x)− bQ(x)

∣∣∣ < η2 for all x ∈M. (17)

We define Ĉr � b̂−1
Q (−∞, r) and Ŝr � b̂−1

Q (r). So in any case we have a
smooth and strictly convex hypersurface Ŝr and a strictly convex set Ĉr. It
is clear that Ŝr � ∂Ĉr .
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We define the hypersurfaces Ŝr (ρ) parallel to Ŝr by

Ŝr (ρ) �
{
x ∈M : d

(
x, Ĉr

)
= ρ

}
.

The following, which is Lemma 2 on p. 157 of [ESS-89], gives an estimate
for the second fundamental form of these parallel hypersurfaces.

Lemma 16. (bounds for the 2nd fundamental form of parallel hypersur-
faces) (i) If sectional curvature K ≤ ε2 onM− Ĉr , then the parallel hyper-
surfaces are smooth embedded hypersurfaces for 0 < ρ < π/ (2ε).

(ii) Let gρr and hρr ∈ C∞
(
S2T ∗Ŝr (ρ)

)
denote the first and second

fundamental forms of Ŝr (ρ) , respectively. Then

−ε tan (ερ) gρr ≤ hρr ≤
1
ρ
gρr .

(iii) Taking ρ = π/(4ε) in (ii) we have

−εgπ/(4ε)r ≤ hπ/(4ε)r ≤ 4ε
π
gπ/(4ε)r .

(iv) The Weingarten map L
π/(4ε)
r : T Ŝr (π/(4ε))→ T Ŝr (π/(4ε)) satisfies∥∥∥Lπ/(4ε)r

∥∥∥ ≤ 4ε
π
,

where ‖L‖ � max|v|=1 |L (v)|.

Remark 17. Note that if ε is small, then π/ (2ε) is large. That is, the

parallel hypersurfaces Ŝr (ρ) are smooth for large ρ. Our conclusion is that,
assuming K ≤ ε2 on M− Ĉr, the second fundamental form of Ŝr (π/ (4ε))
is small. The reason we have the weaker 1/ρ upper bound on the second
fundamental form is that Ŝr could be close to a point (like a small sphere).

In particular, the 1/ρ upper bound is sharp for Ŝ0 a point in euclidean space.

To apply Lemma 16 we need to estimate ε in terms of κ(r) and hence
a(r) in regards to the condition that the sectional curvature K ≤ ε2 on
M− Ĉr . We will use the following elementary result whose proof is given
in Appendix B.

Lemma 18. (i) Ŝr ⊂ b−1
Q ((r− η2, r + η2)) and Ŝr ⊂M\B(Q, r− η2).

(ii) B(Q, r− η2) ⊂ b−1
Q ((−∞, r− η2)) ⊂ Ĉr ⊂ b−1

Q ((−∞, r+ η2)).
(iii) Ŝr(ρ) ⊂M\B(Q, r+ ρ− η2).
(iv) If Ŝr ⊂ B(Q, η), then Ŝr(ρ) ⊂ B(Q, η + ρ).
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4.3. Estimate of the area of Ŝr(ρ) by Gauss-Bonnet formula.

Note that sectional curvatures are less or equal to scalar curvatures pointwise
on a manifold with nonnegative sectional curvature, i.e., Kx ≤ R(x). By
Lemma 18 (ii) and Lemma 15 (iii)

sup
M\Ĉr

Kx ≤ sup
M\B(Q,r−η2)

R(x) = κ(r − η2) ≤
a(r− η2)2

(r− η2)2
=
(

π

4ρ (r − η2)

)2

.

Hence by Lemma 16 (i), (ii) the hypersurface Ŝr(ρ) is smooth for ρ ≤ ρ(r−η2)
and its Weingarten map Lr(ρ) is bounded by

‖Lr(ρ)‖ ≤
1
ρ

for any ρ ≤ ρ(r− η2). (18)

Indeed, since tan θ ≤ 1
θ for 0 < θ ≤ π/4, we have π

4ρ(r−η2) tan
(

π
4ρ(r−η2)ρ

)
≤ 1

ρ

if ρ ≤ ρ (r− η2).
For the remainder of this section we assume that n is odd and consider

only ρ ∈ (0, ρ (r − η2)). Let m � (n− 1) /2. We shall apply the Gauss-
Bonnet formula to the hypersurface Ŝr(ρ) for r ≥ r1 as defined in subsection
4.1. Following [ESS-89] [GW-82], let Gr (ρ) be the Gauss-Bonnet integrand
of Ŝr (ρ) with the induced metric. There are many instances of the formula
for Gr (ρ) in the literature (see for example p. 749 of [C-44] or p. 740 of
[GW-82]), in general Gr (ρ) is defined by

2
ωn−1

Gr (ρ) dV =
1

22mπmm!

∑
εi1,...,i2mΩi1i2 ∧ · · · ∧ Ωi2m−1i2m ,

where Ωij are the curvature 2-forms of the induced metric on Ŝr (ρ). Recall
that ωn−1 =Vol

(
S2m

)
= 22m+1πmm!/ (2m)!.Hence

Gr (ρ) dV =
1

(2m)!

∑
εi1,...,i2mΩi1i2 ∧ · · · ∧Ωi2m−1i2m.

By the Gauss-Bonnet formula

2
ωn−1

∫
Ŝr(ρ)

Gr (ρ) dV
Ŝr(ρ)

= χ
(
Ŝr (ρ)

)
= 2. (19)

We need to estimate the Gauss-Bonnet integrand (see [GW-82] p. 740ff
or [ESS-89] p. 160ff). Define

Qr(ρ) � Gr(ρ)− det [Lr(ρ)] .
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From Lemma 18 (iii) we have the following estimate of the sectional
curvature Kx ofM at points in Ŝr (ρ)

sup
x∈Ŝr(ρ)

Kx ≤ κ(r + ρ− η2)

We estimate Qr(ρ) as on p. 160 of [ESS-89]. Below c(n) is a constant
depending only on n. For r ≥ 1 ≥ η2

|Qr(ρ)| ≤ c(n) ·
m∑
p=1

κ(r+ ρ− η2)p ·
(
|Lr(ρ)|2

)m−p

≤ c(n) ·
m∑
p=1

a(r+ ρ− η2)2p

(r+ ρ− η2)2p
·
(

1
ρ2

)m−p

≤ c(n) ·
m∑
p=1

a(r+ ρ− η2)2p ·
1

ρn−1
.

It follows from the monotonicity of a(r) that for r ≥ 1

|Qr(ρ)| ≤ c(n) · 1
ρn−1

·
m∑
p=1

a(r − η2)2p. (20)

From (18), (19) and (20) we get for r ≥ 1

ωn−1 =
∫
Ŝr(ρ)

Gr(ρ)dVŜr(ρ)

≤
∫
Ŝr(ρ)

(|Qr(ρ)|+ |det[Lr(ρ)]|) dVŜr(ρ)

≤
∫
Ŝr(ρ)

⎛⎝c(n) · 1
ρn−1

·
m∑
p=1

a(r − η2)2p +
1

ρn−1

⎞⎠ dV
Ŝr(ρ)

.

Thus we have obtained the following lower bound for the areas of the hyper-
surfaces

Lemma 19. There is a constant c(n) depending only on n such that for

any r ≥ 1 and ρ ≤ ρ(r− η2) = π(r−η2)
4a(r−η2)

Area
[
Ŝr(ρ)

]
≥ ωn−1

c(n) ·
∑m

p=1 a(r− η2)2p + 1
· ρn−1. (21)
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4.4. The final argument.

Lemma 20. (i) For r ≥ 1

Ŝr ⊂ B

(
Q,

r + η2

1− θ (r− η2)

)∖
B (Q, r− η2) .

(ii) For r ≥ 1 and ρ ≤ ρ(r− η2)

Ŝr(ρ) ⊂ B

(
Q,

r + η2

1− θ (r− η2)
+ ρ

)∖
B (Q, r− η2) .

Proof. (i) For any x ∈ Ŝr it follows from Lemma 18 (i) that d(Q, x) ≥ r− η2

and bQ(x) ≤ r + η2. By Lemma 7 (ii), (i) we have for

bQ(x) ≥ (1− θ (d(Q, x))) · d(Q, x)≥ (1− θ(r − η2)) · d(Q, x),

Hence
d(Q, x) ≤ r + η2

1− θ (r − η2)
.

(ii) This follows from (i) and Lemma 18 (iv). �

By Lemma 7 (i) there is a r2 = r2(M) such that θ(r) < 1/2 for all r ≥ r2.

Proposition 21. Let (Mn, g) be a complete, noncompact Riemannian

manifold with positive sectional curvature and Q ∈ M. For any η1, η2 > 0
there is r1 = r1(η1,M) and r2 = r2(M) such that for any r ≥ max {r1, r2}+5

Vol

[
B

(
Q,

r + η2

1− θ (r − η2)
+ ρ(r− η2)

)∖
B(Q, r − η2)

]
≥ ωn−1

c(n) ·
∑m

p=1(
√
ASCR(g) + η1)2p + 1

· ρ(r− η2)n

n
.

Proof. From Lemma 20 (ii)

∪0≤ρ≤ρ(r−η2)Ŝr(ρ) ⊂ B

(
Q,

r+ η2

1− θ (r − η2)
+ ρ(r− η2)

)∖
B(Q, r− η2)
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we get by the area estimate (21)

Vol
[
B

(
Q,

r + η2

1− θ (r − η2)
+ ρ(r− η2)

)∖
B(Q, r − η2)

]
≥ Vol(∪0≤ρ≤ρ(r−η2)Ŝr(ρ))

≥
∫ ρ(r−η2)

0

ωn−1

c(n) ·
∑m

p=1 a(r− η2)2p + 1
· ρn−1dρ

=
ωn−1

c(n) ·
∑m

p=1 a(r− η2)2p + 1
· ρ(r− η2)n

n
. (22)

The proposition follows from θ (r − η2) ≤ 1
2 and a(r−η2) ≤

√
ASCR(g)+η1

when r ≥ r ≥ max {r1, r2}+ 5. �

Now we finish the proof of Theorem 3. Let (ε0, k0, L0) =
(min(εa, εb), ka, Lb) given in Proposition 10. Let N : Sn−1 × [−L, L] → M
be a (ε, k, L)-neck with (ε, k, L) � (ε0, k0, L0) and Q ∈ N (Sn−1 × {−L0});
this will give us a constant r0. Choose positive η1 < 1 and η2 < 1, this
will give two constants r1 and r2. Choosing an r ≥ max {r0, r1, r2}+ 5 and
letting R2 � r+η2

1−θ(r−η2) + ρ(r− η2) and R1 � r− η2 in Proposition 10, we get
from (13) and (22)

(
11
10

)n · ωn−1 · 10
9 · 12

ωn−1

n · (( 9
10L0 + 2)n − ( 9

10L0 − 2)n)

≥
ωn−1

c(n)·∑m
p=1 a(r−η2)2p+1 ·

ρ(r−η2)n

n

ωn−1

n ·
([

r+η2
1−θ(r−η2) + ρ(r− η2)

]n
− (r− η2)n

)
≥ 1
c(n) ·

∑m
p=1 a(r− η2)2p + 1

· 1(
r+η2

[1−θ(r−η2)]·ρ(r−η2) + 1
)n

≥ 1
c(n) ·

∑m
p=1 a(r− η2)2p + 1

· 1(
12
π a(r− η2) + 1

)n ,
where in the last inequality we have used r+η2

ρ(r−η2) ≤
6
πa(r − η2) and

θ (r − η2) ≤ 1/2. This is because r ≥ 5 and r−η2
ρ(r−η2) = 4

πa(r − η2). Using
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a(r − η2) ≤
√
ASCR(g) + η1 we get(

11
10

)n · ωn−1 · 1n · 10
9 · 12

ωn−1

n

(
( 9
10L0 + 2)n − ( 9

10L0 − 2)n
)

≥ 1

c(n) ·
∑m

p=1

(√
ASCR(g) + η1

)2p
+ 1
· 1(

12
π

(√
ASCR(g) + η1

)
+ 1

)n .
Now it is clear that we can make ASCR(g) ≥ C0 if we choose L0 large
enough. Theorem 3 is proved.

5. Existence of necklike points in ancient solutions.

We first recall the following result of Hamilton which is based on an estimate
of Hamilton (Theorem 24.4 in [H-95a]) and Ivey [I-93].

Lemma 22. If
(
M3, g (t)

)
, t ∈ (−∞, ω) , is a complete ancient solution of

the Ricci flow with bounded curvature, then g (t) has nonnegative sectional
curvature for all t ∈ (−∞, ω) .

Proof. See [H-95a] or for a more detailed proof [CKE]. �

We also note that in a lemma in §19 of [H-95a], Hamilton also proved
that if (Mn, g (t)) is a non-Ricci flat ancient solution with nonnegative Ricci
curvature, then there exists a constant c0 > 0 depending only on n such that

lim inf
t→−∞ |t| sup

x∈M
R (x, t) ≥ c0.

(See also Lemma 19.4 of [H-95a] for a related result for Type I singularities.)
In some sense this may be considered as an elementary gap-type result for
ancient solutions to the Ricci flow regarding the geometry at t = −∞ of the
space-time manifoldMn × (−∞, ω) .

Following the terminology of [CKE] we shall say that (x, t) is an ancient
Type I-like c-essential point if

|Rm (x, t)| · |t| ≥ c > 0.

We say that (x, t) is a δ-necklike point if there exists a unit 2-form θ at (x, t)
such that

|Rm−R (θ ⊗ θ)| ≤ δ |Rm| .
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We have the following result due to the first named author which we believe
to have first appeared in the unpublished notes [CKE]. Similar results were
proved earlier by Hamilton in Theorem 24.6 of [H-95a] on the existence of
necklike points in Type I singular solutions to the Ricci flow on compact
3-manifolds on finite time intervals [0, T ) (see also Theorem 3.3 in §2.3 of
[H-97] for a similar result in dimension four) and Corollary 3.5 of §2.3 of
[H-97] on the existence of necklike points in Type I-like ancient solutions
with bounded positive isotropic curvature.

Theorem 23. Let
(
M3, g (t)

)
, t ∈ (−∞, ω) , be a complete ancient solution

of the Ricci flow with bounded positive sectional curvature. Suppose that

sup
M×(−∞,0]

|t|γ R (x, t) <∞

for some γ > 0. Then either

1. (M, g (t)) is isometric to a shrinking spherical space form, or

2. there exists a constant c > 0 such that for all τ ∈ (−∞, 0] and δ > 0,

there exist x ∈M and t ∈ (−∞, τ) such that (x, t) is an ancient Type
I-like c-essential point and a δ-necklike point.

Proof. We shall show that if for every c > 0 there exist τ ∈ (−∞, 0] and δ > 0
such that there are no ancient Type I-like c-essential δ-necklike points before
time τ , then (M, g(t)) is isometric to a shrinking spherical space form.

By the hypothesis, there exists γ > 0 such that

K � sup
M×(−∞,0]

|t|γ R (x, t) <∞.

(When γ = 1, this is the definition of an ancient Type I-like solution.) Since
the scalar curvature of (M, g(t)) is positive, the function

G � |t|γε/2 |
◦

Rm|2
R2−ε

is well-defined. Since the sectional curvatures are positive, |
◦

Rm| ≤ |Rm| ≤
R, and we have the estimates

G ≤ Rε |t|γε/2 ≤ Kε |t|−γε/2 ,
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which show that G is bounded for all times −∞ < t ≤ 0 and satisfies

lim
t→−∞ sup

x∈M
G (x, t) = 0. (23)

If there are no ancient c-essential δ-necklike points on the time interval
(−∞, τ ], then for every x ∈M and t ∈ (−∞, τ) either

|Rm (x, t)| · |t| < c (24)

or we have
|Rm−R (θ ⊗ θ)| > δ |Rm| (25)

for every unit 2-form θ at (x, t).
A straightforward computation yields that if φ is a nonnegative function

and ψ is a positive function, both defined on space and time, then(
∂

∂t
−∆

)(
φα

ψβ

)
= α

φα−1

ψβ

(
∂

∂t
−∆

)
φ− β φα

ψβ+1

(
∂

∂t
−∆

)
ψ

− α (α− 1)
φα−2

ψβ
|∇φ|2 − β (β + 1)

φα

ψβ+2
|∇ψ|2

+ 2αβ
φα−1

ψβ+1
〈∇φ,∇ψ〉 .

Taking φ = (−t)γε/2 |
◦

Rm|2, ψ = R, α = 1, and β = 2 − ε, a computation
yields

∂

∂t
G ≤ ∆G+

2 (1− ε)
R

〈∇G,∇R〉+ 2J,

where

J � |t|
γε/2

R3−ε

[
ε|

◦
Rm|2

(
|Rm|2 − γR

4 |t|

)
− P

]
and

P � λ2 (µ− ν)2 + µ2 (λ− ν)2 + ν2 (λ− µ)2 ≥ 0

(here λ, µ, ν are the eigenvalues of Rm.) Fix any (x, t) with t < τ ≤ 0. If
the first alternative (24) holds there with c ≤ γ/8, then we may estimate
the term

|Rm|2 − γR

4 |t| ≤ R
(
|Rm| − γ

4 |t|

)
< R

(
c

|t| −
γ

4 |t|

)
≤ − γR

8 |t|

and hence dropping the −P ≤ 0 term yields

J ≤ − γε

8 |t|G.
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On the other hand if the second alternative (25) holds, then Lemma 27 in

Appendix C implies there exists η (δ) > 0 such that P ≥ η |Rm|2 |
◦

Rm|2
whence it follows that taking ε ≤ η gives

J ≤ − γε

4 |t|G.

Thus in either case, G is a subsolution of the heat equation for all times
−∞ < t < τ , because

∂

∂t
G ≤ ∆G+

2 (1− ε)
R

〈∇G,∇R〉 − γε

2 |t|G.

By the weak maximum principle, which applies even whenM is noncompact
since the both the curvatures and G are bounded, supx∈MG (x, t) is a non-
increasing function of time. We may then use (23) to conclude that G ≡ 0,
hence that

(
M3, g(t)

)
locally isometric to a round S3. Since

(
M3, g(t)

)
is

complete, we conclude that it is compact and globally isometric to a spherical
space form S3/Γ. �

Now we shall assume that M3 is noncompact. Since g (t) has positive
sectional curvature, by a result of Gromoll and Meyer [GM-69], there is an
injectivity radius estimate:

Proposition 24. M3 is diffeomorphic to R3 and

inj
(
M3, g (t)

)
≥ π√

Ksup (t)

where Ksup (t) is the supremum of the sectional curvatures of g (t) .

We may apply this estimate and a standard compactness theorem to
obtain a cylinder limit solution. In particular, we have:

Theorem 25. If
(
M3, g (t)

)
, t ∈ (−∞, ω) , is a complete noncompact Type

I-like ancient solution of the Ricci flow with bounded positive sectional cur-

vature on an orientable 3-manifold, then there exists a sequence of points
and times (xi, ti) ∈ M3 × (−∞, ω) such that the dilated and translated

solutions
(
M3, gi (t) , xi

)
, t ∈ (−∞, ωi) , where

gi (t) = R (xi, ti) · g
(
ti +

t

R (xi, ti)

)
and ωi = R (xi, ti) (T − ti) , limit to a solution

(
M3∞, g∞ (t) , x∞

)
, t ∈

(−∞, ω∞) , to the Ricci flow isometric to the standard shrinking cylinder

S2 ×R.
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Remark 26. The conclusion also holds with the additional condition on
the sequence of times: limi→∞ ti = −∞.

Proof. Choose any sequence {δi}i∈N
with limi→∞ δi = 0. By Theorem 23

(with γ = 1,) sinceM is noncompact (and hence (M, g (t)) is not isometric
to a shrinking spherical space form), there exists a constant c > 0 such that
there exists points and times (xi, ti) such that

|Rm (xi, ti)| · |ti| ≥ c > 0.

and
|Rm−R (θ ⊗ θ)| (xi, ti) ≤ δi |Rm (xi, ti)| .

for some unit 2-forms θi. By Gromoll and Meyer’s injectivity radius estimate,
we may apply Hamilton’s Gromov-type compactness theorem for solutions of
the Ricci flow [H-95b] to the sequence of pointed solutions

(
M3, gi (t) , xi

)
,

t ∈ (−∞, ωi) where

gi (t) = R (xi, ti) · g
(
ti +

t

R (xi, ti)

)
and ωi = R (xi, ti) (T − ti) . We obtain a complete limit ancient solution to
the Ricci flow

(
M3∞, g∞ (t) , x∞

)
, t ∈ (−∞, ω∞) , on a noncompact1 ori-

entable 3-manifold with bounded nonnegative sectional curvature and

Rm(g∞ (x∞, 0)) = R (g∞ (x∞, 0)) (θ∞ ⊗ θ∞)

for some unit 2-form θ∞. By the strong maximum principle we conclude that
the universal covering solution

(
M̃3∞, g̃∞ (t)

)
, t ∈ (−∞, ω∞) , is isometric to

the product of R and a complete ancient Type I-like solution
(
N 2, h∞ (t)

)
,

t ∈ (−∞, ω∞) , to the Ricci flow on a surface with bounded positive curva-
ture. By Theorem 26.1 of [H-95a],

(
N 2, h∞ (t)

)
is isometric to a shrinking

round sphere (and in particular, N 2 is compact.) Now there are only two
noncompact orientable quotients of S2 ×R : S2 × R itself and R×̃RP 2, the
nontrivial R-bundle over RP 2. Topologically, R×̃RP 2 ∼= S2×[0,∞)/ ∼ where
(x, 0) ∼ (−x, 0) , which is diffeomorphic to RP 3 − B̄3. If M3∞ ∼= R×̃RP 2,
thenM3 admits an embedded (one-sided) RP 2 (sinceM3∞ does). However,
by the work of Gromoll and Meyer [GM-69], we know thatM3 is diffeomor-
phic to R

3. This yields a contradiction. Hence
(
M3∞, g∞ (t) , x∞

)
is isometric

to R×
(
N 2, h∞ (t)

)
, where

(
N 2, h∞ (t)

)
is a shrinking round 2-sphere. �

1IfM3∞ were compact, then M3 would be diffeomorphic toM3∞, which contra-
dicts the asumption thatM3 is noncompact.
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We are now in a position to prove Theorem 4 assuming Theorem 3.

Proof of Theorem 4. Let
(
M3, g (t)

)
, −∞ < t < ω, be a complete orientable

noncompact ancient Type I-like solution to the Ricci flow with bounded pos-
itive sectional curvature. By Theorem 25, there exists a sequence of points
and times (xi, ti) ∈M3×(−∞, ω) such that the dilated and translated solu-
tions

(
M3, gi (t) , xi

)
, t ∈ (−∞, ωi) , limit to the standard shrinking cylinder

S2 × R. Now, by Theorem 3, given any A0 < ∞, there exists (ε0, k0, L0)
such that if

(
M3, g

)
is a complete, noncompact Riemannian manifold with

bounded positive sectional curvature and containing an (ε, k, L)-neck with
(ε, k, L) � (ε0, k0, L0) , then ASCR(g) ≥ A0. On the other hand, since(
M3, gi (0) , xi

)
limits to a standard cylinder S2 × R, for i large enough,

there exists an (ε0, k0, L0)-neck in
(
M3, gi (0) , xi

)
. This implies

ASCR (g (ti)) = ASCR (gi (0)) ≥ A0.

In §19 of [H-95a] Hamilton has proved that the asymptotic scalar curvature
ratio of a complete ancient solution to the Ricci flow with bounded non-
negative curvature operator (when n = 3, this is the same as nonnegative
sectional curvature) is constant in time. This implies that for all t ∈ (−∞, ω)
we have ASCR(g (t)) ≥ A0. Since A0 <∞ is arbitrary, we conclude that

ASCR (g (t)) ≡ ∞

for all t ∈ (−∞, ω) . �

6. Appendices.

6.1. A.

Proof of Lemma 8. It suffices to show that there is ε′ such that if N :
Sn−1 × [a, b] → M is an (ε′, k, L)-neck then inequalities (3) and (4) are
satisfied on z ∈ [a+b2 − L,

a+b
2 + L].

Assume ε′ ≤ min
{
1, ln 2

2L

}
so that

∣∣∣d ln r(z)
dz

∣∣∣ ≤ ε′. Using the inequality

|ex − 1| ≤ 2|x| for |x| ≤ ln 2, we get for z ∈ [a+b2 − L,
a+b
2 + L],∣∣∣∣∣ln r2(z)

r2(a+b2 )

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
∫ z

(a+b)/2

d

dζ
(ln r (ζ)) dζ

∣∣∣∣∣ ≤ 2Lε′ ≤ ln 2,
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which implies ∣∣∣∣∣ r2(z)r2(a+b2 )
− 1

∣∣∣∣∣ ≤ 2

∣∣∣∣∣ln r2(z)
r2(a+b2 )

∣∣∣∣∣ ≤ 4ε′L.

From
∣∣∣ 1
r2(z)g − ḡ

∣∣∣
ḡ
≤ ε′ we get

∣∣∣∣ 1
r2(z)

· g
∣∣∣∣
ḡ

≤
√
n+ ε′

since |ḡ|2ḡ = ḡijḡij = n. Hence for z ∈ [a+b2 − L,
a+b
2 + L]∣∣∣∣∣ 1

r2(a+b2 )
· g − ḡ

∣∣∣∣∣
ḡ

≤
∣∣∣∣ 1
r2(z)

· g − ḡ
∣∣∣∣
ḡ

+

∣∣∣∣∣
(

r2(z)
r2(a+b2 )

− 1

)
·
(

1
r2(z)

· g
)∣∣∣∣∣

ḡ

≤ ε′ + 4ε′L · (
√
n+ ε′).

If we choose

ε′ ≤ min
{

1,
ln 2
2L

,
ε

1 + 8L
√
n

}
,

inequality (3) will hold for z ∈ [a+b2 − L,
a+b
2 + L].

Let

R(z) = ln
r2(z)
r2(a+b2 )

.

Assume now ε′ ≤ min
{

1
2 ,

ln 2
2L

}
. From

∣∣∣dj log r(z)
dzj

∣∣∣ ≤ ε′ for 1 ≤ j ≤ k and

eR(z) ≤ 1 + 4ε′L we get for 1 ≤ j ≤ k and z ∈ [a+b2 − L,
a+b
2 + L]∣∣∣∣djR(z)

dzj

∣∣∣∣ ≤ 2ε′

and∣∣∣∣∣ djdzj r2(z)
r2(a+b2 )

∣∣∣∣∣=
∣∣∣∣ djdzj eR(z)

∣∣∣∣≤c(j) · eR(z) · max
i1+···+ip=j

{∣∣∣∣di1R(z)
dzi1

• · · · • d
ipR(z)
dzip

∣∣∣∣}
≤ c(j) · (1 + 4ε′L) · 2ε′

where c(j) is a constant depending only on j. Hence for 1 ≤ j ≤ k and
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z ∈ [a+b2 − L,
a+b
2 + L]∣∣∣∣∣∇̄j

(
1

r2
(
a+b
2

) · g)∣∣∣∣∣
ḡ

=
∣∣∣∣∇̄j (eR(z) · 1

r2 (z)
· g
)∣∣∣∣

ḡ

≤
j∑
i=0

(
j
i

)
·
∣∣∣∣ didzi eR(z)

∣∣∣∣ · ∣∣∣∣∇̄j−i( 1
r2 (z)

· g
)∣∣∣∣

ḡ

≤ (1 + 4ε′L)ε′+
j−1∑
i=1

(
j

i

)
· c(i) · (1 + 4ε′L) · 2ε′ · ε′ + c(j) · (1 + 4ε′L) · 2ε′.

Note that in the last inequality above we have used
∣∣∣∇̄j−i ( 1

r2(z)
· g
)∣∣∣
ḡ
≤ ε′

for 1 ≤ j − i ≤ k. So there is a constant Ck depending only on k, such that
if we choose

ε′ ≤ min
{

1
2
,
ln 2
2L

,
ε

Ck · (1 + 4L)

}
,

then inequality (4) will hold for z ∈ [a+b2 −L,
a+b
2 +L]. The lemma is proved.

�

6.2. B.

Proof of Lemma 18. We shall use the properties of Busemann functions in
Lemma 6.

(i) For any x ∈ Ŝr, b̂Q(x) = r. It follows from (17) that |bQ(x)− r| < η2.
Hence Ŝr ⊂ b−1

Q ((r− η2, r+ η2)).
For any x ∈ Ŝr, bQ(x) > r − η2. Since bQ(x) ≤ d(Q, x), d(Q, x) > r − η2

and Ŝr ⊂M\B(Q, r− η2).
(ii) For any x ∈ B(Q, r − η2), d(Q, x) < r − η2. Since bQ(x) ≤ d(Q, x),

bQ(x) < r − η2 and B(Q, r− η2) ⊂ b−1
Q ((−∞, r− η2)).

For any x ∈ b−1
Q ((−∞, r − η2)), bQ(x) < r − η2. By (17), b̂Q(x) <

bQ(x) + η2 < r. Hence b−1
Q ((−∞, r− η2)) ⊂ Ĉr.

For any x ∈ Ĉr , b̂Q(x) < r. By (17), bQ(x) < b̂Q(x)+η2 < r+η2. Hence
Ĉr ⊂ b−1

Q ((−∞, r+ η2)).

(iii) For any x ∈ Ŝr(ρ), d(x, Ŝr) = d(x, Ĉr) = ρ. Let γ be a minimal
geodesic from Q to x. It is clear that γ intersects Ŝr at some point γ(l), thus

d(Q, x) = d(Q, γ(l))+ d(γ(l), x)≥ d(Q, Ŝr) + d(Ŝr, x) > r − η2 + ρ,
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and hence Ŝr(ρ) ⊂M\B(Q, r+ ρ− η2).
(iv) For any x ∈ Ŝr(ρ) let y ∈ Ŝr be a point satisfying d(x, y) =

d(x, Ŝr) = ρ. Then from Ŝr ⊂ B(Q, η)

d(Q, x) ≤ d(Q, y) + d(y, x) < η + ρ,

so that Ŝr(ρ) ⊂ B(Q, η + ρ). �

6.3. C.

Here we give the proof of an estimate of Hamilton used in the proof of
Theorem 23.2

Lemma 27. If for some δ ∈ (0, 1) we have |Rm−R (θ ⊗ θ)|2 ≥ δ |Rm|2 for

every unit 2-form θ, then

P ≥ δ

96 (3− δ) |Rm|2 |
◦

Rm|2.

Proof. We may assume without loss of generality that |λ| ≥ |µ| ≥ |ν|. The
hypothesis implies that

µ2 + ν2 + µν ≥ δ

2
(
λ2 + µ2 + ν2

)
,

and hence that µ2 + ν2 ≥ δ
3−δλ

2. Since |µ| ≥ |ν| by assumption, we have

P = λ2 (µ− ν)2 + µ2 (λ− ν)2 + ν2 (λ− µ)2

≥ λ2 (µ− ν)2 +
δ

2 (3− δ)λ
2 (λ− ν)2 + ν2 (λ− µ)2 .

Now notice that
|Rm|2 = λ2 + µ2 + ν2 ≤ 3λ2

and

|
◦

Rm|2 =
1
3

[
(λ− µ)2 + (λ− ν)2 + (µ− ν)2

]
≤ 4

3
(
λ2 + µ2 + ν2

)
≤ 4λ2.

So if |ν| ≤ |λ|/2, we have

P ≥ δ

2 (3− δ)λ
2 (λ− ν)2 ≥ δ

8 (3− δ)λ
4 ≥ δ

96 (3− δ) |Rm|2 |
◦

Rm|2,

2This is a version of an estimate in the proof of Theorem 24.6 of [H-95a].
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while if |ν| > |λ|/2, we get

P > λ2 (µ− ν)2 +
δ

2 (3− δ)λ
2 (λ− ν)2 +

1
4
λ2 (λ− µ)2

≥ δ

2 (3− δ)λ
2
[
(µ− ν)2 + (λ− ν)2 + (λ− µ)2

]
≥ δ

2 (3− δ) |Rm|2 |
◦

Rm|2,

because 1
4 >

δ
2(3−δ) . �
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