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Dehn-Thurston Coordinates for Curves on Surfaces

Feng Luo and Richard Stong

We prove that the geometric intersection numbers between two
proper 1-dimensional submanifolds satisfy a Cauchy type inequal-
ity expressed in terms of the Dehn-Thurston coordinate. As an
application, we reestablish the fundamental results in the theory
of measured laminations on surfaces.

1. Introduction.

1.1. We study the space of isotopy classes of 1-dimensional submanifolds
in a surface in this paper. The subject was originated by Max Dehn in
his 1938 paper [De]. In this work, Dehn laid the foundation for the stud-
ies of the mapping class group of a surface and the space of isotopy classes
of 1-dimensional submanifolds in a surface. According to Dehn, the most
important proper 1-dimensional submanifolds are the curve systems which
have the property that no component of the submanifold is null homotopic
or homotopic into the boundary of the surface by homotopies relative to
the boundary. Dehn defined the arithmetic field of a surface Σ, denoted by
CS(Σ), to be the set of all isotopy classes of curve systems. Dehn’s main
focus of study in [De] was the action of the mapping class group on the
”arithmetic field” CS(Σ). In 1976, William Thurston independently redis-
covered the space CS(Σ) and put one more vital ingredient into the study
of ”arithmetic field” CS(Σ). Namely, the geometric intersection numbers
between two isotopy classes of 1-dimensional submanifolds. Recall that if α
and β are isotopy classes of proper 1-dimensional submanifolds, then their
geometric intersection number, denoted by I(α, β), is the minimal number
of intersections between their representatives, i.e.,

I(α, β) = min{|a ∩ b| : a ∈ α, b ∈ β}.

Thurston developed the theory of measured laminations which is a topolog-
ical completion of the pair (CS(Σ), I) and used it to classify the elements in
the mapping class group.

To study the arithmetic field CS(Σ) of the surface, Dehn introduced a
parameterization of it (the Dehn-Thurston coordinate, see [PH] or §2 for
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a definition). The parameterization is an injective homogeneous map Π :
CS(Σ)→ (Z2/±)3g+r−3×Zr≥0 where g is the genus of the surface and r ≥ 0
is the number of boundary component of the surface.

Our main result is a Cauchy inequality relating the geometric intersection
number and the Dehn-Thurston coordinate. As an application, we shall
reestablish some of the basic results in the theory of measured laminations
from the inequality.

To state the main result, we need to introduce a natural metric on
the space Z2/± = {[x, y]|x, y ∈ Z so that (x, y) and −(x, y) are identi-
fied }. We define the metric on the space Z2/± to be |[x1, y1] − [x2, y2]| =
min(|x1 − x2|+ |y1 − y2|, |x1 + x2|+ |y1 + y2|) and |[x, y]| = |[x, y]− [0, 0]|.
The metric on the product space (Z2/±)k ×Zr is defined to be the product
metric |(v1, ..., vk+r)− (u1, ..., uk+r)| =

∑k+r
i=1 |vi− ui|. Also |(v1, ..., vk+r)| =∑k+r

i=1 |vi|.

Theorem. For a compact oriented surface Σ, the geometric intersection
number satisfies the Cauchy inequality that

|I(α, β)− I(α, γ)| ≤ 3|Π(α)||Π(β)−Π(γ)| (1.1)

for all α, β, γ ∈ CS(Σ). Here Π(α) is the Dehn-Thurston coordinate of α.
If the 3-holed sphere decomposition used in the definition of the Dehn-

Thurston coordinate contains only embedded 4-holed spheres, then

|I(α, β)− I(α, γ)| ≤ 2|Π(α)||Π(β)−Π(γ)| (1.2)

Furthermore, the inequality (1.2) is sharp.

Here by a 3-holed sphere decomposition containing only 4-holed spheres,
we mean any two 3-holed spheres in the decomposition do not share more
than one boundary components (see figure 5.1 (b), (c)). For these 3-holed
sphere decompositions, the inequality (1.2) is sharp. Indeed, for the 4-holed
sphere Σ0,4, if one takes α, β, and γ as shown in figure 1.1, then the inequality
(1.2) becomes an equality. It is possible that inequality (1.1) is also sharp.
However, we have not been able to find an example realizing the equality in
(1.1).

We remark that in [Re], using the theory of train-tracks, it is proved that
the inequality |I(α, β) − I(α, γ)| ≤ K|Π(α)||Π(β) − Π(γ)| holds for three
classes α, β and γ carried by a train-track and the constant K depends on
the train track.
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Figure 1.1

1.2. As an application, we shall reestablish some of the basic results in the
theory of measured laminations which is a topological completion of the pair
(CS(Σ), I). Thurston first observed that the pairing I : CS(Σ)×CS(Σ)→ Z
is similar to a non-degenerate bilinear form on a lattice in the sense that
(1) for any α in CS(Σ) there is β in CS(Σ) so that I(α, β) �= 0, and (2)
I(αj, βk) = jkI(α, β) where αj is the collection of j copies of α. In linear
algebra, given a non-degenerate bilinear form on a lattice L of rank r, there
is a canonical completion of the lattice to a Euclidean space so that the
bilinear form extends naturally. The theory of measured laminations is the
exact analogy. Define an embedding Θ of CS(Σ) to RCS(Σ) by sending α to
the function Θ(α) = I(α, .), i.e., Θ(α)(β) = I(α, β). Then the space of mea-
sured laminations ML(Σ) is defined to be the closure of Q≥0 × Θ(CS(Σ))
in the product topology. The basic theorem in the theory of measured lami-
nations is the following remarkable result which shows in particular that the
geometric intersection numbers behave very well in dimension 2.
Theorem. ([Th1],[Th2], [Bo]) For each compact orientable surface Σ of
genus g with r many boundary components,

(1) the intersection pairing I extends to a continuous homogeneous map
from ML(Σ) × ML(Σ) to R, and

(2) the space ML(Σ) is homeomorphic to the Euclidean space R6g+r−3×
Rr

≥0.
See [Bo], [FLP], [HM], [PH] and others for proofs. It will be shown

in §6 that this result follows from theorem 1.1 and a fact that the twisting
coordinate can be expressed as a universal function in terms of the geometric
intersection numbers with a fixed set of simple loops (Prop. 4.4).

1.3. The paper is organized as follows. In §2, we recall the definition
of Dehn-Thurston coordinate. We shall make an extensive use of a natural
multiplicative structure on the space CS(Σ) to define the twisting coordi-
nate.
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In §3, we study the Dehn-Thurston coordinate and the multiplication of
curve systems on the 3-holed sphere. The corresponding results for the 1-
holed torus and the 4-holed sphere are proved in section §4. In §5, we prove
theorem 1.1 and in §6, we derive the basic result on the space of measured
laminations from theorem 1.1.

1.4. Acknowledgment. The work is supported in part by the NSF.

2. Dehn-Thurston Coordinate of Curve Systems.

We will define the Dehn-Thurston coordinate on CS(Σ) in this section. The
Dehn-Thurston coordinate on surfaces with non-negative Euler number is
very simple and will not be discussed here. Thus unless mentioned otherwise,
we will always assume that the surface Σ is oriented with negative Euler
number in this section. The basic ingredient to define the coordinate is a
decomposition of the surface into hexagons (an H-decomposition). This will
be defined in section 2.2.

This section is organized as follows. In §2.1, we introduce the notations
and conventions to be used in the paper. In §2.2, we recall the classifica-
tion of the curve systems in the 3-holed sphere and introduce the concept
of standard curve systems. In §2.3, we define the P-decomposition (pants-
decomposition) and H-decomposition (hexagonal-decomposition) of a sur-
face. In §2.4, we recall a very useful multiplicative structure on the space
CS(Σ) and list its basic properties. The Dehn-Thurston coordinate is de-
fined in §2.5. There are some overlaps between the work of [PH] and ours
in the approach to the Dehn-Thurston coordinate. The use of hexagonal-
decomposition in this paper seems to be graphically easier to understand
than that of [PH].

2.1. We shall use the following notation and conventions. Let Σg,r be the
orientable compact surface of genus g with r ≥ 0 boundary components. The
interior of a surface X will be denoted by int(X). If a surface X is oriented,
then all its subsurfaces have the induced orientation. We will always draw
oriented surface so that its orientation is the right-hand orientation in the
front face. If s is a proper submanifold of a surface, we use N (s) to denote
a small tubular neighborhood of s. The isotopy class of a submanifold s is
denoted by [s]. If a, b are curve systems, we will also use I(a, b) or I([a], b)
or I(a, [b]) to denote the intersection number I([a], [b]). Two isotopy classes
α and β in CS(Σ) are called disjoint if I(α, β) = 0. If I(α, β) �= 0, we say α
intersects β. If s is a component of a curve system a, we will call the isotopy
class [s] a component of [a]. A parallel copy of a curve system a is a new curve
system a′ isotopic to a so that a′ and a are disjoint and a′ ⊂ N (a). When
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a curve system a is written as a union a1 ∪ ... ∪ an, it is always understood
that each ai is a union of components of a. Let 2Z be the set of all even
numbers. The isotopic submanifolds a, b will be denoted by a ∼= b.

A function f : Rn → X where X admits an action of R>0 is called
homogeneous if for all k ∈ R>0, f(kx) = kf(x).

2.2. We begin with the classification of the curve systems on the 3-holed
sphere Σ0,3. It is well known that the curve systems in Σ0,3 are classi-
fied up to isotopy by their intersection numbers with the three boundary
components. See for instance [FLP]. To be more precise, let the bound-
ary components of the 3-holed sphere Σ0,3 be ∂1, ∂2, ∂3. Define a map
Π : CS(Σ0,3) → {(x1, x2, x3) ∈ Z3

≥0|x1 + x2 + x3 ∈ 2Z} by sending α to
(I(α, ∂1), I(α, ∂2), I(α, ∂3)). Then the map Π is a bijection. This is the
Dehn-Thurston coordinate for the 3-holed sphere. One can list the curve
system with coordinate (x1, x2, x3) as in figure 2.1(a).

An H-decomposition on the surface Σ0,3 is a curve system b1 ∪ b2 ∪ b3
whose Dehn-Thurston coordinate is (2, 2, 2). We call the closure of each
component of Σ0,3− b1 ∪ b2 ∪ b3 a hexagon whose boundary consists of three
edges in b1 ∪ b2 ∪ b3 and the other three in ∂Σ0,3. We assume that bi is
disjoint from ∂i.

Fix an orientation on the surface Σ0,3 and color one of the hexagons red.
Then with respect to this colored H-decomposition of the oriented surface
Σ0,3, each element α ∈ CS(Σ0,3) has a standard representing curve system.
Here a curve system is called standard if each component of it is standard.
An arc a is standard if either it lies entirely in the red-hexagon or if ∂a ⊂ ∂i,
then ∂a is in the red-hexagon and |a∩(b1∪b2∪b3)| = 2 = |a∩(bi∪bj)| so that
the cyclic order of the sets (a∩ ∂i, a∩ bi, a∩ bj) in the boundary of the red-
hexagon coincides with the induced orientation from the red-hexagon. For
instance the standard representatives of the curve system with coordinate
(x1, x2, x3) are listed in figure 2.1(b).

2.3. Let CS0(Σ) ⊂ CS(Σ) be the subset consisting of isotopy classes
of curve systems which contain no arc components. We call an ele-
ment [p] ∈ CS0(Σ) a P-decomposition if each component of the surface
Σ−∪ki=1int(N (p)) is a 3-holed sphere. In this case, the curve system p must
have exactly 3g+r−3 many components. An H-decomposition of the surface
is a pair ([p], [b]) ∈ CS0(Σ)×CS(Σ)) so that (1) [p] is a P-decomposition, (2)
I(p, [b]) = |p∩ b|, and (3) for each 3-holed sphere P bounded by components
of p, (P, P ∩ b) is an H-decomposition of the 3-holed sphere.



6 F. Luo and R. Stong

           part (b)

bi

bj bk

red

i

j −th boundary component

−th boundary component

−th boundary componentk

xi xj kx xi xjxjxr sx tx xi kxkx+ +> > > ++

     part  (a)

xi xj kx xi xjxjxr sx tx xi kxkx+ +> > > ++

Figure 2.1

In this paper, we shall define Dehn-Thurston coordinate associated to
colored H-decompositions which satisfy the condition that one can color the
set of all hexagons in the decomposition into red and white so that there
is exactly one red-hexagon in each 3-holed sphere and that red and white
hexagons never share the same p-edges (recall that each hexagon has six
edges either in p ∪ ∂Σ or in b.)

2.4. Let us recall the concept of multiplication of two curve systems in
CS(Σ). See [Bo1], [Lu], and [Pa]. Given α and β in CS(Σ), take a ∈ α
and b ∈ β so that |a ∩ b| = I(α, β). If α and β are disjoint, we define αβ
to be [a ∪ b]. If I(α, β) > 0, then αβ is define to be the isotopy class of the
1-dimensional submanifold ab obtained by resolving all intersection points in
a ∩ b from a to b. Here by the resolution from a to b we mean the following
surgery. At each point p ∈ a ∪ b, fix any orientation on a. Then use the
orientation of the surface to determine an orientation of b at p at p. Finally
resolve the singularity at p according to the orientations on a and b. One
checks easily that this is independent of the choice of orientation on a. See
figure 2.2.
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It is shown in [Lu] that the 1-dimensional submanifold ab is still a curve
system. Also if α is the isotopy class of a simple loop, then αI(α,β)β is the
positive Dehn twist along α applied to β.

Here is an example illustrating the use of the multiplication.

Example. If a and b are curve systems in the annulus Σ0,2 = S1 × [−1, 1]
with central curve c = S1 × 0 so that ∂a = ∂b, then there exists a non-
negative integer k so that either a ∼= ckb or a ∼= bck by an isotopy leaving
the boundary ∂Σ0,2 fixed.

cb 2

c 2 b

cb 2

Figure 2.3

a

  b a

c c

two resolutions



8 F. Luo and R. Stong

The basic properties of the multiplication are obtained in [Lu] and can be
summarized in the following theorem. Since the paper [Lu] has not appeared
in print, we present a proof of it in the appendix for completeness.

Theorem. The multiplication CS(Σ) × CS(Σ) → CS(Σ) sends CS0(Σ)×
CS0(Σ)→ CS0(Σ) and has the following properties.

(1) It is preserved under the action of the orientation preserving home-
omorphisms of the surface.

(2) (commutativity) If I(α, β) = 0, then αβ = βα . If αβ = βα and
α ∈ CS0(Σ), then I(α, β) = 0.

(3) (associativity) Suppose α, β, and γ are in CS(Σ) so that the ordered
set (α, β, γ) contains no positive triangles and positive quadrilaterals, then
α(βγ) = (αβ)γ.

(4) (inverse) If α is in CS0(Σ) and each component of α intersects β,
then α(βα) = (αβ)α = β. Furthermore, I(α, β) = I(α, αβ) = I(α, βα).

(5) For any integer k ∈ Z>0, (αβ)k = αkβk.

(6)(triangle inequality) I(α, βγ) ≤ I(α, β) + I(α, γ). The inequality be-
comes an equality if (α, β, γ) contains no positive triangles or quadrilater-
als. Furthermore, if β ∈ CS0(Σ), then |I(α, βγ)− I(α, γ)| ≤ I(α, β) and
|I(α, γβ)− I(α, γ)| ≤ I(α, β).

Here we say three ordered elements α1, α2, α3 ∈ CS(Σ) contain a positive
triangle or a positive quadrilateral if the following condition is satisfied.
Take ai ∈ αi so that |ai ∩ aj | = I(ai, aj) and a1 ∩ a2 ∩ a3 = ∅. There is
a topological disc D which is the closure of a component of Σ − ∪3

i=1ai so
that the boundary ∂D is a union of three (resp. four) arcs c1, c2, c3 (resp.
c1, c2, c3, d) with ci ⊂ ai, d ⊂ ∂Σ and the cyclic order (c1, c2, c3) coincides
with the induced orientation on ∂D from D. See figure 2.4

2.5. Fix a colored H-decomposition ([p1∪ ...∪p3g+r−3], [b]) of an oriented
surface Σ = Σg,r. The Dehn-Thurston coordinate of α in CS(Σ) is a vector
in (Z2/±)3g+r−3×Zr≥0. Let us write the image of a vector (v1, ..., vk) ∈ (Z2)k

in (Z2/±)k by ([v1], ..., [vk]). Then

Π(α) = ([x1, t1], . . . , [x3g+r−3, t3g+r−3], x3g+r−2, . . . , x3g+2r−3).

For simplicity, let us use p3g+r−3+j = ∂jΣ. Then the i-th intersection
coordinate xi is defined to be I(α, pi) for 1 ≤ i ≤ 3g + 2r − 3.
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The definition of the i-th twisting coordinate ti for 1 ≤ i ≤ 3g + r − 3
is more complicated. By definition, if pi, pj and pk (two of them may be
the same) bound a 3-holed sphere P in Σ, then xi + xj + xk is an even
number. Thus by fixing xi points in the red-arc part of pi, we can construct
a standard curve system on the 3-holed sphere with coordinate (xi, xj, xk)
having these fixed xm points in pm, (m = i, j, k) as end points. The union
of all these standard curve systems produces a curve system s in Σ so that
I(s, pi) = xi. We call the curve system s standard and its isotopy class [s]
the zero-twisting representative of α and denote it by αzt.

For simplicity, we shall use αnβ to denote βα−n if n is a negative in-
teger. For instance, example 2.4 concludes that a ∼= ckb for some k ∈ Z.
By the associativity and the inverse property of theorem 2.3, we have that
αm(αnβ) = αm+nβ for all m, n ∈ Z if each components of α intersects β.

Lemma. Each α in CS(Σ) can be expressed uniquely as

α = [pt11 ...p
t3g+r−3

3g+r−3]αzt (2.1)

where ti ∈ Z so that if I(α, pi) = 0 then ti ≥ 0.

Proof. By the classification of curve systems in the 3-holed sphere, we may
choose small regular neighborhood N = N (p1∪ ...∪p3g+r−3)= ∪3g+r−3

i=1 N (pi)
and a representative a of α so that (1) a and s coincide outside the neigh-
borhood N and (2) a ∩ N and s ∩ N are curve systems in N having the
same end points. Now for each index i, consider the curve systems a∩N (pi)
and s ∩ N (pi). By example 2.4, we find an integer ti so that a ∩ N (pi) is
isotopic to ptii (s∩N (pi)) by an isotopy which is the identity map on ∂N (pi).
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Furthermore, if I(α, pi) = 0 then ti is the number of components of α which
are [pi]. Thus we see that equation (2.1) holds.

To show that the numbers ti are unique, we use the triangle inequality
in theorem 2.4. Suppose otherwise, then there exists α in CS(Σ) and a
non-zero vector (t1, ...t3g+r−3) ∈ Z3g+r−3 so that

Π3g+r−3
i=1 [ptii ]α = α.

Let us separate the exponents ti into positive and negative parts. Say I+ =
{i|ti > 0} and I− = {i|ti < 0}. Then we have

(Πi∈I+[ptii ])α(Πi∈I−[p−tii ]) = α.

Applying the above equation n times by multiplying Πi∈I+[ptii ] from the
left and Πi∈I− [p−tii ] from the right and use the associativity (theorem 2.4
(3)), we obtain

(Πi∈I+[pntii ])α(Πi∈I−[p−ntii ]) = α.

Without loss of generality, we assume that t1 > 0. Choose a simple loop
β ∈ CS0(Σ) so that I(β, p1) > 0 and β is disjoint from all other pi’s. By
theorem 2.4(6) that I(x, yz) ≥ max(I(x, y) − I(x, z), I(x, z)− I(x, y)) for
y ∈ CS0(Σ), we have,

I(β, α) = I(β, (Πi∈I+[pntii ])α(Πi∈I−[p−ntii ]))

≥ I(β, (Πi∈I+[pntii ])α)− I(β,Πi∈I−[p−ntii ])

= I(β, (Πi∈I+[pntii ])α)

≥ I(β,Πi∈I+[pntii ])− I(β, α)
= nt1I(β, [p1])− I(β, α).

Since this has to be true for all n, we obtained a contradiction. QED

We call ti the i-th twisting coordinate of the Dehn-Thurston coordinate
of α. The i-th Dehn-Thurston coordinate of α is [xi, ti] for i ≤ 3g + r − 3
and is xi for i > 3g + r − 3. By definition, the space CS0(Σ) has zero i-th
Dehn-Thurston coordinates for i ≥ 3g + r − 2.

Let us summarize what we have proved so far in the following proposition.

Proposition. The Dehn-Thurston coordinate is a homogeneous bijection
Π : CS(Σ) → { ([x1, t1], ..., [x3g+r−3, t3g+r−3], x3g+r−2, ..., x3g+2r−3) ∈
(Z2/±)2g+r−3 ×(Z≥0)r| if pi, pj and pk bound a 3-holed sphere, then xi +
xj + xk ∈ 2Z}.
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Proof. We have established all assertions except the homogeneity. Suppose
α is in CS(Σ). For all k ∈ Z≥0, I(αk, pi) = kI(α, pi). This shows that
(αk)zt = (αzt)k by definition. Combining this with theorem 2.4, we see that
Π(αk) = kΠ(α).

2.6. As an example, let us calculate the Dehn-Thurston coordinates
of α, β and γ on the 4-holed sphere with an H-decomposition given by
figure 1.1. Then Π(α) = ([2, 0], 0, 0, 0, 0), Π(β) = ([0,−2], 2, 0, 0, 2) and
Π(γ) = ([2,−2], 2, 0, 0, 2). Thus |Π(α)| = 2 and |Π(β)− Π(γ)| = 2. But we
also have I(α, β) = 8, I(α, γ) = 0. This shows that the inequality in theorem
1.1 is sharp.

2.7. For applications, we have to consider a slightly refined version of
curve systems and isotopies. Suppose Σ is a surface so that each boundary
component of it contains a red interval. We say a curve system in Σ good if
its boundary components are in the red intervals. The space of all isotopy
classes of good curve systems where isotopies leave red interval invariant is
denoted by CSg(Σ).

Note that there is a natural forgetful map F : CSg(Σ)→ CS(Σ) which is
a surjection so that F (x) = F (y) if and only if these two good curve systems
differ by some twists along the boundary components ∂i of the surface, i.e.,
x ∼= Πr

i=1∂
ti
i y by an isotopy leaving all red-arcs in the boundary invariant.

Here by ∂ni y we mean (∂′i)
ny where ∂′i is a parallel copy of ∂i. See figure 2.5.

Σ

Σ

Σ

Twisting at the boundary components

Figure 2.5

red interval

Note that the Dehn-Thurston coordinate of CSg(Σ) can be defined in the
same way and is a homogeneous injection Π : CSg(Σ) → (Z2/±)3g+r−3 ×
(Z≥0 ×Z)r. To be more precise, let us fix a colored H-decomposition of the
surface so that the red-intervals in the boundary are exactly the intersection
of the boundary with the red-hexagons. Then each good curve system in
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the surface is isotopic to a good curve system of the form

[pt11 ...p
t3g+2r−3

3g+2r−3]αzt

where p3g+r−3+j = ∂j is the j-th boundary component and αzt is the zero-
twisting class. The only novelty in this case is that we can define the twisting
coordinate of a good curve system with respect to each boundary component
of the surface.

2.8. Main idea of the proof. We sketch the proof of the main theorem
1.1 in this subsection. For simplicity, we will focus on the proof of inequality
(1.1). First of all, by homogeneity that I(α, β2) = 2I(α, β) and π(β2) =
2π(β), it suffices to prove (1.1) for classes β and γ so that π(β) = u and
π(γ) = v are even vectors , i.e., all xi and ti coordinates of them are even
integers. Now given any two even vectors u and v so that their distance
|u−v| = 2n, there exists a sequence of n+1 even vectors u0 = u, u1, ..., un = v

so that |ui − ui+1| = 2. On the other hand, by proposition 2.5, each even
vector ui is the image π(βi) for some βi ∈ CS(Σ). Thus by elementary
interpolation, it suffices to prove inequality (1.1) for classes β and γ so that
π(β) and π(γ) are even vectors of distance two apart. This means that the
Dehn-Thurston coordinates of β and γ are the same except at one xi- or tj -
coordinate which differs by 2. In this case, we prove that β and γ are related
by a multiplication by at most five simple loops β = δ1...δsγδs+1...δt where
t ≤ 5 so that δi’s are quite simple. In fact, these simple loops δi’s satisfy the
inequality that for all α ∈ CS(Σ),

t∑
i=1

I(α, δi) ≤ 6|Π(α)|.

Thus by the triangle inequality (theorem 2.4(6)),

|I(α, β)− I(α, γ)| ≤
t∑
i=1

I(α, δi) ≤ 6|Π(α)| = 3|Π(α)||Π(β)− Π(γ)|.

More precisely if β and γ differ by 2 in a tj -th twisting coordinate and all
other coordinates are the same, then by definition we have β = [pj]tδ where
t = 2 or −2 and I(α, p|t|j ) = 2xj(α) ≤ 2|Π(α)|. Thus inequality (1.1) follows
easily in this case. The difficult case is the change of some xi-th intersection
coordinate by 2. This will be the main focus of study in sections 3 and 4.
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3. Computations on the 3-holed Sphere.

3.1. In this section, we will carry out the computation of the intersection
number and the Dehn-Thurston coordinate of the multiplications of curve
systems on the 3-holed sphere. The goal is to prove proposition 3.6 which
shows that a change of intersection coordinate by 2 can be realized by mul-
tiplying with at most four simple loops and arcs of small Dehn-Thurston
coordinates.

In the next section, similar calculation will be done for the 1-holed torus
and the 4-holed sphere.

3.2. Let us fix a colored H-decomposition of the 3-holed sphere Σ0,3

whose boundary components are ∂1, ∂2, ∂3. Let R be the red-hexagon. We
assume that the cyclic order of (∂1 ∩ R, ∂2 ∩ R, ∂3 ∩ R) coincides with the
induced orientation on the boundary ∂R. We call R ∩ ∂i the red arc in the
boundary component. As a convention, in all figures, the red-hexagon is
always drawn on the front face with the right-hand orientation.

Let us introduce some notations. Let ars be a connected standard curve
system (an arc) in Σ0,3 so that it joins the ∂r and ∂s, i.e., I(ars, ∂k) =
δrk + δsk. Let bii = ∂Iaii be the multiplication of the curve systems ∂i and
aii. We will always assume that the intersection numbers |ars ∩ auv | and
|ars ∩ bii| are minimal within their isotopy classes. Note that |aii ∩ akk| = 2
and |aii ∩ ajk| = 1 for i, j, k distinct, and all other intersection numbers are
zero.

As a convention, we will always assume that when calculating the mul-
tiplication of two curve systems a, b on a surface, I(a, b) = |a ∩ b|.

3.3. We will find the explicit formula for the intersection number I(α, β)
using the Dehn-Thurston coordinates of α, β in CS(Σ0,3). To this end, given
a curve system α in CS(Σ0,3), let nrs(α) be the number of components of
α which are [ars]. Since α = Πr,s[anrs

rs ] and the complete information on the
intersections between aij, ars is known, one finds the following formula,

I(α, β) =
∑

(i,j,k)∈I
nii(α)njk(β)+njk(α)nii(β)+2nii(α)njj(β)+2njj(α)nii(β),

(3.1)
where the index set I = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

In particular we obtain,

I(α, a11) = n23(α) + 2n22(α) + 2n33(α), (3.2)

and
I(α, a23) = n11(α). (3.3)
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bii aiii= bkk kkak=
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kkkk
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Furthermore, if the Dehn-Thurston coordinate of α is (x1, x2, x3), then

I(α, a11) ≤ max(x2, x3) and I(α, a23) ≤ x1/2. (3.4)

It remains to express the quantity nrs in terms of the Dehn-Thurston
coordinate.

Lemma. There exist continuous homogeneous functions frs(x1, x2, x3) :
R3

≥0 → R so that for all α in CS(Σ0,3) with Dehn-Thurston coordinate
(x1, x2, x3), nrs(α) = frs(x1, x2, x3).

Proof. Indeed, by symmetry, it suffices to write down the functions f11

and f23. By figure 3.1 and the classification of curve systems on the 3-holed
sphere, we see that

f11(x1, x2, x3) =
1
2

max(0, x1− x2 − x3)

and

f23(x1, x2, x3) =

⎧⎨⎩
1
2 max(0, x2 + x3 − x1) if x2 + x3 ≥ x1

min(x2, x3) if x2 ≥ x1 + x3 or x3 ≥ x1 + x2

0 otherwise
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One checks easily that f11 and f23 are continuous and homogeneous func-
tions defined on R3. QED

In particular, we see that in terms of the Dehn-Thurston coordinate
x = (x1, x2, x3), the intersection pairing on CS(Σ0,3) is given by

I(x, y) =
∑

(i,j,k)∈I
fii(x)fjk(y) + fjk(x)fii(y) + 2fii(x)fjj(y) + 2fjj(x)fii(y).

(3.5)
Note that the map I(x, y) is a continuous homogeneous function of real

variables (x1, x2, x3, y1, y2, y3) ∈ R6
≥0. One of the goal of Thurston’s theory

is to show that the similar theorem holds for all surfaces.

aii

akk

aiiakk

aiiakk

aii

ajk

aii

aiiajk

ajk

i

k

i i

ii

k k

j

j

j

k k

j

j

postive 1-twist

negative 2-twist

negative 1-twist

Figure 3.2
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k
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k k

j

j

j

k k

j

j

negative 1-twist

negative 1-twist

postive 1-twist

3.4. For α, β ∈ CS(Σ0,3), we have I(αβ, ∂i) = I(α, ∂i) + I(β, ∂i). This
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shows that

Lemma. Let Π : CS(Σ) → Z3 be the Dehn-Thurston coordinate. Then
Π(αβ) = Π(α) + Π(β).

In particular, we see that in CS(Σ0,3), αβ = βα, [aiiajj ] = [a2
ij], and

[aiiajk] = [aikaij].
3.5. The multiplication CSg(Σ0,3) × CSg(Σ0,3) → CSg(Σ0,3) is much

more complicated. For instance, a33a11
∼= ∂1(a2

13)∂
2
3 in CSg(Σ0,3). This

extra twists along the boundary components is the main difficulty in proving
theorem 1.1.

Below is the complete list of multiplications of α ∈ CSg(Σ0,3) having
zero twisting coordinate with [ars] so that I(α, ars) �= 0. (The case that
I(α, ars) = 0, the multiplication is the disjoint union.) The basic iden-
tities underlying the proposition are the following four: aiiakk = a2

ik∂i,
akkaii = ∂ia

2
ik∂

2
k, aiiajk = ∂jaijaik∂i, and ajkaii = aijaik∂k where (i, j, k) ∈

{(1, 2, 3), (2, 3, 1), (3, 1, 2)}. See figure 3.2 for a verification.

Proposition. Suppose (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. Then the fol-
lowing identities hold where isotopies leave red-arcs in the boundary compo-
nents invariant. We assume that the index l > 0.
(1)

(anika
m
jka

l
kk)aii ∼= ∂i(an+2

ik amjka
l−1
kk )∂2

k,

(2)
aii(anika

m
jka

l
kk) ∼= (an+2

ik amjka
l−1
kk )∂i,

(3)
(anija

m
ika

l
kj)aii ∼= (an+1

ij am+1
ik al−1

kj )∂k,

(4)
aii(anija

m
jka

l
kj) ∼= ∂j(an+1

ij am+1
ik al−1

kj )∂i,

(5)
(anija

m
jka

l
jj)aii ∼= (an+2

ij amjka
l−1
jj )∂j,

(6)
aii(anija

m
jka

l
jj) ∼= ∂j(an+2

ij amjka
l−1
jj )∂2

i ,

(7)
(anika

m
jka

l
kk)aij ∼= ∂i(an+1

ik am+1
jk al−1

kk )∂k,

(8)
aij(anika

m
jka

l
kk) ∼= (an+1

ik am+1
jk al−1

kk )∂j.

Proof. The proof follows from the figures below.
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Figure 3.3
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Note that the exponents of aij’s in the above formula are governed by
lemma 3.4. By combining lemma 3.4 with the associativity of the multipli-
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cations (theorem 2.4), this proposition gives the complete information about
the multiplication between two classes in CSg(Σ0,3). However, we do not
know a simple expression like lemma 3.4 for the multiplication in CSg(Σ0,3).

For applications, we will need the following additional formulas. Recall
that bii = ∂iaii.

Corollary. Under the same assumption as in the proposition, the following
identities hold.

(1)
(anika

m
jka

l
kk)(aij∂i) ∼= (an+1

ik am+1
jk al−1

kk )∂k,

(2)
(∂jaij)(anika

m
jka

l
kk) ∼= an+1

ik am+1
jk al−1

kk ,

(3)
(anika

m
jka

l
kk)(aii∂i) ∼= (an+2

ik amjka
l−1
kk )∂2

k,

(4)
bii(anika

m
jka

l
kk) ∼= an+2

ik amjka
l−1
kk ,

(5)
bii(anija

m
jka

l
jj) ∼= ∂j(an+1

ij am+1
jk al−1

kj )∂i,

(6)
(∂ibii)(anija

m
jka

l
jj) ∼= ∂j(an+2

ij amjka
l−1
jj ),

Indeed, the corollary follows from theorem 2.4(4) and the identities in
the previous proposition. Indeed, by theorem 2.4(4), if α intersects ∂i and
β = α∂ni , then α = ∂ni β. Thus in the corollary above, identity (1) follows
from proposition 3.5(7); identity (2) follows from 3.5(8); identity (3) follows
from 3.5(1); identity (4) follows from 3.5(1); identity (5) follows from 3.5(6);
and identity (6) follows from 3.5(6).

The following proposition is the main result in the section. It shows that
if the Dehn-Thurston coordinate is changed by 2, then the corresponding
curve systems under go a multiplication by at most four simple curve systems
of small Dehn-Thurston coordinates.

3.6. Proposition. Suppose the Dehn-Thurston coordinate ((x1, 0), (x2, 0),
(x3, 0)) is represented by γ ∈ CSg(Σ0,3) where xi = I(γ, ∂i). Then,

(1) the Dehn-Thurston coordinate ((x1 + 2, 0), (x2, 0), (x3, 0)) is repre-
sented by (γ[a11]∂e11 )∂e22 ∂

e3
3 and by (∂e11 [b11]γ)∂e22 ∂

e3
3 where e1 ∈ {0, 1} and

|e2|+ |e3| ≤ 2.
(2) the Dehn-Thurston coordinate ((x1 + 1, 0), (x2, 0), (x3 + 1, 0)) is rep-

resented by (γ[a13]∂1)∂e22 and by (∂3[a13]γ)∂e22 where |e2| ≤ 2.
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Proof. Take a standard curve system c in γ. To see part (1), we will
calculate the Dehn-Thurston coordinate of [a11]γ and γ[b11]. For simplicity,
we just calculate [a11]γ. If I(γ, a11) = 0, then clearly γ[a11] has the Dehn-
Thurston coordinate ((x1 + 2, 0), (x2, 0), (x3, 0)). If I(γ, a11) > 0, then γ =
am13a

n
23a

l
33, or am12a

m
23a

l
22 or am12a

n
13a

l
23 where l > 0. Now we use the fact that

if α intersects ∂i and β = α∂ni , then α = ∂ni β (theorem 2.4(4)). Thus the
result follows from proposition 3.5 (3), (5) and corollary 3.5(3) for (i, j, k) =
(1, 2, 3). The multiplication by ∂s1b11 follows from corollary 3.5(4),(6) and
proposition 3.5(4). Finally part (2) follows from corollary 3.5 (1),(2) for
(i, j, k) = (3, 1, 2).

4. Calculations on the 1-holed Torus and the 4-holed Sphere.

4.1. The goal of this section is to show that the change of Dehn-Thurston
coordinates can be achieved by multiplying curve systems by some simple
loops on the 1-holed torus and the 4-holed sphere. To be more precise,
given a curve system α ∈ CSg(Σ), if the i-th intersection coordinate of α is
changed by 2, we will prove in this section that the change can be achieved by
multiplying α by at most five simple loops whose Dehn-Thurston coordinates
are small.

In the last part of this section, we prove that the i-th Dehn-Thurston
coordinate can be expressed as a continuous homogeneous function on geo-
metric intersection numbers with a fixed set of simple loops.

In this section, we take as our convention that all surfaces have a colored
H-decomposition so that the red-hexagons are drawn on the front face with
the right-hand orientation.

4.2. Take a colored H-decomposition ([p1]; [c1∪ c2]) of the 1-holed torus.
Let p2 = ∂Σ1,1. See figure 4.1.

p
1

c1

c2

b
1

b 3

b2

red region

p2 is the boundary

Right-hand orientation on the red region

Figure 4.1

Proposition. Suppose the Dehn-Thurston coordinate ([x1, t1], (x2, 0)) is
represented by γ ∈ CSg(Σ1,1). Then the Dehn-Thurston coordinate ([x1 +
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1, t1], (x2, 0)) is represented by the class [p2]e2(δe1γ) where δ is represented
by a simple loop and e1 ∈ {±1} and e2 ∈ {0,±1}. Furthermore, for all
α ∈ CSg(Σ1,1), I(α, δ) + I(α, p2) ≤ 2|Π(α)|.

Proof. We write γ = [p1]t1γzt where γzt has zero-twisting coordinate. Take
a curve system c in γzt and let b1, b2, b3 be the good curve systems in Σ1,1

so that their Dehn-Thurston coordinates are ([1, 0], (2, 0)), ([1, 0], (0, 0)) and
([0, 0], (2, 0)) as shown in figure 4.1. By definition, either c ∼= bn1

1 bn2
2 or

c ∼= bn1
1 bn3

3 where n3 > 0. If c ∼= bn1
1 bn2

2 , then we take δ = [b2] and e1 = 1,
e2 = 0. Thus depending on the sign of the twisting coordinate t1, either δγ
or γδ has the Dehn-Thurston coordinate of the required form.

If c ∼= bn1
1 bn3

3 , let Σ′ be the 3-holed sphere Σ1,1− int(N (p1)) where N (p1)
is a small regular neighborhood of p1. We give Σ′ the restriction orientation
and the restriction colored H-decomposition. The boundary components of
Σ′ are labeled as ∂1, ∂2, ∂3 where ∂N (p1) = ∂1 ∪ ∂3 so that the cyclic order
(∂1, ∂2, ∂3) coincides with the induced orientation on the boundary of the
red-hexagon in Σ′. Let a13 = b2 ∩Σ′.

The choice of the loop δ depends on the sign of the twisting coordinate
t1 = t1(γ). If t1 ≥ 0, we choose δ = [b2p1]. Since the Dehn-Thurston coordi-
nate of c ∩ Σ′ in CSg(Σ′) is ((x1, 0), (x2, 0), (x1, 0)), by proposition 3.6, the
Dehn-Thurston coordinate of (c ∩ Σ′)(a13∂1) is ((x1 + 1, 0), (x2,−1), (x1 +
1, 0)). Note that the twisting coordinates of c ∩ Σ′ at the ∂1-th and ∂3-th
coordinate are zero. Combining this with the fact that |c ∩ (b2∂1)| = I(c, δ)
and |(c ∩ (b2∂1) ∩ N (p1)| = 0, we see that the Dehn-Thurston coordinate
of γztδ is ([x1 + 1, 0], (x2,−1)). On the other hand, by figure 4.2, we
see that the triple (pt11 , γzt, δ) contains no quadrilaterals and only negative
triangles. Thus by the associativity for the multiplication (theorem 2.4),
γδ = [pt11 ](δztδ). This shows that the Dehn-Thurston coordinate of γδ is
of the form ([x1 + 1, t1], (x2,−1)). Thus the Dehn-Thurston coordinate of
γδ[p2]−1 has the required form.

If the twisting coordinate t1(γ) < 0, we take δ = [p1b2] = [∂1b2] and
consider δγ. The proof is the same as above and the only place we need
to pay attention is that the triple (γzt, p−t11 , δ) contains no positive triangles
and positive quadrilaterals.

To estimate the intersection number I(α, δ)+ I(α, p2) for any curve sys-
tem α ∈ CSg(Σ1,1), take a ∈ α so that a intersects b2, p1 and p2 minimally.
Note that by the triangle inequality (theorem 2.4(6)) I(α, δ) + I(α, p2) ≤
I(α, p1)+ I(α, b2) + I(α, p2) = x1(α)+ |a∩ b2|+x2(α). Now since a = pt1azt
where azt is a standard zero twisting representative of αzt, we see that
|a ∩ b2| = |(pt11 azt) ∩ b2| ≤ |p

|t1|
1 ∩ b2| + |azt ∩ b2| ≤ |t1| + |azt ∩ b2|. But
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the intersection azt ∩ b2 is inside the 3-holed sphere Σ′ and the intersection
number I(azt, b2) is equal to the intersection number I(azt ∩ Σ′, b2 ∩ Σ′)
by the choice of the standard curve systems. Thus by inequality (3.4),
|azt∩b2| ≤ 1

2I(αzt, ∂2) = 1
2x2(α). In summary, we obtain I(α, δ)+I(α, p2) ≤

3/2(x1(α) + x2(α) + |t1|) = 3/2|Π(α)| ≤ 2|Π(α)|.

p

p

ztγ

p1

p1

ztγ

b2

b2

Figure 4.2

D

the triangle region
δ ztγ

=δ 1

=δ 1

Remark. The crucial fact that the intersection number of two standard
zero-twisting curve systems in Σ1,1 is equal to the intersection number of
their restrictions to the 3-holed sphere is no longer valid for the 4-holed
sphere. One needs a more careful analysis of the intersection number in the
later case.

4.3. Take a colored H-decomposition ([p1], [d1 ∪ ... ∪ d4]) of the oriented
4-holed sphere Σ0,4 whose boundary components are ∂i for i = 2, 3, 2′, 3′.
Let pi = ∂i for i = 2, 3, 2′, 3′. See figure 1.1.

Proposition. Suppose that the Dehn-Thurston coordinate ([x1, t1], (x2, 0),
(x3, 0), (x2′, 0), (x3′, 0)) is represented by γ ∈ CSg(Σ0,4). Then the Dehn-
Thurston coordinate ([x1 +2, t1],(x2, 0),(x3, 0),(x2′, 0),(x3′, 0)) is represented
by the class ps22 p

s3
3 p

s2′
2′ p

s3′
3′ (δeγ) where δ is represented by a simple loop, e ∈

{±1}, and |s2| + |s3| and |s2′ | + |s3′| are both at most 2. Furthermore, for
all α ∈ CS(Σ), the following inequalities hold.
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(1)

I(α, δ) + I(α, p|s2|2 p
|s3|
3 p

|s2′ |
2 p

|s3′ |
3′ ) ≤ 4|Π(α)|. (4.1)

(2) for all partitions of {2, 2′, 3, 3′} into a 2-element set {i, j} ∪ {k, l},

I(α, δ)+(|si|+|sj |) max(I(α, pi), I(α, pj))+(|sk|+|sl|) max(I(α, pk), I(α, pl))

≤ 4x1(α) + 2|t1(α)|+ 6 max(I(α, pi), I(α, pj)) + 6 max(I(α, pk), I(α, pl)).
(4.2)

(3) if in addition to (2) we assume that {i, j} = {2, 3} and {k, l} = {2′, 3′},
then

I(α, δ) + (|s2|+ |s3|) max(I(α, p2), I(α, p3))
+ (|s2′|+ |s3′ |) max(I(α, p2′), I(α, p3′))

≤ 4x1(α) + 2|t1(α)|+ 4 max(I(α, p2), I(α, p3))
+ 4 max(I(α, p2′), I(α, p3′)).

(4.3)

Proof. Let us write γ = [pt11 ]γzt where γzt has zero-twisting coordinate. Let
a11 be a standard curve system in Σ0,4 whose Dehn-Thurston coordinate is
([2, 0], (0, 0), (0, 0), (0, 0), (0, 0)). Let b11 = p2

1a11. See figure 4.3.

3 2’

2 3’

p1

red

red

a11 b11
p
1
2 a11

Figure 4.3

= 

The required class δ will be either [a11p
s
1] or [ps1b11] where s ∈ {0, 1, 2} de-

pending on the sign of the twisting coordinate t1(γ). Using theorem 2.4(4),
we will show that the Dehn-Thurston coordinate of the class δeγ for appropri-
ate choices of e has the form ([x1, t1], (x2,−s2), (x3,−s3), (x2′, s2′), (x3′, s3′)).

The basic fact that we need is in the following lemma.

Lemma. Suppose γzt is a curve system in CSg(Σ0,4) with Dehn-Thurston
coordinate ([x1, 0], (x2, 0), (x3, 0), (x2′, 0), (x3′, 0)). Then
(1) for n, s in Z≥0, the triples of curve systems ([pn1 ], γzt, [a11p

s]) and ([ps1b11],
γzt, [p1]n) do not contain positive triangles or positive quadrilaterals,
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(2)

I(γzt, a11) = (f12 + 2f22 + f23 + 2f33)(x1, x2, x3)
+ (f12 + 2f22 + f23 + 2f33)(x1, x2′, x3′),

(4.4)

and

I(γzt, b11) = (f11 + 2f22 + 2f33 + f13 + f23)(x1, x2, x3)
+ (f11 + 2f22 + 2f33 + f13 + f23)(x1, x2′, x3′).

(4.5)

(3)
I(γzt, a11) ≤ max(x2, x3) + max(x2′, x3′), (4.6)

and
I(γzt, b11) ≤ 2x1 + max(x2, x3) + max(x2′ , x3′). (4.7)

Proof. We begin by introduce some notations. Let the two 3-holed sphere
components of Σ0,4− int(N (p1)) be Σ+ and Σ−. The boundary components
of Σ+ and Σ− are ∂2, ∂3, ∂

+
1 and ∂2′ , ∂3′, ∂

−
1 respectively. The subsurfaces

Σ+ and Σ− have the induced orientations and the restriction colored H-
decompositions so that the cyclic orders (∂2, ∂3, ∂

+
1 ) and (∂2′, ∂3′ , ∂

−
1 ) coin-

cide with the orientations on the boundary of the red-hexagons. Choose a
standard representative c of γzt so that all pairs (c, x) have minimal intersec-
tion numbers within their isotopy classes for x ∈ {a11, b11, p1}. Furthermore,
all pairs (c∩Σ±, x∩Σ±) have the minimal intersection numbers within their
isotopy classes in the subsurface Σ±. Let Q be the red-rectangle in N (p1)
which is the intersection of the annulus N (p1) with the red region. The two
sides of Q in ∂N (p1) are denoted by I− and I+ so that I± ⊂ ∂Σ± and that
I± have the induced orientation from Σ±. By the construction, we choose
c ∈ γzt so that a11∩I± contains the first point among the intersection points
(c∪a11)∩I± (measured in the orientation of I±.) Similarly, b11∩I± contains
the last point among the intersection points (c ∪ b11) ∩ I±. See figure 4.4.

Now to see part (1), we note that if we parameterize the annulus N (p1)
by S1×I so that all intersections c∩p1 and ∂Q∩int(N (p1)) are ”horizontal”
of the form p× I , then the a11 ∩Q consists of two arcs joining the lower left
corner (the first point of I+) of Q to the upper right corner (the first points
in I− ) of Q. This shows that the ordered triple ([pn1 ], γzt, [a11]) contains
no quadrilaterals and no positive triangles. It may contain some negatively
oriented triangles as shown in figure 4.4.

If we replace a11 by a11p
s
1 where s > 0, then a11p

s
1 ∩ N (p1) has larger

positive slope than that of a11 ∩ N (p1). Thus the triple ([pn1 ], γzt, [a11p
s
1])
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again contains no positive triangles and quadrilaterals. The proof for the
triple ([ps1b11], γzt, [p1]n) is the same.

a11

a11

a
11

a11
a11 p 1

a11

a11 a11

Σ + Σ + Σ +

Σ + Σ
−

p 1Ν(     )

p 

c

c

  Q 1

The first point

  Q

2

3
2’

 3’

-

+

I 
+ I 

-

Figure 4.4

c
c
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c

c

To see part (2), we note that I(γzt, a11) = |c∩a11| by construction. Now
the intersection number |c∩a11| is equal to the sum |c∩a11∩Σ+|+ |c∩a11∩
Σ−|+|c∩a11∩N (p1)|. By the construction, |c∩a11∩Σ±| is I(c∩Σ±, a11∩Σ±).
By identity (3.2), we have I(c∩Σ+, a11∩Σ+) = (2f22+f23+2f33)(x1, x2, x3)
and I(c∩Σ−, a11∩Σ−) = (2f22+f23+2f33)(x1, x2′, x3′). Now the intersection
number |c ∩ a11 ∩N (p1)| is the sum (x1 − g+) + (x1 − g−) where g± is the
number of points of c∩ I± which is between a11 ∩ I± in the interval I±. See
figure 4.5.

But by the construction of c and a11, g± is exactly the number (n11 +
n31)([c∩Σ±]), i.e., x1− g± = n12([c∩Σ±]) (see figure 4.5). Thus x1− g+ =
f12(x1, x2, x3) and x1−g− = f12(x1, x2′, x3′). This implies that formula (4.4)
holds. The same argument shows that (4.5) holds.

Part (3) follows from part (2) by a simple estimate. Indeed, definition,
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x2 = f12 + 2f22 + f23 and x3 = f13 + f23 + 2f33. Also f22f33 = f12f33 = 0.
Thus we see that f12 + 2f22 + f23 + 2f33 ≤ max{x2, x3}. This implies that
inequality (4.6) follows from (4.4). Similarly, one shows that (4.7) follows
from (4.5) and the fact that x1 ≥ f11 + f13. QED.
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the first point in the red arc

Now back to the proof of the proposition, if the twisting coordinate
t1(γ) ≥ 0, we take δ = [a11p

e1
1 ] where e1 ∈ {0, 1, 2} and consider

γδ. By proposition 3.6, we can choose e+1 and e−1 ∈ {0, 1} so that the

Dehn-Thurston coordinates of (c(a11p
e±1
1 ) ∩ Σ±) in CSg(Σ±) are of the

form ((x1 + 2, 0), (xi, si), (xj, sj)) where (i, j) are in {(2, 3), (2′, 3′)} and
|si| + |sj| ≤ 2. Since their twisting coordinates at p1 are zero, by taking
e1 = e+1 + e−1 ∈ {0, 1, 2}, we conclude that the Dehn-Thurston coordinate of
c(a11p

e1
1 ) has the form ([x1 + 2, 0], (x2, s2), (x3, s3), (x2′, s2′), (x3′, s3′)) where

|s2| + |s3| ≤ 2 and |s2′ | + |s3′ | ≤ 2. (in fact proposition 3.4 shows that all
si ≤ 0.) By the above lemma, we have the associativity for the multiplica-
tion of the ordered three elements pt11 , γzt, δ. Thus γδ = pt11 (γztδ) has the
Dehn-Thurston coordinate of the required form.

If the twisting coordinate t1(γ) < 0, we take δ = [pe11 b11] and consider
γδ. The result follows by the same argument as above by proposition 3.6
and the above lemma.

It remains to show the inequality (4.1), we will consider δ = ps1b11 where
2 ≥ s ≥ 0 for simplicity. The situation that δ = a11p

s
1 is similar and the

proof will be omitted.
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First of all the intersection number

I(α, p|s2|2 p
|s3|
3 p

|s2′ |
2′ p

|s3′ |
3′ ) ≤ 2x2(α) + 2x3(α) + 2x2′(α) + 2x3′(α)) (4.8)

To estimate the first term I(α, δ), by the triangle inequality (theorem
2.4(6)) and inequality (4.7),

I(α, δ) ≤ I(α, b11) + |s|I(α, p1)
≤ I(α, b11) + 2x1(α)

≤ I(αztp|t1(α)|
1 , b11) + 2x1(α)

≤ I(αzt, b11) + I(p|t1(α)|
1 , b11) + 2x1(α)

≤ max(x2(α), x3(α)) + max(x2′(α), x3′(α))
+ 2x1(α) + 2|t1(α)|+ 2x1(α)

≤ x2(α) + x3(α) + x2′(α) + x3′(α) + 4x1(α) + 2|t1(α)|.

Combining with (4.8), we see that (4.1) holds.
To see the second inequality (4.2), we note that

(|si|+ |sj|) max(I(α, pi), I(α, pj)) + (|sk|+ |sl|) max(I(α, pk), I(α, pl))
≤ 4 max(I(α, pi), I(α, pj)) + 4 max(I(α, pk), I(α, pl)). (4.9)

Thus, it remains to prove that

I(α, δ) ≤ 4x1(α) + 2|t1(α)|) + 2 max(I(α, pi), I(α, pj))
+ 2 max(I(α, pk), I(α, pl)).

Indeed, by the triangle inequality and inequality (4.7), we have

I(α, δ) = I(α, b11p
s
1)

≤ I(α, b11) + |s|I(α, p1)
≤ I(α, b11) + 2x1(α)

≤ I(pt1(α)
1 αzt, b11) + 2x1(α)

≤ I(p|t1(α)|
1 , b11) + I(αzt, b11) + 2x1(α)

≤ 2|t1(α)|+ max(x2(α), x3(α)) + max(x2′(α), x3′(α))
+ 2x1(α) + 2x1(α)

≤ 2 max(xi(α), xj(α)) + 2 max(xk(α), xl(α)) + 4x1(α) + 2|t1(α)|
(4.10)

Combining with (4.9), we see that (4.2) holds.
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If {i, j} = {2, 3} and {k, l} = {2′, 3′}, then due to the inequalities that
|s2|+ |s3| ≤ 2 and |s2′ |+ |s3′ | ≤ 2, we see that (4.9) becomes

(|si|+ |sj |) max(I(α, pi), I(α, pj)) + (|sk|+ |sl|) max(I(α, pk), I(α, pl))
≤ 2 max(I(α, pi), I(α, pj)) + 2 max(I(α, pk), I(α, pl)). (4.11)

Combining (4.11) and (4.10), we see that inequality (4.3) holds.
Now the situation for a11p

s
1 where 2 ≥ s ≥ 0 is similar. We just replace

all b11 by a11 in the above calculation. This ends the proof.
4.4. We now show that the i-th Dehn-Thurston coordinate [xi, ti] is a

continuous function of the intersection number functions. This is analogous
to a non-trivial fact in the train-track approach to the space of measured
laminations. Namely, given a good train-track T and an edge E in T , there
exists a finite collection of simple loops s1, ..., sm and a continuous homoge-
neous function f so that for all curve systems α carried by T , the weight of
α at the edge E is f(I(α, s1), ..., I(α, sm)).

We shall use the same the notations as in §4.2 and §4.3.

Proposition. (1) There exists a continuous homogeneous func-
tion f(x1, x2, x3, x4) : R4 → R2/± so that for any α in
CSg(Σ1,1), the first Dehn-Thurston coordinate of α is [x1(α), t1(α)]=
f(x1(α), x2(α), I(α, p1b2), I(α, b2p1)).

(2) There exists a continuous homogeneous function f(x1, x2, x3, ...x7) :
R7 → R2/± so that for any α in CSg(Σ0,4), the first Dehn-Thurston coordi-
nate of α is [x1(α), t1(α)] = f(x1(α), x2(α), x3(α), x2′(α), x3′(α), I(α, a11),
I(α, b11)).

Corollary. The Dehn-Thurston coordinate on CS(Σ) can be extended to be
a continuous homogeneous function from ML(Σ) to (R2/±)3g+r−3 ×Rr

≥0.

Indeed, by the proposition, it suffices to show that for each α in CS(Σ),
the intersection number function I(α, .) : CS(Σ) → R can be extended to
be a continuous homogeneous function on ML(Σ). But this follows from the
definition of the topology of ML(Σ).

Proof of the proposition. We will prove part (2) in detail. The same
argument also applies to part (1).

Write α = pt11 αzt where t1 = t1(α) and αzt is the standard twisting-
zero representative of α. Let a11 and b11 be the same simple loops used
in §4.3 (with Dehn-Thurston coordinates ([2, 0], (0, 0), (0, 0),(0, 0),(0, 0)) and
([2,−2], (0, 0),(0, 0),(0, 0),(0, 0)). By lemma 4.3 (1), we know that both
(pn1 , αzt, a11) and (b11, αzt, p

n
1) contain neither positive triangles nor positive
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quadrilaterals for n ≥ 1. Thus by theorem 2.4(7), if t1 ≥ 0,

I(α, a11) = I(pt11 αzt, a11) = I(pt11 , a11) + I(αzt, a11) = 2t1 + I(αzt, a11).

Also if t1 ≤ 0, then I(α, b11) = I(pt11 αzt, b11) = I(pt11 , b11) + I(αzt, b11) =
−2t1 + I(αzt, b11). This shows that

t1(α) =
{

1
2I(α, a11)− 1

2I(αzt, a11), if t1(α) ≥ 0
−1

2I(α, b11) + 1
2I(αzt, b11), if t1(α) ≤ 0

Now by lemma 4.3(2), we can express explicitly that the intersection numbers
I(αzt, x) for x = a11 or b11 in terms of continuous homogeneous functions
in the coordinates xi ( i ∈ {1, 2, 3, 2′, 3′}), I(α, a11), and I(α, b11). This
shows that [x1(α), t1(α)] can be expressed as a piecewise linear homogeneous
function in seven variables x1, x2, x3, x2′, x3′ , I(α, a11) and I(α, b11). One
checks easily that the function is continuous. Thus the result follows.

5. Proof of Theorem 1.1.

Recall that Σ = Σg,r is a compact oriented surface with a colored H-
decomposition and Π : CS(Σ) → (Z2/±)3g+r−3 × Z≥0 is the associated
Dehn-Thurston coordinate. Our goal is to prove that

|I(α, β)− I(α, γ)| ≤ K2,3|Π(α)||Π(β)−Π(γ)| (5.1)

for all α, β and γ in CS(Σ) where K2,3 = 2 if the 3-holed sphere decompo-
sition contains only embedded 4-holed spheres and K2,3 = 3 in the rest of
the cases.

First we note that inequality (5.1) is homogeneous in α, β and γ. Thus
it suffices to show

|I(α2, β2)− I(α2, γ2)| ≤ K2,3|Π(α2)||Π(β2)−Π(γ2)| (5.2)

We call an element α in CS(Σ) even if its Dehn-Thurston coordinate
Π(α) = ([x1, t1], ...,[x3g+r−3,
t3g+r−3], x3g+r−2,..., x3g+2r−3) has the property that all xi and tj are even in-
tegers. Denote the set of all even classes in CS(Σ) by CSeven and let Zeven be
{([x1, t1], ...,[x3g+r−3, t3g+r−3],x3g+r−2,...,x3g+2r−3) ∈ (Z2/±)3g+r−3 × Zr≥0|
all xi and tj are even}. Thus by proposition 2.5, the Dehn-Thurston coor-
dinate Π is a bijection from CSeven to Zeven. Since α2 is always in CSeven,
thus it suffices to prove the inequality (5.1) for all even classes α, β and γ.
This will be the goal of the proof in the rest of the section.
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5.1. We will use the following simple lemma.

Lemma. If u, v are in Zeven so that |u − v| = 2n, then there exist n + 1
points u0 = u, u1, ..., un = v in Zeven so that |ui − ui+1| = 2.

The proof of it is evident from the definition of the metric.

5.2. As a consequence, we have,

Lemma. If the inequality (5.1) holds for all β, γ ∈ CSeven so that |Π(β)−
Π(γ)| = 2 then it holds for all classes α, β and γ in CSeven.

Indeed, by proposition 2.5 and lemma 5.1, for any two classes β, γ ∈
CSeven so that |Π(β) − Π(γ)| = 2n, there exists a sequence of n + 1 even
classes β0 = β, β1, ..., βn = γ so that |Π(βi)− Π(βi+1)| = 2. Thus |I(α, β)−
I(α, γ)|≤

∑n
i=1 |I(α, βi) − I(α, βi−1)|≤ K2,3

∑n
i=1 |Π(α)||Π(βi)− Π(βi−1)|≤

2K2,3n|Π(α)| = K2,3|Π(α)||Π(β)− Π(γ)|.

5.3. It remains to prove the inequality (5.1) for even classes β and γ in
CSeven(Σ) so that |Π(β) − Π(γ)| = 2. Since they are both even vectors in
Zeven, their coordinates are the same except in one position which differs by
2. Thus either there is one i so that xi(β) = xi(γ)± 2 or there is one index
j so that tj(β) = tj(γ)± 2 and all other coordinates are the same.

In the case tj(β) = tj(γ)±2, say tj(β) = tj(γ)+2, then by the definition
of twisting coordinate, we have β = [p2

j ]γ. Thus by the triangle inequality
(theorem 2.4(6))

|I(α, β)− I(α, γ)|= |I(α, [p2
2]γ)− I(α, γ)| ≤ I(α, p2

j)

= 2xj(α) ≤ 4|Π(α)| ≤ 2K2,3|Π(α)|.

In the case that |xi(β) − xi(γ)| = 2, we need to discuss two subcases that
i ≤ 3g + r − 3 or i ≥ 3g + r − 2.

5.4. If |xi(β)− xi(γ)| = 2 so that i ≤ 3g + r − 3, say for simplicity that
i = 1 and x1(β) = x1(γ)+2, let Σ′ be the 1-holed torus or the 4-holed sphere
which is the component of Σ − ∪j �=1int(N (pj)). Without loss of generality,
let the boundary components of Σ′ be parallel to pi2 , ..., pis where s = 2 or 5
and some ij may be ik but no three of these indices are the same. See figure
5.1.
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p1 p1

p1

p1

p1

four distinct boundary components

non-embedded 4-holed spheres in the 3-holed sphere decomposition

Figure 5.1

(a)

(b) (c)

(d) (e)

Take representatives b ∈ β and c ∈ γ so that b ∩Σ′ and c ∩ Σ′ are good
curve systems in Σ′ and the twisting coordinates of b ∩ Σ′ and c ∩ Σ′ at
the boundary components of Σ′ are zero (this can always be achieved by
an isotopy of b and c in Σ.) Now by the construction, the Dehn-Thurston
coordinates of [b∩Σ′] and [c∩Σ′] in CSg(Σ′) differ only in the x1-coordinate
by 2. Thus by propositions 4.2 and 4.3, we find δ ∈ CS0(Σ′) so that

β =
∏
j=2

[pejij ](δ±1γ)

where ej ∈ {0,±1,±2} (note that if Σ′ ∼= Σ1,1, we apply proposition 4.2
twice to get this form.) Furthermore for all α in CS(Σ), by the triangle
inequality (theorem 2.4(6)) we obtain that

|I(α, β)− I(α, γ)|= |I(α,
s∏
j=2

[pejij ](δ±γ))− I(α, γ)|

≤ I(α, δ) + I(α,
s∏
j=2

[p|ej |ij
]).
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We claim that

I(α, δ) + I(α,
s∏
j=2

[p|ej |ij
]) ≤ 2K2,3|Π(α)|. (5.3)

To prove this, we need to discuss several cases.

Case (1), the boundary components of Σ′ are pairwise non-isotopic in
the surface Σ, i.e., {pi1, ..., pis} are pairwise distinct. Then by propositions
4.2 and inequality (4.1),

I(α, δ) + I(α,
s∏
j=2

[p|ej |ij
]) ≤ 4|Π(α)|.

Case (2), the surface Σ′ is the 4-holed sphere and {pi2, ..., pi5} consists
of two elements. Let ∂Σ′ = ∂2, ∂3, ∂2′, ∂3′. Then {2, 3, 2′, 3′} is partitioned
into a 2-element set {i, j} ∪ {k, l} according to the isotopy classes of ∂Σ′ in
Σ. In particular, xi(α) = xj(α) and xk(α) = xl(α). Let sr be the index et
associated to the boundary component ∂r = pit . Let xr = xr(α). Then we
have,

I(α, δ) + I(α,
5∏
j=2

[p|ej |ij
]) = I(α, δ) + I(α,

5∏
r=2

[∂srr ])

= I(α, δ) + (|si|+ |sj |)xi + (|sk|+ |sl|)xk
≤ I(α, δ) + (|si|+ |sj |) max(xi, xj)

+ (|sk|+ |sl|) max(xk, xl)
≤ 4x1 + 2|t1(α)|+ 6 max(xi, xj) + 6 max(xk, xl)
≤ 4x1 + 2|t1(α)|+ 6xi + 6xk
≤ 6|Π(α)|.

If {i, j}= {2, 3} and {k, l} = {2′, 3′}, then we use inequality (4.3) and obtain
I(α, δ) + I(α,

∏5
j=2[p

ej
ij

]) ≤ 4|Π(α)|.
This shows that (5.3) holds.

Case (3), the surface Σ′ is a 4-holed sphere and the set {pi2, ..., pi5}
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consists of three elements. Say [∂i] = [∂j]. In particular xi = xj. Then

I(α, δ) + I(α,
5∏
j=2

[p|ej |ij
]) = I(α, δ) + I(α,

5∏
r

[∂|sr|r ])

≤ I(α, δ) + (|si|+ |sj|)xi + |sk|xk + |sl|xl
≤ I(α, δ) + (|si|+ |sj|) max(xi, xj)

+ (|sk|+ |sl|) max(xk, xl)
≤ 4x1 + 2|t1(α)|+ 6 max(xi, xj) + 6 max(xk, xl)
≤ 4x1 + 2|t1(α)|+ 6(xi + xk + xl)
≤ 6|Π(α)|.

If {i, j} = {2, 3} and {k, l} = {2′, 3′}, then we use inequality (4.3) and obtain
I(α, δ)+I(α,

∏5
j=2[p

|ej |
ij

])≤ 4|Π(α)|.
Thus (5.3) follows.
5.5. If xi(β) = xi(γ) + 2 for some i ≥ 3g + r − 2, then pi is a boundary

component of the surface Σ. In this case, by simply doubling the surface
across the boundary, we reduce the situation to cases in §5.3 and §5.4.

To be more precise, let Σ∗ be the closed surface obtained by doubling
the surface Σ across its boundary. We give Σ∗ the colored hexagonal de-
compositioin by doubling the one from Σ. If s is a curve system on Σ,
let s∗ be its double in Σ∗ which has zero twisting coordinates at all com-
ponents of ∂Σ. Define [a]∗ to be [a∗]. Clearly we have |Π(s∗)| ≤ 2|Π(s)|
and 2I(a, b) = I(a∗, b∗). Furthermore, by the construction, we have
|Π(β∗)−Π(γ∗)| = 2. Thus |I(α, β)− I(α, γ)|= 1/2|I(α∗, β∗)− I(α∗, γ∗)| ≤
1/2K2,3|Π(α∗)||Π(β∗) − Π(γ∗)| ≤ K2,3|Π(α)||Π(β) − Π(γ)|. This ends the
proof.

6. The Space of Measured Laminations on Surfaces.

The goal of this section is to reestablish the basic results in the theory of
measured laminations on surfaces from the Cauchy inequality. A crucial fact
used in the proof is the corollary 4.4 that the i-th Dehn-Thurston coordinate
[xi, ti] is a continuous homogeneous function defined on the space ML(Σ) .

6.1. Given a compact oriented surface Σ = Σg,r of negative Euler num-
ber, we fix a colored H-decomposition of it. We shall identify the space
CS(Σ) with its image under Thurston’s embedding Θ(CS(Σ)), and define
I on the image Θ(CS(Σ)) by I(x, y) = I(Θ−1(x),Θ−1(y)). Extend the
intersection pairing I to (Q≥0 × Θ(CS(Σ)))2 → Q by homogeneity. Let



34 F. Luo and R. Stong

Φ : (2Z2/±)3g+r−3 × (2Z≥0)r → Θ(CS(Σ)) be the composition Θ(Π−1|).
Due to the homogeneity, we can extend Φ to a homogeneous map, still de-
noted by Φ, defined from (Q2/±)3g+r−3×Qr

≥0 to Q≥0×Θ(CS(Σ)). Theorem
1.1 extends to the classes in (Q2/±)3g+r−3 ×Qr

≥0 and we have

|I(Φ(x),Φ(y))− I(Φ(x),Φ(z))| ≤ K2,3|x||y − z| (6.1)

for all x, y, z in (Q2/±)3g+r−3 ×Qr
≥0.

Note that the metric completion of (Q2/±)3g+r−3×Qr
≥0 under the metric

|x − y| is (R2/±)3g+r−3 × Rr
≥0. Also the product topology on RCS(Σ)

≥0 is
metrizable and a metric can be chosen to be complete. In the following
discussion, we shall fix a complete metric on the space RCS(Σ)

≥0 and give
ML(Σ) the induced complete metric.

6.2. One of the basic point-set topological fact we will use is the following
lemma. The proof can be found in most books on metric space and will be
omitted.

Lemma. Suppose X and Y are complete metric spaces and Z ⊂ X is a
dense subspace. If f : Z → Y is a map sending all Cauchy sequences in Z to
Cauchy sequences in Y , then f can be extended to be a continuous function
from X to Y .

6.3. We now prove the first basic result in the theory of measured lami-
nations.

Proposition. The map Φ extends to a homeomorphism from the space
(R2/±)3g+r−3 ×Rr

≥0 to ML(Σ).

Proof. To show that Φ from (Q2/±)3g+r−3 ×Qr
≥0 to ML(Σ) can be ex-

tended to (R2/±)3g+r−3 × Rr
≥0 → ML(Σ), take any α in CS(Σ), and a

Cauchy sequence {xn} in (Q2/±)3g+r−3×Qr
≥0. Then by the inequality (6.1)

for x = Φ−1(α), y = xn, z = xm, we see that I(Φ(xn), α) is again a Cauchy
sequence in R. Thus it converges for all α. Thus, by the definition of the
product topology on ML(Σ), we see that φ(xn) is convergent in ML(Σ). By
lemma 6.2, this shows that Φ can be extended to be a continuous function
from (R2/±)3g+r−3 ×Rr

≥0 to ML(Σ).
Now by the continuity of the i-th Dehn-Thurston coordinate [xi, ti] (corol-

laries 4.4), we see that the i-th coordinate can be extended to be a homoge-
neous continuous function defined on ML(Σ). Thus we obtain a continuous
function Ψ : ML(Σ)→ (R2/±)3g+r−3×Rr

≥0 which is the continuous exten-
sion of the Dehn-Thurston coordinate on Q × Θ(CS(Σ)). By definition, on
the dense subspaces (Q2/±)3g+r−3 × Qr

≥0 and Q≥0 × Θ(CS(Σ)), we have
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ΦΨ = id and ΨΦ = id. Thus by the continuity, ΦΨ = id and ΨΦ = id on
the whole spaces (R2/±)3g+r−3×Rr

≥0 and ML(Σ). This establishes the as-
sertion that Dehn-Thurston coordinate Π is a homeomorphism from ML(Σ)
to (R2/±)3g+r−3 × Rr

≥0. Furthermore, the space of compactly supported
measured laminations ML0(Σ) which is the closure of Q≥0 ×Θ(CS0(Σ)) is
homeomorphic to R6g+2n−6× (0, .., 0) under the Dehn-Thurston coordinate.

6.4. Finally, we show that the intersection pairing I extends to a continu-
ous homogeneous map fromML(Σ)×ML(Σ) to R. By lemma 6.2, it suffices
to show that for any Cauchy sequences {xn} and {yn} in Q≥0 ×Θ(CS(Σ)),
the sequence I(xn, yn) is convergent. Indeed, by the continuity of the Dehn-
Thurston map Π, both sequences Ψ(xn) and Ψ(yn) are convergent and in
particular bounded, say by M . Thus, we have

|I(xn, yn)− I(xm, ym)| ≤ |I(xn, yn)− I(xn, ym)|+ |I(xn, ym)− I(xm, ym)|

≤ 3|Ψ(xn)||Ψ(yn)− Ψ(ym)|+ 3|Ψ(ym)||Ψ(xn)−Ψ(xm)|
≤ 3M(|Ψ(yn)− Ψ(ym)|+ |Ψ(xn)−Ψ(xm)|).

This shows that I(xn, yn) is still a Cauchy sequence. Thus by lemma 6.2,
the pairing I extends continuously to the product space ML(Σ)×ML(Σ).
We remark that by continuity, the inequality (6.1) still holds for all x, y, z ∈
ML(Σ).

Appendix: A Proof of Theorem 2.4.

We reproduce a proof of the basic property of the multiplication of curve
systems in this appendix for completeness. We begin with the following
lemma which shows that the multiplication is well defined.

Lemma. (a) If a and b are curve systems with |a ∩ b| = I(a, b), then the
submanifold ab obtained by resolving all intersection points between a and b
from a to b is a curve system.

(b) Suppose a, b and c are curve systems in Σ so that |a ∩ b| = I(a, b),
|b ∩ c| = I(b, c), |c ∩ a| = I(c, a) and |a ∩ b ∩ c| = 0. If there are no
positive triangles or positive quadrilaterals in the ordered triple (a, b, c), then
|ab ∩ c| = I(ab, c)| and |a ∩ bc| = I(a, bc)|.
Proof. (a) If ab is not a curve system, then there exists either (1) a simple
closed curve s in ab and an annulus D with ∂D = s∪d where d is a boundary
component of Σ or (2) a simple closed curve s in ab bounding a disc D in
Σ, or (3) there exists an arc component s in ab and a disk D in the surface
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so that ∂D = s ∪ d where s ∩ d = ∂s = ∂d and d is an arc in ∂Σ. By
replacing s and finding another component of ab in int(D) if necessary, we
may assume that ab∩int(D) = ∅. Take a small regular neighborhoodN (a∪b)
of a∪ b to be N (a)∪N (b). We assume the resolutions are taken place inside
N (a)∩N (b). Thus int(D) contains a finite number of connected components
R0, R1, ..., Rn of Σ−int(N (a)∪N (b)). These regions are so labeled that they
satisfy the conditions below, (i) if i ≥ 1 then Ri �= ∅ and Ri∩∂Σ = ∅; and (ii)
R0 = ∅ in the case (2), and in the cases (1) and (3), R0 is the region which
intersects ∂Σ; (iii) the region R0 is a disc if D is a disc intersecting ∂Σ and
R0 is an annulus if D is an annulus. Each region Ri (i ≥ 1) is a disc since
otherwise there would be at least two boundary components of Ri in int(D).
This would contradict the assumption that int(D) ∩ ab = ∅. Call a point in
∂N (a)∩∂N (b) a corner of N (a∪b). Each point p in a∩b corresponds to four
corners in ∂N (p) where N (p) is the connected component of N (a) ∩ N (b)
containing p. These four corners form two pairs of opposite corners in the
quadrilateral ∂N (p). Join opposite corners in ∂N (p) by an arc in int(N (p))
so that it avoids one of the resolutions of a∩ b at p. We call the arc a bridge
between the corners. A corner of ∂N (a∪b) in a region Ri is called a vertex of
Ri. Vertices of Ri decompose ∂Ri into edges. Each edge is either in ∂N (a),
or in ∂N (b), or in ∂Σ. There is at most one edge in R0 which is in ∂Σ in
the cases (1) and (3). If two edges have a vertex in common, they cannot
be both in N (a) (resp. in N (b)). Thus for i ≥ 1, there are even number
of edges in Ri. Each region Ri with i ≥ 1, must have at least four edges
since |a ∩ b| = I(a, b) (if there were regions with only two edges, then the
region provides a Whitney disc for a ∪ b). More importantly, the definition
of the resolution implies the following alternating principle: if v and v′ are
two vertices joint by an edge in Ri (i ≥ 0) so that the edge is either in N (a)
or in N (b) then exactly one of the bridges from v or v′ still lies in D (see
figure A1(b)).

Form a graph G in D by putting a 0-cell in each int(Ri), i ≥ 0. Joint two
0-cells of int(Ri) and int(Rj) by a 1-cell in D if there are opposite vertices in
Ri andRj so that their bridge is inD (the 1-cell is an extension of the bridge).
These 1-cells are chosen to be pairwise disjoint except at the end points. By
the construction, if D is a disc, the graph G is homotopic to D since each
region Ri is a disc; if D is an annulus, the region R0 is an annulus, thus the
graph G is again homotopic to a disc. In both cases, G is a tree. Therefore
either G is a point or G contains two 0-cells of valency one. However by
the construction, each region Ri (i ≥ 1) has at least four edges and thus
corresponds to a 0-cell of valency at least two by the alternating principle.
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Thus the graph G must be a point. Therefore, there is only one region R0

which has at most one vertex by the alternating principle. This contradicts
the condition that |a ∩ b| = I(a, b). (b) Suppose the result is false, say that
|ab ∩ c| > I(ab, c). Then there is a disc D ⊂ Σ so that either (1) ∂D is a
union of two arcs s and t with s∩ t = ∂s = ∂t, s ⊂ c and t ⊂ ab, or (2) ∂D is
a union of three arcs s, t, u so that each pair of arcs intersect at one end point
and s ⊂ c, t ⊂ ab, and u ⊂ ∂Σ. By taking the inner most disc if necessary,
we may assume that int(D) ∩ (c ∪ ab) = ∅. Let N (ab) = N (a) ∪ N (b),
N (a ∩ b) = N (a) ∩ N (b), and R0, R1, ..., Rn be the set of components of
Σ− (c∪N (a)∪N (b)) which are contained in D. We set R0 to be the region
so that R0∩c �= ∅. Then R0∩u �= ∅ if u �= ∅. Furthermore, Ri∩ (c∪∂Σ) = ∅
for i ≥ 1. By the assumption that int(D) ∩ (c ∪ ab) = ∅, each region Ri
is a disc. Use the same argument as in (a), each region Ri (i ≥ 1) has at
least four sides and adjacent vertices in ∂Ri (i ≥ 0) satisfy the alternating
principle. Form the same type of graph G in D based on the combinatorics
of the regions Ri as in (a). Since each region Ri is contractible, and D is
also contractible, the graph G is a tree. Thus G is either a point or contains
two vertices of valency one. Since each Ri (i ≥ 1) corresponds to a vertex
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of valency at least 2 in the graph G, the graph G must be one point which
corresponds to the region R0. Since R0 has valency 1, by the definition of
valency, this shows that the region R0 must be a triangle or a quadrilateral
in Σ − (a ∪ b ∪ c). By exam the resolution, we see that R0 must be one of
the three types listed in figure A1 (a1), (a2), and (a3) (the last type (a4)
does not occur for the intersection |(ab)∩c| but it occurs for |a∩ (bc)|.) This
contradicts the none-existence of positive triangle or positive quadrilateral
in the ordered set (a, b, c). QED

Now we come to the proof of theorem 2.4.

Theorem. The multiplication CS(Σ) × CS(Σ) → CS(Σ) sends CS0(Σ)×
CS0(Σ)→ CS0(Σ) and has the following properties.

(1) It is preserved under the action of the orientation preserving home-
omorphisms of the surface.

(2) (commutativity) If I(α, β) = 0, then αβ = βα. If αβ = βα and
α ∈ CS0(Σ), then I(α, β) = 0.

(3) (associativity) Suppose α, β, and γ are in CS(Σ) so that the ordered
set (α, β, γ) contains no positive triangles and positive quadrilaterals, then
α(βγ) = (αβ)γ.

(4) (inverse) If α is in CS0(Σ) and each component of α intersects β,
then α(βα) = (αβ)α = β. Furthermore, I(α, β) = I(α, αβ) = I(α, βα).

(5) For any integer k ∈ Z>0, (αβ)k = αkβk.
(6)(triangle inequality) I(α, βγ) ≤ I(α, β) + I(α, γ). The inequality be-

comes an equality if (α, β, γ) contains no positive triangles or quadrilater-
als. Furthermore, if β ∈ CS0(Σ), then |I(α, βγ)− I(α, γ)| ≤ I(α, β) and
|I(α, γβ)− I(α, γ)| ≤ I(α, β).

Proof. Properties (1) and (5) follow from the definition. See figure A2(b).
Property (3) follows from the second part of the previous lemma. Indeed,
take a, b, c to be the representatives of α, β and γ so that the condition in
previous lemma (b) holds. Then, by the lemma, both multiplications α(βγ)
and (αβ)γ are obtained from a ∪ b ∪ c by resolving all intersection points
from a to b and from b to c.

To see part (4), take a ∈ α and let a′ be a parallel copy of a so that
a∩a′ = ∅. Take b ∈ β so that it has minimal intersection with both a and a′.
Then we note that there are no positive triangles or positive quadrilaterals
in the ordered set (a, b, a′). Thus by the part (b) of the previous lemma, we
have [(ab)a′] = [a(ba′)] and I(a, ba′) = |a∩ (ba′)| = |a∩ b| = I(a, b). Also we
have I(a, b) = |a ∩ b| = |a ∩ a′b| = I(a, ab).

To see the equation [a(ba)] = [b] when each component of a intersects b,
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we use the part (b) of the previous lemma again. By the lemma a(ba′) is
obtained from a∪ b∪a′ by resolving all intersection points in a∩ b from a to
b and all intersection points a′ ∩ b from a′ to b. Thus these two resolutions
canceled all the twists made on b (see figure A2). Thus the result follows.

The first part of (2) follows from the definition. To see the second part,
suppose otherwise that α ∈ CS0 so that αβ = βα but I(α, β) > 0. We
decompose α as a disjoint union α1α2 where I(α1, β) = 0 and each com-
ponent of α2 intersects β. Now since α1 is disjoint from both α2 and β,
we have β(α1α2) = α1(βα2) and αβ = α1(α2β). Thus, by αβ = βα, we
obtain α2β = βα2. Since each component of α2 intersects β, by property
(4), β = α2(βα2) = α2(α2β) = (α2)2β where the last equality follows from
property (3). Now by property (4) again, I(β, β) = I(β, (α2

2)β) = I(β, α2
2)

= 2I(β, α2) �= 0. This is a contradiction.

b

a(ba’)

a  b
5 5

ba
5

( )b

a

5

5

b

a a’ b

part (a)

part(b)

Figure A2

To see property (6), the triangle inequality I(α, βγ) ≤ I(α, β) + I(α, γ)
holds by the definition of the resolution. Furthermore, part (b) of the pre-
vious lemma says that the inequality I(α, βγ) ≤ I(α, β) + I(α, γ) becomes
an equality if (α, β, γ) contains no positive triangles and positive quadri-
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laterals. To see the last part of (6), we need to show that I(α, γ) ≤
I(α, β) + I(α, βγ) and I(α, γ) ≤ I(α, β) + I(α, γβ). For simplicity, let us
prove the first inequality that I(α, γ) ≤ I(α, β) + I(α, βγ). A similar ar-
gument proves the second inequality. Note that by the triangle inequality
I(α, β) + I(α, βγ) ≥ I(α, (βγ)β). Now write β = β1β2 where β1 consists of
components of β disjoint from γ and β2 consists of components of β which
intersect γ. Thus by property (4), (βγ)β = (β1)2γ where I(β1, γ) = 0. Thus
I(α, (βγ)β) = I(α, (β1)2) + I(α, γ)≥ I(α, γ). This ends the proof.
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