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Regular Hypersurfaces, Intrinsic Perimeter and

Implicit Function Theorem in Carnot Groups

Bruno Franchi, Raul Serapioni,

and Francesco Serra Cassano

1. Introduction.

In the last few years, a systematic attempt to develop geometric measure
theory in metric spaces has become the object of many studies. Such a
program, already suggested in Federer’s book [17], has been explicitly for-
mulated and carried on by several authors. We only mention some of them:
De Giorgi [14], [15], [16], Gromov [28], [29], Preiss and Tisěr [44], Kirchheim
[33], David & Semmes [11], Cheeger [9] and Ambrosio and Kirchheim [3],
[4].

In this paper we study, inside a special class of metric spaces i.e. the
Carnot groups, a classical problem in Geometric Measure Theory that is the
problem of defining regular hypersurfaces and different reasonable surface
measures on them, and of understanding their relationships (here hypersur-
face means simply codimension 1 surface).

First of all a few words on the ambient space: Carnot groups, each one
endowed with its Carnot-Carathéodory distance dc (hereafter abbreviated
as cc-distance), are particularly interesting metric spaces not only because
they appear in many different mathematical theories (e.g. Several Complex
Variables, Partial Differential Equations, Control Theory) but also because
they provide examples of spaces that are non Euclidean at any scale yet have
a rich geometric structure as families of natural translations and dilations.

We recall briefly the definition: a Carnot group is a connected, simply
connected, nilpotent Lie group G ≡ (Rn, ·) with graded Lie algebra g that is
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Lie generated by its first layer V1, the so called horizontal layer,

g = V1 ⊕ ...⊕ Vk, [V1, Vi] = Vi+1, Vk �= {0}, Vi = {0} if i > k. (1)

Assume that X1, . . . , Xm is a family of left invariant vector fields that is
also an orthonormal basis of V1 ≡ R

m at the origin, that is X1(0) =
∂x1, . . . , Xm(0) = ∂xm . The Lie algebra of the group G can be canonically
endowed with a family of dilations, so that G is also a homogeneous group
with homogeneous dimension Q =

∑k
i=1 i dimVi and k is called step of the

group (see [19]).
We say that an absolutely continuous curve γ : [0, T ] → G is a sub-unit

curve with respect to X1, . . . , Xm if there exist real measurable functions
c1(s), . . . , cm(s), s ∈ [0, T ] such that

∑
j c

2
j � 1 and

γ̇(s) =
m∑
j=1

cj(s)Xj(γ(s)), for a.e. s ∈ [0, T ].

If p, q ∈ G, their cc-distance dc(p, q) is

dc(p, q) = inf {T >0 : γ : [0, T ] → G is subunit, γ(0) = p, γ(T ) = q} . (2)

The fact, that under assumption (1), dc(p, q) is finite for any p, q is the
content of Chow theorem (see e.g. [6] or [28]). We recall that the topology
induced on Rn by dc is the Euclidean topology, but from a metric point of
view G and Euclidean R

n can be dramatically different: indeed there are no
(even local) bilipschitz maps from a general non commutative group G to
Euclidean spaces. In particular dc is not locally equivalent to a Riemannian
distance. This fact, proved by Semmes (see [45]), relies on a Rademacher’s
type theorem due to Pansu ([42] see also Vodop’yanov [47]) and on algebraic
and metric properties related to the non-commutativity of G. Moreover
observe that the intrinsic Hausdorff dimension of a Carnot group G (i.e.
with respect to the cc-distance dc) agrees with its homogeneous dimension
Q. Notice that Q is always strictly larger than n, the topological dimension
of G (see [40]).

Coming now to the problem of surfaces and their measures, observe that
the notion of regular surface in a group is not a completely obvious one and
that its full comprehension is certainly a starting point for a geometrical
understanding of the group. A rich and stimulating discussion on this topic
can be found in Section 2 of [28].

There is a classical definition of ‘good’ surface in a metric space that
goes back at least to Federer (see [17] 3.2.14). According to it, a ‘good’
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surface in a metric space is the image of an open subset of an Euclidean
space via a Lipschitz map. Such a notion has been successfully used recently
by Ambrosio and Kirchheim (see [3], [4]) to develop a theory of currents in
metric spaces. Unfortunately it does not fit the geometry of Carnot groups:
indeed, as proved by the same authors in [3], in the Heisenberg group Hn ≡
R

2n+1, for example, any Lipschitz image of an open subset of R
2n would be

purely unrectifiable. This fact simply means that open subsets of Rd are not
appropriate as parameter spaces of surfaces inside a group G; it is necessary
to use open subsets of metric spaces more strictly related to G (about this,
see also the definition of rectifiable sets in Carnot groups given in [43]).

On the other hand there is a way of circumventing this difficulty when
dealing with codimension 1 surfaces. In any Euclidean space Rd, a C1 hy-
persurface can be equivalently viewed (locally) as the zero set of a function
f : R

d → R with non-vanishing gradient and in Carnot groups it is natural
to follow the same approach.

If U is an open subset of G and f : U → R we say that f belongs to
C1

G
(U) when f and Xf := (X1f, ..., Xmf) are continuous functions in U. We

say that S ⊂ Rn is a G-regular hypersurface if for any p ∈ S there is an open
U ! p and f ∈ C1

G
(U) such that

S ∩ U = {q ∈ U : f(q) = 0 and Xf(q) �= 0}. (3)

In [28], Gromov proved that a topological (n− 1)-dimensional surface in G

has intrinsic Hausdorff dimension larger than Q − 1. Here we prove that
regular hypersurfaces have precisely intrinsic Hausdorff dimension Q − 1
and topological dimension n − 1 (but they might have Euclidean Hausdorff
dimension larger than n − 1).

We recall also that in [22] when studying regular surfaces and surface
measures in the special case of the Heisenberg groups H

n, we defined S to
be an H-regular surfaces if (3) holds. This definition came out to be a good
one, since we were able to prove there an implicit function theorem, yielding
a local continuous parametrization of S, an integral representation of the
intrinsic Hausdorff measure, and an area type formula. These results made
us able to extend, to the setting of H

n, De Giorgi’s theory on the rectifiability
of the boundary of finite perimeter sets as well as De Giorgi’s generalized
Gauss-Green formula.

In this paper we prove in a general Carnot group G a corresponding im-
plicit function theorem. It might be surprising that the statement reads as
in Hn, because it is known that, usually, passing from Heisenberg groups to
general Carnot groups could make things quite different because a Carnot
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group can be strongly different from another one, once more due to the pos-
sible different stratifications of their Lie algebras that make their geometries
not (even locally) comparable.

By the way, as for De Giorgi’s rectifiability theory in general Carnot
groups, the problem is far from be fully settled, even if a positive answer is
given in [23] for a large class of Carnot groups containing all step 2 groups.

Our implicit function theorem states (see Theorem 2.1) that, locally,
S ∩ U is the graph in the directions of the integral lines of an appropriate
vector field Xi, where Xif �= 0, of a continuous function φ. A more precise
statement is as follows:

Assume, without loss of generality, that in (3) we have 0 ∈ S, X1f(0) �= 0
and that X1(0) = ∂x1 (see also (18)), then there are Ũ, Iδ and φ, with
0 ∈ Ũ ⊂ U, Iδ = {ξ ∈ Rn−1 : |ξi| ≤ δ} and φ : Iδ → R such that

S ∩ Ũ = {p ∈ Ũ : p = exp (φ(ξ)X1) (0, ξ) := Φ(ξ), ξ ∈ Iδ}. (4)

In general φ is not as regular as one might wish (see Example 3 and Theorem
6.5, vi in[22]), nevertheless through φ we can write explicitly the surface
measure of S in local coordinates

|∂E|G(Ũ) =
∫
Iδ

√∑m
i=1 |Xif(Φ)|2
X1f(Φ)

dLn−1 (5)

The perimeter measure |∂E|G comes from considering S as the topological
boundary of the set E = {p ∈ G : p = exp(tX1)(ξ), t < φ(ξ), ξ ∈ Iδ}.
Then S ∩ Ũ = ∂E ∩ Ũ and the perimeter measure |∂E|G is defined as the
total variation of the characteristic function of E. The measure |∂E|G is
supported on S. The subscript G is somehow incorrect because the perimeter
as well as the cc-distance dc depend on the choice of the orthonormal family
X = X1, . . . , Xm: changing the base in the horizontal fiber V1 actually
changes the perimeter, but the two remain comparable. Observe that this is
the same as in a Riemannian manifold: changing the metric tensor changes
the perimeter and the new one is comparable with the old one. Later on
we shall fix the family X and this amounts to the choice of a privileged
coordinate system in g.

On the other hand also different surface measures can be considered, all of
them depending on the cc-distance. We want to compare the following ones:
the (Q−1)-Hausdorff measure HQ−1

G
,the (Q−1)-spherical Hausdorff measure

SQ−1
G

and the Minkowski content M. We recall briefly the definitions.

HQ−1
G

(S) = lim
δ→0+

HQ−1
G,δ (S); SQ−1

G
(S) = lim

δ→0+
SQ−1

G,δ (S)
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where respectively

HQ−1
G,δ (S) = inf

{∑
i

(
diamCi

2

)Q−1

: S ⊂
⋃
i

Ci; diamCi < δ

}
,

SQ−1
G,δ (S) = inf

{∑
i

(
diamBi

2

)Q−1

: S ⊂
⋃
i

Bi; diamBi < δ

}
where the infimum is taken with respect to closed sets Ci in the first line or
closed cc-balls Bi in the second one.

For any open U ⊂ R
n the Minkowski content M(S)(U) is

M(S)(U) = lim
δ→0+

1
2δ

Ln(Sδ ∩ U)

provided the limit exists, where Sδ = {p ∈ G : dc(p, S) < δ} and Ln is
the n-dimensional Lebesgue measure in R

n, which is, by the way, the Haar
measure of G.

In the same hypotheses of the implicit function theorem, with the nota-
tions of (3) and (5), we prove that (see Theorem 3.3) the perimeter and the
SQ−1

G
(and hence HQ−1

G
) are comparable measures, i.e. there is α > 1 and a

Borel function s : S ∩ U → R such that for all Ũ ⊂ U we have 1
α ≤ s ≤ α

a.e. on S ∩ Ũ and ∫
S∩Ũ

s dSQ−1
G

= |∂E|G(Ũ) (6)

Moreover in [41], if S is also an Euclidean C∞ surface, it is proved that

|∂E|G(Ũ) = M(S)(Ũ). (7)

In some special Carnot groups, as the Heisenberg groups, the function s in
(6) is a constant, and one gets the following stronger version of (6)

|∂E|G(Ũ) = c SQ−1
G

(S ∩ Ũ). (8)

It may be interesting to compare the notion of G-regular hypersurface
and that of Euclidean C1 hypersurface. Strictly speaking, the two classes are
different. However, it is enough to remove a “negligeable” closed set from
an Euclidean C1 hypersurface to obtain a G-regular hypersurface, whereas
G-regular hypersurfaces can be drammatically irregular from an Euclidean
point of view: they may be (n− 1)-topological submanifold with Euclidean
dimension larger than n − 1. For more precise statements, see Subsection
3.2.
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1.1. Definitions and Notations.

Consider a family X of vector fields X = (X1, ..., Xm) ∈ Lip (Rn; R
n)m. As

usual we identify vector fields and differential operators. If

Xj(x) =
n∑
i=1

cji (x)∂i, j = 1, ..., m,

define the m× n matrix

C(x) = [cji(x)] i=1,...,n
j=1,...,m

. (9)

Given the family X of Lipschitz continuous vector fields it is well known
that subunit curves can be defined as we do in the Introduction for Carnot
groups and conseqently the Carnot-Carathéodory distance dc is well defined
provided that there is a subunit curve joining each couple of points. Through
the paper, whenever the Carnot-Carathéodory distance is mentioned, we
are assuming implicitely that this connectivity property holds and that the
distance dc is continuous with respect to the Euclidean topology. We shall
denote Uc(p, r) the open balls associated with dc.

X∗
j is the operator formally adjoint to Xj in L2(Rn), that is the operator

which for all φ, ψ ∈ C∞
0 (Rn) satisfies∫

Rn

φ(x)Xjψ(x) dx =
∫

Rn

ψ(x)X∗
jφ(x) dx.

Moreover, if f ∈ L1
loc is a scalar function and φ ∈ (L1

loc)
m is a m-vector

valued function, we define the X-gradient and X-divergence as the following
distributions:

Xf := (X1f, ..., Xmf), divX (φ) := −
m∑
j=1

X∗
j φj.

Let us remind now the notion of functions of bounded X-variation and recall
some of their properties (see [8], [20] and [25]). Let Ω ⊂ Rn be an open set
and let

F (Ω; R
m) := {φ ∈ C1

0 (Ω; R
m) : |φ(x)| ≤ 1 ∀x ∈ Ω}. (10)
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The space BVX(Ω) is the set of functions f ∈ L1(Ω) such that

||Xf ||(Ω) := sup
φ∈F (Ω;Rm)

∫
Ω

f(x)divX (φ)(x) dx <∞. (11)

The space BVX,loc(Ω) is the set of functions belonging to BVX(U) for each
open set U ⊂⊂ Ω. From Riesz representation theorem it follows that if
f ∈ BVX,loc(Ω) then the total variation ||Xf || is a Radon measures on Ω (see
[17], 2.2.5).

Theorem 1.1. (Structure of BVX functions) Let BVX,loc(Ω), then there
exists a ||Xf ||-measurable function σf : Ω → R

m such that |σf(x)|Rm = 1,
for ||Xf ||-almost every x, and∫

Ω
f(x)divX φ(x) dx =

∫
Ω
〈φ(x), σf(x)〉Rmd||Xf ||,

for all φ ∈ F (Ω; R
m).

In perfect analogy with the Euclidean setting, the total variation ||Xf || is
lower semicontinuous with respect to L1 convergence, (see [8], [20] and [25]),
that is we have

Proposition 1.2. (Lower semicontinuity) Let f, fk ∈ L1(Ω), k ∈ N. If
fk → f in L1(Ω), then

lim inf
k→∞

||Xfk||(Ω) ≥ ||Xf ||(Ω).

Definition 1.3. (X-Caccioppoli sets) A measurable set E ⊂ Rn is a
set with locally finite X-perimeter in Ω (or is a X-Caccioppoli set) if the
indicatrix function 1E ∈ BVX,loc(Ω). In this case the total variation measure
‖X1E‖∞ is called perimeter measure of E and is indicated as |∂E|X; hence
we have

|∂E|X(U) := ||X1E||(U) <∞ (12)

for every open set U ⊂⊂ Ω. Moreover, the vector function σ1E
appearing in

Theorem 1.1, is called X-generalized inner normal of E and we set

νE(x) := −σχE
(x). (13)

It is important to observe that when a Caccioppoli set F has a topological
boundary ∂F that is an Euclidean C1 submanifold of Rn, then the perimeter
measure can be represented by integration with respect to the Euclidean n−1
Hausdorff measure. Precisely we have (see [8])
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Proposition 1.4. If F is a X-Caccioppoli set with C1 boundary, then the
X-perimeter has the following representation

|∂F |X(Ω) =
∫
∂F∩Ω

|C(x)nF (x)|dHn−1, (14)

here nF (x) is the Euclidean unit outward normal to F , C is the coefficient
matrix of the vector fields (see (9)), and Hn−1 is the Euclidean (n − 1)-
dimensional Hausdorff measure.

It is also important to notice that the domain of applicability of formula
(14) is restricted to Euclidean regular hypersurfaces. On the other hand,
even in simple Carnot groups (see the definition below) the boundary of
finite perimeter sets is, in general, a highly irregular set from an Euclidean
point of view. Indeed, not only the Euclidean normal can fail to exist almost
everywere, but even the Euclidean metric dimension of the boundary could
exceed n−1, so making the right hand side of (14) divergent for all Ω ([34]).
The perimeter representation proved in (vi) of Theorem 2.1 can be viewed as
a generalization of (14) to the boundary of finite perimeter sets (see Remark
3.10).

Finally, we recall the definition of Carnot group and some of its structures
(see [18], [31], [41], [32] and [42]). Let G = (Rn, ·) be a Lie group whose Lie
algebra g admits a stratification, i.e. there exist linear subspaces V1, ..., Vk
such that

g = V1 ⊕ ...⊕ Vk, [V1, Vi] = Vi+1, Vk �= {0}, Vi = {0} if i > k, (15)

where [V1, Vi] is the subspace of g generated by the elements [X, Y ] with
X ∈ V1 and Y ∈ Vi.

Via the exponential map, it is possible to induce on G, in a canonical
way, a family of automorphisms of the group, called dilations, δλ : R

n → R
n

(λ > 0) such that

δλx ≡ δλ(x1, ..., xn) = (λα1x1, ..., λ
αnxn), (16)

where 1 = α1 = ... = αm < αm+1 ≤ ... ≤ αn are integers and m = dim(V1)
(see [19] Chapter 1).

The n-dimensional Lebesgue measure in R
n, denoted by Ln, is the Haar

measure of the group G. This means that if E ⊂ Rn is measurable, then
Ln(x · E) = Ln(E) for all x ∈ G. Moreover, if λ > 0 then Ln(δλE) =
λQLn(E).
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The group law can be written in the form

x · y = x + y + Q(x, y), x, y ∈ R
n (17)

where Q : R
n×R

n → R
n has polynomial components and Q1 = ... = Qm = 0

(see [46], Chapter 12, Section 5). Note that the inverse x−1 of an element
x ∈ G has the form x−1 = −x = (−x1, . . . ,−xn).

Choose now a family X = (X1, . . . , Xm) of left invariant vector fields
that is also an orthonormal basis of V1 ≡ Rm at the origin, in particular we
choose X so that X1(0) = ∂x1, . . . , Xm(0) = ∂xm. It happens that also these
vector fields Xj have polynomial coefficients; more precisely they have the
form

Xj(x) = ∂j +
n∑

i=m+1

aji (x)∂i, Xj(0) = ∂j , j = 1, ..., m; (18)

moreover each polynomial aji is homogeneous with respect to the dilations
of the group, that is aji (δλ(x)) = λαi−αja

j
i (x) (see [19], Proposition 1.26).

From this homogeneity it follows that if j belongs to the l-layer, that is if
hl−1 :=

∑l−1
i=1 dimVi < j ≤ hl :=

∑l
i=1 dimVi, then

aji (x) = aji (x1, . . . , xhl−1
). (19)

We refer to {X1, . . . , Xm} as canonical generating vector fields of the group.
The subbundle HG of the tangent bundle TG with fibers

HGx = span {X1(x), . . . , Xm(x)}, x ∈ G

is called horizontal bundle. We endow each fiber HGx with a scalar product
〈·, ·〉x and a norm | · |x that make the moving frame {X1(x), . . . , Xm(x)} to
be orthonormal. We shall drop the index x in the scalar product or in the
norm, writing 〈ψ, φ〉 for 〈ψ(x), φ(x)〉x, if there is no ambiguity.

We shall identify each section of HG with its canonical coordinates with
respect to this moving frame. This way, a section φ is identified with a
function φ = (φ1, . . . , φm) : U ⊆ Rn → Rm. The spaces of smooth sections
of the horizontal bundle are denoted respectively by Ck(U , HG), Ck

0(U , HG),
C∞(U , HG) or C∞

0 (U , HG).
A metric dc on G is defined, via Carnot-Carathéodory construction from

the vector fields X1, . . . , Xm. Notice that the set of subunit curves joining
any two points in G is never empty, by Chow’s theorem, because the rank
of the Lie algebra generated by X1, . . . , Xm is n; hence dc is a distance on
G inducing on R

n the Euclidean topology. Notice also that, being defined
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through left invariant vector fields, dc enjoys the further property of being
well behaved with respect to left translations and dilations. We mean that

dc(z · x, z · y) = dc(x, y) and dc(δλx, δλy) = λdc(x, y) (20)

for x, y, z ∈ G and λ > 0.
The integer Q =

∑n
j=1 αj =

∑k
i=1 i dimVi is called the homogeneous

dimension of the group; Q turns out to be the Hausdorff dimension of Rn

with respect the cc-distance dc (see [40]).
Inside a group G, we depart slightly from our previous notations. Once

a canonical generating family of vector fields X for G is fixed, we write
∇G for X , divG for divX , |∂E|G for |∂E|X, and so on. In particular, we
say that a continuous function f belongs to C1

G
(U) if ∇Gf is a continuous

vector–valued function in U .
As observed for the distance, also the perimeter measure |∂E|G enjoys the

further properties of being invariant under group translations and (Q− 1)-
homogeneous with respect to group dilations, that is, for all open O ⊂ R

n,
x ∈ G and λ > 0, we have

|∂E|G(O) = |∂(x · E)|G(x · O) and |∂E|G(O) = λ1−Q|∂(δλE)|G(δλO).
(21)

A remarkable property of the G-perimeter is provided by the following Q-
dimensional isoperimetric inequality ([25]).

Proposition 1.5. (Isoperimetric inequality) There is a positive con-
stant cI > 0 such that for any G-Caccioppoli set E, for all x ∈ G and r > 0,

min{Ln(E ∩ Uc(x, r)),Ln(Ec ∩ Uc(x, r))}
Q−1

Q ≤ cI |∂E|G(Uc(x, r)) (22)

and
min{Ln(E),Ln(Ec)}Q−1

Q ≤ cI|∂E|G(Rn). (23)

We define now G-regular hypersurfaces in a Carnot group G, mimicking
Definition 6.1 in [22], as non critical level sets of functions in C1

G
(R\).

Definition 1.6. (G-regular hypersurfaces) Let G be a Carnot group.
We shall say that S ⊂ G is a G-regular hypersurface if for every x ∈ S there
exist a neighborhood U of x and a function f ∈ C1

G
(U) such that

S ∩ U = {y ∈ U : f(y) = 0}; (i)
∇Gf(y) �= 0 for y ∈ U . (ii)
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G-regular surfaces have a unique tangent plane at each point. This fol-
lows from a Taylor formula for functions in C1

G
(Rn) that is basically proved

in [42].

Proposition 1.7. If f ∈ C1
G
(Uc(p, r)), then

f(x) = f(p) +
m∑
j=1

(Xjf)(p)(xj − pj) + o(dc(x, p)), as x→ p. (24)

If S = {x : f(x) = 0} ⊂ G is a G-regular hypersurface, the tangent group

T g
G
S(x) to S at x is

T g
G
S(x) := {v = (v1, . . . , vn) ∈ G :

m∑
j=1

Xjf(x)vj = 0}.

By (17), T g
G
S(x) is a subgroup of G, that is proper, by (ii) of Definition 1.6.

We can define the tangent plane to S at x as

TGS(x) := x · T g
G
S(x).

We stress that this is a good definition. Indeed the tangent plane does
not depend on the particular function f defining the surface S. This is a
consequence of points (i) and (iii) of implicit function theorem below that
yields

T
g
G
S(x) = {v ∈ G : 〈νE(x), πxv〉x = 0}

where νE is the generalized inward unit normal defined in (13) and πx(v) =∑m
j=1 vjXj(x). Notice that the map v �→ πx(v), for x ∈ G fixed,

πx(v) =
m∑
j=1

vjXj(x). (25)

is a smooth section of HG.
Notice also that, once more from (iii) of Theorem 2.1, it follows that νE

is a continuous function.
If v0 =

∑m
i=1 viXi(0) ∈ HG0 we define the halfspaces S±

G
(0, v0) as

S+
G

(0, v0) := {x ∈ G :
m∑
i=1

xivi > 0} and S−
G

(0, v0) := {x ∈ G :
m∑
i=1

xivi < 0}.
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Their common boundary is the vertical plane

Π(0, v0) := {x :
m∑
i=1

xivi = 0}.

If v =
∑m

i=1 viXi(y) ∈ HGy, S±
G

(y, v) and Π(y, v) are the translated sets

S±
G

(y, v) := y · S±
G

(0, v0) and Π(y, v) = y · Π(0, v0)

where v and v0 have the same components vi with respect to the left invariant
basis Xi. Hence

S±
G

(y, v) = {x ∈ G :
m∑
i=1

(xi − yi)vi > 0(< 0)}. (26)

Clearly, TGS(x) = Π(x, νE(x)).

2. The Implicit Function Theorem.

Our main result states that a G-regular hypersurface S = {f(y) = 0}, that is
boundary of the set E = {f(y) < 0}, can be locally parameterized through
a function Φ : R

n−1 → R
n so that the G-perimeter of E can be written

explicitly in terms of ∇Gf and Φ.

Theorem 2.1. (Implicit Function Theorem) Let Ω be an open set in
Rn identified with a Carnot group G, 0 ∈ Ω, and let f ∈ C1

G
(Ω) be such that

f(0) = 0 and X1f(0) > 0. Define

E = {x ∈ Ω : f(x) < 0}, S = {x ∈ Ω : f(x) = 0},

and, for δ > 0, h > 0

Iδ = {ξ = (ξ2, . . . , ξn) ∈ R
n−1, |ξj| � δ}, Jh = [−h, h].

If ξ = (ξ2, . . . , ξn) ∈ Rn−1 and t ∈ Jh, denote now by γ(t, ξ) the integral curve
of the vector field X1 at the time t issued from (0, ξ) = (0, ξ2, . . . , ξn) ∈ R

n,
i.e.

γ(t, ξ) = exp(tX1)(0, ξ).

Then there exist δ, h > 0 such that the map (t, ξ) → γ(t, ξ) is a diffeomor-
phism of a neighborhood of Jh × Iδ onto an open subset of R

n, and, if we
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denote by U ⊂⊂ Ω the image of Int(Jh × Iδ) through this map, we have that
E ∩ U is connected and

E has finite G-perimeter in U ; (i)
∂E ∩ U = S ∩ U ; (ii)

νE(x) = − ∇Gf(x)
|∇Gf(x)|x for all x ∈ S ∩ U , (iii)

where νE is the generalized inner unit normal defined by (13), that can be
identified with a section of HG with |ν(x)|x = 1 for |∂E|G-a.e. x ∈ U .
In particular, νE can be identified with a continuous function and |ν| ≡ 1.
Moreover, there exists a unique function

φ = φ(ξ) : Iδ → Jh

such that the following parameterization holds: if ξ ∈ Iδ, put Φ(ξ) =
γ(φ(ξ), ξ), then

S ∩ Ũ = {x ∈ Ũ : x = Φ(ξ), ξ ∈ Iδ}; (iv)
φ is continuous; (v)

the G-perimeter has an integral representation:

|∂E|G(Ũ) =
∫
Iδ

√∑m
j=1 |Xjf(Φ(ξ))|2
X1f(Φ(ξ))

dLn−1
ξ .

(vi)

Proof. The proof will be divided in several steps.
Step 1. Construction of the continuous function Φ. Clearly, the map
(t, ξ) → γ(t, ξ) is continuously differentiable, and then it is a diffeomorphism
of a neighborhood of Jh × Iδ onto an open subset of R

n since its Jacobian
determinant at (0, 0) is = 1.

Let us choose now δ, h > 0 so that X1f > 0 in Ũ , and let ρε be a
Friedrichs’ mollifier. If we put fε = f ∗ ρε (0 < ε < dist(Ũ ,Rn \ Ω)), then
fε → f as ε→ 0 uniformly on Ũ , because of the continuity of f . Analogously,
(Xjf) ∗ ρε → Xjf as ε → 0 uniformly on Ū for j = 1, . . . , m. We can use
now a regularization argument that goes back to Friedrichs ([24]) and has
been used recently for cc-metrics in [26] and [21]. Notice that we did not
purpusely use group mollifiers ([19]), for the group structure does not really
play a role in this proof (see Theorem 2.4 below). We have

Xjfε = (Xjf) ∗ ρε − ((Xjf) ∗ ρε −Xjfε)
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for j = 1, . . . , m. Let us prove now that (Xjf) ∗ ρε − Xjfε → 0 as ε → 0
uniformly on Ũ . In fact, if x ∈ Ũ , denoting by ∂�f and ∂�ρ the partial
derivatives respectively of f and ρ with respect to their �-th argument, we
have

((Xjf) ∗ ρε)(x)−Xjfε(x)

=
∫
|x−y|<ε

n∑
�=m+1

aj�(y)∂�f(y)ρε(x− y)dy

−
∫
|x−y|<ε

n∑
�=m+1

aj�(x)
∂

∂x�

(
f(y)ρε(x− y)

)
dy

=
∫
|x−y|<ε

n∑
�=m+1

a
j
�(y)∂�f(y)ρε(x− y)dy

−
∫
|x−y|<ε

n∑
�=m+1

a
j
�(x)f(y)(∂�ρε)(x− y)dy

=
n∑

�=m+1

∫
|x−y|<ε

(
aj�(y)− aj�(x)

)
f(y)∂�ρε(x− y)dy

(since aj� does not depend on the �-th variable)

=
n∑

�=m+1

∫
|x−y|<ε

(
aj�(y)− aj�(x)

)(
f(y) − f(x)

)
∂�ρε(x− y)dy

+f(x)
n∑

�=m+1

∫
|x−y|<ε

(
a
j
�(y) − a

j
�(x)

)
∂�ρε(x− y)dy

= I1(x) + f(x)I2(x).

Again since aj�(y) does not depend on the �-th variable, we have

I2(x) = −
n∑

�=m+1

∫
|x−y|<ε

(
aj�(y)− aj�(x)

) ∂

∂y�
ρε(x− y)dy

= −
n∑

�=m+1

∫
|x−y|<ε

∂

∂y�

((
aj�(y)− aj�(x)

)
ρε(x− y)

)
dy = 0,

since the function y → (
aj�(y)−aj�(x)

)
ρε(x−y) is supported in {y : |x−y|<ε}.
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On the other hand, if we denote by ω the modulus of continuity of f ,
then

|I1(x)| � cεn+1ω(ε)
n∑

�=m+1

max |∂�ρε| → 0 for any x ∈ Ũ

as ε→ 0. This proves that

Xjfε → Xjf as ε→ 0 uniformly on Ū for j = 1, . . . , m. (27)

Notice now that for any ξ ∈ Iδ

∂

∂s
fε(γ(s, ξ)) = (X1fε)(γ(s, ξ))

converges uniformly with respect to s ∈ Jh to (X1f)(γ(s, ξ)), and hence the
map

s �→ f(γ(s, ξ))

is differentiable for all s, |s| � h and

∂

∂s
f(γ(s, ξ)) = (X1f)(γ(s, ξ))> 0 (28)

when ξ ∈ Iδ and s ∈ Jh.
Since f(0) = 0 and γ(0, 0) = 0, then f(γ(h, 0)) > 0 > f(γ(−h, 0)) and,

by continuity,
f(γ(h, ξ))> 0 > f(γ(−h, ξ))

if ξ ∈ Iδ, provided δ is small enough, so that the existence of φ such that
(iv) holds can be proved by an usual continuity argument.

Let us prove now that φ is continuous. To this end, it will be enough to
show that, if ξk ∈ Iδ for k ∈ N, and ξk → ξ, then there exists a subsequence
(ξkj )j∈N such that φ(ξkj ) → φ(ξ). In fact, by the compactness of Jh, we can
extract a subsequence φ(ξkj) converging to φ0 ∈ Jh. By the continuity of f

0 = f(γ(φ(ξkj), ξkj)) → f(γ(φ0, ξ)),

and then φ0 = φ(ξ), by (iv). This proves (v).
Step 2. U ∩ ∂E = U ∩ S. By the continuity of f , clearly ∂E ⊆ S. On
the other hand, let x ∈ S ∩ U be given; then x = γ(t, ξ) for some t ∈ Jh
and ξ ∈ Iδ. Notice that the first component of γ(t, ξ) equals t, since the
first component of X1 is 1; thus necessarily t = x1. As we proved above,
the function s → f(γ(s, ξ)) is strictly increasing and vanishes for s = x1.
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Then there exists a sequence of points γ(sk, ξ) ∈ E converging to x, so that
S ⊆ ∂E. This proves (ii).

Later on, we shall need to use the fact that Ln (∂E ∩ U) = 0. To this
end, put

S̃r = {x ∈ U , x = γ(s, ξ), ξ ∈ Iδ, s ∈ Jh, |s− φ(ξ)| < 1
r
};

we have

∂E ∩ U =
∞⋂
r=1

S̃r.

Indeed, if x ∈ ⋂∞
r=1 S̃r, then x = γ(φ(ξ), ξ), so that f(x) = 0 and hence

x ∈ S. If now, as usual, Jγ denotes the Jacobian matrix of γ, we have

|S̃r| =
∫
S̃r

dx �
∫
Iδ

dξ

∫
|s−φ(ξ)|<1/r

|detJγ(s, ξ)| ds � Cδ
1
r
,

since
|detJγ(s, ξ)| = 1 + o(1) as (s, ξ) → (0, 0).

Thus Ln (∂E ∩ U) = 0, since S̃r+1 ⊆ S̃r for all r ∈ N.
Step 3. E has finite G-perimeter in U . The proof of this step is based on
the construction of a family of functions {hε} bounded in BVG(U) converging
to 1E in L1(U). Let us consider again the approximations fε we introduced
at the beginning of the proof, and consider the functions gε, g : Jh × Iδ → R

as
gε(ξ1, ξ) := fε(γ(ξ1, ξ)) , g(ξ1, ξ) := f(γ(ξ1, ξ))

As we showed above, ∂gε

∂ξ1
(ξ1, ξ) converges uniformly to X1f(γ(ξ1, ξ)) on Jh×

Iδ. Since γ(ξ1, ξ) ∈ Ū , we can assume

(X1fε)(γ(ξ1, ξ)) =
∂gε
∂ξ1

(ξ1, ξ) � µ > 0 on Jh × Iδ for 0 < ε < ε0. (29)

Thus we can apply the classical implicit function theorem in Jh×Iδ to obtain
the existence of a smooth function φε : Iδ → Jh such that

fε(γ(φε(ξ), ξ)) ≡ gε(φε(ξ), ξ) ≡ 0, (30)

provided δ is small enough. We stress the fact that the choice of δ and
h defining Iδ and Jh can depend on µ but it is independent of ε: indeed
first we notice that gε(h, 0) ≥ hµ > 0 and gε(−h, 0) ≤ −hµ < 0 for all
ε ∈ (0, ε1). Since gε → g uniformly, choose now ε1 = ε1(h, µ) such that
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sup |gε − g| < hµ/3 for ε < ε1, and |g(h, ξ) − g(h, 0)| < hµ/3 for ξ ∈ Iδ,
provided δ < δ0 = δ0(h, µ). Then, if ξ ∈ Iδ, 0 < ε < ε1, and 0 < δ < δ0, we
have

gε(h, ξ) � gε(h, 0)− |gε(h, ξ)− gε(h, 0)|
� gε(h, 0)− |gε(h, ξ)− g(h, ξ)| − |g(h, ξ)− g(h, 0)|
− |g(h, 0)− gε(h, 0)|> 0.

Analogously gε(−h, ξ) < 0 for ξ ∈ Iδ, 0 < ε < ε1, and 0 < δ < δ0. Thus,
the function φε(ξ) is well defined for ξ ∈ Iδ. Let us prove now that φε → φ
uniformly in Iδ: by contradiction, suppose there exist σ > 0, εk → 0, (ξk)k∈N

in Iδ such that
|φεk (ξk) − φ(ξk)| � σ.

Without loss of generality we may assume that

ξk → ξ ∈ Iδ and φεk (ξk) → φ0 ∈ Jh

as k → ∞, so that |φ0 − φ(ξ)| � σ. On the other hand

0 = gεk(φεk(ξk), ξk) = fεk (γ(φεk(ξk)), ξk) → f(γ(φ0, ξ)),

since fεk → f uniformly on Ū . By the uniqueness of φ, this implies φ0 = φ(ξ),
a contradiction.

Denote by γ−1 : U → Int(Jh × Iδ) the inverse map of γ; because of the
structure of X1, we can write γ−1(x) = (x1, θ(x)), where θ : U → Int(Iδ) is
a smooth map.

If now H(s) = 1 for s > 0 and H(s) = 0 for s � 0, put

hε(x) = H(φε(θ(x)) − x1).

and
Eε = {x ∈ U : x1 < φε(θ(x))}.

We want to show that

hε = 1Eε → 1E in L1(U).

By dominated convergence theorem, we need only to prove that hε → 1E
a.e. in U . This follows because φε → φ uniformly on Iδ.

Take now x ∈ E ∩ U , x = γ(x1, ξ), ξ ∈ Iδ; by definition

f(γ(φ(ξ), ξ)) = 0 > f(x) = f(γ(x1, ξ)),
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and hence φ(ξ) > x1, since the map

s �→ f(γ(s, ξ))

is strictly increasing on [−h, h]. Since φε(ξ) → φ(ξ), then φε(ξ) > x1 if ε is
close to zero, that implies that hε(x) = 1 → 1 = 1E(x) as ε→ 0. The same
argument can be carried out if f(x) > 0, and hence a.e. since |S ∩ U| = 0.

We can prove now that E has finite G-perimeter in U ; to this end we
need only to show that the hε’s have equibounded G-variations, since the
G-variation is L1-lsc (see Proposition 1.2).

To this end, take ψ ∈ C∞
0 (U , HG), |ψ(x)|x � 1 for all x ∈ U . We have:

∫
U
hεdivG ψ dx =

∫
U∩Eε

divG ψ dx =
∫
U∩Eε

div (tCψ) dx

=
∫
U∩∂Eε

〈ψ, Cn〉Rm dHn−1 �
∫
U∩∂Eε

|Cn|Rm dHn−1.

On the other hand, a parameterization of U ∩ ∂Eε is given by

Φε = Φε(ξ) := γ(φε(ξ), ξ),

with ξ ∈ Iδ. Indeed, let us prove that Φε is injective: suppose γ(φε(ξ), ξ) =
γ(φε(ξ′), ξ′); since the first component of γ(t, ξ) is t, this implies that φε(ξ) =
φε(ξ′), and then that ξ = ξ′, by the uniqueness of the solution of the Cauchy
problem.

Thus, from standard area formula,∫
U
hεdivG ψ dx �

∫
Iδ

∣∣∣∣C(Φε)
∂Φε

∂ξ2
∧ · · · ∧ ∂Φε

∂ξn

∣∣∣∣ dξ. (31)

Notice now that the j-th component of C(Φε(ξ))
∂Φε

∂ξ2
(ξ) ∧ · · · ∧ ∂Φε

∂ξn
(ξ) is

〈Xj(Φε(ξ)),
∂Φε

∂ξ2
(ξ) ∧ · · · ∧ ∂Φε

∂ξn
〉(ξ).

To achieve our proof, the following identity will be crucial:∣∣∣∣〈Xk,
∂Φε

∂ξ2
∧ · · · ∧ ∂Φε

∂ξn
〉
∣∣∣∣ =

∣∣∣∣Xkfε
X1fε

∣∣∣∣ , (32)

for k = 1, . . . , m, where ∂Φε
∂ξj

= ∂Φε
∂ξj

(ξ), Xk = Xk(Φε(ξ)), X1fε =
X1fε(Φε(ξ)) > 0 and Xkfε = Xkfε(Φε(ξ)), ξ ∈ Iδ.
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To prove (32), let us first notice that, if we write γ = (γ1, . . . , γn), then,
because of the structure of the aji , we get

γ�(t, ξ) = ξ� +
∫ t

0
g�(s, ξ2, . . . , ξ�−1) ds,

for suitable functions g� : R� → R, � = 2, . . . , n. Hence

∂γ�
∂ξj

= 0 if j > �,
∂γ�
∂ξ�

= 1. (33)

Moreover, if we write φε = φε(ξ), Φε = (Φε,1, . . . ,Φε,n),

∂

∂ξj
Φε,�(ξ) =

∂

∂ξj
γ�(φε, ξ) =

∂γ�
∂ξj

(φε, ξ)+ γ ′�(φε, ξ)
∂φε
∂ξj

=
∂γ�
∂ξj

(φε, ξ)+ a1
�

∂φε
∂ξj

,

(34)
where a1

� = a1
� (γ(φε, ξ)). Differentiating now (30) with respect to ξ�, we get

0 ≡
n∑
�=1

∂fε
∂x�

(
∂γ�
∂ξj

+ a1
�

∂φε
∂ξj

)
, (35)

and hence
n∑
�=1

∂fε
∂x�

∂γ�
∂ξj

= −(X1fε) · ∂φε
∂ξj

, j = 2, . . . , n, (36)

i.e.
n∑
�=1

∂fε
∂x�

∇ξγ� = −(X1fε) · ∇φε. (37)

Suppose now 2 � k � m; to prove (32), we want to calculate

D :=
∣∣∣∣〈Xk,

∂Φε

∂ξ2
∧ · · · ∧ ∂Φε

∂ξn
〉
∣∣∣∣ =

∣∣∣∣det
[
Xk,

∂Φε

∂ξ2
, . . . ,

∂Φε

∂ξn

]∣∣∣∣
=

∣∣∣det
[
(ak1,∇ξγ1(φε, ξ)), . . . , (akn,∇ξγn(φε, ξ))

]∣∣∣ ,
where, in the first determinant, Xk,

∂Φε
∂ξ2

, . . . , ∂Φε
∂ξn

are columns, whereas
in the last determinant we must see the n-dimensional vectors
(ak1,∇ξγ1(φε, ξ)), . . . , (akn,∇ξγn(φε, ξ)) as the rows of a matrix. By (33),
γ1(φε, ξ) ≡ φε, so that ∇ξγ1(φε, ξ) = ∇ξφε, and hence, keeping in mind that
ak1 = 0 since k > 1, by (34) and chain rule, we get

D =
∣∣∣det

[
(0,∇ξφε), (ak2, (∇ξγ2) + a1

2∇ξφε), . . . , (akn, (∇ξγn) + a1
n∇ξφε)

]∣∣∣ ,
(38)
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where (∇ξγj) stands for (∇ξγj)(φε(ξ), ξ).
By standard properties of the determinant, i.e. by subtracting a1

i times
the first row from the i-th row, it follows that

D =
∣∣∣det

[
(0,∇ξφε), (ak2,∇ξγ2), . . . , (akn,∇ξγn)

]∣∣∣ .
Subtract now the first column from the k-th column; we get

D =
∣∣∣det

[
(0,∇ξφε), (ak2,∇ξγ2 − ak2e

n−1
k ), . . . , (akn,∇ξγn − akne

n−1
k )

]∣∣∣ ,
where {en−1

2 , . . . , en−1
n } is the canonical orthonormal basis of R

n−1, so that
en−1
2 = (1, 0, . . . , 0), and so on.

Multiply now the i-th row by
∂fε
∂xi

(X1fε)−1, sum up when i runs from 2

to n, and then add to the first row. By (37), denoting by ∗ a suitable real
number that will turn out to be irrelevant, we get

D =
∣∣∣∣det

[
(∗,−Xkfε

X1fε
en−1
k ), (ak2,∇ξγ2 − ak2e

n−1
k ), . . . , (akn,∇ξγn − akne

n−1
k )

]∣∣∣∣ .
Notice now that γk(t, ξ) = ξk, since 2 � k � m and X1 has zero k-component
so that ∇ξγk = en−1

k , and that akk = 1; hence (akk,∇ξγk − akke
n−1
k ) = (1, 0).

Thus, if we develop the determinant with respect to the first column, all but
the k-th cofactor vanish since they contain a zero row. Again since akk = 1
we obtain

D =
∣∣∣∣det

[
−Xkfε
X1fε

en−1
k ,∇ξγ2 − ak2e

n−1
k , . . . ,∇ξγk−1 − akk−1e

n−1
k ,

∇ξγk+1 − akk−1e
n+1
k , . . . ,∇ξγn − akne

n−1
k

]∣∣∣ .
Remember now that aki = 0 if i � m and i �= k, and that ∇ξγi = en−1

i for
2 � i � m. We have

D =
∣∣∣∣Xkfε
X1fε

∣∣∣∣ ∣∣∣ det[en−1
k , en−1

2 , . . . , en−1
k−1 , e

n−1
k+1 , . . . , e

n−1
m ,

∇ξγm+1 − akm+1e
n−1
k , . . . ]

∣∣∣
=

∣∣∣∣Xkfε
X1fε

∣∣∣∣ ∣∣∣det[en−1
2 , . . . , en−1

m ,∇ξγm+1 − akm+1e
n−1
k , . . . ]

∣∣∣ .
By (33), keeping in mind that k � m and that hence all compo-
nents of en−1

k vanish when their index is greater than m, the matrix
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[en−1
2 , . . . , en−1

m ,∇ξγm+1 − akm+1e
n−1
k , . . . ] is a lower triangular matrix, with

all diagonal terms equal to 1. Hence

D =
∣∣∣∣Xkfε
X1fε

∣∣∣∣ .
Consider now the case k = 1. Arguing as in the proof of (38), in this case
we have to evaluate

D :=
∣∣∣∣〈X1,

∂Φε

∂ξ2
∧ · · · ∧ ∂Φε

∂ξn
〉
∣∣∣∣ =

∣∣∣∣det
[
X1,

∂Φε

∂ξ2
, . . . ,

∂Φε

∂ξn

]∣∣∣∣
=

∣∣det
[
(a1

1,∇ξγ1(φε, ξ)), . . . , (a1
n,∇ξγn(φε, ξ))

]∣∣
=

∣∣det
[
(1,∇ξφε), (a1

2, (∇ξγ2) + a1
2∇ξφε), . . . , (a1

n, (∇ξγn) + a1
n∇ξφε)

]∣∣ ,
since a1

1 = 1. Again as above, think of the vectors

(1,∇ξφε), (a1
2, (∇ξγ2) + a1

2∇ξφε), . . . , (a1
n, (∇ξγn) + a1

n∇ξφε)

as of the row of a matrix, and subtract from the i-th row (i � 2) the first
row multiplied by a1

i . In such a way, the first column turns out to have all
zero entries but the first one which is 1, and we get

D = |det [∇ξγ2, . . . ,∇ξγn]| = 1,

since the above matrix is a lower triangular matrix with all entries in the
principal diagonal equal 1, by (33).

Thus (32) is proved, and hence it follows from (31) that∫
U
hεdivG ψ dx �

∫
Iδ

∣∣∣∣C(Φε)
∂Φε

∂ξ2
∧ · · · ∧ ∂Φε

∂ξn

∣∣∣∣ dξ
(39)

�
∫
Iδ

(∑
j

|Xjfε(Φε)|2
)1/2

|X1fε(Φε)|−1dξ � Const. |Iδ|,

since the Xj’s and X−1
1 are equibounded, by (27) and (29).

Thus, the functions hε have equibounded variations, and hence, as we
pointed out above, 1E ∈ BVG(U).
Step 4. The area formula for the G-perimeter of E in U. We want
now to prove the explicit formula for |∂E|G(U) given by (vi). Again as
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above, if ψ ∈ C∞
0 (U , HG), |ψ(x)|x � 1, by dominated convergence theorem,

we have: ∫
U

1E div Gψ dx = lim
ε→0

∫
U
hεdiv Gψ dx

= lim
ε→0

∫
Iδ

〈ψ(Φε(ξ)), C(Φε(ξ))
∂Φε

∂ξ2
∧ · · · ∧ ∂Φε

∂τ
〉Rmdξ (40)

=
∫
Iδ

〈ψ(Φ(ξ)),∇Gf(Φ(ξ))〉Φ(ξ)|X1f(Φ(ξ))|−1dξ,

again by dominated convergence theorem. Indeed, we showed above that
Φε(ξ) → Φ(ξ) pointwise for ξ ∈ Iδ, Xjfε → Xjf uniformly on Ũ as ε → 0,
and Φε(ξ) ∈ Ũ when ξ ∈ Iδ, since, as we pointed out above, |φε(ξ)| � h

uniformly with respect to ε ∈ (0, 1).
Taking now the supremum with respect to ψ in (40), the proof of (vi) is

complete.
Let us prove now (iii). Since 1E ∈ BVG(U), then, by [20], p. 880,

∇G1E = (X1, . . . , Xm)1E is a Radon measure. Moreover, for all ψ ∈
C0

0(U , HG), arguing as above, we get

−〈∇G1E , ψ〉Rm =
∫
I

〈ψ(Φ(ξ)),∇Gf(Φ(ξ))〉Φ(ξ)|X1f(Φ(ξ))|−1dξ.

Taking the supremum on all ψ ∈ C0
0(U , HG), |ψ(x)|x � 1, supp ψ ⊆ O ⊆ U ,

where O is an open set, we obtain

|∂E|G(O) =
∫

Φ−1(O)

|∇Gf |
X1f

◦Φ dξ. (41)

Thus, with the notations of [38], Definition 1.17, |∂E|G is the image of the
measure

dµ =
|∇Gf |
X1f

◦ Φ dξ

in Rn−1 under the map Φ, given that equality (41) still holds for any Borel set
O because both measures are Radon measures ([38], Theorem 1.18). Hence,
by [38], Theorem 1.19, for all ψ ∈ C0

0(U , HG) we have∫
U
〈ψ(x), νE(x)〉xd|∂E|G =

∫
I
〈ψ ◦Φ, νE ◦ Φ〉Φ |∇Gf |

X1f
◦ Φ dξ.

We notice that Theorem 1.19 in [38] would require 〈ψ(x), νE(x)〉x to be a
Borel function. Nevertheless, the result is still true since 〈ψ(x), νE(x)〉x is
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|∂E|G-measurable, thanks to [17], 2.3.6. Thus, keeping in mind that∫
U
〈ψ(x), νE(x)〉xd|∂E|G = −

∫
U

1E divG ψ dx,

by (40) and by the arbitrariness of the choice of ψ, we obtain

νE ◦ Φ = − ∇Gf

|∇Gf | ◦Φ

a.e. in Iδ with respect to Lebesgue measure in Rn−1, and hence

νE = − ∇Gf

|∇Gf |
|∂E|G-a.e. on S ∩ U , because of (41). Thus (iii) is proved. �

Remark 2.2. If the assumption X1f(0) > 0 is replaced by Xjf(0) > 0
for some j = 2, . . . , m, then we can always reduce ourselves to the case
previously considered provided we renumber the first m variables. Hence the
above Theorem still holds under this new assumption, provided we replace
everywhere the X1 by Xj.

It is clear from the proof of Theorem 2.1 that in fact the group structure
does not play any role in the result but for the structure of the vector fields,
even if some statement throughout the proof itself must be slightly modified
when the fiber bundle structure fails to exist.

Thus the following definition is quite natural.

Definition 2.3. Let X = {X1, . . . , Xm} be a family of Lipschitz continuous
vector fields. We say that X is a family of Carnot type if

Xj(x) = ∂j +
n∑

i=m+1

aji (x)∂i, Xj(0) = ∂j , j = 1, ..., m, (42)

with aji (x) = aji (x1, ..., xi−1), j = 1, . . . , m.

Then the previous Theorem can be stated as follows.

Theorem 2.4. Let X = {X1, . . . , Xm} be a family of Lipschitz continuous
vector fields of Carnot type in Rn, let Ω be an open subset of Rn, 0 ∈ Ω, and
let f be a continuous real-valued function in Ω such that X1f, . . . , Xmf are
continuous functions. Then the conclusions of Theorem 2.1 hold.
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3. Surface Measures on Hypersurfaces in G.

3.1. G-regular hypersurfaces.

We want to study G-regular hypersurfaces from an intrinsic point of view.
In particular we want to compare the perimeter measure, on a G-regular
hypersurface S, and the intrinsic (Q− 1)-Hausdorff measure of S. Observe
that it makes sense to speak of the perimeter measure of S given that S is
locally the boundary of a finite G-perimeter set (as proved in Theorem 2.1).

We begin with an easy proposition, more or less explicitely contained in
Theorem 2.1, showing that S is locally the homeomorphic image of a (ver-
tical) hyperplane in R

n. In particular this fact implies that the topological
dimension of S is n− 1.

Proposition 3.1. Assume that S is a G-regular hypersurface in a Carnot
group G. Then for any y ∈ S there exists an open, connected neighborhood
Uy of y such that
(i) there are σ > 0, δ > 0 and an homeomorphism F : (−σ, σ)× Int Iδ → Uy,
such that F (0, 0) = y and

F ({0} × Int Iδ) = S ∩ Uy ;

(ii) the set E1 := F ((−σ, 0)× Int Iδ) has finite perimeter in Uy and

S ∩ Uy = ∂E1 ∩ Uy.

Proof. By definition of G-regular hypersurface, if r > 0 is sufficiently small,
there are Uc(y, r) and f ∈ C1

G
(Uc(y, r)) such that

S ∩ Uc(y, r) = {x ∈ Uc(y, r) : f(x) = 0}

and Xf �= 0 in Uc(y, r). Without loss of generality we may assume X1f > 0
in Uc(y, r). We keep the notations of Theorem 2.1. For fixed σ > 0 and
δ > 0 to be chosen sufficiently small, we consider the map F = F (t, ξ) :
(−σ, σ)× IntIδ → Rn given by

F (t, ξ) = y · γ(φ(ξ)− t, ξ) := y · exp((φ(ξ)− t)X1)(0, ξ).

It is clear that F is an homeomorphism from (−σ, σ) × IntIδ → Uy :=
F ((−σ, σ)× IntIδ) ⊂ Uc(y, r). Indeed F is the composition of the home-
omorphism (t, ξ) → (φ(ξ) − t, ξ) and of the diffeomorphism (s, η) →
y · γ(s, η) := y · exp (sX1) (0, η).
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By Theorem 2.1, (iv), locally S = {γ(φ(ξ), ξ)}, so that F ({0}× Int Iδ) =
S ∩ Uy , and

Uy \ S = F ((−σ, 0)× Int Iδ) ∪ F ((0, σ)× Int Iδ) := E1 ∪ E2.

Each Ei is a connected open set. By (28), the map s �→ f(γ(s, ξ)) is strictly
increasing and vanishes at s = φ(ξ). Since φ(ξ) − t > φ(ξ) when t <
0, we conclude that f > 0 in E1 and that f < 0 in E2. Hence E1 =
{x ∈ Uy : f(x) > 0} and from (i) of Theorem 2.1 the thesis follows. �

Remark 3.2. Notice that Proposition 3.1 does not follow from an Euclidean
local invertibility theorem, because, in general, the Euclidean C1-regularity
of the local chart F fails to hold in Carnot groups. Indeed, if F were con-
tinuously differentiable in the usual sense, then also the map φ would be
continuously differentiable, since the first component of F (ξ, t) is precisely
φ(ξ) − t. But in [22], Example 2 after Theorem 6.5, in the setting of the
Heisenberg group G = H

1, the authors provided an example of a G-regular
hypersurface such that the parameterization φ is not even Euclidean Lips-
chitz continuous.

Our next Theorem is a mild regularity result; in it we observe that G-
regular hypersurfaces do not have cusps or spikes if they are studied with
respect to the intrinsic cc-distance, while they can be very irregular as Eu-
clidean submanifolds. To make precise the former statement we recall the
notion of essential boundary (or measure theoretic boundary) ∂∗F of a set
F ⊂ G

∂∗F :=
{
x ∈ G : lim sup

r→0+

min
{Ln(F ∩ Uc(x, r))

Ln(Uc(x, r)) ,
Ln(F c ∩ Uc(x, r))

Ln(Uc(x, r))
}
> 0

}
,

(43)
where we remind that Uc(x, r) denotes the open cc-ball. Notice that the
definition above makes sense in any metric measure space and that the es-
sential boundary does not change if, in Definition (43), the distance dc is
substituted by an equivalent distance d.

Theorem 3.3. Let Ω ⊂ G be a fixed open set, and let E be such that ∂E ∩
Ω = S ∩ Ω, where S is a G-regular hypersurface. Then

∂E ∩ Ω = ∂∗E ∩ Ω. (44)

Proof. Clearly, to prove (44), we need only to show that ∂E ∩Ω ⊆ ∂∗E ∩Ω.
Fix y ∈ ∂E ∩Ω. By definition of G-regular surface and from (i) of Theorem



934 B. Franchi, R. Serapioni, and F. Serra Cassano

2.1, there exists an open ball Uc(r) := Uc(y, r) and f ∈ C1
G
(Uc(r)) such that

∂E ∩ Uc(r) = {x ∈ Uc(r) : f(x) = 0};
|∇Gf |Rm > 0 in Uc(r);

E ∩ Uc(r) = {x ∈ Uc(r) : f(x) < 0}.

If r > 0 we define the dilated sets

Ey,r := y · δr(y−1 · E) = {x ∈ G : y · δ1/r(y−1 · x) ∈ E},
then we have

1Ey,r → 1S−
G

(y,νE(y)) Ln-a.e. in G as r → 0+. (45)

Indeed, for all p ∈ S−
G

(y, νE(y)), (iii) of Theorem 2.1 implies that

m∑
i=1

Xif(y)(pi − yi) < 0.

and, recalling that f(y) = 0, by Proposition 1.7, we have f(y · δs(y−1 · p)) =
s
∑m

i=1 Xif(y)(pi− yi) + o(s) < 0 for s→ 0 , hence y · δs(y−1 · p) ∈ E and in
turn, p ∈ Ey,s, for s small.
Reversing the inequalities, if p ∈ S+

G
(y, νE(y)) we get p ∈ Ec

y,s for s small.
Since Ln(G \ (S+

G
(y, v)∪ S−

G
(y, v))) = 0 we have proved (45).

Now put S±(y) := S±
G

(y, νE(y)), then, from (45) it follows that

lim inf
r→0+

min
{Ln(E ∩ Uc(r))

Ln(Uc(r)) ,
Ln(Ec ∩ Uc(r))

Ln(Uc(r))
}

≥ min
{Ln(Uc(1) ∩ S+(y))

Ln(Uc(1))
,
Ln(Uc(1) ∩ S−(y))

Ln(Uc(1))

}
.

(46)

Indeed, from (45) it follows that 1Er → 1S−(y) in L1
loc(G), whence

Ln(Ey,r ∩ Uc(1)) → Ln(S−(y) ∩ Uc(1)) as r → 0+. (47)

On the other hand

Ln(Ey,r ∩ Uc(1)) =
Ln(E ∩ Uc(r))

rQ
= Ln(Uc(1))

Ln(E ∩ Uc(r))
Ln(Uc(r)) ,

and hence from (47) we get that

lim
r→0+

Ln(E ∩ Uc(r))
Ln(Uc(r)) =

Ln(S−(y) ∩ Uc(1))
Ln(Uc(1))

.
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Analogously, since ∂E ∩ Ω = ∂Ec ∩ Ω and νEc(0) = −νE(0), we get also

lim
r→0+

Ln(Ec ∩ Uc(r))
Ln(Uc(r)) =

Ln(S+(y) ∩ Uc(1))
Ln(Uc(1))

.

Thus (46) holds.
Now we notice explicitly that

min
{Ln(Uc(1) ∩ S+(y))

Ln(Uc(1))
,
Ln(Uc(1) ∩ S−(y))

Ln(Uc(1))

}
> 0. (48)

Indeed, both Uc(0, 1) ∩ IntS+
G

(y, νE(y)) and Uc(0, 1) ∩ IntS−
G

(y, νE(y)) are
open and not empty, since the ball Uc(0, 1) is symmetric with respect to the
group inversion. This concludes the proof of (44). �

Our next results are about the relations between perimeter and intrinsic
Hausdorff measures. In the setting of the Heisenberg group, in [10] it is
proved that the perimeter of an Euclidean C1,1-hypersurface is equivalent
to its (Q− 1)-dimensional intrinsic Hausdorff measure, whereas in [22] it is
proved that on the boundary of sets of finite intrinsic perimeter the (Q−1)-
dimensional intrinsic spherical Hausdorff measure coincides – after a suitable
normalization – with the perimeter measure. In the setting of general Carnot
groups the problem is essentially open.

Our results here are more clearly stated in a situation slightly more
general than the one considered up to now. From now on d will be a metric
on G, translation invariant, homogeneous and comparable with dc. That is
we assume that, for all x, y, z ∈ G and λ > 0

d(x · y, x · z) = d(y, z) and d(δλy, δλz) = λd(y, z), (49)

and that there is cd > 1 such that

1
cd
d(y, z) ≤ dc(y, z) ≤ cdd(y, z), for all y, z ∈ G. (50)

We indicate as Ud(x, r), SQ−1
d and HQ−1

d respectively the open balls and
the Hausdorff measures with respect to the new distance d, keeeping the
notation Uc(x, r), SQ−1

G
and HQ−1

G
when working with the cc-distance.

We need the following differentiation Theorem whose proof can be found
in Federer’s book (see [17], Theorems 2.10.17 and 2.10.18). Notice that
Federer states this result in a much more general context, i.e. for regular
measures in metric spaces.



936 B. Franchi, R. Serapioni, and F. Serra Cassano

Theorem 3.4. (Federer’s differentiation Theorem) If

lim
r→0

|∂E|G(Ud(x, r))
2−Q+1(diamUd(x, r))Q−1

= s(x), for |∂E|G-a.e. x ∈ G, (51)

then
|∂E|G = s(x)SQ−1

d ∂E (52)

Theorem 3.5. If d is a distance on G satisfying (49) and (50), and if sd :
HG0 \ {0} → R, is the 0-homogeneous function defined as

sd(v) := Ln−1 (Ud(0, 1)∩ Π(0, v)) ,

then

|∂E|G Ω = sd ◦ νE SQ−1
G

(S ∩ Ω)

= Ln−1
(
Ud(0, 1)∩ T g

G
S(x)

) SQ−1
G

(S ∩ Ω).
(53)

Moreover, there is a constant αd > 1, depending only on the distance d, such
that

0 <
1
αd

� sd(v) � αd <∞.

Remark 3.6. If the distance d under consideration is invariant with respect
to rotations of HG0 # R

m, then the function sd is constant and, with an
appropriate choice of the normalization constant in the definition of the
Hausdorff measure, (53) takes the particularly neat form

|∂E|G = SQ−1
d S. (54)

We do not know how large is the class of groups whose cc-distance enjoys
this property. It certainly comprises the Heisenberg groups. For the groups
in this class we have

|∂E|G = SQ−1
c S. (55)

Nevertheless, even if dc were not rotationally invariant, it always exists an-
other true metric invariant, homogeneous, comparable with dc that is also
invariant by rotations of HG0 (for an example see the Appendix in [23]). If
one computes the Hausdorff measure with respect to it, then (54) holds.

Proof of Theorem 3.5. Observe that under our hypotheses on the distance d
it follows that diamUd(x, r) = 2r, then, from Theorem 3.4, to prove (53) it
is enough to show that

lim
r→0

r1−Q|∂E|G(Uc(x, r)) = Ln−1
(
Uc(0, 1)∩ T g

G
S(x)

)
. (56)
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We are going to prove (56) by a direct computation exploiting formula (vi)
of Theorem 2.1. Notice also that, without loss of generality, we can assume
that x = 0.

From the homogeneity of the perimeter (see (21))

r1−Q|∂E|G(Uc(0, r)) = |∂E0,r|G(Uc(0, 1)). (57)

For all r > 0 that are so small that ∂E ∩ Uc(0, r) = {x : f(x) = 0}, with
f ∈ C1

G
(Uc(0, r)) and X1f(y) > c1 > 0 in Uc(0, r), we have

∂E0,r ∩ Uc(0, 1) = {x ∈ Uc(0, 1) :
1
r
f ◦ δr(x) = 0}.

Notice that f1/r := 1
r f ◦ δr ∈ C1

G
(Uc(0, 1)) and that X1f1/r(y) > c1 > 0 in

Uc(0, 1).
Given that, as shown in Theorem 2.1, the equation f(x) = 0 defines

implicitely a function φ : Iδ → R, it follows that the equation f1/r(x) = 0
defines implicitely the function φ1/r : Iδ/r → R acting as φ1/r(ξ) = 1

rφ◦δr(ξ)
and a map Φ1/r : Iδ/r → G acting as

Φ1/r(ξ) = exp
(
φ1/rX1

)
(0, ξ).

Hence by formula (vi) we get

|∂E0,r|G(Uc(0, 1)) =
∫

Φ−1
1/r

(Uc(0,1))

√∑m
j=1(Xjf1/r)2

X1f1/r
◦ Φ1/r dLn−1. (58)

In order to pass to the limit as r → 0 in (58), notice that, from Taylor’s
formula (24),

f1/r(x) → f∞(x) := 〈Xf(0), π0x〉0
Xjf1/r(x) → Xjf∞(x) = Xjf(0) for j = 1, . . . , m,

(59)

as r → 0, uniformly on Ud(0, 1). Hence, if we put ν = (ν1, . . . , νm) :=
νE(0) = Xf(0)

|Xf(0)|0 , then from the assumption X1f(y) > c1 > 0 it follows
ν1 > 0 and we get √∑m

j=1(Xjf1/r)2

X1f1/r
→ 1

ν1
(60)
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as r → 0, uniformly on Ud(0, 1). Finally, for all ξ ∈ Π(0, e1) ≡ R
n−1, since

f∞(Φ∞(0, ξ)) = 0, we get

lim
r→0

φ1/r(ξ) = φ∞(ξ) = −
∑m

j=2 νjξj

ν1
lim
r→0

Φ1/r(ξ) = Φ∞(ξ) = exp (φ∞(ξ)X1) (0, ξ).
(61)

Notice that Φ∞ is a map from Π(0, e1) to T g
G
S(0) ⊂ G and the norm

of its Jacobian is precisely 1
ν1

. Indeed, writing explicitely Φ∞(ξ) =
(Φ∞,1(ξ), . . . ,Φ∞,n(ξ)), we have

Φ∞(ξ) := exp (φ∞(ξ)X1) (0, ξ)

=

(
−
∑m

j=2 νjξj

ν1
, ξ2, . . . , ξm,Φ∞,m+1(ξ), . . . ,Φ∞,n(ξ)

)
(62)

and from(19) we know that the last n−m components Φ∞,j do not depend
on all the variables ξj, but, precisely, if hl−1 < j ≤ hl, then Φ∞,j(ξ) =
Φ∞,j(ξ2, . . . , ξhl−1

). Hence the Jacobian matrix JΦ∞ is the n×(n−1) matrix

JΦ∞(ξ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ν2
ν1

−ν3
ν1

. . . −νm
ν1

0 . . . 0
1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 0 . . . 1 0 . . . 0

∂Φ∞,m+1

∂ξ2

∂Φ∞,m+1

∂ξ3
. . .

∂Φ∞,m+1

∂ξm
1 . . . 0

...
...

. . .
...

...
. . .

...
∂Φ∞,n

∂ξ2

∂Φ∞,n

∂ξ3
. . .

∂Φ∞,n

∂ξm

∂Φ∞,n

∂ξm+1
. . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (63)

Then it is immediate to compute

‖JΦ∞(ξ)‖ := ‖∂Φ∞
∂ξ2

∧ · · · ∧ ∂Φ∞
∂ξn

‖ =

√√√√1 +
m∑
i=2

(
νi
ν1

)2

=
1
ν1
.

The preceeding computations yield

lim
r→0

r1−Q|∂E|G(Ud(0, r)) =
∫

Φ−1∞ (Ud(0,1)∩T g
G
S(0))

1
ν1

dLn−1

=
∫

Ud(0,1)∩T g
G
S(0)

dLn−1

= Ln−1
(
Ud(0, 1)∩ T g

G
S(0)

)
.

(64)
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�

Corollary 3.7. If S is a G-regular hypersurface then the Hausdorff dimen-
sion of S, with respect to the cc-metric dc or any other metric d comparable
with it, is Q− 1.

3.2. Euclidean regular surfaces in G.

Even if G-regular surfaces are the natural regular surfaces inside a group G,
it may also be of some interest to study Euclidean C1 surfaces in Rn = G.

Strictly speaking, an Euclidean regular surface S may be not G-regular.
Indeed, even if S is locally the zero set of a function f ∈ C1(Rn) ⊂ C1

G
(Rn),

the transversality condition ∇Gf(x) �= 0, ∀x ∈ S may fail to hold. Points
of S where the transversality condition fails are usually called characteristic
points. More precisely the characteristic set C(S) of an Euclidean regular
surface S inside a Carnot group is

C(S) = {x ∈ S : HGx ⊆ TS(x)}

where TS(x) denotes the Euclidean tangent space to S at x ∈ S.
It follows from the non integrability of the vector fields X1, . . . , Xm (as-

sumptions (15)), that C(S) is small inside S. There are many results in this
line, under various regularity hypotheses on the surfaces and using differ-
ent surface measures (Euclidean versus intrinsic) to estimate the smallness.
Balogh (see [5]) was the first one to prove that, in the Heisenberg groups, the
intrinsic (Q− 1)-Hausdorff measure of the characteristic set of an Euclidean
C1 surface vanishes. He obtained also many other related optimal estimates.
Very recently, Balogh’s estimate has been extended to step 2 Carnot groups
(see [23]). Precisely we have

HQ−1
G

(C(S)) = 0 (65)

if S is an Euclidean C1 hypersurface in a Carnot group G of step 2. Since a
C1 hypersurface S in a Carnot group can be written as S = C(S)∪(S \ C(S))
and S \C(S) is a G-regular hypersurface, then, by combining (53) and (65)
we get

|∂E|G (Ω \ C(S)) = sSQ−1
G

(S ∩ Ω).

On the other hand, the representation formula (14) for the G-perimeter of
C1 manifolds yields

|∂E|G Ω = |CnE |Hn−1 (S ∩ Ω) = sSQ−1
G

(S ∩ Ω) = |∂E|G (Ω \ C(S)) ,
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where nE is the Euclidean outward normal vector field to S, since CnE = 0
on C(S). Thus the following corollary holds

Corollary 3.8. Let F be an open subset of G with boundary S. If S is an
Euclidean C1 hypersurface and G is step 2 group, then

|∂F |G Ω = |CnE | Hn−1 (S ∩ Ω) (66)

= s SQ−1
G

(S ∩ Ω);

here s is given by Theorem 3.3 and Hn−1 is the (n−1)-dimensional Euclidean
Hausdorff measure on G ≡ Rn.

Remark 3.9. Recently, Magnani, (see [37]), extended (65) to a general
Carnot group.

Remark 3.10. In order to make more evident the relationships among dif-
ferent integral rappresentations of the G-perimeter, we observe the following:
with the notations of Proposition 1.4 and Theorem 2.1, assume that ∂F ∩Ω
is an Euclidean C1 hypersurface with no characteristic points, formula (14)
yields

|∂F |G Ω = |CnF |Rm Hn−1 (∂F ∩ Ω). (67)

On the other hand, if Ω ∩ ∂F ⊂ Φ(Int Iδ), (vi) of Theorem 2.1 reads as

|∂F |G Ω = Φ#

( |∇Gf |
X1f

◦ ΦLn−1

)
. (68)

Notice also that

|CnF |Rm =
|C∇f |Rm

|∇f |Rn
=

|∇Gf |
|∇f |Rn

,

and that, by the Euclidean area formula and the non trivial computations
in the proof of Theorem 2.1,

Φ#

( |∇f |
X1f

◦ ΦLn−1

)
= Hn−1 (∂F ∩ Ω).

Thus, (67) and (68) are also formally equivalent, but the right hand side
of (67) becomes meaningless if the Euclidean regularity of ∂F fails, unlike
(68) that turns out to be an intrinsic generalization of (67) for G-regular
hypersurfaces.
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ferenziali, varietà ambientate in spazi metrici, funzioni a variazione
limitata, Manuscript, (1995).

[16] E.De Giorgi, Un progetto di teoria delle correnti, forme differenziali
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