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Interior Regularity of Solutions to the Isotropically

Constrained Plateau Problem

Weiyang Qiu

In this paper, we study the regularity of isotropically area-
minimizing surfaces. We prove a partial regularity theorem which
says that if an W 1,2 isotropic map from a two-dimensional disk
into R2n minimizes area relative to its boundary among isotropic
competitors and is close enough in W 1,2 norm to a linear holomor-
phic isotropic map, then it is smooth in the interior. Furthermore,
we prove that the solution to the isotropically constrained Plateau
problem exists and has a smooth interior with possibly isolated
singularities.

1. Introduction.

In [S-W], Schoen and Wolfson used variational approach to study the ex-
istence of special Lagrangian surfaces. They pointed out that if a smooth
closed Lagrangian submanifold in a Kähler-Einstein manifold is stationary
for the volume functional among all Lagrangian variations, then it is in
fact minimal(hence special Lagrangian). Thus they suggested that mini-
mizing volume among all Lagrangian cycles in a homology class will lead
to the production of a closed special Lagrangian submanifold if the min-
imizer is smooth. However, the smoothness of the volume minimizers is
not so clear. Schoen and Wolfson studied this regularity problem in two-
dimensional case. They proved that a Lagrangian map from a 2-dimensional
disk to a 4-dimensional Kähler manifold which minimizes area among all
Lagrangian maps in the same homology class is in fact a branched immer-
sion away from a finite set of points. As a consequence, they produced
branched immersed 2-dimensional Lagrangian cycles with finite number of
singularities which minimizes area among its Lagrangian homology class.

In this present paper, using the similar approach of Schoen and Wolfson,
we extend their regularity result to higher Co-dimensions. We study the
constrained area minimizing problem among the class of isotropic surfaces.
In particular we concentrate on the following two-dimensional isotropically
constrained Plateau problem in R

2n.
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Let ω =
∑n

k=1 dx
k ∧ dyk be the standard symplectic form on R

2n. A
surface Σ is called isotropic if ω|Σ = 0. Let D1 be the unit disk in R2. Let Γ
be a closed piecewise C1 Jordan curve in R

2n which bounds some isotropic
disk. It is natural to ask whether Γ bounds an isotropic disk which has the
least area among all isotropic disks bounded by Γ. More precisely, define

XΓ,I = {l ∈ W 1,2(D1,R
2n) : l∗ω = 0,

l|∂D1is continous and monotone onto Γ}
The isotropically constrained Plateau problem then asks two questions:

(1) Does there exist an area minimizer in this class?

(2) What is the regularity of this area minimizer if it exists?

It is fairly easy to get a positive answer to the first question. We shall
show in section 2 that the set of weakly isotropic maps is weakly closed.
The existence of area minimizer in this class then follows from standard
arguments. We will call it a weak solution to the isotropically constrained
Plateau problem (Minicozzi in his Ph.D thesis [Mi] gave the similar weak
existence of the solution to Legendrianly constrained Plateau problem).

The regularity of this solution turns out to be a much harder problem. We
shall first extend Schoen and Wolfson’s monotonicity formula for Lagrangian
stationary surfaces in R

4([S-W]) to higher co-dimensional isotropically sta-
tionary surfaces in R2n. Consequently we deduce a partial regularity results
which says that if an W 1,2 isotropic map from a two-dimensional disk into
R2n minimizes area relative to its boundary among isotropic competitors and
is close enough in W 1,2 norm to a linear holomorphic isotropic map, then it
is smooth interiorly(Theorem 5.9) . By studying the stability of isotropically
stationary tangent cones and by using the dimension reduction argument, we
obtain the interior regularity theorem which concludes that the solution to
the isotropically constrained Plateau problem is smooth away from a finite
set(Theorem 7.4).

The organization of this paper is as follows:
First we introduce the weakly isotropic maps and prove the weak exis-

tence of the solution to the isotropically constrained Plateau problem(section
2). In section 3 we present the monotonicity for isotropically stationary sur-
faces. In section 4 we prove the excess decay lemma and the consequent C1,µ

partial regularity theorem. The higher regularity issue(from C1,µ to C∞) is
of a subtle nature and will be addressed in section 5. In section 6 we classify
all the isotropically stationary tangent cones. Then in the last section we
give the interior regularity result.
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2. Existence of Weak solutions to the Isotropically
Constrained Plateau Problem.

In this section we will introduce the isotropically constrained Plateau prob-
lem and prove the weak existence result.

Let ω =
∑n

k=1 dx
k ∧ dyk be the standard symplectic form in R2n. A

surface Σ2 ⊂ R
2n is called isotropic if ω|Σ = 0.

Definition 2.1. Let Σ2 ⊂ R2n be an isotropic surface. A deformation Fs
on R

2n is called isotropic with respect to Σ if Fs(Σ) are isotropic for all small
s.

Σ is called isotropically stationary if

d(Area(Fs(Σs)))
ds

|s=0 = 0

for any isotropic deformation Fs which is compactly supported on Σ.

We will use η =
∑n

k=1(x
kdyk −ykdxk) to denote a primitive of ω in R2n,

use Dr(t) to denote the disk in R
2 centered at t with radius r, and use Cr(t)

to denote ∂Dr(t). In particular, Dr will be used to denote Dr(0).

Definition 2.2. Let Ω ⊂ R
2 be a domain. l ∈W 1,2(Ω,R2n) is called weakly

isotropic if l∗ω = 0 for a.e. t ∈ Ω. We will use W 1,2
I (Ω,R2n) to denote the

set of all weakly isotropic maps.

l ∈W 1,2(Ω,R2n) is called weakly conformal if

||l∗ ∂
∂t1

|| = ||l∗ ∂
∂t2

||, 〈l∗ ∂
∂t1

, l∗
∂

∂t2
〉 = 0, a.e. t ∈ Ω.

Lemma 2.3. The set

ΓI,M = {l ∈W 1,2
I (D1,R

2n) : E(l) ≤M}

is weakly closed, where E(l) =
∫
D1

|∇l|2dt is the energy of l.
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Proof. Let {li}∞j=1 ⊂ ΓI,M . Assume it converges weakly to l. Then by the
lower-semi-continuity of energy, E(l) ≤ M . So it remains to show that l is
weakly isotropic.

Let η =
∑n

k=1(x
kdyk − ykdxk) be a primitive of ω in R

2n. It is easy to
see that a map h is weakly isotropic if and only if

∫
Cr(t) h

∗η = 0 for a.e.
t ∈ D1 and r ∈ (0, 1− |t|).

By Rellich lemma, since E(li) ≤M , we might assume that(by passing to
a subsequence) {li}∞j=1 converges to l strongly in L2. Co-area formula then
implies that for a.e. Cr(t) ⊂ D1, li|Cr(t) converges to l|Cr(t) strongly in L2

and weakly in W 1,2. Hence,

lim
i→∞

∫
Cr(t)

l∗i η =
∫
Cr(t)

l∗η,

which shows that
∫
Cr(t) l

∗η = 0. �

The isoperimetric inequality in the setting of isotropic surfaces is very
important to construct comparison surfaces. It is proven by Gromov[Gr] and
Allcock[Al].

Proposition 2.4 (Gromov, Allcock). Given any W 1,2 map φ from the
unit circle C into R2n satisfying

∫
C φ

∗ ∑n
k=1(x

kdyk−ykdxk) = 0, there exists
a weakly isotropic map l ∈W 1,2(D1,R

2n), such that l = φ on C and

Area(L(D1)) ≤ cLength(l(C))2.

Using the isoperimetric inequality, we are able to prove the Hölder con-
tinuity of isotropically area minimizing maps.

Proposition 2.5. If l ∈ W 1,2(D1,R
2n) is weakly isotropic, weakly confor-

mal and minimizes area among all isotropic maps with the same boundary
value. Then there is a µ ∈ (0, 1) and an absolute constant c such that
l ∈ C0,µ(D1/2). Moreover

|l(P )− l(Q)| ≤ cA(l(D1)1/2|P −Q|µ, for any P,Q ∈ D1/2.

Proof. By scaling, we may assume Area(D1) = 1. Given any p ∈ D1/2,
let f(r) = E(l|Dr(p)). The conformality of l implies f(r) = 2Area(l|Dr(p)).
Since l is isotropic , we have

∫
Cr(p) l

∗η = 0. Therefore Proposition 2.4 in
additional to the fact that l is isotropically area minimizing, gives that

Area(l|Dr(p)) ≤ cLength(l|Cr(p))
2.
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Using Co-area formula and Cauchy-Schwartz inequality, it is easy to obtain

Length(l|Cr(p))
2 ≤ 2πrf ′(r).

Therefore f(r) ≤ crf ′(r), where c > 0 is an absolute constant. Integrating,
we get

f(r) ≤ (f(r1)r−c1 )rc,

for any r ≤ r1 such that Dr1(p) ⊂ D1. Since p ∈ D1/2, we could let r1 = 1/3.
Note f(1/3) ≤ Area(D1) = 1. So we have∫

Dr(p)
|∇l|2dt ≤ c1r

c,

where c1 and c are absolute positive constant. Morrey’s estimate(see [G-T])
implies that l is C0,µ for some µ ∈ (0, 1) and

|l(P )− l(Q)| ≤ c2|P −Q|µ,

for any P , Q in D1/2, where c2 is an absolute constant. �

Definition 2.6. A weakly isotropic map l : D1 → R2n is called exact if

there is a W 1,2 function φ on D1 such that dφ = l∗
∑n

k=1(x
kdyk−ykdxk)(we

will call φ a lifting function of l).

If an isotropic map is exact then we could use the function φ to lift
the map into a contact map in R2n+1 with the standard contact structure
α = dφ−∑n

k=1(x
kdyk−ykdxk). More precisely, for a weakly exact isotropic

map l : D1 → R2n, we can define a map l̃ : D1 → R2n+1 by

l̃(t) = (l(t), φ(t)) ∈ R
2n+1. (1)

Then clearly l̃∗α = 0.

Proposition 2.7. If l ∈ W 1,2(D1,R
2n) is weakly isotropic, weakly confor-

mal and minimizes area among all isotropic maps with the same boundary
value. Then l is locally exact.

Proof. Proposition 2.5 implies l is continuous. Local integrating gives the
existence of the lifting function φ. �
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Now we consider the isotropically constrained Plateau problem. Let Γ
be a piecewise C1 closed Jordan curve such that

∫
Γ η = 0. Define

XΓ,I = {l ∈ W 1,2
I (D1,R

2n) : (2)
l|∂D1is continous and is a monotone map onto Γ}

By Proposition 2.4, Γ bounds some isotropic disk, so XΓ,I is not empty.
Let AΓ,I = inf l∈XΓ,I

Area(l) and let EΓ,I = infl∈XΓ,I
E(l). Classical result

in Plateau problem gives:

Lemma 2.8. AΓ,I = 1
2EΓ,I. Moreover if E(l0) = EΓ,I , then A(l0) = AΓ,I .

The above lemma enables us to minimize energy instead of area. To
quotient out the conformal group of the disk, we consider a subclass. Let
p1, p2 and p3 be distinct points in ∂D1 and q1, q2 and q3 be distinct points
on Γ. Define

X ′
Γ,I = {l ∈ XΓ,I : l|∂D1(pi) = qi, i = 1, 2, 3}. (3)

We now have the following existence theorem of the isotropically con-
strained Plateau problem.

Theorem 2.9. There is a weakly conformal, weakly isotropic map l0 ∈ XΓ,I

such that A(l0) = AΓ,I . Moreover l0 is Hölder continuous in the interior of
D1.

Proof. Since energy is conformally invariant, we see that

inf
l∈X ′

Γ,I

E(l) = EΓ,I. (4)

It suffices to show that there is an energy minimizer in X ′
Γ,I . Let {li}∞i=1 ⊂

X ′
Γ,I such that limi→∞E(li) = EΓ,I. Assume {li}∞i=1 converges weakly

to l0 in W 1,2 sense and strongly in L2 sense. The lower-semi-continuity
of energy gives E(l0) ≤ EΓ,I. It suffices now to show that l0 is in the
class of X ′

Γ,I . Lemma 2.3 shows that l0 is weakly isotropic. Classical
Courant-Lebesgue lemma(see [La]) gives that the class {l|∂D1 : l ∈ X ′

Γ,I}
is equicontinuous. Therefore by Arzela-Ascoli lemma we might assume(by
passing to a subsequence) {li|∂D1}∞i=1 converges in C0 sense to a con-
tinuous function ϕ : ∂D1 → R2n. Clearly ϕ is monotone onto Γ and
ϕ(pi) = qi for i = 1, 2, 3. We know that the trace map is continuous from
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W 1,2(D1,R
2n) to W 1/2,2(∂D1,R

2n), and W 1/2,2(∂D1,R
2n) is compactly em-

bedded in L2(∂D1,R
2n). Therefore the weak convergence of {li}∞i=1 to l0

in W 1,2(D1,R
2n) implies the strong convergence of {li|∂D1}∞i=1 to l0|∂D1 in

L2(∂D1,R
2n). Hence we l0|∂D1 = ϕ. So l0|∂D1 is continuous, monotone onto

Γ and l0|∂D1(pi) = qi. Hence l0 ∈ X ′
Γ,I and E(l) = EΓ,I . By Lemma 2.8, l0

is the area minimizer. The Hölder continuity follows from Proposition 2.5.
�

3. Extension of Schoen-Wolfson’s Monotonicity to Higher
Co-dimensions.

Monotonicity for two-dimensional Lagrangian stationary surfaces was ob-
tained by Schoen and Wolfson in [S-W]. With a slight modification we can
extend their result to higher co-dimensions.

Instead of deriving the monotonicity directly in the Lagrangian set-
ting, Schoen and Wolfson consider the lifting of a Lagrangian sur-
faces into a contact space and derive the monotonicity upstairs. Let
(x1, . . . , xn, y1, . . . , yn, ϕ) be the coordinate on R

2n+1. And let α = dϕ − η
be the standard contact form on R2n+1, where η =

∑n
k=1(x

kdyk − ykdxk).
A submanifold Nk is called contact if α|N = 0. A vector field X in R

2n+1

is called a contact vector field if its flow preserves the contact structure, i.e.
LXα = fα for some function f . Just like in the symplectic case, any ambient
function in R

2n+1 generates a contact vector field.

Lemma 3.1 (Schoen-Wolfson [S-W]). Let h : R2n+1 → R be any smooth
function. Define a vector field

Xh = hx
∂

∂y
− hy

∂

∂x
− hϕ(x

∂

∂x
+ y

∂

∂y
)

+(−2h + xhx + yhy)
∂

∂ϕ
.

Then Xh is a contact vector field(and will be called the Hamiltonian vector
field for h).

Define Π : R2n+1 → R2n to be the projection along ϕ direction. For
vectors Z1, Z2 in R

2n+1, define

〈Z1, Z2〉d = 〈Π∗Z1,Π∗Z2〉,
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where〈, 〉 is the standard Euclidean metric on R
2n. Note that 〈, 〉d is not a

Riemannian metric on R2n+1 since it degenerates. But it is not difficult to see
that the restriction of 〈, 〉d to any contact linear subspace is non-degenerate.

Let l : D1 → R2n be an isotropic map. Assume l is exact and isotropically
stationary(in the sense that the first variation of area is zero for compactly
supported deformations of l through isotropic maps). Then as described in
section 2, the exactness of l gives a lifting map l̃ : D1 → R

2n+1 via l̃ = (l, ϕ).
Now let Z be any contact vector field in R2n+1 such that Z vanishes along
l̃(∂D1) and let Ft be the flow generated by Z. Define l̃t := Ft ◦ l̃ and define
an isotropic deformation lt of l by

lt := Π ◦ l̃t.

Then first variation of area gives

Proposition 3.2 (Schoen-Wolfson [S-W]). Let l : D1 → R
2n be an

isotropic map which is exact and isotropically stationary. Let l̃ → R2n+1

be the lifting of l. If Z is a contact vector field in R
2n+1 such that Z van-

ishes along l̃(∂D1), then ∫
Σ
divΣZ dµΣ = 0. (5)

Here divΣZ :=
∑2

k=1〈∇0
ek
Z, ek〉d, where ∇0 denotes the Euclidean con-

nection on R2n+1 and {ei}2
i=1 is a set of orthonormal tangent vector of

Σ := l̃(D1) with respect to the metric 〈, 〉d.
The idea to get the monotonicity is to find a proper Hamiltonian function

h and apply Proposition 3.2 to the contact vector field Xh.
Let s = 2−1(x2 + y2) and

r =
√

2(s2 + ϕ2)1/4. (6)

r plays the same role as the distance function and will be called the modified
distance function in R

2n+1. Define

B̃σ(0) = {P ∈ R
2n+1 : r(P ) < σ}. (7)

Also define a change of variables,

t = log(
√
s2 + ϕ2), θ = arctan

ϕ

s
.
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Since l(D1) ⊂ R
2n is isotropic, we have the orthogonal decomposition of

the tangent space of R2n:

TR
2n = T l(D1) ⊕ JT l(D1) ⊕Q (8)

where J is the standard complex structure of R
2n. Let π : TR

2n → Q be
the orthogonal projection.

Similiar computation as in Schoen-Wolfson’s paper [S-W] yields the fol-
lowing equation(the proof of which will be omitted here)

Proposition 3.3. Let h(t, θ) : R
2n+1 → R be a smooth function. Then

divΣXh(t,θ)

= −2hte−t sin θ − 2hθte−t cos θ
+(hθt − hθ)(2||∇Σθ||2d + e−2t||π( �P)||2)
+{−2ht + htt − hθθ}〈∇Σθ,∇Σt〉d,

where �P is the position vector of l in R2n.

Once Proposition 3.3 is established, we could use the exactly same argu-
ment in Schoen-Wolfson’s paper to derive the monotonicity. For the conve-
nience of future use, we include the argument here.

Fix a > 0, let ρa(t) to be a smooth function of t such that

ρa(t) =

{
1 − 2a−2et if t ≤ log(a2/2)− 1,
0 if t ≥ log(a2/2) .

Let

Γ1 = {(t, θ) : θ ∈ (−π
2
,
π

2
), θ ≤ −t− log(

a2

2
) − 1, θ ≥ t− log(

a2

2
) − 1},

Γ2 = {(t, θ) : θ ∈ (−π
2
,
π

2
), θ ≥ −t− log(

a2

2
), θ ≤ t− log(

a2

2
)},

Γ3 = {(t, θ) : θ ∈ (−π
2
,
π

2
)} \ (Γ1

⋃
Γ2).

Consider the following wave equation:⎧⎪⎨⎪⎩
htt − hθθ − 2ht = 0
h(t, 0) = 0
hθ(t, 0) = ρa(t)

(9)
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Clearly we see that the solution of equation(9) is given by

h(a) =

⎧⎪⎨⎪⎩
θ − 2a−2e−t sin θ if (t, θ) ∈ Γ1,
∗∗ if (t, θ) ∈ Γ3,
0 if (t, θ) ∈ Γ2,

(10)

where ** is some smooth function. Define

G(a) = h
(a)
θ − h

(a)
θt ,

F (a) =
1
2
a2e−t(h(a)

θt cos θ + h
(a)
t sin θ).

Then G(a) = 1 and F (a) = 1 in Γ1. By scaling,

F (a)(t, θ) = F (1)(t− log(a2/2), θ),
G(a)(t, θ) = G(1)(t− log(a2/2), θ).

Schoen and Wolfson [S-W] proved the following proposition concerning F (a)

and G(a):

Proposition 3.4 (Schoen-Wolfson). The function F (a) is non-negative.
And G satisfies 0 ≤ G(a) ≤ 1 for θ ∈ (−π

2 ,
π
2 ). Furthermore, there is a fixed

constant θ0 such that G(a) −G(b) ≥ 0 for 0 ≤ b ≤ θ0a.

Now by Proposition 3.3, we have

divΣXh(a) = 4a−2F (a) − (2||∇Σθ||2d + e−2t||π( �P)||2)G(a). (11)

The support of h(a) is contained in

{(t, θ) : θ ∈ (−π
2
,
π

2
), t ≤ log(a2/2) + π/2}

which is in fact B̃√
2eπ/4a(0) in R

2n+1. Assume 0 < b < a, then h(a) −
h(b) is a smooth function compactly supported in B̃√

2eπ/4a(0). Therefore
Proposition 3.2 and (11) imply ,

a−2

∫
Σ
F (a) dµΣ − b−2

∫
Σ
F (b) dµΣ (12)

= 2−1

∫
Σ
(G(a) −G(b))(||∇Σθ||2d + 2−1e−2t||π( �P)||2)dµΣ.

Combine Proposition 3.4 and (12), we have
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Theorem 3.5 (Monotonicity). Let l : D1 → R
2n be a weakly isotropic,

weakly conformal, exact, and isotropically stationary map with a contact
lifting l̃ : D1 → R

2n. Let Σ = l̃(D1). Assume l̃(0) = 0 and l̃(∂D1) is outside
B̃r(0) (defined in (7)). Then there are constants c1 and c2 which only depend
on Area(Σ) and r such that

c1 ≤ σ−2Area(Σ ∩ B̃σ(0)) ≤ c2,

for any σ ∈ (0, r).

4. C1,µ ε-Regularity for mapping problem.

Through out this section we will assume l ∈ W 1,2(D2,R
2n) is weakly

isotropic, weakly conformal and area-minimizing among all isotropic maps
with the same boundary value. By Proposition 2.7, l is locally exact. There-
fore monotonicity applies. Also proposition 2.5 tells us that l is actually
C0,µ.

First quote a reversed Poincaré type inequality which is proven by Schoen
and Wolfson [S-W].

Proposition 4.1 (Schoen-Wolfson). Assume that A(l(D2)) ≤ c1, and l0
is a linear holomorphic map into a isotropic plane in R

2n. For any ε > 0,
there exists an absolute constant c and a constant δ = δ(ε) such that if∫

D2

{|∇(l− l0)|2 + |l− l0|2}dt ≤ δ,

then ∫
D1

|∇(l− l0)|2dt ≤ ε

∫
D2

|∇(l− l0)|2dt+ c

∫
D2

|l− l0|2dt.

Now we define the excess type quantity

E(l, l0, r) = r−2

∫
Dr

|∇(l− l0)|2dt, (13)

where l0 is a linear holomorphic map into an isotropic plane in R
2n.

Lemma 4.2 (Excess Decay Lemma). Assume A(l(D1)) ≤ c1. There ex-
ist constants ε > 0 and θ̄ ∈ (0, 1) depending only on c1 and an absolute
constant c such that if

E(l, l0, 1) +
∫
D1

|l− l0|2dt ≤ ε, (14)
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then there exists a linear holomorphic map l1 into an isotropic plane such
that

E(l, l1, θ̄) ≤ 1
2
E(l, l0, 1), (15)

θ̄−4

∫
Dθ̄

|l− l1|2dt ≤ cE(l, l0, 1).

Proof. Without loss of generality, assume l0(t1, t2) = (t1, t2, 0, 0, . . . , 0) is the
identity map of D1 into the x1x2-plane. Assume the lemma is not true, then
we have a sequence of maps l(j) = (x(j)1, . . . , x(j)n, y(j)1, . . . , y(j)n) such that

E(l(j), l0, 1) +
∫
D1

|l(j) − l0|2dt = εj, (16)

where limj→∞ εj = 0, but none of them satisfies (15). Let Ej = E(l(j), l0, 1).
Define

u(j)1 =
1√
Ej

(x(j)1 − t1) − α(j)1, (17)

u(j)2 =
1√
Ej

(x(j)2 − t2) − α(j)2,

w(j)k =
1√
Ej
x(j)k − γ(j)k, k = 3, . . . , n,

v(j)1 =
1√
Ej
y(j)1 − β(j)1,

v(j)2 =
1√
Ej
y(j)2 − β(j)2,

q(j)k =
1√
Ej
y(j)k − µ(j)k, k = 3, . . . , n,

where α, β ,γ, and µ are constants to make
∫
D1
u(j) = 0,

∫
D1
v(j) = 0,∫

D1
w(j) = 0, and

∫
D1
q(j) = 0. Then clearly∫

D1

|∇u(j)|2dt+
∫
D1

|∇v(j)|2dt+
∫
D1

|∇w(j)|2dt+
∫
D1

|∇q(j)|2dt = 1. (18)

Standard Poincaré inequality gives that u(j), v(j),w(j) and q(j) are
bounded in W 1,2, so by Alaoglu Theorem and Rellich’s Theorem we can as-
sume(by passing to a subsequence) that they converge to u,v,w,q respectively
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weakly inW 1,2 and strongly in L2. The lower-semi-continuity of energy gives∫
D1

|∇u|2dt+
∫
D1

|∇v|2dt+
∫
D1

|∇w|2dt+
∫
D1

|∇q|2dt ≤ 1. (19)

On the other hand, from (16), we know that x(j)1(t1, t2) converges
strongly to t1 in L2 , x(j)2(t1, t2) converges strongly to t2 in L2 and
x(j)k(t1, t2), y(j)k(t1, t2) converge strongly to 0 in L2 sense.

Claim 1. u is a holomorphic from D1 to x1x2-plane.

Proof. Let t = t1 +
√−1t2, x = x1 +

√−1x2, y = y1 +
√−1y2, and zk =

xk +
√−1yk for k = 3, . . . , n. Then the conformality of l(j) gives us

∂x(j)

∂t

∂x̄(j)

∂t
+
∂y(j)

∂t

∂ȳ(j)

∂t
+

n∑
k=3

∂z(j)k

∂t

∂z̄(j)k

∂t
= 0.

Cauchy -Schwartz inequality implies∫
D1

|∂x
(j)

∂t

∂x̄(j)

∂t
|dt ≤

2∑
α=1

∫
D1

|∇y(j)α|2dt+
n∑
k=3

∫
D1

(|∇y(j)k|2 + |∇x(j)k|2)dt

(20)
Using the fact that ∂x̄(j)

∂t = ∂x(j)

∂t
∂x̄(j)

∂t − ∂(x(j)−t)
∂t

∂(x̄(j)−t̄)
∂t , we get from (20)

that ∫
D1

|∂x̄
(j)

∂t
|dt ≤

∫
D1

|∇(l− l0)|2dt = Ej.

Thus ∫
D1

|∂ū
(j)

∂t
|dt ≤ √

Ej.

Let j go to infinity, we see that u is holomorphic. �

Claim 2. There is a biharmonic function f : D1 → R, such that (v1, v2) =
∇f. And wk, qk are harmonic functions on D1 for k = 3, . . . , n.

Proof. Let η, x̃k, ỹk, k = 3, 4, . . . , n be smooth functions of x1, x2 with com-
pact support in D̃1 = {(x1, x2) : (x1)2 + (x2)2 ≤ 1}. Define ỹ1, ỹ2 to be
functions of x1, x2, xk, . . . , yk, k = 3, . . . , n by

ỹα =
n∑
k=3

(xk
∂ỹk

∂xα
− yk

∂x̃k

∂xα
) +

∂η

∂xα
, α = 1, 2. (21)
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Now let X be a vector field in the cylinder D̃1 × R
2n−2 defined by

X :=
n∑
k=3

(x̃k
∂

∂xk
+ ỹk

∂

∂yk
) +

2∑
α=1

ỹα
∂

∂yα
. (22)

It is easy to check that d(X$ω) = 0. Therefore X is a symplectic vector
field, i.e. its flow Fs preserves the symplectic form ω(see [M-S]).

Since l(j) is isotropically area minimizing, by Proposition 2.5, it is C0,µ

and has uniform C0,µ bound. Hence we can assume l(j) − l0 is pointwise
small since its L2 norm is small. Therefore, Fs ◦ l(j)(t1, t2) has compact
support in D1 for j sufficiently large. Since l(j) minimizes energy, we get
d
ds |s=0

∫
D1

|∇Fs ◦ l(j)|2dt = 0. Thus we have

n∑
k=3

∫
D1

∇x(j)k · ∇x̃k(x(j)1, x(j)2)dt (23)

+
n∑
k=3

∫
D1

∇y(j)k · ∇ỹk(x(j)1, x(j)2)dt

+
2∑

α=1

∫
D1

∇y(j)α · ∇ỹα(x(j)1, x(j)2, . . . , x(j)n, y(j)3, . . . , y(j)n)dt,

= 0,

where ∇ is the gradient of t in D1. Using the chain rule, for example

∇x̃k(x(j)1(t), x(j)2(t)) =
2∑

α=1

∂x̃k

∂xα
(x(j)1(t), x(j)2(t))∇x(j)α,
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together with (21) and (23), we get

n∑
k=3

∫
D1

2∑
α=1

∂x̃k

∂xα
(x(j)1(t), x(j)2(t))∇x(j)α · ∇x(j)kdt

+
n∑
k=3

∫
D1

2∑
α=1

∂ỹk

∂xα
(x(j)1(t), x(j)2(t))∇x(j)α · ∇y(j)kdt

+
2∑

α=1

n∑
k=3

∫
D1

{∇y(j)α · ∇[x(j)k(t)
∂ỹk

∂xα
(x(j)1(t), x(j)2(t))

−y(j)k(t)
∂x̃k

∂xα
(x(j)1(t), x(j)2(t))]}dt

+
2∑

α=1

∫
D1

∇y(j)α · ∇ ∂η

∂xα
(x(j)1(t), x(j)2(t))dt

= 0.

Now note that ∇x(j)α = ∇(x(j)α − tα) + ∇tα. Therefore

|
n∑
k=3

2∑
γ=1

(
∫
D1

∂x(j)k

∂tγ
∂x̃k

∂xγ
dt+

∫
D1

∂y(j)k

∂tγ
∂ỹk

∂xγ
dt)

+
2∑

α,γ=1

∫
D1

∂y(j)α

∂tγ
∂2η

∂xα∂xγ
dt|

≤
n∑
k=3

2∑
α=1

(c̃
∫
D1

||∇(x(j)α− tα)|| · ||∇x(j)k||dt

+c̃
∫
D1

||∇(x(j)α − tα)|| · ||∇y(j)k||dt

+c̃
∫
D1

||∇y(j)α|| · ||∇x(j)k||dt+ c̃

∫
D1

|x(j)k| · ||∇y(j)α||dt

+c̃
∫
D1

||∇y(j)α|| · ||∇y(j)k||dt+ c̃

∫
D1

|y(j)k| · ||∇y(j)α||dt)

where c̃ depends on the C2 norm of x̃k, ỹk and η. All x̃k, ỹk η and their
derivatives above are evaluated at (x(j)1(t1, t2), x(j)2(t1, t2)).
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Thus Cauchy-Schwartz inequality implies

|
n∑
k=3

2∑
γ=1

(
∫
D1

∂x(j)k

∂tγ
∂x̃k

∂xγ
dt+

∫
D1

∂y(j)k

∂tγ
∂ỹk

∂xγ
dt) (24)

+
2∑

α,γ=1

∫
D1

∂y(j)α

∂tγ
∂2η

∂xα∂xγ
dt|

≤ c̃E(l(j), l0, 1)

+
n∑
k=3

2∑
α=1

(c̃
∫
D1

|x(j)k| · ||∇y(j)α||dt+ c̃

∫
D1

|y(j)k| · ||∇y(j)α||dt).

By Cauchy-Schwartz,∫
D1

|y(j)k| · ||∇y(j)α||dt ≤ ||y(j)k||L2(D1)E
1/2(l(j), l0, 1). (25)

Therefore combine (17), (24) and (25) we get

|
n∑
k=3

2∑
γ=1

(
∫
D1

∂w(j)k

∂tγ
∂x̃k

∂xγ
dt +

∫
D1

∂q(j)k

∂tγ
∂ỹk

∂xγ
dt) (26)

+
2∑

α,γ=1

∫
D1

∂v(j)α

∂tγ
∂2η

∂xα∂xγ
dt|

≤ c̃E1/2(l(j), l0, 1) + c̃

n∑
k=3

(||x(j)k||L2(D1) + ||y(j)k||L2(D1)),

where x̃k, ỹk η and their derivatives above are evaluated at
(x(j)1(t1, t2), x(j)2(t1, t2)).

Since x(j)α converges to tα strongly in L2 for α = 1, 2, we conclude that
∂x̃k

∂xγ (x(j)1(t), x(j)2(t)), ∂ỹ
k

∂xγ (x(j)1(t), x(j)2(t)) and ∂2η
∂xγ∂xα (x(j)1(t), x(j)2(t)) con-

verge strongly in L2 to ∂x̃k

∂xγ (t1, t2), ∂ỹ
k

∂xγ (t1, t2) and ∂2η
∂xγ∂xα (t1, t2) respectively.

Therefore, in view of (16) and (26) , if we view x̃k, ỹk, η as functions defined
on (t1, t2), we would get

n∑
k=3

2∑
γ=1

(
∫
D1

∂wk

∂tγ
∂x̃k

∂tγ
dt+

∫
D1

∂qk

∂tγ
∂ỹk

∂tγ
dt) (27)

+
2∑

α,γ=1

∫
D1

∂vα

∂tγ
∂2u

∂tα∂tγ
dt

= 0.



Isotropically Constrained Plateau Problem 961

Since x̃k, ỹk, η are arbitrary, we see that wk,qk are harmonic functions for
k = 3, . . . , n and

2∑
α,γ=1

∫
D1

∂vα

∂tγ
∂2u

∂tα∂tγ
dt = 0 (28)

for any η ∈ C∞
c (D1). To show that (v1, v2) is the gradient of some function

we notice that the map

(t1, t2) �→ (x(j)1, x(j)2, . . . , x(j)n, v(j)1, v(j)2, q(j)3, . . . , q(j)n)

is still isotropic for any j. Thus by Lemma 2.3, the weak limit as j goes to in-
finity is still isotropic. But the weak limit is (t1, t2, 0, . . . , 0, v1, v2, q3, . . . , qn).
Therefore

∂v1

∂t2
− ∂v2

∂t1
= 0. (29)

Now combine (28) and (29), we get the existence of a biharmonic function
f : D1 → R, such that (v1, v2) = ∇f. �

From standard elliptic estimates, we get

sup
Dr

|uα − uα0 |2 ≤ cr4
∫
D1

|∇uα|2dt, (30)

sup
Dr

|vα − vα0 |2 ≤ cr4
∫
D1

|∇vα|2dt,

sup
Dr

|wk − wk0 |2 ≤ cr4
∫
D1

|∇wk|2dt,

sup
Dr

|qk − qk0 |2 ≤ cr4
∫
D1

|∇qk|2dt,

where uα0 , vα0 ,wk0 , qk0 are the linear part of the Taylor expansion of each
function at 0. Using the strong L2 convergence of u(j), v(j), q(j), w(j) ,
together with (19), we get for large j∫

Dθ

{|u(j) − u0|2 + |v(j) − v0|2 + |w(j) −w0|2 + |q(j) − q0|2}dt

≤ 2
∫
Dθ

{|u− u0|2 + |v − v0|2 + |w− w0|2 + |q − q0|2dt}

≤ cθ6.

Now let

l̃
(j)
0 = l0 +

√
Ej(u0 + α(j), w0 + γ(j), v0 + β(j), q0 + µ(j))
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where α(j), . . . , µ(j) are defined in ( 17). Then∫
Dθ

|l(j) − l̃
(j)
0 |2dt ≤ cθ6E(l(j), l0, 1) (31)

Claim 3. we can perturb l̃
(j)
0 up to order Ej ( in the C1 norm sense) to

make it a linear conformal map l
(j)
1 into an isotropic plane.

Proof. Notice that since v0 is the gradient of a quadratic function in t, simple
calculation shows that

ω(l̃(j)0∗
∂

∂t1
, l̃

(j)
0∗

∂

∂t2
) = O(Ej).

Therefore by a linear perturbation of orderO(Ej) only in y1 and y2 direction,
we can modify l̃(j)0 to a linear map whose image is an isotropic plane in R

2n.
Also since the map t+

√
Ej(u0 + αj) is holomorphic, we see that the Hopf

differential of the perturbed linear map is of order O(Ej)(note that we did the
previous perturbation without change the x1 and x2 coordinates), therefore
a perturbation of order O(Ej) will make the map into a linear holomorphic
map. �

Therefore, we have the L2 estimate∫
Dθ

|l(j) − l
(j)
1 |2dt (32)

≤
∫
Dθ

|l(j) − l̃
(j)
0 |2dt +

∫
Dθ

|l(j)1 − l̃
(j)
0 |2dt

≤ cθ6Ej + cθ2E2
j

and the energy estimate∫
Dθ

|∇(l(j) − l
(j)
1 )|2dt (33)

≤
∫
Dθ

|∇(l(j) − l̃
(j)
0 )|2dt +

∫
Dθ

|∇(l(j)1 − l̃
(j)
0 )|2dt

≤ cEj + cθ2E2
j

≤ cEj.
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Note that in (32) we can choose θ = θ̄ small and δ1 small such that if
Ej ≤ δ1 , then

θ̄−4

∫
Dθ̄

|l(j) − l
(j)
1 |2dt ≤ cEj (34)

Now apply (a scaled version of) Proposition 4.1 (also using (34)). For
any ε > 0, there exists an δ = δ(ε) > 0 such that if Ej ≤ δ, we get∫
Dθ̄

|∇(l(j) − l
(j)
1 )|2dt ≤ ε

∫
D2θ̄

|∇(l(j) − l
(j)
1 )|2dt+ cθ̄−2

∫
D2θ̄

|l(j) − l
(j)
1 |2dt.

(35)
where c is an absolute constant. Combine (32) and (35) we have

θ̄−2

∫
Dθ̄

|∇(l(j) − l
(j)
1 )|2dt

≤ cε(2θ̄)−2

∫
D2θ̄

|∇(l(j) − l
(j)
1 )|2dt+ cθ̄2Ej + cθ̄−2E2

j .

Then choose θ̄, ε and Ej small we get,

θ̄−2

∫
Dθ̄

|∇(l(j) − l
(j)
1 )|2dt ≤ Ej

2
. (36)

(34) and (36) give a contradiction to the hypothesis that l(j) does not satisfy
(15). This completes the proof of the lemma. �

Remark 4.3. Using standard iteration argument, the excess decay lemma

gives

r−2

∫
Dr(t)

|∇(l− lt,r)|2dt ≤ crµ. (37)

for any t ∈ D1/2,r ≥ 0, where lt,r is some linear holomorphic function into
an isotropic plane. This implies that l is C1,µ in D1/2.

5. Higher Regularity.

Unlike in the classical minimal surface case, the higher regularity for a C1,µ

isotropically stationary surface is rather a subtle problem.
In this section first we will apply a variational method to get a com-

pactly supported C1,µ solution to the equation divX = f , where f is a C0,µ

function with compact support in B1/2 such that
∫
B1
fdt = 0. Then using

this result, we construct a suitable class of C1,µ isotropic variations for the
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isotropically stationary surface Σ and get the consequent Euler-Lagrangian
equation. Finally using a Schauder type estimate, we prove that Σ is smooth.

In this section we will use Br(x)(simply Br if x = 0) to denote the disk
in R

2 centered at x with radius r.

5.1. Compactly Supported Solutions to divX = f Using Weighted
Sobolev Spaces.

In this subsection, we will discuss the equation divX = f where f is a C0,µ

function with compact support in B1/2 such that
∫
B1
fdt = 0. We would

like to construct a solution which is both C1,µ and compactly supported in
B1. By adding an additional constraint ∂X1

∂x2
− ∂X2

∂x1
= 0, we could get a C1,µ

solution from standard elliptic theory, but this solution does not generally
have compact support. So we shall prove the existence by minimizing a
certain functional in a weighted Sobolev space with an exponentially decay
weight.

Define a weight function ρ : B1 → R+ by

ρ(x) ≡ 1 for x ∈ B1/2, (38)

ρ(x) = e−1/d, for x ∈ B1 \B3/4,

ρ > 0, in the interior of B1.

where d(x) = dist(x, ∂B1) = 1 − |x|.
Notice that any derivative of ρ decays exponentially near the boundary

and therefore we can extend ρ smoothly by defining ρ to be identically zero
outside B1.

Define the weighted L2 norm of a function by

||u||L2
ρ(B1) := (

∫
B1

ρ|u|2dx)1/2.

Define the weighted L2 space L2
ρ(B1) := {u : ||u||L2

ρ(B1) < ∞}. And define
the weighted Sobolev space H2

ρ(B1) to be the set of all weakly differentiable
functions in B1 such that both u and ∇u are in L2

ρ(B1). H2
ρ(B1) is a Hilbert

space with the inner product

〈u, v〉ρ := 〈ρ1/2∇u, ρ1/2∇v〉L2 + 〈ρ1/2u, ρ1/2v〉L2.

For a detailed discussion of weighted Sobolev spaces, see ([C]).
Now we prove a Poincaré inequality for the weighted Sobolev space.
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Lemma 5.1. Let u ∈ H2
ρ (B1), where ρ is given in (38). Then there is an

absolute constant c such that

inf
λ∈R

||u− λ||L2
ρ(B1) ≤ c||∇u||L2

ρ(B1).

Proof. Choose λ to be a constant such that

min{L2{x ∈ B1/2 : u(x) ≤ λ},L2{x ∈ B1/2 : u(x) ≥ λ}} ≥ 1/3L2(B1/2).

where L2 is the Lebesgue measure in R
2.

Standard Poincaré inequality(see [Si1] page 38) implies that for any
ε > 0, ∫

B1−ε

|u(x)− λ|2dx ≤ c

∫
B1−ε

|∇u(x)|2dx, (39)

where c is an absolute constant(in particular independent of ε). Define
ρ̃(d) = ρ(1 − d). Since ρ is a function of the distance d to the boundary
of B1 and is monotonically decreasing for d < 1/8, ρ̃′(d) ≥ 0 for d < 1/8.
Integrating along ε(using (39)), we get∫ 1/8

0
ρ̃′(ε)

∫
B1−ε

|u(x)− λ|2dxdε ≤ c

∫ 1/8

0
ρ̃′(ε)

∫
B1−ε

|∇u(x)|2dxdε.

Therefore∫ 1/8

0
ρ̃′(ε)

∫
ε<d<1/8

|u(x)− λ|2dxdε (40)

≤ c

∫ 1/8

0
ρ̃′(ε)

∫
ε<d<1/8

|∇u(x)|2dxdε+ c

∫
B7/8

|∇u(x)|2dx.

Now co-area formula gives∫ 1/8

0
ρ̃′(ε)

∫
ε<d<1/8

|u(x)− λ|2dxdε

=
∫ 1/8

0
ρ̃′(ε)(

∫ 1/8

ε

∫
∂B1−s

|∇d|−1|u(x)− λ|2dσds)dε.

Integration by parts and noticing |∇d| = 1, we have(since the boundary
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terms vanish) ∫ 1/8

0

ρ̃′(ε)
∫
ε<d<1/8

|u(x)− λ|2dxdε (41)

=
∫ 1/8

0

∫
∂B1−ε

ρ|∇d|−1|u(x)− λ|2dσdε.

=
∫
d<1/8

ρ|u(x)− λ|2dx

=
∫
B1

ρ|u(x)− λ|2dx−
∫
B7/8

ρ|u(x)− λ|2dx

≥
∫
B1

ρ|u(x)− λ|2dx− c

∫
B7/8

|u(x)− λ|2dx

≥
∫
B1

ρ|u(x)− λ|2dx− c

∫
B7/8

ρ|∇u(x)|2dx

Similarly ∫ 1/8

0
ρ̃′(ε)

∫
ε<d<1/8

|∇u(x)|2dxdε ≤
∫
B1

ρ|∇u(x)|2dx (42)

Finally combine (40), (41) and (42), we get∫
B1

ρ|u(x)− λ|2dx ≤ c

∫
B1

ρ|∇u(x)|2dx,

which completes the proof. �

We now use a variational approach to construct a compactly supported
C1,µ solution with compact support to the equation divX = f .

For any f ∈ C0,µ(B1) with compact support in B1/2 such that
∫
B1
fdt =

0, define a functional F : H2
ρ(B1) → R by

F (u) :=
∫
B1

(2−1ρ|∇u|2 − fρu). (43)

The Euler-Lagrangian equation of the critical point of F is∫
B1

ρ〈∇u,∇ϕ〉 =
∫
B1

fρϕ, (44)

for any ϕ ∈ C∞
c (B1).
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Lemma 5.2. Assume f ∈ C0,µ(B1) has compact support in B1/2 and∫
B1
fdt = 0. Then there is a minimizer u of the functional F(defined in

(43)) in H2
ρ(B1). Moreover ||u||L2

ρ(B1
) ≤ c||f ||L2(B1).

Proof. Let Mf := inf{F (u)|u ∈ H2
ρ(B1)}.

By choosing u to be identically zero, we see Mf ≤ 0. To prove the
lower bound, first notice that since

∫
B1
f = 0 and fρ = f , we get F (u) =

F (u−u0), where u0 is any constant. So (by replacing u by u−u0 for a suitable
constant u0) the Poincaré inequality(Lemma 5.1) then gives ||u||L2

ρ(B1) ≤
c||∇u||L2

ρ(B1). Therefore

F (u) ≥ c||∇u||2L2
ρ(B1)

− c||f ||L2(B1) · ||u||L2
ρ(B1)

≥ c||∇u||2L2
ρ(B1)

− c||f ||L2(B1) · ||∇u||L2
ρ(B1).

The last line in the above inequality is a quadratic function of ||∇u||L2
ρ(B1),

the minimum of which is −c||f ||2
L2(B1)

. Therefore 0 ≥Mf ≥ −c||f ||2
L2(B1)

.
Now assume limk→∞F (uk) = Mf for a sequence {uk} ⊂ H2

ρ(B1). The
paragraph above implies that (by replacing uk with uk − uk0 for a suit-
able constant uk0) ||∇uk||L2

ρ(B1) ≤ c||f ||L2(B1). Then the Poincaré inequal-
ity(Lemma 5.1) tell us ||uk||H2

ρ(B1) ≤ c||f ||L2(B1). Hence we may assume that
uk converge to some u weakly in H2

ρ(B1) and also weakly in L2
ρ(B1). Direct

method then gives F (u) = Mf and ||∇u||L2
ρ(B1

) ≤ c||f ||L2(B1). Therefore u
is a minimizer of F with ||u||L2

ρ(B1
) ≤ c||f ||L2(B1). �

Proposition 5.3. Let f be a C0,µ function in B2 ⊂ R2 such that
support f ⊂ B1/2 and

∫
B2
f = 0. Then there exists a C1,µ vector field

X in B2 such that

divX = f ; (45)
support(X) ⊂ B1;
||X ||C1,µ(B2) ≤ c||f ||C0,µ(B2).

Proof. Lemma 5.2 implies that a weak solution u of F (e.g. a minimizer)
exists and satisfies ||u||L2

ρ(B1
) ≤ c||f ||L2(B1) ≤ c||f ||C0,µ(B1).

Since ρ is always positive in the interior of B1, standard Schauder theory
implies that u is C2,µ in the interior of B1. So u is a classical solution of the
equation

div(ρ∇u) = f
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in the interior of B1. Let v = ρ1/2u, then v ∈ L2(B1) and v satisfies

%v − 1
2
(ρ−1%ρ− 2−1ρ−2|∇ρ|2)v = f.

Since ρ(x) = e−1/d near the boundary, the Cn,µ norm of (ρ−1%ρ −
2−1ρ−2|∇ρ|2) decays like d−N(n) near the boundary. So standard Schauder
theory implies that

||v||C2,µ(B1−ε) ≤ cε−N (||v||L2(B1) + ||f ||C0,µ(B1)).

where N is a fixed positive integer.
Let X = ρ∇u, then

X = ρ1/2∇v − 2−1vρ−1/2∇ρ.
So we see

||X ||C1,µ(B1−ε\B1−2ε) ≤ ce−
1
2ε ε−N1 (||v||L2(B1) + ||f ||C0,µ(B1)).

Therefore near boundary the C1,µ norm of X decays like e−1/4d. Thus if we
extend X trivially outside B1, the new X satisfies

||X ||C1,µ(B2) ≤ c(||u||L2
ρ(B1) + ||f ||C0,µ(B2)) ≤ c||f ||C0,µ(B2).

�

5.2. Constructing Isotropic Variations.

In this subsection we will use proposition 5.3 to construct a class of isotropic
variations for an isotropic surface Σ. Notice a graphical surface Σ∗ over
x1x2-plane given by y∗α, x∗k and y∗k(k = 3, . . . , n and α = 1, 2) is isotropic
if and only if

∂y∗1

∂x2
− ∂y∗2

∂x1
=

n∑
k=3

∂x∗k

∂x1

∂y∗k

∂x2
− ∂y∗k

∂x1

∂x∗k

∂x2
(46)

Lemma 5.4. Assume Σ is a C1,µ isotropic surface which is graphical over
B2 in x1x2-plane. Let x̃3(x1, x2) , . . . , x̃n(x1, x2), ỹ3(x1, x2), . . . , and
ỹn(x1, x2) be smooth functions with compact support in B2 and let ỹ1 and ỹ2

be C1,µ functions with compact support in B2. Assume

∂ỹ1

∂x2
− ∂ỹ2

∂x1
=

n∑
k=3

(
∂x̃k

∂x1

∂yk

∂x2
− ∂yk

∂x1

∂x̃k

∂x2
(47)

+
∂xk

∂x1

∂ỹk

∂x2
− ∂ỹk

∂x1

∂xk

∂x2
).
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Then the compactly supported vector field X on Σ defined by

X :=
n∑
k=3

(x̃k
∂

∂xk
+ ỹk

∂

∂yk
) +

2∑
α=1

ỹα
∂

∂yα

is isotropically integrable, i.e. there exists a family of isotropic graphical sur-
faces {Σt} given by yα(t, x1, x2), xk(t, x1, x2) and yk(t, x1, x2) (k = 3, . . . , n
and α = 1, 2) such that Σ0 = Σ and

∂yα(t)
∂t

|t=0 = ỹα,
∂xk(t)
∂t

|t=0 = x̃k,
∂yk(t)
∂t

|t=0 = ỹk, (48)

for α = 1, 2 and k = 3, . . . , n.

Proof. Let yα(0) = yα, xk(0) = xk and yk(0) = yk. Define

xk(t) = xk(0) + tx̃k, yk(t) = xk(0) + tỹk

Then the isotropic constraint (46) for yα(t), xk(t) and yk(t) be-
comes(using the fact that Σ0 = Σ is isotropic)

∂(y1(t) − y1(0))
∂x2

− ∂(y2(t) − y2(0))
∂x1

(49)

= t

n∑
k=3

(
∂x̃k

∂x1

∂yk

∂x2
− ∂yk

∂x1

∂x̃k

∂x2
+
∂xk

∂x1

∂ỹk

∂x2
− ∂ỹk

∂x1

∂xk

∂x2
)

+t2
n∑
k=3

(−∂x̃
k

∂x1

∂ỹk

∂x2
+
∂ỹk

∂x1

∂x̃k

∂x2
).

By Proposition 5.3, there exist C1,µ functions λ1 and λ2 with compact
support in B2 such that

∂λ1

∂x2
− ∂λ2

∂x1
=

n∑
k=3

(−∂x̃
k

∂x1

∂ỹk

∂x2
+
∂ỹk

∂x1

∂x̃k

∂x2
).

Now define

yα(t, x1, x2) := t2λα(x1, x2) + tỹα(x1, x2) + yα(0, x1, x2).

It is then easy to see that xk(t), yk(t) and yα(t) satisfies the isotropic con-
straint equation (49). So the surface Σt is isotropic for any t. Moreover by
differentiating (49) with respect to t, we see that x̃k, ỹk and ỹα satisfy (48)
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and (47). Therefore X is isotropically integrable. This completes the proof.
�

Lemma 5.4 immediately implies the following Euler-Lagrangian equation
for isotropically stationary surfaces:

Lemma 5.5. Assume Σ is a C1,µ isotropic surface which is graphical over
B2 in x1x2-plane. If Σ is isotropically stationary, then

n∑
k=3

∫
B2

∇Σxk · ∇Σx̃kdµΣ +
n∑
k=3

∫
B2

∇Σyk · ∇ΣỹkdµΣ (50)

+
2∑

α=1

∫
B2

∇Σyα · ∇ΣỹαdµΣ

= 0,

for any smooth functions x̃3(x1, x2) , . . . , x̃n(x1, x2), ỹ3(x1, x2), . . . ,
ỹn(x1, x2) with compact support in B2 and any C1,µ functions ỹ1(x1, x2)
and ỹ2(x1, x2) with compact support in B2 such that (47) holds. Here ∇Σ is
the Riemannian connection of the induced metric on Σ.

Proof. By Lemma 5.4, the vector field on Σ

X :=
n∑
k=3

(x̃k
∂

∂xk
+ ỹk

∂

∂yk
) +

2∑
α=1

ỹα
∂

∂yα

is isotropically integrable. Therefore apply the standard first variation for-
mula to X , we get (50). �

5.3. C1,µ to C∞ and the Partial Regularity Theorem.

Now we are in the position to prove that any C1,µ isotropically stationary
surface is smooth.

Proposition 5.6. Assume Σ is a C1,µ isotropic surface which is graphical
over B2 in x1x2-plane. If Σ is isotropically stationary, then Σ is C∞ in B1.

Proof. We may assume(by scaling) that

||xk||C1,µ(B2) ≤ ε, ||yk||C1,µ(B2) ≤ ε, ||yα||C1,µ(B2) ≤ ε, (51)



Isotropically Constrained Plateau Problem 971

for k = 3, . . . , n and α = 1, 2.
In lemma 5.5, if we let x̃4(x1, x2) , . . . , x̃n(x1, x2), ỹ3(x1, x2), . . . ,

ỹn(x1, x2) be identically zero, then the Euler-Lagrangian equation for x3

becomes ∫
B2

∇Σx3 · ∇Σx̃3dµ+
2∑

α=1

∫
B2

∇Σyα · ∇Σỹαdµ = 0, (52)

for any smooth function x̃3(x1, x2) and C1,µ functions ỹ1(x1, x2) and
ỹ2(x1, x2) with compact support in B2 such that

∂ỹ1

∂x2
− ∂ỹ2

∂x1
=
∂x̃3

∂x1

∂y3

∂x2
− ∂y3

∂x1

∂x̃3

∂x2
. (53)

For f(x1, x2) ∈ C0,µ(B2) with compact support inB2 such that
∫
B2
fdt =

0, define G(f) to be the set of all Γ = (Γ1,Γ2) such that Γ is C1,µ vector
field on B2 with compact support in B2 and ∂Γ1

∂x2 − ∂Γ2

∂x1 = f . Proposition 5.3
implies that G(f) is not empty.

Clearly for any Γ = (Γ1,Γ2) ∈ G(∂x̃
3

∂x1
∂y3

∂x2 − ∂y3

∂x1
∂x̃3

∂x2 ) and any Π =

(Π1,Π2) ∈ G(∂x̃
3

∂x1
∂δ(h)y3

∂x2 − ∂δ(h)y3

∂x1
∂x̃3

∂x2 ), the vector δ(h)Γ − Π is a compactly
supported solution to

∂ỹ1

∂x2
− ∂ỹ2

∂x1
=
∂δ(h)x̃3

∂x1

∂y3

∂x2
− ∂y3

∂x1

∂δ(h)x̃3

∂x2
(54)

where δ(h) is the standard difference quotient operator. Therefore the Euler-
Lagrangian equation (52) tells us∫

Ω
∇Σx3 · ∇Σδ(h)x̃3dµΣ (55)

+
2∑

α=1

∫
Ω
∇Σyα · ∇Σ{δ(h)Γα − Πα}dµΣ

= 0,

for any Γ ∈ G(∂x̃
3

∂x1
∂y3

∂x2 − ∂y3

∂x1
∂x̃3

∂x2 ) and Π ∈ G(∂x̃
3

∂x1
∂δ(h)y3

∂x2 − ∂δ(h)y3

∂x1
∂x̃3

∂x2 ).
To get C1,µ estimates of δ(h)x3, we shall need the following Schauder

type estimate.

Lemma 5.7. Let aij(x), bi(x), ci(x), d(x), fi(x) and g(x) be C0,µ functions
on B2. Assume q1(x), . . . , qm(x) are C1,µ functions on B2 and pikj(x) are
C0,µ on B2, for i, k = 1, 2 and j = 1, . . . , m.
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Assume u(x) ∈ C1,µ(B2) satisfies

2∑
i,j=1

∫
B2

aijD
iuDjϕ+

2∑
i=1

∫
B2

biϕD
iu+

2∑
i=1

∫
B2

ciuD
iϕ (56)

+
∫
B2

duϕ

=
2∑
i=1

∫
B2

fiD
iϕdµ+

∫
B2

gϕdµ+
m∑
j=1

2∑
i,k=1

∫
B2

pikjD
kΓijdx.

for any ϕ ∈ C∞
c (B2), and for any

Γj = (Γ1
j ,Γ

2
j) ∈ G(D1qjD

2ϕ−D2qjD
1ϕ), j = 1, . . .m.

We assume the ellipticity condition:

2∑
i,j=1

aij(x)ξiξj ≥ Λ|ξ|2, (57)

and

||aij||C0,µ(B2) ≤ Λ1, ||bi||C0,µ(B2) ≤ Λ1,

||ci||C0,µ(B2) ≤ Λ1, ||d||C0,µ(B2) ≤ Λ1.

Then

||u||C1,µ(B1) ≤ c(||u||C0(B2) + ||g||C0,µ(B2) +
2∑
i=1

||fi||C0,µ(B2) (58)

+
k∑
j=1

2∑
i,k=1

||pikj||C0,µ(B2)||Dqj||C0,µ(B2)),

where c = c(Λ,Λ1).

The proof of this lemma is a slight modification of Simon’s proof of the
Schauder theory in [Si3] and will be omitted here.
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Now apply lemma 5.7 to equation (55)(also using the small C1,µ norm
condition (51)), we get

||δ(h)i x3||C1,µ(B1) (59)

≤ c{
n∑
k=3

(||δ(h)i xk||C0(B2) + ||δ(h)i yk||C0(B2)) +
2∑

α=1

||δ(h)i yα||C0(B2)}

+cε{
n∑
k=3

(||δ(h)i xk||C1,µ(B2) + ||δ(h)i yk||C1,µ(B2))

+
2∑

α=1

||δ(h)i yα||C1,µ(B2)}.

Similarly, the same result is true for δ(h)i xk (k = 4, . . . , n) and δ
(h)
i yk

(k = 3, . . . , n).

To get estimates for ||δ(h)i yα||C1,µ(B1), we use a different variation. In
the Euler-Lagrangian equation, choose x̃k and ỹk to be identically zero for
k = 3, . . . , n. And let

ỹα =
∂u

∂xα
, α = 1, 2,

where u is any C2,µ function with compact support in B1. Then the Euler
Lagrangian equation (50) becomes

2∑
α=1

∫
Σ
∇Σyα · ∇Σ ∂u

∂xα
dµΣ = 0. (60)

Also we have the isotropic constraint equation:

∂y1

∂x2
− ∂y2

∂x1
=

n∑
k=3

∂xk

∂x1

∂yk

∂x2
− ∂yk

∂x1

∂xk

∂x2
. (61)

(60) and (61) form a mixed order elliptic system for y1 and y2. Difference
quotient and standard Schauder theory for elliptic system(see [D-N]) imply
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||δ(h)i yα||C1,µ(B1) (62)

≤ c{
n∑
k=3

(||δ(h)i xk||C0(B2) + ||δ(h)i yk||C0(B2)) +
2∑

α=1

||δ(h)i yα||C0(B2)}

+cε{
n∑
k=3

(||δ(h)i xk||C1,µ(B2) + ||δ(h)i yk||C1,µ(B2))

+
2∑

α=1

||δ(h)i yα||C1,µ(B2)}

To proceed we need an abstract lemma which is very useful in dealing
with interior estimates(for a proof see [Si2]).

Lemma 5.8. Let S be a real valued sub-additive function on the class of
all balls in BR(x0) ⊂ R

n(i.e., S(A) ≤ ∑k
i=1 S(Ai) whenever A ⊂ ∪ki=1Ai).

Suppose θ > 0 and l ≥ 0 are given. Then there is an ε0 = ε0(θ, l, n) > 0 such
that if

S(Bθρ(x)) ≤ ε0S(Bρ(x)) + γρ−l

for all Bρ(x) ⊂ BR(x0) and for some constant γ(independent of ρ and x),
then

S(BθR(x0)) ≤ C(θ, l, n)γ.

A scaled version of (59) and (62) gives

n∑
k=3

([δ(h)i xk]µ,Bρ/2(x)
+ [δ(h)i yk]µ,Bρ/2(x)

) +
2∑

α=1

[δ(h)i yα]µ,Bρ/2(x)

≤ ε{
n∑
k=3

([δ(h)i xk]µ,Bρ(x) + [δ(h)i yk]µ,Bρ(x)) +
2∑

α=1

[δ(h)i yα]µ,Bρ(x)}

+Cρ−2{
n∑
k=3

(||δ(h)i xk||C0(B2) + ||δ(h)i yk||C0(B2))

+
2∑

α=1

||δ(h)i yα||C0(B2)}

for any Bρ(x) ⊂ B2.
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Therefore applying abstract lemma 5.8 with

S(Bρ(x)) =
n∑
k=3

([δ(h)i xk]µ,Bρ(x) + [δ(h)i yk]µ,Bρ(x)) +
2∑

α=1

[δ(h)i yα]µ,Bρ(x),

we get(choose ε small)

n∑
k=3

(||δ(h)i xk||C1,µ(B1) + ||δ(h)i yk||C1,µ(B1)) +
2∑

α=1

||δ(h)i yα||C1,µ(B1)

≤ c{
n∑
k=3

||δ(h)i xk||C0(B2) + ||δ(h)i yk||C0(B2))

+
2∑

α=1

||δ(h)i yα||C0(B2)}.

Let h go to 0 we see that xk, yk and yα are C2,µ. Iterate, we get that they
are C∞. �

Finally combine Proposition 5.6 and Lemma 4.2(in particular re-
mark 4.3), we have

Theorem 5.9 (Partial Regularity Theorem). Let l : D2 → R
2n be a

weakly conformal, weakly isotropic map which minimizes area among all the
isotropic maps with the same boundary value. Let l0 be a linear holomorphic
map into an isotropic plane. Assume l(0) = l0(0) = 0, and Area(l(D1)) ≤
c1. Then there is a ε0 ≥ 0 depending only on c1 such that if∫

D1

|∇(l− l0)|2dt+
∫
D1

|l− l0|2dt ≤ ε0,

then l is a smooth immersion in D1/2.

6. Tangent Cones.

Standard technique of proving interior regularity from partial regularity in-
volves the study of tangent cones and the use of dimension reducing argu-
ment. In the first part of this section, we construct tangent cones at each
point of an isotropically area minimizing map. In the second part, we clas-
sify all the isotropically stationary cones with isolated singularities and study
their stability.
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Proposition 6.1. Let l be a weakly conformal, exact ,isotropically station-
ary map from R2 to R2n. Suppose l(0) = 0 and l is proper( in the sense
that the pre-image of any compact set is compact). Also suppose that
a−2

∫
R2 F

(a) ◦ l̃dt is constant for any a ≥ 0, where l̃ is a contact lifting
of l such that l̃(0) = 0 and F (a) is defined in Section3. Then l is a cone in
the sense that the position vector is in the tangent plane of l. Moreover the
contact lifting l̃ in R2n+1 lies in {ϕ = 0}.

Proof. First we prove that ϕ = 0. Since a−2
∫

R2 F
(a) ◦ l̃dt is constant for

a ≥ 0, by the monotonicity formula (12), we see that θ = constant and
π(

−→
P ) = 0, where

−→
P is the position vector of l and π is the orthogonal

projection onto Q(see (8)). Therefore ϕ = λs, where λ is a constant. We are
going to show that λ = 0. Note the modified distance function(see section
3) r2 = 2(1 + λ2)s. Now fixed a ball B̃a0(0)(defined in (6)). Let ξ : R → R

be a concave cutoff function such that:

ξ(θ) = 1, if θ ≥ a2
02

−2(1 + λ2)−1,

and ξ(0) = 0, ξ′(θ) > 0 for θ < a2
02

−2(1 + λ2)−1. Then we see that since
r2 = 2−1(1 + λ2)s, the Hamiltonian function ξ ◦ s is identically 1 outside
B̃a0(0). Since l is proper, l−1(Ba0(0)) is compact in R2. Therefore the
function ξ ◦ s ◦ l is identically 1 outside a compact set in R

2. Let Xξ◦s be
the contact vector field defined in Lemma 3.1. Then first variation gives∫
Σ divΣXξ◦sdµΣ = 0, where Σ = l(R2). Note that

divΣXξ◦s = ξ′divΣXs + ∇(ξ′) ·Xs = ξ′′∇s ·Xs,

where we use the chain rule of Xh operator and the fact that divΣXs = 0.
Using the fact that l̃ is contact and the fact that ϕ = λs, we get that

∇ϕ ·Xs = λ∇s ·Xs = |∇ϕ|2.
If λ �= 0, then we see that

∫
Σ ξ

′′|∇ϕ|2dµΣ = 0. Since ξ is concave,
ϕ = constant. But since ϕ(0) = 0 we get that ϕ ≡ 0 in l̃−1(Ba0). The
arbitrariness of a0 gives that ϕ ≡ 0 in R

2.
Now ϕ ≡ 0 implies that the position vector

−→
P is orthogonal to JT l(D)

where J is the standard complex structure in R
2n. Note as discussed in

section 3, since l(D) is isotropic, the tangent space of R2n at the origin
admits the orthogonal decomposition:

TR
2n = T l(D)⊕ JT l(D)⊕Q
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However, we already see that the orthogonal projection of
−→
P onto Q is

zero(since π(
−→
P ) = 0). Therefore,

−→
P ∈ T l(D), which completes the proof. �

Now we are able to construct tangent cones for an isotropically area-
miminizing map. Let l : D1 → R

2n be weakly conformal, exact, isotropically
area minimizing. Let t0 ∈ D1. For any sequence εj → 0, define rescaled
maps lj : Dε−1

j
→ R

2n by

lj(τ) = δ−1l(εjτ + t0),

where δj =
√
Area(l(D2ε(t0))) is chosen such that Area(lj(D2)) = 1.

Clearly lj is still minimizing.
The same argument in Schoen and Wolfson’s paper(also using Proposi-

tion 6.1) implies that (1) {lj}∞j=1 converges strongly in W 1,2
loc (R2,R2n) to a

weakly conformal, exact, isotropically area-minimizing map l0 : R
2 → R

2n;
(2) l0 is actually a cone in the sense that the position vector lying in the
tangent plane of l; and (3) l0 is a proper map with l−1

0 ({0}) = {0}.
We will henceforth call such a limiting map l0 a tangent map of l at

t0(with respect to {εj}) or a tangent cone of l at t0.
The following lemma studies the case where the image of a tangent map

is contained in a plane.

Lemma 6.2. Let l0(τ) : R
2 → R

2n be a tangent map of l at t0. If the image
of l0 is contained in an isotropic plane, then (after a unitary coordinate
change of R

2n to make the image plane be the x1x2-plane) l0(τ) = aτn for
some complex constant a =�= 0 and some positive integer n. In particular
l0 is a smooth immersion away from the origin and the image of l0 is the
plane.

Proof. Because every deformation inside x1x2-plane is isotropic, l0 is area
minimizing as a map from R

2 to R
2. Therefore, by standard harmonic

function theory, l0 is a harmonic map, hence smooth in R
2. Since l0 is

also conformal, (by possibly reversing the orientation of R2) we see that l0
is holomorphic. Since l0 is proper and l−1

0 ({0}) = {0}, standard complex
analysis theory implies l0 is a polynomial of the form aτn. �

Now we study double blow-ups.
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Lemma 6.3. Let l0(τ) be a tangent map of l at t0. Let τ0 ∈ R
2 \ {0}. Let

l1(ξ) be a tangent map of l0 at τ0. Then the image of l1 is a plane. In
particalur, by Lemma 6.2, l1 is a smooth immersion away from the origin.

Proof. Standard blow up argument shows that the vector x0 := l0(τ0) is
actually in the tangent plane Tl1(ξ)l1(R

2) for any non-zero ξ. Therefore the
image l1(R2) is invariant under the translation in the direction of x0. By a
unitary transformation, we may assume the direction of x0 is the x1-axis.
Then l1(R2) is a product of x1-axis and a one-dimensional curve γ in R

2n−1(
which is in fact a one-dimensional cone since l1(R2) is a cone). Since l1(R2)
is isotropic, this curve γ must be in R2n−2 spanned by x2, . . . , xn, y2, . . . ,
yn. It is obvious that any deformation in R

2n−2 is isotropic with respect to
l1(R2). Therefore, the fact that l1(R2) is isotropically area minimizing in
R

2n implies that γ is absolutely length minimizing in R
2n−2. Since the only

one-dimensional minimizing cone in R2n−2 is a straight line or a straight ray,
we see γ is a line or a ray. Therefore l1(R2) is a plane or a half plane. In
any case it is contained in a plane. Then by Lemma 6.2, the image of l1 is
a plane. �

In the rest of this section we study two-dimensional isotropically station-
ary cones which are smooth away from origin.

First derive a geometric version of the Euler-Lagrangian equation for
isotropically stationary surfaces.

Theorem 6.4. Suppose Σ2 ⊂ R2n is an isotropically stationary surface with
mean curvature vector H . Then

δ(H$ω) = 0,
d(H$ω) = 2β,
H ∈ JTΣ,

where β is (0, 2)-tensor on Σ defined by β(X, Y ) =
∑2

j=1〈∇⊥
ejY, J∇⊥

ejX〉,
with {ej}2

j=1 being an orthonormal basis for TΣ.

Proof. To get the second equation, use Cartan’s formula, we have

d(H$ω)(X, Y ) = 〈∇XH, JY 〉 − 〈∇YH, JX〉.
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Let {ej}2
j=1 is an orthonormal basis for TΣ. Then H =

∑2
j=1 ∇⊥

ejej. There-
fore

〈∇XH, JY 〉 =
2∑
j=1

〈∇X∇⊥
ejej , JY 〉 =

2∑
j=1

〈∇⊥
X∇⊥

ejej, JY 〉,

where we used the fact that JY is in (TΣ)⊥ since Σ is isotropic.
Assume the basis {ej}2

j=1 is normal at one point. Then using Codazzi
equation(see [D]) and the fact that 〈∇⊥

XY, JZ〉 is fully symmetric for X ,Y ,Z
in TΣ, we get

d(H$ω)(X, Y ) =
k∑
j=1

2〈∇⊥
ejY, J∇⊥

ejX〉

This completes the proof of the second equation.
To get the third equation, note that since Σ is isotropically stationary,∫

Σ〈H,X〉dµΣ = 0 for any isotropic vector field with compact support. Since
any X ∈ (JTΣ)⊥ satisfies (X$ω)|Σ = 0, it gives rise to a (local) isotropic
variation. This implies that H ∈ JTΣ.

First variation also implies
∫
Σ〈H, J∇f〉dµΣ = 0 for any f : M → R

which has compact support in Σ. But since H ∈ JTΣ, we get that∫
Σ〈H, J∇Σf〉dµΣ = 0, where ∇Σf is the projection of ∇f onto TΣ. This

implies
∫
Σ〈δ(H$ω), f〉dµΣ = 0. The arbitrariness of f implies δ(H$ω) = 0.

�

Remark 6.5. The theorem above is true for any isotropically station-

ary submanfold Σk in a Kähler manifold (N 2n, g, J), only with the sec-
ond equation d(H$ω) = 2β replaced by d(H$ω) = 2β + 2ricΣ, where

ricΣ(X, Y ) := RicΣ(X, JY ) for X , Y in TΣ.

Now we can classify all isotroically stationary cones in R
2n

Theorem 6.6. Let Σ be an isotropic cone over the origin ( in the sense
that ηλ#Σ = Σ for any λ > 0, where ηλ : R

2n → R
2n is the homothety map

defined by ηλx = x/λ). Assume also that Σ is smooth away from origin and
is isotropically stationary in R2n. Then (up to a unitary transformation),
the intersection of Σ with S2n−1 is a curve γ : [0, 2π] → R

2n parametrized
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by(using complex coordinate in R
2n)

z1(s) =
√

q

p+ q
e
√−1ps

z2(s) =
√

p

p+ q
e−

√−1qs

z3(s) = 0, . . . , zn(s) = 0.

for some positive integers p and q.

Proof. Let γ(θ) : [0, L] → S2n−1 be parametrized by arclength( i.e, ||γ ′(θ)|| =
1 for any θ). Then the cone Σ can be parametrized as

σ(t, θ) = tγ(θ), t ∈ (0,∞), θ ∈ [0, L].

Note that an orthonormal basis for tangent planes of Σ is given by e1 =

σ∗ ∂∂t = γ(θ) and e2 = σ∗ ∂
∂θ

||σ∗ ∂
∂θ

|| = γ̇(θ). Then the mean curvature vector of Σ

is given by H = ∇⊥
e1
e1+∇⊥

e2
e2 = t−1(γ̈(θ))⊥. Calculation using Theorem 6.4

gives
γ̈ − b0Jγ̇ + γ = 0, (63)

for some real constant b0. Let γ(θ) = (z1(θ), . . . , zn(θ)) where (z1, . . . , zn) is
the complex coordinate in R2n . Then (63) gives us

z̈k −
√−1b0żk + zk = 0, for k = 1, . . . , n.

Solve it, we get
zk = cke

√−1λ1θ + dke
√−1λ2θ,

where ck and dk are complex constants and

λ1 =
b0 +

√
b20 + 4

2
, λ2 =

b0 −
√
b20 + 4

2
.

Moreover since 〈γ, γ〉= 1, 〈γ̇, γ̇〉 = 1 and 〈γ̇, Jγ〉 = 0, we have⎧⎪⎨⎪⎩
∑n

k=1 ckc̄k = λ2
λ2−λ1

,∑n
k=1 dkd̄k = λ1

λ1−λ2
,∑n

k=1 ckd̄k = 0.
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Therefore by a unitary transformation we may assume c1 =
√

λ2
λ2−λ1

, c2 =

. . . = cn = 0 and d1 = 0, d2 =
√

λ1
λ1−λ2

, d3 = . . . = dn = 0. Thus

⎡⎢⎢⎢⎣
z1(θ)
z2(θ)

...
zn(θ)

⎤⎥⎥⎥⎦ = e
√−1λ1θ

⎡⎢⎢⎢⎢⎣
√

λ2
λ2−λ1

0
...
0

⎤⎥⎥⎥⎥⎦ + e
√−1λ2θ

⎡⎢⎢⎢⎢⎣
0√
λ1

λ1−λ2

...
0

⎤⎥⎥⎥⎥⎦
Since γ is closed, we get (note λ1 > 0 and λ2 < 0)

λ1L = 2πp, λ2L = −2πq,

for some positive integers q and p, where L is the length of γ. Now use the
fact that λ1λ2 = −1 we deduce

λ1 =
√
p

q
, λ2 = −

√
q

p
.

The theorem then follows by a reparametrization of the curve using s =
2πθ/L. �

We can see that these isotropic cones are exactly those Lagrangian cones
described in Schoen and Wolfson’s paper [S-W]. By applying the second
variational formula, they have proven

Proposition 6.7 (Schoen-Wolfson). The cones with |p − q| > 1 are
strictly unstable in R

4 for any Hamiltonian variation fixing a neighborhood
of the cone vertex. And cones with |p − q| = 1 are strictly stable in R4 for
any Hamiltonian variation fixing a neighborhood of the cone vertex.

And the multiply covered cones are strictly unstable for any p and q.

Therefore those cones with |p−q| > 1 are automatically strictly unstable
in R

2n. And by a careful study of the second variation, we actually get that
cones with |p− q| = 1 are also strictly stable in R

2n.

Proposition 6.8. Those cones with |p−q| = 1 are strictly stable in R
2n for

any Hamiltonian variation fixing a neighborhood of the cone vertex.

Proof. Let f : R2n → R be any smooth function which is supported in
BR(0) \ Bε(0). Let Z = J∇f be the Hamiltonian vector field. Therefore
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Z|Σ is of the form

J∇h +
n∑
k=3

(fk
∂

∂xk
+ gk

∂

∂yk
)

where h, fk and gk are arbitrary function of x1, x2, y1 and y2. Then using
second variational formula(see [S-W]) we see

δ2|Σ|(VJ∇f) = δ2|Σ|(VJ∇h) + δ2|Σ|(VW),

where W =
∑n

k=3 fk
∂
∂xk +gk ∂

∂yk is in R2n−4 and where δ2|Σ|(VZ) denotes the
second variation with respect to the vector field Z. To prove that cones with
|p−q| = 1 are strictly stable, it suffices( since those cones are already strictly
stable in R4 for any Hamiltonian variation) to show that δ2|Σ|(VW) > 0 for
any vector field W in R

2n−4. A direct computation shows that

δ2|Σ|(VW)

=
∫

[ε,R]×[0,L]
{|∂W
∂t

|2 + t−2|∂W
∂θ

|2 + b0t
−2〈W, J ∂W

∂θ
〉}tdtdθ

where we assume γ(θ) is parametrized by arclength and L is the length of
the curve.

For notational simplicity, we only prove the case where n = 3(the general
case follows from the same argument). Assume W = f3

∂
∂x3 + g3

∂
∂y3

. Let
z = x3 +

√−1y3.
By the L2 orthogonal decomposition of W , it suffices to prove the case

where W = f(t)e
√−12πkθ/L where k is an integer. Straightforward calcula-

tion shows that

δ2|Σ|(VW )

= L

∫ R

ε
t|f ′(t)|2dt+ L

2πk
L

(
2πk
L

− b0)
∫ R

ε
t−2|f(t)|2dt.

Note that( without loss of generality assume p > q)

b0 =
√
p

q
−

√
q

p
, L = 2π

√
pq.

Since p − q = 1, 2πk
L ( 2πk

L − b0) > 0 for any integer k �= 0. This implies that
for any integer k

δ2|Σ|(VW) > 0,

for W = f(t)e
√−12πkθ/L. �
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7. Interior Regularity Theorem.

In section 2, we showed that the weak solution to the isotropically con-
strained Plateau problem exists. In this section we will prove that this weak
solution is smooth away from a finite set.

For a map l : Ω → R2n. Define regular points to be points in Ω at which
l is a smooth immersion. We denote the set of all regular points as Reg(l).
And define the singular set Sing(l) = Ω \Reg(l).

The following proposition says that singularities converge to a singularity.

Proposition 7.1. Let l(k) : D2 → R
2n be a sequence of weakly con-

formal, weakly exact and isotropically area minimizing maps. Assume
{l(k)}∞k=1 converges strongly in W

1,2
loc (D2,R

2n) to a weakly conformal, exact
and isotropically area minimizing map l. Let t(k) ∈ Sing(l(k))∩D1. Suppose
limj→∞ t(k) = t0. Then t0 ∈ Sing(l).

Proof. Without loss of generality, assume t0 = 0. Assume 0 is a regular point
of l. Let εj be a sequence going to 0. Define the corresponding tangent
map ϕ of l at 0, as the limit of lj(τ) = δ−1

j l(εjτ). For each l(k) define

l
(k)
j (τ) = δ−1

j l(k)(εjτ). Now for a fixed j, since {l(k)}∞k=1 converges to l, we
have an αj such that

||l(αj)
j − lj||W 1,2(D1) ≤

1
j
,

and since {t(k)}∞k=1 goes to 0, we might also assume

| t
(αj)

εj
| ≤ 1

j
.

Therefore, we easily get that

lim
j→∞

l
(αj)
j = ϕ,

in W 1,2(D1,R
2n).

Since 0 is regular for l, we see that ϕ is a linear conformal map
into a isotropic plane. Therefore, we can apply our local regularity theo-
rem(Theorem 5.9) to get a constant θ such that for sufficient large j, l(αj)

j

is smooth immersion in Dθ. But note that t
(αj)

εj
is a singularity of l(αj)

j , and
t(αj)

εj
→ 0. A contradiction. �
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An immediate consequence of the above proposition is the following re-
sult.

Proposition 7.2. Let l : D1 → R2n be weakly conformal, weakly exact and
isotropically area minimizing map. Let t0 ∈ D1. If every tangent cone of l at
t0 is a smooth immersion away from the origin, then l is Hölder continuous
in D1 and is a smooth immersion in Dr(t0) \ {t0} for some r > 0.

Proof. Without loss of generality, assume t0 = 0. If l is not smooth immersion
in any deleted neighborhood of 0, then we have a sequence of points {tj}∞j=1 ⊂
Sing(l) which converges to 0. Let εj = |tj |. Let l0 be the tangent cone at
0 with respect to {εj}∞j=1 with the corresponding rescaled sequence {lj}∞j=1.
Clearly τj = tj/εj is a singularity of lj. Since |τj| = 1, we might assume(
by passing to a subsequence) that {τj}∞j=1 converges to a point τ in the unit
circle S1. By Proposition 7.1 τ should be a singularity of the limiting map
l0. But by hypothesis, every tangent map at 0 is regular away from the
origin. A contradiction. �

Now we are in the position to prove the main regularity theorem.

Theorem 7.3 (Interior Regularity Theorem). Let l : D2 → R
2n be

a weakly conformal, weakly isotropic map which minimizes area among
isotropic maps with the same boundary value. There is a finite subset S
of D1 such that l is a smooth immersion on D1 \ S.

Proof. Let Ω be the set of points in D1 such that the image of every tangent
map is a plane. Let t0 ∈ Ω. Then Lemma 6.2 says that every tangent cone
of t0 is a smooth immersion away from the origin. Therefore, by Proposi-
tion 7.2, l is a smooth immersion in a deleted neighborhood of t0.

Let B = D1 \ Ω. For a point t1 ∈ B, let l0 be a tangent cone at t1
whose image is not a plane. Let τ0 ∈ R

2 be any point away from the origin.
Lemma 6.3 then says that any tangent cone of l0 at τ0 is a smooth immersion
away from the origin. Therefore by Proposition 7.2, l0 is smooth immersion
in a deleted neighborhood of any point away from the origin. This implies
that the singular set of l0 is discrete. Then the fact that l0 is a geometric
cone implies that l0 is smooth away from the origin. Therefore, by the clas-
sification of isotropically stationary cones(see Theorem 6.6) we see that (by
Proposition 6.7) the cone C = l0(R2) is conformal equivalent to the complex
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plane R
2 via a map ξ : C → R

2. Thus ξ ◦ l0 is a weakly conformal, isotropi-
cally minimizing, proper map with only one zero. Therefore by Lemma 6.2,
we see ξ ◦ l0 is smooth immersion away from the origin. This implies that l0
itself is a smooth immersion away from origin. Thus Proposition 7.2 gives
that l is a smooth immersion in a deleted neighborhood of t0.

So combine the above two arguments, we see that Sing(l) is discrete
(hence finite) in D1. �

Now finally combine Theorem 2.9 and Theorem 7.3 we have the follow-
ing regularity result of the solution to the isotropically constrained Plateau
problem:

Theorem 7.4. Let D1 be the unit disk in R2n. Let Γ be a closed piecewise
C1 Jordan curve in R

2n such that
∫
Γ(xdy − ydx) = 0. Let

XΓ,I = {l ∈ W 1,2
I (D1,R

2n) :
l|∂D1is continous and is a monotone map onto Γ}.

Then XΓ,I is not empty and there exists an area minimizer l0 among XΓ,I .
Moreover, l0 is Hölder continuous in D1 and is smooth immersion in the
interior of D1 with possibly isolated singularities.
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