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On the Instanton Complex of Holomorphic Morse

Theory

Siye Wu

Consider a holomorphic torus action on a complex manifold which
lifts to a holomorphic vector bundle. When the connected compo-
nents of the fixed-point set form a partially ordered set, we con-
struct, using sheaf-theoretical techniques, two spectral sequences
that converges to the twisted Dolbeault cohomology groups and
those with compact support, respectively. These spectral sequences
are the holomorphic counterparts of the instanton complex in stan-
dard Morse theory. The results proved imply holomorphic Morse
inequalities and fixed-point formulas on a possibly non-compact
manifold. Finally, examples and applications are given.

1. Introduction.

Given a Morse function on a compact real manifold, the Morse inequalities
bound the Betti numbers in terms of the information of critical points. How-
ever, the former can not be determined by the Morse inequalities alone unless
the Morse function is perfect. If the Morse function satisfies the transver-
sality condition [43], then there is a finite dimensional complex, called the
Thom-Smale-Witten complex or the instanton complex [48], which computes
the cohomology groups of the manifold. The instanton complex consists
of vector spaces spanned by the critical points (when they are isolated),
graded by their Morse indices. The coboundary operators come from count-
ing (with orientation) the number of gradient paths between critical points
whose Morse indices differ by one. The latter is related to the instanton
tunneling effect in supersymmetric quantum mechanics [48].

Consider a complex manifold with a holomorphic group action and a
holomorphic vector bundle over the manifold on which the group action lifts
holomorphically. We want to determine the Dolbeault cohomology groups
(twisted by the vector bundle) as representations of the group. When the
manifold is compact, the fixed-point formula of Atiyah and Bott [2] (for iso-
lated fixed points) and of Atiyah and Singer [3] computes the alternating
sum of the characters on the cohomology groups. For holomorphic Morse
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theory, this (equivariant) index theorem is the counterpart of the Hopf (or
Lefschetz) formula. When the manifold is compact and Kähler and the group
is the circle group, Morse-type inequalities were obtained by Witten [49] us-
ing a holomorphic version of supersymmetric quantum mechanics. These
(equivariant) holomorphic Morse inequalities put constraints on the sizes of
Dolbeault cohomology groups but do not completely determine them. In
[37], a heat kernel proof of these inequalities was given under the additional
assumption that the fixed points are isolated. In [50], the result was gener-
alized to cases with torus and non-Abelian group actions. Furthermore, it
was shown that the Kähler assumption was necessary for holomorphic Morse
inequalities [50], although not so for the fixed-point theorem. In [51], these
inequalities were proved analytically for compact Kähler manifolds with pos-
sibly non-isolated fixed points.

In this paper, we construct the holomorphic counterpart of the instanton
complex which computes the Dolbeault cohomology groups using the com-
binatorial data of the group action. At the same time, we investigate more
closely the condition on complex manifolds for establishing a holomorphic
Morse theory. Holomorphic Morse theory differs from ordinary Morse theory
in a number of ways. If the circle group acts on a compact Kähler mani-
fold in a Hamiltonian fashion, the moment map is a perfect Morse function
whose critical points have even Morse indices only, which can not differ by
one. Furthermore, Smale’s transversality condition fails in general and the
gradient paths are never isolated because of the circular symmetry. Conse-
quently, the techniques for holomorphic Morse theory will be quite different
from those for ordinary Morse theory.

We start with a complex manifold with a holomorphic action of a (com-
plex) torus. The action of a non-compact 1-parameter subgroup is analogous
to the gradient flow of a Morse function. Holomorphic actions of C

× were
studied extensively by Bia�lynicki-Birula [6, 7] in the algebraic case and by
Carrell and Sommese [15, 16, 17] in greater generalities. The extension of
their results to higher rank tori is straightforward. An action is meromor-
phic if, roughly speaking, all such orbits start from and end at some points
in the manifold, which must be fixed points of the torus. If so, then there is
a relation on the connected components of the fixed-point set given by the
direction of the flows. The central result of this paper is that if this rela-
tion is a partial ordering, then there are two (equivariant) spectral sequences
converging (equivariantly) to the twisted Dolbeault cohomology groups and
those with compact support, respectively. These spectral sequences will be
constructed using sheaf-theoretic techniques from a filtration of the complex
manifold determined by the group action. The spectral sequences, with the
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natural coboundary maps, are the couterparts in holomorphic Morse theory
of the instanton complex in ordinary Morse theory. The information of the
E1-terms already implies the holomorphic Morse inequalities. But unlike
ordinary Morse theory, the spectral sequences do not always degenerate at
E2. When the manifold is compact and Kähler, the partial order condition
is automatically satisfied. Thus the results of [49, 37, 50, 51] are recovered.
On the other hand, the example in [50] shows that without the partial order
condition, the holomorphic Morse inequalities can fail. Therefore the partial
order condition is fundamental to holomorphic Morse theory.

The rest of the paper is organized as follows. In section 2, we review and
establish some facts about meromorphic torus actions on a compact or a suit-
ably non-compact complex manifold. In section 3, we construct two spectral
sequences converging to Dolbeault cohomology groups and those with com-
pact support, respectively, under the partial order condition. In particular,
we obtain holomorphic Morse inequalities and fixed-point formulas for a
possibly non-compact manifold. We also study the condition under which
the spectral sequences degenerate to cochain complexes. In section 4, the
application to flag manifolds yields a geometric realization of the Bernstein-
Gelfand-Gelfand resolution and its generalizations. We also study the Dol-
beault cohomologies and geometric quantization on non-compact manifolds.

Throughout this paper, N, R, R
±, C and C

× denote the sets of non-
negative integers, real numbers, positive (negative) real numbers, complex
numbers and non-zero complex numbers, respectively.

2. Holomorphic torus actions.

We first recall from [50, 51] some notations of holomorphic torus actions but
without making the compact or Kähler assumption.

Let T be a complex torus with Lie algebra t. Let TR be the (real) maximal
compact torus subgroup of T and tR =

√−1 Lie(TR). Let � be the integral
lattice in tR, and �∗ ⊂ t∗

R
, the dual lattice. If T = C

×, the multiplicative
group of non-zero complex numbers, then TR = S1, tR = R, and � = Z. In
general, for any v ∈ � − {0}, there is an embedding jv : C

× −→ T whose
image C

×
v is a C

×-subgroup of T .

The ring of formal characters of T is Z[�∗] = {q =
∑

ξ∈�∗ qξe
ξ | qξ ∈ Z}.

The support of q ∈ Z[�∗] is supp q = {ξ ∈ �∗ | qξ �= 0}. We say that q ≥ 0 if
qξ ≥ 0 for all ξ ∈ �∗. Consider a representation R of T . If every weight ξ ∈ �∗

of R has a finite multiplicity rξ, then the character charR =
∑

ξ∈�∗ rξe
ξ ∈
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Z[�∗] is well-defined. Let suppR = supp (charR). As in [37, 50], we write

eη

1 − eξ
def .=

∞∑
k=0

eη+kξ, ξ, η ∈ �∗. (2.1)

We emphasize here that the left-hand side is a notation for the formal series
in Z[�∗] on the right-hand side. More generally, if R is a finite dimensional
representation of T , we can write

char−1det(1 −R) =
∞∑
k=0

charSk(R) = charS(R), (2.2)

where −1det(1 − R) is a notation for ⊕∞
k=0S

k(R).
Let X be a complex manifold of dimension n. Suppose T acts holomor-

phically and effectively on X . The fixed-point set XT of T in X , if non-
empty, is a complex submanifold of X . Let F be the set of connected com-
ponents of XT . Then XT =

⋃
α∈F X

T
α , where XT

α is the component labeled
by α ∈ F . Let nα = dimCX

T
α . Let Nα −→ XT

α be the (holomorphic) normal
bundle of XT

α in X . T acts on Nα preserving the base XT
α pointwise. The

weights of the isotropy representation on the normal fiber remain constant
within any connected component. Let λα,k ∈ �∗−{0} ⊂ t∗

R
(1 ≤ k ≤ n−nα)

be the isotropy weights onNα. The hyperplanes (λα,k)⊥ ⊂ tR cut tR into open
polyhedral cones called action chambers [42]. Choose an action chamber C.
Let λCα,k = ±λα,k, with the sign chosen so that λCα,k ∈ C∗. (Here C∗ is the
dual cone in t∗

R
defined by C∗ = {ξ ∈ t∗

R
| 〈ξ, C〉 > 0}.) We define νCα as the

number of weights λα,k ∈ C∗. Let NC
α be the direct sum of the sub-bundles

corresponding to the weights λα,k ∈ C∗. Then Nα = NC
α ⊕N−C

α . νCα is the
rank of the holomorphic vector bundle NC

α ; that ofN−C
α is ν−Cα = n−nα−νCα ,

which is called the polarizing index of XT
α with respect to C.

In subsection 2.1, we will consider holomorphic torus actions on compact
manifolds. This will be a straightforward generalization of the work [6, 7, 15,
16, 17] from rank 1 to higher ranks. A non-compact setting will be studied
in subsection 2.2.

2.1. Meromorphic torus actions on compact manifolds.

Throughout this subsection, X is a compact, connected complex manifold
with an effective holomorphic action of the torus T . Then F is a finite set
and each component XT

α (α ∈ F ) is compact.
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Definition 2.1. A holomorphic T -action on X is meromorphic if for any
x ∈ X and any v ∈ �− {0}, the limit πv(x) = limu−→0 jv(u)x exists.

If T = C
×, the action is meromorphic if and only if for any x ∈ X , the

limits π+(x) = limu−→0 ux and π−(x) = limu−→∞ ux exist. In this case, the
holomorphic map C

× × X −→ X can be extended to a meromorphic map
CP

1 ×X −→ X .
Suppose T acts holomorphically on X and Y and U is a (not necessarily

T -invariant) open subset of X . We say that a map f : U −→ Y is locally
T -equivariant if f(gx) = gf(x) for g ∈ T , x ∈ U whenever gx ∈ U .

Proposition 2.2. If the T -action on X is meromorphic, then

1. for any v ∈ � − ⋃α∈F,1≤k≤n−nα
(λα,k)⊥, i.e., for any v in the lattice but

not annihilated by any of the isotropy weights, the fixed-point set of C
×
v

coincides with XT ;

2. for any x ∈ X and action chamber C, the limit πv(x) for v ∈ � ∩ C
depends only on C and not on the choice of v.

Proof. 1. Let X ′ be a connected component of the fixed-point set of C
×
v .

Then X ′ ∩ XT is a closed subset of X ′. For any x ∈ X ′ ∩ XT , let XT
α be

the component of XT that contains x. Since the T -action is effective and
λα,k(v) �= 0 for any 0 ≤ k ≤ n − nα, we have dimXT

α = dimX ′. There-
fore X ′ ∩ XT is also an open subset of X ′. Finally, choose v1, . . . , vr−1 ∈ �

(r = dimC T ) such that {v, v1, . . . , vr−1} is a basis of tR. (In the non-compact
setting of subsection 2.2, we need to choose all vi ∈ �∩C for an action cham-
ber C.) Pick any x′ ∈ X ′. Since the T -action is meromorphic, the iterated
limit x = πv1πv2 · · ·πvr−1(x′) exists. It is clear that x ∈ X ′ ∩ XT . So
X ′ ∩XT �= ∅. Consequently, X ′ ∩XT = X ′ = XT

α .
2. From part 1, we have y = πv(x) ∈ XT

α for some α ∈ F . By [15, Proposi-
tion I], there is a TR-invariant neighborhood Wy of y in Nα and a locally T -
equivariant holomorphic embedding ψy : Wy −→ X . Let Xv

y = (πv)−1(XT
α ).

Then from the linear T -action on Nα, we get Xv
y ∩ψy(Wy) = ψy(NC

α ∩Wy).
Hence Xv

y = T ψy(NC
α ∩Wy); this depends only on C and not on the choice

of v. �
We denote πv(x) by πC(x) when v ∈ � ∩C.

Remark 2.3. 1. If X is a compact, connected Kähler manifold and XT �= ∅,
then the TR-action is Hamiltonian [23]. Let µ : X −→ t∗

R
be a moment map.

For v ∈ � − {0}, the 1-parameter subgroup {jv(et) | t ∈ R} generates the
gradient flows of 〈µ, v〉, along which its value strictly decreases. Therefore
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the limit πv(x) for any x ∈ X exists. Hence the T -action is meromorphic.
2. A holomorphic action on X may not be meromorphic even if X is compact
and Kähler. For example, let Z act on C − {0} by k : z 
→ 2kz (k ∈ Z,
z ∈ C − {0}) and let X = (C − {0})/Z be the quotient. Then the standard
multiplication of C

× on C − {0} induces a holomorphic action on X which
has no fixed points and hence is not meromorphic.

In order to capture the topology of X by the fixed-point information, it
is necessary to assume that the T -action is meromorphic. If so, then X has
a cell decomposition according to the connected components of XT that πC

maps to.

Definition 2.4. Suppose the T -action on X is meromorphic. Set XC
α =

(πC)−1(XT
α ). Then

X =
⋃
α∈F

XC
α (2.3)

is called the Bia�lynicki-Birula decomposition with respect to C.

Consider the case T = C
×. If the C

×-action is meromorphic, set
X±
α = (π±)−1(XT

α ). The decompositions X =
⋃
α∈F X

±
α are called the

plus- (minus-) decompositions, respectively [6, 7, 15, 16, 17].
The cells XC

α are T -invariant. If the transversality condition (of Smale
[43]) is satisfied, then the decomposition (2.3) is a stratification in the sense
that the closure of each cell is a union of cells [7, Theorem 5]. In general, this
is not true even when X is Kähler. An example is the Hirzebruch surface
(the blow-up of CP2 at one point) [7, Example 1].

Definition 2.5. For α, β ∈ F , we write α −→ β if there is x ∈ X such that
πC(x) ∈ XT

α and π−C(x) ∈ XT
β . We write α ≺ β if either α = β or there is

a chain from α to β, i.e., a finite sequence α0 = α, a1, . . . , αr−1, αr = β in
F such that αi−1 −→ αi for all 1 ≤ i ≤ r (r > 0). Such a chain is called a
quasicycle of length r if α = β.

Obviously, the relation ≺ on F depends on the choice of C. Results
on meromorphic C

×-actions generalize straightforwardly to meromorphic T -
actions.

Remark 2.6. Under the assumptions of this subsection, the following state-
ments are equivalent [17]:
1. (F,≺) is a partially ordered set;
2. There is no quasicycle in (F,≺);
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3. There is a strictly decreasing function on (F,≺), i.e., a function f : F −→
R satisfying f(α) > f(β) if α ≺ β and α �= β.
Consequently, (F,≺) is a partially ordered set if one of the following is true
[7, 16, 17]:
1. X is Kähler;
2. νCα > νCβ if α ≺ β and α �= β;
3. The Bia�lynicki-Birula decomposition is a stratification.
In each of the above cases, the moment map (projected along some direction
in C), νC· , and dimC X

C· , respectively, provides a strictly decreasing function
on (F,≺).

Example 2.7. Jurkiewicz [30] constructed a smooth compact toric 3-
manifold with a meromorphic T 3-action that has 22 isolated fixed points.
Choosing an appropriate action chamber, there is a quasicycle of length 6
[30]. Therefore (F,≺) is not a partially ordered set. In [50, §4], it is shown
that there exists a T 3-equivariant holomorphic line bundle such that the
(strong) holomorphic Morse inequalities fail. This shows that the holomor-
phic Morse inequalities are not valid on an arbitrary complex manifold [50],
in contrast with the fixed-point theorems in [2, 3]. In section 3, we con-
struct the analog of the instanton complex in holomorphic Morse theory
when (F,≺) is a partially ordered set. The existence of such a construction
implies the holomorphic Morse inequalities. The partial order condition is
weaker than the Kähler condition.

Definition 2.8. Suppose X has a meromorphic T -action. The Bia�lynicki-
Birula decomposition with respect to C is filterable if there is a descending
sequence of closed T -invariant subvarieties

X = Z0 ⊃ Z1 ⊃ · · · ⊃ Zm ⊃ Zm+1 = ∅ (2.4)

such that for all 0 ≤ p ≤ m, Zp − Zp+1 =
⋃
α∈Fp

XC
α for a subset Fp ⊂ F

such that neither α ≺ β nor β ≺ α if α �= β ∈ Fp.

Notice that we allow Zp−Zp+1 to be a union of cells labeled by elements
in F unrelated by ≺. In [7, Definition 2], Zp−Zp+1 is required to be a single
cell. Since XC

α

⋂
XC
β �= ∅ implies α ≺ β [17, Lemma 1], the two notions are

equivalent. Notice that the function α 
→ p(α) where α ∈ Fp(α) is strictly
increasing on (F,≺).

Alternatively, (2.4) can be written as

X = V0 ⊃ V1 ⊃ · · · ⊃ Vm ⊃ Vm+1 = ∅, (2.5)
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where Vp = X − Zm+1−p (0 ≤ q ≤ m + 1) are open sets in X such that
Vp − Vp+1 = Zm−p − Zm−p+1 =

⋃
α∈Fm−p

XC
α for 0 ≤ p ≤ m.

Proposition 2.9. ([17]) Consider a meromorphic T -action on X . Then the
Bia�lynicki-Birula decomposition (2.3) is filterable if and only if (F,≺) is a
partially ordered set. If so, then

1. the projection πC : XC
α −→ XT

α is a T -equivariant holomorphic fibration
and the fiber (πC)−1(x) over any x ∈ XT

α is T -equivariantly isomorphic to

(NC
α )x;

2. there is a T -equivariant isomorphism TXC
α |XT

α
∼= NC

α ⊕TXT
α of holomor-

phic vector bundles over XT
α ;

3. the closure XC
α in X is analytic and contains XC

α as a Zariski open set.

Consequently, XC
α is locally closed in X .

Proof. If T = C
×, the necessary and sufficient condition for (2.3) to be

filterable was proved in [17]. As in [17], properties 1 and 2 follow from the
arguments of [15] and property 3 follows from the arguments in [16, § IIb]
where the Kähler assumption was not made. The generalization to a higher
rank torus T is straightforward. �

The three properties of Proposition 2.9 were shown to be valid when X
is a Kähler manifold [15, 16, 24, 33] or a complete smooth algebraic variety
[6, 7, 32], prior to the work of [17]. Without any of these assumptions, one
or more of the properties in Proposition 2.9 could fail [44].

Example 2.7 was originally constructed to provide a non-filterable
Bia�lynicki-Birula decomposition [30].

Remark 2.10. The restriction of π−C to XC
α − XT

α may be discontinu-
ous and the image π−C(XC

α − XT
α ) may fall into more than one connected

components of XT . For example, let X = CP1 × CP1 with the diago-
nal C

×-action. Then XT = {0,∞} × {0,∞} and X+
(0,0) = C × C. We

have π−({0} × (C − {0})) = (0,∞), π−((C − {0}) × {0}) = (∞, 0), and
π−((C − {0}) × (C − {0})) = (∞,∞). The reason is that the holomor-
phic embedding XC

α −→ X extends only meromorphically at infinity [16,
Lemma 2], where it can be discontinuous.

Notice that despite of part 2 of Proposition 2.9, a tubular neighborhood of
XT
α in XC

α can not be identified holomorphically with that in NC
α in general

[15]. There is an infinite series of obstruction to this [26, 20]. However,
the identification is possible locally on XT

α . Consider a holomorphic vector
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bundle E over X on which the T -action lifts holomorphically. For future
applications, we also put E into a standard local form.

Lemma 2.11. For any x ∈ XT
α , there is a neighborhood Ux of x in XT

α , a

TR-invariant open set WC
x in Nα containing NC

α |Ux as a closed subset, and
a locally T -equivariant holomorphic embedding ψx : WC

x −→ X such that

ψx(NC
α |Ux) = (πC)−1(Ux) ⊂ XC

α . Moreover, ψx can be lifted to a locally T -
equivariant isomorphism ψ̃x : WC

x ×Ex −→ E|ψx(WC
x ) of holomorphic vector

bundles.

Proof. As in the proof of [15, Proposition I], there is a neighborhood Ux of x
in XT

α , a TR-invariant open set Wx in Nα containing Ux, and a T -equivariant
holomorphic embedding ψx : Wx −→ X such that ψx(NC

α ∩Wx) ⊂ XC
α . Pick

any v ∈ � ∩ C. Let WC
x =

⋃
t≥0 jv(e

t)Wx. WC
x is a TR-invariant open set

in Nα. Moreover, for any y ∈ NC
α |Ux, we have πC(y) ∈ Ux, hence there

exists t ≥ 0 such that jv(e−t)y ∈Wx, i.e., y ∈WC
x . So WC

x contains NC
α |Ux.

We extend ψx from Wx to WC
x by ψx(jv(et)y) = jv(et)ψx(y) for y ∈ Wx

and t ≥ 0. Clearly, the extension is well-defined, locally T -equivariant and
holomorphic. Next, there is a holomorphic isomorphism ψ̃x : Wx × Ex −→
E|Wx of vector bundles, perhaps on a smaller neighborhood Wx. By [15,
Lemma I], ψ̃x can be made TR-equivariant (hence T -equivariant). We extend
ψ̃x to WC

x × Ex by ψ̃x(jv(et)y, ξ) = jv(et)ψ̃x(y, jv(e−t)ξ) for y ∈ Wx, ξ ∈
Ex and t ≥ 0. The extension is again well-defined and is a T -equivariant
holomorphic isomorphism of vector bundles. �

2.2. A non-compact setting.

In this subsection, we consider a class of non-compact complex manifolds
with holomorphic torus actions. We hope that this class is broad enough to
include many interesting examples.

Let X be a (possibly non-compact) complex manifold with an effective
holomorphic action of the torus T .

Definition 2.12. Let C be an action chamber. The T -action on X is C-
meromorphic if
1. for any x ∈ X , v ∈ � ∩ C, the limit πv(x) exists;
2. the set F of connected components of XT is finite and each component
XT
α (α ∈ F ) is compact.

The simplest example is X = C with the standard multiplication by C
×.

The action is plus-meromorphic. The plus-decomposition is X = X+
0 (a
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single 2-cell); there is no minus-decomposition.

Remark 2.13. Consider a C-meromorphic T -action on X .
1. By Proposition 2.2, which applies to the non-compact setting here, the
limit πv(x) (x ∈ X) does not depend on the choice of v ∈ � ∩ C and is
therefore denoted by πC(x). Moreover πC(x) ∈ XT . XT has a finite number
of connected components, and we have the Bia�lynicki-Birula decomposition
(2.3) with respect to C. For x ∈ X , the limit π−C(x) may not exist in X .
2. As in the compact situation, there is a relation ≺ on F . If (F,≺) is a
partially ordered set, then the properties of Proposition 2.9 for X are satis-
fied. In particular, XC

α is a closed subvariety in X that contains (and may
be equal to) XC

α as a Zariski open set. Furthermore, the Bia�lynicki-Birula
decomposition of X with respect to C is filterable and we have filtrations of
X by closed subsets (2.4) and by open subsets (2.5).
3. If E is a holomorphic vector bundle over X on which the T -action lifts
holomorphically, Lemma 2.11 also holds.

Assumption 2.14. There exists an action chamber C such that the T -
action on X is C-meromorphic and the set (F,≺) is partially ordered.

In section 3, we will establish holomorphic Morse theory on a (possibly
non-compact) complex manifold with a holomorphic T -action satisfying As-
sumption 2.14. An immediate way of obtaining such non-compact manifolds
is as follows. We start with a compact complex manifold (or orbifold) X̃ that
has a meromorphic T -action. Suppose the Bia�lynicki-Birula decomposition
of X̃ with respect to an action chamber C̃ is filterable and is filtered by the
closed sets

X̃ = Z̃0 ⊃ Z̃1 ⊃ · · · ⊃ Z̃m̃ ⊃ Z̃m̃+1 = ∅. (2.6)

Pick any m such that 0 ≤ m ≤ m̃ − 1 and let X = X̃ − Z̃m+1. T acts
holomorphically on X . Let C be the action chamber of the T -action on
X that contains C̃. Then the T -action on X is C-meromorphic. Each
connected component of XT is that of X̃T . Moreover the Bia�lynicki-Birula
decomposition of X with respect to C has a filtration (2.4) by closed subsets
Zp = Z̃p − Z̃m+1 (0 ≤ p ≤ m + 1) of X . The simple example X = C falls
into this category, with X̃ = CP1.

More interestingly, the non-compact setting here is a complex analog of
the symplectic setting considered in [41, 42], which we now recall. Let (X, ω)
be a (possibly non-compact) symplectic manifold with a Hamiltonian action
of the compact torus TR, with a moment map µ : X −→ t∗

R
. The fixed-point
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set XT of the torus TR is a symplectic submanifold of X . Let F be the set
of connected components of XT .

Assumption 2.15. ([42, Assumption 1.3]) There is v ∈ tR such that
〈µ, v〉 : X −→ R is proper and not surjective. F is a (non-empty) finite
set.

If in addition (X, ω) is Kähler and the TR-action preserves the com-
plex structure on X , then there is an infinitesimal holomorphic T -action on
X . However this action does not always exponentiate even with Assump-
tion 2.15. A simple example is the hyperbolic disc {z, |z| < 1} with the
Kähler form ω =

√−1
2

dz∧dz̄
(1−|z|2)2

and the standard complex structure. The
moment map µ(z) = −−12(1 − |z|2) is a proper function. But since its gra-
dient flows are incomplete, the rotation on the disc can not be extended to
a holomorphic C

×-action.

Proposition 2.16. Let (X, ω) be a Kähler manifold with a holomorphic T -

action. If the TR-action is Hamiltonian and satisfies Assumption 2.15, then
1. the T -action satisfies Assumption 2.14;

2. there is a compact Kähler orbifold with a meromorphic T -action that
contains X as a T -invariant Zariski open set.

Proof. 1. By [42, Proposition 1.6], there is an action chamber C such that
for any v ∈ C, the function 〈µ, v〉 on X is proper and bounded from above.
If v ∈ �∩C, then the limit πv(x) exists for any x ∈ X . Thus the T -action is
C-meromorphic. For v ∈ � ∩ C, the function 〈µ, v〉 is strictly decreasing on
(F,≺). Properness of 〈µ, v〉 also implies that each connected component of
XT is compact.
2. Since F is finite, there is a ∈ R such that 〈µ(XT ), v〉 > a. We construct a
symplectic cut X≥a [36]. Let C

× act on X × C by u : (x, z) 
→ (jv(u)x, uz).
The action of S1 ⊂ C

× on X × C is Hamiltonian with a moment map
µ̃(x, z) = 〈µ(x), v〉 − a − −12|z|2. µ̃ is a proper function on X × C and 0
is a regular value. The symplectic quotient X≥a = µ̃−1(0)/S1 is a compact
symplectic orbifold with a Hamiltonian TR-action. Since X is Kähler, X≥a =
(X × C)s/C

× holomorphically and is also Kähler [27]. Here (X × C)s =
{(x, z) ∈ X × C |C×(x, z) ∩ µ̃−1(0) �= ∅} is the stable subset of X×C. There
is a holomorphic T -action on X≥a defined by g : (x, z) 
→ (gx, z), g ∈ T .
The action is meromorphic since X≥a is compact and Kähler. We want
to construct a T -equivariant holomorphic embedding X −→ X≥a. Clearly,
µ̃(u(x, 1)) = 〈µ(jv(u)x), v〉− a− −12|u|2, where u ∈ C

× and x ∈ X . For any
x ∈ X , since πv(x) ∈ XT , limu−→0 µ̃(u(x, 1)) = 〈µ(πv(x)), v〉−a > 0. On the
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other hand, since 〈µ, v〉 is bounded from above, limu−→∞ µ̃(u(x, 1)) = −∞.
Therefore there is u ∈ C

× such that µ̃(u(x, 1)) = 0. Hence X × {1} ⊂ (X ×
C)s. The composition X −→ X × {1} ⊂ (X × C)s −→ X≥a of the inclusion
and the quotient is a T -equivariant holomorphic embedding. The image is
X>a = (X×(C−{0}))/C

×. Since X≥a−X>a = (X×{0})s/C
× = µ−1(a)/S1

is a complex subvariety of X≥a, X is embedded as a Zariski open set. �

3. Equivariant spectral sequences in holomorphic Morse
theory.

We consider an effective holomorphic T -action on a (possibly non-compact)
complex manifold X . F is the set of connected components of the fixed-
point set XT . Throughout this section, we make Assumption 2.14. Then
the Bia�lynicki-Birula decomposition is filterable, with descending sequences
of closed sets (2.4) and open sets (2.5) in X . Let E be a holomorphic vector
bundle over X on which the T -action lifts holomorphically. We want to
determine the Dolbeault cohomology groups H∗

c (X,O(E)) (with compact
support) and H∗(X,O(E)) as representations of T .

Given a representation R of T , let Rξ be the subspace of weight ξ ∈
�∗ ⊂ t∗

R
. Given an open subset U ⊂ X , there is an infinitesimal T -action

on O(E)(U). It is easy to see that O(E)ξ(U) = (O(E)(U))ξ defines a sheaf
O(E)ξ for each ξ ∈ �∗. Moreover, H∗

c (X,O(E)ξ) = H∗
c (X,O(E))ξ and

H∗(X,O(E)ξ) = H∗(X,O(E))ξ.

Definition 3.1. A (cohomological) spectral sequence {Epq
r , d

pq
r } is T -

equivariant if the spaces Epq
r are representations of T and the coboundary

maps dpqr : Epq
r −→ E

p+r,q−r+1
r are T -equivariant. The spectral sequence

converges T -equivariantly to the representations H∗ if the spaces Epq∞ are
the graded components of H∗ as representations of T .

3.1. Spectral sequence for cohomologies with compact support.

In this subsection, we construct a spectral sequence converging to the Dol-
beault cohomology groups H∗

c (X,O(E)) with compact support.
Recall that if A ⊂ X is a locally closed subset, then for any sheaf F on

X , there is a unique sheaf on X , denoted by FA, such that the restrictions
FA|A = F|A and F|X−A = 0. Moreover, FA exists for any sheaf F only if
A is locally closed [25, Théorème II.2.9.1]. Let 0 −→ F −→ C∗(F ) be the
canonical resolution of F [25, § II.4.3]. It is easy to see that 0 −→ FA −→
C∗(F )A is a flabby resolution of FA. Finally, if A is an open subset, then FA
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is a subsheaf of F .

Lemma 3.2. Under Assumption 2.14, there is a spectral sequence with

E
pq
1 = Hp+q

c (X,FVp−Vp+1) (3.1)

that converges to H∗
c (X,F ).

Proof. From (2.5), we have a filtration of F by subsheaves

F = FV0 ⊃ FV1 ⊃ · · · ⊃ FVm ⊃ FVm+1 = 0 (3.2)

and hence a filtration of the cochain complex Γc(C∗(F )) by

Γc(C∗(F )) = Γc(C∗(F )V0) ⊃ Γc(C∗(F )V1) ⊃ · · ·
⊃ Γc(C∗(F )Vm) ⊃ Γc(C∗(F )Vm+1) = 0.

(3.3)

This induces a spectral sequence that converges to H∗(Γc(C∗(F ))) =
H∗

c (X,F ), with

Epq
0 = Γc(Cp+q(F )Vp)/Γc(Cp+q(F )Vp+1) = Γc(Cp+q(F )Vp−Vp+1). (3.4)

Since the maps dpq0 : Epq
0 −→ Ep,q+1

0 are induced by the resolution, we get

Epq
1 = Hp+q(Γc(C∗(F )Vp−Vp+1)) = Hp+q

c (X,FVp−Vp+1). (3.5)

�

Lemma 3.3.

H∗
c (X,FVp−Vp+1) =

⊕
α∈Fm−p

H∗
c (XC

α ,F|XC
α

). (3.6)

Proof. Since XC
α ∩ XC

β = ∅ for any α �= β ∈ Fm−p, we have FVp−Vp+1 =⊕
α∈Fm−p

FXC
α

and hence

H∗
c (X,FVp−Vp+1) =

⊕
α∈Fm−p

H∗
c (X,FXC

α
). (3.7)

The support of FXC
α

is contained in the closed subvariety XC
α . Therefore we

have [25, Théorème II.4.9.1]

H∗
c (X,FXC

α
) = H∗

c (XC
α ,FXC

α
). (3.8)
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Since XC
α −XC

α is a closed subset in XC
α and FXC

α
|
XC

α −XC
α

= 0, we deduce
from [25, Théorème II.4.10.1] that

H∗
c (XC

α ,F|XC
α

) = H∗
c (XC

α ,FXC
α

). (3.9)

The result follows from (3.7), (3.8) and (3.9). �
Recall that πC : XC

α −→ XT
α is a holomorphic fibration with fiber C

νC
α .

The sheaf F|XC
α

is on the total space XC
α . To calculate the right hand side

of (3.6), we need another spectral sequence.
We consider a general fibration π : Y −→ B over a compact base B

with possibly non-compact fibers. The cohomology groups with compact
support are Hq

c (Y,F ) = Hq(ΓΦ(Y, C∗(F ))) (q ≥ 0), where Φ is the fam-
ily of supports that consists of the compact subsets of Y . Let A, L∗ be
the sheaves on B defined by the presheaves A(U) = ΓΦ∩π−1(U )(π−1(U),F ),
L∗(U) = ΓΦ∩π−1(U )(π−1(U), C∗(F )), respectively, where U is any open sub-
set of B. Then 0 −→ A −→ L∗ is a differential sheaf in the sence of [25,
§ II.4.1]. Let Hq

c(Y,F ) (q ≥ 0) be the sheaves on B defined by the presheaves
Hq

c(Y,F )(U) = Hq(L∗(U)), for any open subset U ⊂ B.

Lemma 3.4. 1. At b ∈ B, the stalk of Hq
c(Y,F ) for any q ≥ 0 is

Hq
c(Y,F )b ∼= Hq

c (Yb,F|Yb
). (3.10)

2. There is a spectral sequence with

Epq
2 = Hp(B,Hq

c(Y,F )) (3.11)

that converges to H∗
c (Y,F ).

Proof. 1. This the analog of [25, Remarque II.4.17.1] for cohomolo-
gies with compact support. First, Hq

c(Y,F )b = lim−→U�b
Hq

c(Y,F )(U) =

lim−→U�b
Hq

Φ∩π−1(U )
(π−1(U),F ). By [25, Théorème II.3.3.1], any section s ∈

Γ (Yb, C∗(F )|Yb
) can be extended to a neighborhood of Yb in Y . If supp s ∈

Φ ∩ Yb, then the neighborhood can be chosen as π−1(U) for some open
set U ⊂ B. Therefore lim−→U�b

Hq
Φ∩π−1(U )

(π−1(U),F ) = lim−→V ⊃Yb

Hq
Φ∩V (V,F ).

Following the proof of [25, Théorème II.4.11.1], we get lim−→V⊃Yb

Hq
Φ∩V (V,F ) =

Hq
c (Yb,F|Yb

).
2. It is clear that L∗ are flabby sheaves. By [25, Théorème II.4.6.1], as-
sociated to the differential sheaf 0 −→ A −→ L∗ there is a spectral se-
quence with (3.11) that converges to H∗(Γ (L∗)). By the definition of L∗,
Γ (B,L∗) = Γc(Y, C∗(F )). The result follows. �
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Lemma 3.5. Let R be a representation of T with dimC R = n and let A,

A⊥ be T -invariant subspaces of R such that dimC A = ν and R = A ⊕ A⊥.

Let E0 be a representation of T and E, the trivial holomorphic vector bundle
over R with fiber E0. Then, for any ξ ∈ �∗,

Hq
c (A,O(E)|A)ξ = Hq

c (R,O(E)A)ξ

=
{

(S(A⊥∗) ⊗ S(A) ⊗ ∧ν(A) ⊗E0)ξ, if q = ν,

0, if q �= ν.

(3.12)

Proof. It suffices to prove the case when E0 = C is a trivial representation.
If A = {0}, then

Hq
c (R,O{0})ξ = Hq(R,O{0})ξ =

{
S(R∗)ξ, if q = 0,
0, if q �= 0.

(3.13)

If A = R, then (see [34] for an analytic version)

Hq
c (R,O)ξ =

{
(S(R) ⊗∧n(R))ξ, if q = n,

0, if q �= n.
(3.14)

The general case is a consequence of the Künneth formula. �

Lemma 3.6.

Hq
c (XC

α ,O(E)|XC
α

)ξ

= Hq−νC
α (XT

α ,O(S((N−C
α )∗) ⊗ S(NC

α ) ⊗∧νC
α (NC

α ) ⊗ E|XT
α

))ξ
(3.15)

for any ξ ∈ �∗.

Proof. Consider the holomorphic fibration πC : XC
α −→ XT

α with fiber
C
νC

α and the sheaf F = O(E)ξ|XC
α

on XC
α . For any x ∈ XT

α , we want to
find the stalk Hq

c(XC
α ,F )x, which depends only on an open neighborhood

of (πC)−1(x) ⊂ XC
α in X . By Lemma 2.11, we can replace XC

α ⊂ X by
NC
α |Ux ⊂ Nα|Ux and E by a trivial vector bundle with fiber Ex. Moreover

there is a T -equivariant isomorphism (Nα, N
C
α )|Ux

∼= Ux × (Nx, N
C
x ). By

Lemma 3.4.1 and Lemma 3.5,

Hq
c(XC

α ,F )x
= Hq(NC

x ,O(WC
x , Ex)ξ|NC

x
)

=
{ O((S((N−C

α )∗) ⊗ S(NC
α ) ⊗ ∧νC

α (NC
α ) ⊗E|XT

α
)ξ)x, if q = νCα ,

0, if q �= νCα .
(3.16)
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So the spectral sequence of Lemma 3.4.2 degenerates at E2 and the result
follows. �

Though the bundle S((N−C
α )∗) ⊗ S(NC

α ) ⊗ ∧νC
α (NC

α ) ⊗ E|XT
α

over XT
α

is infinite dimensional, its sub-bundle of any given weight is of finite rank.
Therefore each weight has a finite multiplicity in the cohomology groups
(3.15), and their formal characters in Z[�∗] exist.

Theorem 3.7. Let X be a complex manifold with an effective holomorphic

T -action satisfying Assumption 2.14. Let E be a holomorphic vector bundle
over X on which the T -action lifts holomorphically. Then
1. there is a T -equivariant spectral sequence converging T -equivariantly to

H∗
c (X,O(E)) with

Epq
1 =

⊕
α∈Fm−p

Hp+q−νC
α (XT

α ,O(S((N−C
α )∗) ⊗ S(NC

α ) ⊗ ∧νC
α (NC

α ) ⊗E|XT
α

));

(3.17)
2. there is a character valued polynomial QCc (t) ≥ 0 such that

∑
α∈F

tν
C
α

nα∑
q=0

tq charHq(XT
α ,O(S((N−C

α )∗) ⊗ S(NC
α ) ⊗ ∧νC

α (NC
α ) ⊗E|XT

α
))

=
n∑
q=0

tq charHq
c (X,O(E)) + (1 + t)QCc (t);

(3.18)

3.

n∑
q=0

(−1)q charHq
c (X,O(E))

=
∑
α∈F

(−1)ν
C
α

∫
XT

α

chT

(
E|XT

α
⊗ det(NC

α )

det(1 − (N−C
α )∗) ⊗ det(1 −NC

α )

)
td(XT

α ),

(3.19)

where chT and td stand for the equivariant Chern character and the Todd

class, respectively.

Proof. 1. The result follows from Lemma 3.2, Lemma 3.3 with F = O(E)ξ
and Lemma 3.6 for all ξ ∈ �∗.
2. Since Epq

r+1 is the cohomology of (Epq
r , d

pq
r ), we have∑

p,q

tp+q charEpq
r =

∑
p,q

tp+q charEpq
r+1 + (1 + t)Qr(t) (3.20)
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for a character valued polynomial Qr(t) ≥ 0. Using (3.20) recursively, we
get (3.18) with QCc (t) =

∑
r≥1Qr(t) ≥ 0.

3. By setting t = −1 in (3.18) and using

nα∑
q=0

(−1)q charHq(XT
α ,O(S((N−C

α )∗) ⊗ S(NC
α ) ⊗ ∧νC

α (NC
α ) ⊗E|XT

α
))

=
∫
XT

α

chT

(
E|XT

α
⊗ det(NC

α )

det(1 − (N−C
α )∗) ⊗ det(1 −NC

α )

)
td(XT

α ),

(3.21)

we obtain (3.19). See [51, Remark 2.3.2]. �

Corollary 3.8. If in addition XT is discrete (and is identified with F ), then
1. there is a T -equivariant spectral sequence converging T -equivariantly to

H∗
c (X,O(E)) with

Epq
1 =

⊕
x∈Fm−p, νC

x =p+q

S((N−C
x )∗) ⊗ S(NC

x ) ⊗∧νC
x (NC

x ) ⊗ Ex. (3.22)

2. there is a character valued polynomial QCc (t) ≥ 0 such that

∑
x∈F

tν
C
x charEx

∏
λx,k∈C∗

eλx,k

1 − eλx,k

−1∏
λx,k∈−C∗

1 − e−λx,k

=
n∑
q=0

tq charHq
c (X,O(E)) + (1 + t)QCc (t);

(3.23)

3.

n∑
q=0

(−1)q charHq
c (X,O(E))

=
∑
x∈F

(−1)ν
C
α charEx

∏
λx,k∈C∗

eλx,k

1 − eλx,k

−1∏
λx,k∈−C∗

1 − e−λx,k .

(3.24)

Remark 3.9. 1. If X is compact, then H∗
c (X,O(E)) = H∗(X,O(E)), and

the right-hand sides of (3.19) and (3.24) are often written as∑
α∈F

∫
XT

α

chT

(
E|XT

α

det(1 −N ∗
α)

)
td(XT

α ) and
∑
x∈F

charEx∏n
k=1(1 − e−λx,k )

,

(3.25)
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respectively. In this case, parts 3 of Theorem 3.7 and Corollary 3.8 are the
fixed-point theorems of [3, 2], which do not require ≺ to be a partial or-
dering. Here X can be non-compact. We obtain a fixed-point theorem for
Dolbeault cohomology groups with compact support under the partial order
condition. When X is compact and Kähler, parts 2 are the results of [49, 37,
50, 51]. Parts 1 strengthen these results under a weaker condition, namely,
Assumption 2.14. In particular, all the weights of T in H∗

c (X,O(E)) are of
finite multiplicity. It would be interesting to have an independent analytic
proof of the results in parts 2 when X is a non-compact Kähler manifold sat-
isfying Assumption 2.15. They are the discrete versions of [42, Theorem 3.2].
2. The coboundary maps {dpqr } in the spectral sequence in Theorem 3.7 or
Corollary 3.8 are the holomorphic counterparts of the instanton tunneling
operators in [48]. Through this spectral sequence, the cohomology groups
H∗

c (X,O(E)) are determined by the combinatorial data of the T -action on
X . However unlike the real case, the spectral sequence of holomorphic Morse
theory does not always degenerate at E2. A sufficient condition for degen-
eracy at E2 is

Epq
1 = 0 for all q �= 0. (3.26)

If so, then the spectral sequence reduces to a cochain complex {E∗0
1 , d∗01 },

whose cohomology is E∗0
2 = H∗(X,O(E)). This would be exactly like the

Thom-Smale-Witten complex [48]. For example, if XT = F is discrete,
m = n in (2.5), and Fp = {x ∈ F | ν−Cx = p} for 0 ≤ p ≤ n, then (3.26) is
satisfied.

3.2. Spectral sequence with local cohomology groups.

In this subsection, we construct an alternative spectral sequence converging
to the Dolbeault cohomology groups H∗(X,O(E)).

For any locally closed subset A ⊂ X , let ΓA be the functor which as-
sociates every sheaf F an Abelian group ΓA(F ) = {s ∈ Γ (F ) | supp s ⊂ A}.
Recall that the local cohomology groups Hq

A (q ≥ 0) are the derived functors
of ΓA, i.e., Hq

A(X,F ) = Hq(ΓA(C∗(F ))). The sheaves of local cohomology
Hq
A(F ) with supports in A are the sheaves associated to the presheaves

U 
→ Hq
U∩A(U,F ), where U is any open subset of X . (We refer the reader

to [4, chap. II] and [31, §7-10] for details.) For any closed subset A′ of A,
let ΓA/A′(F ) = ΓA(F )/ΓA′(F ). If F is flabby, then ΓA/A′(F ) = ΓA−A′ (F )
[31, Lemma 7.3]. The derived functors of ΓA/A′ are denoted by Hq

A/A′ . We
have Hq

A/A′(F ) = H
q
A−A′(F ) for any sheaf F . Let Hq

A/A′(F ) be the sheaves
associated to the presheaves U 
→ Hq

U∩A/U∩A′(U,F ), where U is any open
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subset of X .
If A is a T -invariant locally closed subset of X , then the local cohomol-

ogy groups Hq
A(X,O(E)) (q ≥ 0) are representations of T . Furthermore,

Hq
A(X,O(E)ξ) = Hq

A(X,O(E))ξ for any ξ ∈ �∗.

Lemma 3.10. Under Assumption 2.14, there is a spectral sequence with

Epq
1 = Hp+q

Zp−Zp+1
(X,F ) =

⊕
α∈Fp

Hp+q
XC

α
(X,F ) (3.27)

that converges to H∗(X,F ).

Proof. From (2.4), we have a filtration of the cochain complex

Γ (C∗(F )) = ΓZ0(C∗(F )) ⊃ ΓZ1(C∗(F )) ⊃ · · ·
⊃ ΓZm(C∗(F )) ⊃ ΓZm+1(C∗(F )) = 0.

(3.28)

This induces a spectral sequence that converging to H∗(X,F ) with

Epq
0 = ΓZp(Cp+q(F ))/ΓZp+1(Cp+q(F )) = ΓZp−Zp+1(Cp+q(F )). (3.29)

Therefore
Epq

1 = Hp+q
Zp−Zp+1

(C∗(F )) = Hp+q
Zp−Zp+1

(X,F ). (3.30)

(See for example [52, Theorem 1.1]; the proof is included here for complete-
ness.) Since Zp − Zp+1 =

⋃
α∈Fp

XC
α and XC

α ∩XC
β = ∅ for α �= β ∈ Fp, we

have ΓZp−Zp+1(C∗(F )) =
⊕

α∈Fp
ΓXC

α
(C∗(F )). Hence

H∗
Zp−Zp+1

(X,F ) =
⊕
α∈Fp

H∗
XC

α
(X,F ). (3.31)

�
Similar to the study of cohomology with compact support, we consider

a general fibration π : Y −→ B. Suppose for the time being that X is any
topological space containing Y as a locally closed subset and that F is any
sheaf on X . We want to compute the local cohomology groups Hq

Y (X,F )
(q ≥ 0). Let A, L∗ be the sheaves on B defined by the presheaves A(U) =
Γπ−1(U )(X,F ), L∗(U) = Γπ−1(U )(X, C∗(F )), respectively, where U is any
open subset of B. Then 0 −→ A −→ L∗ is a differential sheaf in the sence
of [25, § II.4.1]. Let Hq

Y (X,F ) (q ≥ 0) be the sheaves on B defined by the
presheaves Hq

Y (X,F )(U) = Hq(L∗(U)), for any open subset U ⊂ B.
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Lemma 3.11. 1. At b ∈ B, the stalk of Hq
Y (X,F ) for any q ≥ 0 is

Hq
Y (X,F )b ∼= lim−→U�b

H
q
π−1(U )

(X,F ), (3.32)

where the limit is taken over the open sets U ⊂ B containing b.
2. There is a spectral sequence with

Epq
2 = Hp(B,Hq

Y (X,F )) (3.33)

that converges to H∗
Y (X,F ).

Proof. 1. This is because

Hq
Y (X,F )b = lim−→U�b

Hq(L∗(U)) = lim−→U�b
Hq
π−1(U )

(X,F ).

2. It is clear that L∗ are flabby sheaves and that Γ (B,L∗) = ΓY (X, C∗(F )).
The rest of the proof is identical to that of Lemma 3.4.2. �

Notice that Hq
Y (X,F )b is different from Hq

Yb
(X,F ). In fact, Hq

Y (X,F ) =
π∗(Hq

Y (F )|Y ).

Lemma 3.12. Under the conditions of Lemma 3.5, we have, for any ξ ∈ �∗,

Hq
A(R,O(E))ξ =

{
(S(A∗) ⊗ S(A⊥) ⊗ ∧n−ν(A⊥) ⊗ E0)ξ, if q = n− ν,

0, if q �= n− ν.
(3.34)

Proof. As in the proof of Lemma 3.5, the general result follows from

Hq
{0}(R,O)ξ =

{
(S(R)⊗ ∧n(R))ξ, if q = n,
0, if q �= n

(3.35)

and

Hq(R,O)ξ =
{
S(R∗)ξ, if q = 0,
0, if q �= 0

(3.36)

by the Künneth formula. See also [31, Proposition 11.9(e)]. �

Lemma 3.13.

Hq
XC

α
(X,O(E))ξ = Hq+νC

α +nα−n(XT
α ,O(S((NC

α )∗) ⊗ S(N−C
α )

⊗∧n−nα−νC
α (N−C

α ) ⊗ E|XT
α

))ξ
(3.37)

for any ξ ∈ �∗.
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Proof. Let F = O(E)ξ. Consider the fibration πC : XC
α −→ XT

α . For
any x ∈ XT

α , we want to find the stalk Hq
XC

α
(X,F )x, which by excision [4,

§ II.1, Lemma 1.1] depends only on an open neighborhood of (πC)−1(x) ⊂
XC
α in X . By Lemma 2.11, we can replace XC

α ⊂ X by NC
α |Ux ⊂ Nα|Ux

and E by a trivial vector bundle with fiber Ex. Moreover there is a T -
equivariant isomorphism (Nα, N

C
α )|Ux

∼= Ux × (Nx, N
C
x ). By Lemma 3.11.1

and Lemma 3.12,

Hq
XC

α
(X,F )x=lim−→U�x

Hq
(πC)−1(U )

(X,F )=lim−→U�x
Hq
NC

α |U (Nα|U ,O(Nα|U , Ex)ξ)

=
{O((S((NC

α )∗)⊗S(N−C
α )⊗∧n−nα−νC

α (N−C
α )⊗E|XT

α
)ξ)x, if q=n−nα−νCα ,

0, if q �=n−nα−νCα .
(3.38)

In the above limit, U can be any open subset of XT
α such that x ∈ U ⊂ Ux.

So the spectral sequence of Lemma 3.11.2 degenerates at E2 and the result
follows. �

Theorem 3.14. Under the conditions of Theorem 3.7,

1. there is a T -equivariant spectral sequence converging T -equivariantly to
H∗(X,O(E)) with

E
pq
1 =

⊕
α∈Fp

Hp+q+νC
α +nα−n(XT

α ,O(S((NC
α )∗) ⊗ S(N−C

α )

⊗ ∧n−nα−νC
α (N−C

α ) ⊗ E|XT
α

));
(3.39)

2. there is a character valued polynomial QC(t) ≥ 0 such that∑
α∈F

tn−nα−νC
α

nα∑
q=0

tq charHq(XT
α ,O(S((NC

α )∗) ⊗ S(N−C
α )

⊗ ∧n−nα−νC
α (N−C

α ) ⊗E|XT
α

))

=
n∑
q=0

tq charHq(X,O(E)) + (1 + t)QC(t);

(3.40)

3.
n∑
q=0

(−1)q charHq(X,O(E))

=
∑
α∈F

(−1)n−nα−νC
α

∫
XT

α

chT

(
E|XT

α
⊗ det(N−C

α )

det(1 − (NC
α )∗) ⊗ det(1 −N−C

α )

)
td(XT

α ).

(3.41)
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Proof. Part 1 follows from Lemma 3.10 with F = O(E)ξ and Lemma 3.13
for all ξ ∈ �∗. Parts 2 and 3 are proved in the same way as in Theorem 3.7.
�

Corollary 3.15. Under the conditions of Corollary 3.8,
1. there is a T -equivariant spectral sequence converging T -equivariantly to
H∗(X,O(E)) with

Epq
1 =

⊕
x∈Fp, νC

x =n−p−q
S((NC

x )∗) ⊗ S(N−C
x ) ⊗∧n−νC

x (N−C
x ) ⊗Ex. (3.42)

2. there is a character valued polynomial QC(t) ≥ 0 such that∑
x∈F

tn−ν
C
x char (Ex)

−1∏
λx,k∈C∗

1 − e−λx,k
∏

λx,k∈−C∗

eλx,k

1 − eλx,k

=
n∑
q=0

tq charHq(X,O(E)) + (1 + t)QC(t);

(3.43)

3.
n∑
q=0

(−1)q charHq(X,O(E))

=
∑
x∈F

(−1)n−ν
C
α char (Ex)

−1∏
λx,k∈C∗

1 − e−λx,k
∏

λx,k∈−C∗

eλx,k

1 − eλx,k
.

(3.44)

Remark 3.16. 1. The same observations in Remark 3.9.1 apply to The-
orem 3.14 and Corollary 3.15. In particular, all the weights of T in
H∗(X,O(E)) are also of finite multiplicities. When X is non-compact, the
Dolbeault cohomology groups are different from those with compact support.
Therefore the results of Theorem 3.7 and Theorem 3.14 are distinct. Again,
it would be interesting to have an independent analytic proof of parts 2 of
Theorem 3.14 and Corollary 3.15 when X is a non-compact Kähler manifold
satisfying Assumption 2.15. When X is compact, Theorem 3.7 is identical
to Theorem 3.14 with an opposite action chamber. The two theorems are
also related to each other by Serre duality. The local models in Lemma 3.5
and Lemma 3.12 are also dual to each other.
2. Remark 3.9.2 applies here as well. In particular, the complex {E∗0

1 , d∗01 },
i.e.,

0 −→ Γ (X,F ) −→ H0
Z0−Z1

(X,F ) −→ H1
Z1−Z2

(X,F ) −→ · · ·
−→ Hm

Zm
(X,F ) −→ 0,

(3.45)



On the Instanton Complex of Holomorphic Morse Theory 797

is called the global Grothendieck-Cousin complex [28, 31]. If condition
(3.26) is satisfied, then the complex (3.45) computes the cohomology groups
H∗(X,O(E)). Again a sufficient condition for (3.26) is that XT = F is
discrete, m = n in (2.4), and Fp = {x ∈ F | ν−Cx = p} for 0 ≤ p ≤ n. In [31,
§ 10], a few other sufficient conditions were found. If Hq

Zp/Zp+1
(F ) = 0 for

all q �= p, then the complex of sheaves

0 −→ F −→ H0
Z0/Z1

(F ) −→ H1
Z1/Z2

(F ) −→ · · · −→ Hm
Zm

(F ) −→ 0, (3.46)

called the local Grothendieck-Cousin complex, is a resolution of F (see for
example [31, Theorem 8.7] or [10, Lemma 1.2]). In this case, the sheaf
F is called locally Cohen-Macaulay with respect to the filtration (2.4). The
global Grothendieck-Cousin complex (3.45), which computes the cohomology
groups H∗(X,F ), is obtained from (3.46) by applying the functor Γ (X, · ).

4. Examples and Applications.

4.1. Flag manifolds and generalized Bernstein-Gelfand-Gelfand
resolutions.

The spectral sequence for the cohomology of a flag manifold leads to the
geometric realization of the Bernstein-Gelfand-Gelfand [5] and related reso-
lutions. Though our approach does not provide new insights to the latter,
it is an important example of the instanton complex in the holomorphic
setting.

Let G be a complex semi-simple Lie group and T , a maximal torus of G.
Let g, t be the Lie algebras of G, T , respectively. Let g = t ⊕⊕α∈∆ gα be
the root space decomposition, where ∆ ⊂ �∗ − {0} ⊂ t∗

R
is the root system

of the pair (g, t) and gα = Ceα (α ∈ ∆). Let ∆+ be a set of positive roots
and let ∆− = −∆+. Let n± =

⊕
α∈∆± gα. Let B be the Borel subgroup

corresponding to the Borel subalgebra b = t ⊕ n+. Let W be the Weyl
group of the pair (g, t). Denote by w0 the element in W of maximal length
l(w0) = |∆+|.

Recall that the Verma module of highest weight λ is the U(g)-module
Mλ = U(g) ⊗U (b) Cvλ, where Cvλ is the 1-dimensional U(b)-module defined
by λ ∈ t∗

R
. Mλ is free over U(n−). As a U(t)-module, Mλ is determined by

charMλ = eλ∏
α∈∆+

(1−e−α)
. When λ is a dominant weight, let Rλ be the (finite

dimensional) irreducible module of highest weight λ. We have a resolution
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of Rλ by Verma modules

0 −→Mw0λ−2ρ −→
⊕

l(w)=|∆+|−1

Mw(λ+ρ)−ρ −→ · · ·

−→
⊕
l(w)=1

Mw(λ+ρ)−ρ −→Mλ −→ Rλ −→ 0,
(4.1)

where ρ = −12
∑

α∈∆+
α. This is called the Bernstein-Gelfand-Gelfand res-

olution [5] of Rλ.
For any w ∈W , put nw± = wn±w−1. The twisted Verma module Mw

λ is a
U(g)-module of highest weight λ that is free over U(nw+∩n−) and co-free over
U(nw+ ∩ n+) [21]. In particular, M1

λ
∼= M∗

λ and Mw0
λ

∼= Mλ; the U(g)-module
structure of the dual M∗

λ is given by [13, §2.3]

〈xξ, v〉 = −〈ξ, τ(x)v〉 for x ∈ g, ξ ∈M∗
λ , v ∈Mλ, (4.2)

where τ is an automorphism of g such that τ(h) = −h (h ∈ t) and τ(eα) =
e−α (α ∈ ∆). If Mλ is irreducible, then Mw

λ
∼= Mλ for any w ∈ W . As

U(t)-modules, we always have charMw
λ = charMλ.

We consider the non-degenerate flag manifold X = G/B−, where B−

is the Borel subgroup opposite to B. The maximal torus T acts mero-
morphically on X . The fixed-point set is XT = {wB− |w ∈W}. The
isotropy weights at wB− are wα (α ∈ ∆+). The action chambers in t

are the Weyl chambers. Denote the positive Weyl chamber by “+” and
the opposite chamber by “−”. Then the polarizing index of wB− ∈ XT

is ν−w = |∆− ∩ w∆+| = l(w) for any w ∈ W . The Bia�lynicki-Birula de-
composition is precisely the Bruhat decomposition X =

⋃
w∈W X+

w , where
X+
w = BwB−/B− (w ∈ W ) are the Bruhat cells [1]. These cells are also

the B-orbits in X . Moreover, the relation ≺ on F ∼= W is the Chevalley-
Bruhat order [18], which is a partial ordering. Consequently, the Bia�lynicki-
Birula decomposition is filterable, and we have the filtration (2.4), where
m = |∆+| = dimCX . The closed sets Zp =

⋃
l(w)≥pX

+
w (0 ≤ p ≤ |∆+|) are

the Schubert varieties. Since Zp − Zp+1 =
⋃
l(w)=pX

+
w (0 ≤ p ≤ |∆+|) and

ν−w = l(w), the cohomology groups H∗(X,F ) with coefficients in any sheaf
F can be computed by the (global) Grothendieck-Cousin complex (3.45),
which becomes

0 −→ H0
X+

1
(X,F ) −→

⊕
l(w)=1

H1
X+

w
(X,F ) −→ · · ·

−→
⊕

l(w)=|∆+|−1

H
|∆+|−1

X+
w

(X,F ) −→ H
|∆+|
X+

w0

(X,F ) −→ 0.
(4.3)
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Given any integral weight λ ∈ �∗, we have a holomorphic line bundle
Lλ = G×B− Cvλ over X , where Cvλ is the 1-dimensional holomorphic repre-
sentation of B− defined by λ. The weight of T on the fiber (Lλ)wB− (w ∈W )
is wλ. Set Fλ = O(Lλ). Then from subsection 3.2, we have for any w ∈W ,

charH l(w)

X+
w

(X,Fλ) = ewλ
−1∏

α∈∆+∩w−1∆+

1 − e−wα
∏

α∈∆+∩w−1∆−

ewα

1 − ewα

=
ew(λ+ρ)−ρ∏

α∈∆+
(1 − e−α)

.

(4.4)

So as representations of T , H l(w)

X+
w

(X,Fλ) is the same as the Verma module
Mw(λ+ρ)−ρ. In fact the above local cohomology groups are U(g)-modules.
This is because the canonical resolution C∗(Fλ) of Fλ, on which the Lie al-
gebra g acts, is U(g)-equivariant. (Notice however that a representation of g

on an infinite dimensional space may not exponentiate to that of G.) There-
fore the Grothendieck-Cousin complex (4.3) is U(g)-equivariant. Moreover,
we have H l(w)

X+
w

(X,Fλ) ∼= Mw
w(λ+ρ)−ρ as U(g)-modules [21, §2.2]. So (4.3)

becomes

0−→M∗
λ−→

⊕
l(w)=1

Mw
w(λ+ρ)−ρ−→· · ·−→

⊕
l(w)=|∆+|−1

Mw
w(λ+ρ)−ρ−→Mw0λ−2ρ−→0,

(4.5)
whose cohomology groups H∗(X,Fλ) are given by [8]. If λ + ρ is regular,
then

Hq(X,Fλ) =
{
Rwλ(λ+ρ)−ρ, if q = l(wλ),
0, if q �= l(wλ),

(4.6)

where wλ is the unique element in W such that wλ(λ + ρ) − ρ is a domi-
nant weight. The complex (4.5) is called the generalized Bernstein-Gelfand-
Gelfand resolution of Rwλ(λ+ρ)−ρ [21, §2.3]. When λ is a dominant weight,
(4.5) is the dual of the Bernstein-Gelfand-Gelfand resolution (4.1) for Rλ [31,
12, 13]. When w0λ−2ρ is dominant, (4.5) is the Bernstein-Gelfand-Gelfand
resolution for Rw0λ−2ρ.

Remark 4.1. 1. Lepowsky [35] found a Bernstein-Gelfand-Gelfand-type
resolution of any finite dimensional irreducible U(g)-module by the general-
ized Verma modules, which are induced from representations of a parabolic
subgroup P ⊂ G. In [40], a geometric realization of this resolution was
constructed using the local cohomology of the P -orbits in G/B− (rather
than the B-orbits in G/P−). Let H be the Levi subgroup of P , and h, its
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Lie algebra. Let ∆H be the root system of the pair (h, t), and WH , the
corresponding Weyl group. Then X = G/B− decomposes into its P -orbits
according to

X =
⋃

w′∈W/WH

Pw′B−/B−, (4.7)

where W/WH = {WHw |w ∈W} (see for example [47, §1.2]). H is the
centralizer of a torus subgroup T ′ ⊂ T , whose Lie algebra t′ ⊂ t. Con-
sider the (meromorphic) T ′-action on X . The fixed-point set XT ′

=⋃
w′∈W/WH

Hw′B−/B−. Choose the action chamber C′ ⊂ t′ such that
〈α, C′〉 > 0 for all α ∈ ∆+ − ∆H ∩ ∆+. The the Bia�lynicki-Birula decompo-
sition of X with respect to C′ is precisely (4.7). Therefore (3.45) gives the
geometric realizations of Lepowsky’s resolution and similar generalizations.
2. More interestingly, the (holomorphic) instanton complex can be used to
study the cohomology groups of vector bundles over spherical varieties. (See
[11] for an extension of the Borel-Weil theorem.)

4.2. Cohomology and geometric quantization of non-compact
manifolds.

In section 3, we obtained equivariant holomorphic Morse inequalities and
equivariant index theorems for non-compact complex manifolds under As-
sumption 2.14. In this subsection, we apply them to establish some results
on the cohomology groups and on geometric quantization.

Let X be a (possibly non-compact) complex manifold of dimension n

with a holomorphic T -action satisfying Assumption 2.14. Let Hpq(X) =
Hq(M,O(∧pTX)), Hpq

c (X) = Hq
c (M,O(∧pTX)) (p, q = 0, 1, . . . , n) be

the Dolbeault cohomology groups of X and those with compact sup-
port, respectively. Let P (X ; s, t) =

∑n
p,q=0 s

ptq charHpq(X), Pc(X ; s, t) =∑n
p,q=0 s

ptq charHpq
c (X), the character-valued Poincaré-Hodge polynomi-

als. If the cohomology groups are finite dimensional, then hpq(X) =
dimCH

pq(X), hpqc (X) = dimC H
pq
c (X) are the Hodge numbers of X and

p(X ; s, t) =
∑n

p,q=0 s
ptqhpq(X), pc(X ; s, t) =

∑n
p,q=0 s

ptqhpqc (X), the (usual)
Poincaré-Hodge polynomials. Notice that if X is a non-compact Kähler
manifold, the Hodge numbers or the Poincaré-Hodge polynomials do not
necessarily satisfy the symmetry relations valid for compact manifolds. For
example let X = C. Then H01(X) = H10

c (X) = 0 whereas H10(X) and
H01

c (X) are infinite dimensional.

Proposition 4.2. Under Assumption 2.14,
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1. suppHpq
c (X) ⊂ C∗∩�∗ for all C such that the T -action is C-meromorphic.

Moreover, for any such C, there is a polynomial qCc (s, t) ≥ 0 such that

∑
α∈F

(st)ν
C
α pc(XT

α ; s, t) =
n∑

p,q=1

sptq dimC H
pq
c (X)T + (1 + t)qCc (s, t); (4.8)

2. suppHpq(X) ⊂ −C∗ ∩ �∗ for all C such that the T -action is C-

meromorphic. Moreover, for any such C, there is a polynomial qC(s, t) ≥ 0
such that

∑
α∈F

(st)n−nα−νC
α p(XT

α ; s, t) =
n∑

p,q=1

sptq dimCH
pq(X)T+(1+t)qC(s, t). (4.9)

Proof. The results follow from (3.18) and (3.40) as in the proof of [51,
Theorem 4.1]. �

Remark 4.3. 1. If in addition there is an action chamber C such that the T -
action is both C-meromorphic and (−C)-meromorphic, then the cohomology
groups Hpq

c (X) and Hpq(X) are trivial representations of T . This is true
when X is compact [51, Theorem 4.1.1, Remark 4.2.1] but not so in general.
For example, let X = C with the standard multiplication by C

×, which is
plus-meromorphic. Then suppH00(X) = −N and suppH01

c (X) = N − {0}.
2. As in [51, Corollary 4.5], we conclude from Proposition 4.2 that if |p−q| >
maxα∈F nα, then Hpq

c (X)T = Hpq(X)T = 0. In particular, if all the fixed
points are isolated, then H

pq
c (X)T = Hpq(X)T = 0 when p �= q. The result

[14] for the full cohomology groups does not hold in our non-compact setting.
In the above example withX = C, H01

c (X) �= 0 although the only fixed point
0 is isolated.

We now consider geometric quantization on a Kähler manifold X with
a holomorphic C

×-action satisfying Assumption 2.15. Recall that a pre-
quantum line bundle L on (X, ω) is a holomorphic line bundle whose curva-
ture is ω√−1

. Suppose such an L exists and the C
×-action lifts to a holomor-

phic action on L.

Definition 4.4. The quantization of (X, ω) is the virtual vector space

H(X) =
n⊕
q=0

(−1)qHq(X,O(L)). (4.10)
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Applying Theorem 3.14.1 to the pre-quantum line bundle, we obtain

H(X) =
⊕
p,q

(−1)p+qEpq
1 (4.11)

as virtual representations of C
×, where the spaces Epq

1 are given by (3.17).
Without loss of generality, we assume that the moment map µ is bounded

from above. Then the C
×-action is plus-meromorphic. Suppose 0 is a regular

value of µ. For simplicity, we assume that the S1-action on µ−1(0) is free.
Then the symplectic quotient X0 = µ−1(0)/S1 = X s/C

× is a smooth Kähler
manifold. We construct the symplectic cuts (X±, ω±) as the symplectic quo-
tients of the S1-action on X×C, where the weights on C are ±1, respectively
[36]. The two cuts are Kähler manifolds with holomorphic C

×-actions. X+

is compact and X− satisfies Assumption 2.15. The sets of connected com-
ponents of XC

×
± are F± = {0} ∪ {α ∈ F | µ(XC

α ) ∈ R
±}, respectively, and

XC
×

±,0 ∼= X0, XC
×

±,α ∼= XC
×

α as complex manifolds [51, Lemma 4.6], which we
now identify. Let N0 −→ X0 be the holomorphic line bundle associate to the
circle bundle µ−1(0) −→ X0. Then C

× acts on the fibers of N0 with weight
1. The holomorphic normal bundles of X0 in X± are isomorphic to N±1

0 ,
respectively. Since the action of C

× lifts to L, the pre-quantum line bundles
L0 −→ X0 and L± −→ X± exist. We have the isomorphisms L±|X0

∼= L0

and L±|X±−X0
∼= L|µ−1(R±) (see for example [51, Lemma 4.9]).

Proposition 4.5. Under the above assumptions, we have
1. a gluing formula under symplectic cutting

charH(X) = charH(X+) + charH(X−) − dimCH(X0); (4.12)

2. that quantization commutes with reduction, i.e.,

dimC H(X)C
×

= dimC H(X0). (4.13)

Proof. The results follow from (3.41) using the same techniques as in [19].
�

Remark 4.6. 1. We can define Hc(X) =
⊕n

q=0(−1)qHq
c (X,O(L)) as the

counterpart of (4.10) with compact support. It satisfies a similar gluing
formula

charHc(X) = charH(X+) + charHc(X−) − dimC H(X0). (4.14)

However dimC Hc(X)C
× �= dimCH(X0) in general. For example, take X = C

and choose the moment map µ(z) = −1 − −12|z|2. Then dimC Hc(X)C
×

= 1
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but X0 = ∅.
2. When (X, ω) is symplectic, the individual cohomology groups in (4.10) do
not make sense, but H(X) can be defined as the index of a Spinc-Dirac opera-
tor. In fact, (4.12) and (4.13) were proved for compact symplectic manifolds
in [19]. (4.13) is the S1-case of a conjecture by Guillemin and Sternberg
[27]. See [29, 38, 39, 45, 46] for higher rank torus and non-Abelian group
actions. For non-compact symplectic manifolds satisfying Assumption 2.15,
the validity of (4.12) and (4.13) remains open.

Remark 4.7. In ordinary Morse theory, the underlying real manifold is (the
bosonic part of) the configuration space of a supersymmetric system [48].
In holomorphic Morse theory, the complex manifold X , if it is Kähler, can
be interpreted as the phase space of a bosonic system; this interpretation
is adopted in Definition 4.4. The spectral sequence in Theorem 3.14.1 or
Corollary 3.15.1 that converges to the quantum Hilbert space (4.10) is a
finite dimensional model of the BRST approach in conformal field theory
[22]. In [21, 9], the case of flag manifolds (see subsection 4.2) was considered.
Here we show that the analogy works for any quantizable Kähler manifold
with a Hamiltonian S1-action satisfying Assumption 2.15. The extension
of the present work to infinite dimensional settings could have significant
implications.

Acknowledgement. Part of this work was completed at School of Mathe-
matics, Institute for Advanced Study, Princeton. The author would like to
thank M. Božičević, M. Eastwood, V. Mathai, J. McCarthy and W. Zhang
for helpful discussions and the referee for useful remarks.

References

1. E. Akyildiz, Bruhat decomposition via Gm-action, Bull. l’Acad. Polon-
aise Sci. 28 (1980) 541-547

2. M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic
complexes, Part I, Ann. Math. 86 (1967) 374-407; Part II, Ann. Math.
87 (1968) 451-491

3. M. F. Atiyah and I. M. Singer, The index of elliptic operators. III,
Ann. Math. 87 (1968) 546-604
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Astérisque, v. 87-88, Soc. Math. de France, (Paris, 1981), pp. 43-60

13. J. L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and
holonomic systems, Invent. Math. 64 (1981) 387-410

14. J. B. Carrell and D. Lieberman, Holomorphic vector fields and Kaehler
manifolds, Invent. Math. 23 (1973) 303-309

15. J. B. Carrell and A. J. Sommese, C∗-actions, Math. Scad. 43 (1978)
49-59; Correction to “ C∗-actions”, idbd. 53 (1983) 32



On the Instanton Complex of Holomorphic Morse Theory 805

16. J. B. Carrell and A. J. Sommese, Some topological aspects of C∗ ac-
tions on compact Kaehler manifolds, Comment. Math. Helvetica 54
(1979) 567-582

17. J. B. Carrell and A. J. Sommese, Filtration of meromorphic C∗ actions
on complex manifolds, Math. Scad. 53 (1983) 25-31
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