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The Cohomology Rings of Symplectic Quotients

Susan Tolman and Jonathan Weitsman

Let (M,ω) be a symplectic manifold, equipped with a Hamiltonian
action of a compact Lie group G. We give an explicit formula for
the cohomology ring of the symplectic quotient M//G in terms
of the cohomology ring of M and fixed point data. Under certain
conditions, our formula also holds for the integral cohomology ring,
and can be used to show that the cohomology of the reduced space
is torsion-free.

1. Introduction.

Let (M,ω) be a symplectic manifold, equipped with a Hamiltonian action
of a compact Lie group G. Denote the moment map for the G action by
φ : M −→ g∗ = Lie(G)∗. Assume that 0 is a regular value of φ, and let
Mred := φ−1(0)/G denote the reduced space. The inclusion i : φ−1(0) −→M

induces a map in equivariant cohomology, which, when composed with the
natural identificationH∗

G(φ−1(0)) � H∗(Mred), yields a map κ : H∗
G(M) −→

H∗(Mred), called the Kirwan map. According to a theorem of Kirwan, this
map is a surjection. The purpose of this paper is to answer the natural
question: What is the kernel of κ?

This question was answered explicitly by Kirwan in a number of examples
[K1]. In [W] Witten formulated the idea of nonabelian localization: this term
refers to a procedure which computes the evaluation on the fundamental class
of a symplectic quotient

∫
Mred

κ(α) (for any equivariant cohomology class α)
in terms of data on the original manifold M . For Witten the data on M
consisted of the critical sets of the function ||φ||2 (the norm squared of the
moment map). Motivated by Witten’s work, Jeffrey and Kirwan [JK] gave
a proof of Witten’s results using the geometry of the image of the moment
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map, and also found an alternative version of nonabelian localization (the
residue formula, Section 8 of [JK]) which computes

∫
Mred

κ(α) in terms of
fixed point data on M (in other words the components of the fixed point set
of the maximal torus, the characteristic classes of their normal bundles, the
weights of the action of the maximal torus on the normal bundles, and the
values of the moment map on the components of the fixed point set) (See
also [GK, P, V]). Since, by Poincaré duality, β ∈ H∗

G(M ; Q) is in the kernel
of κ exactly if the integral of κ(αβ) over Mred is zero for all α ∈ H∗

G(M,Q),
the kernel of κ can, in principle, be computed from their results, in the case
of rational cohomology. In practice it is often difficult to compute the ring
structure of the cohomology of a manifold in terms of its intersection pairings
(or vice versa).

In this paper we give a description of the kernel of κ in terms of fixed
point data. For according to a theorem of F. Kirwan, the natural restriction
map from the equivariant cohomology of M to the equivariant cohomology
of the fixed point set is an injection. We compute the kernel of κ in terms
of the image of this map. This image is well understood in many examples.
Moreover, it is determined by the subset of one and zero dimensional orbits
(see [GKM, TW] and references therein). Our methods also give a basis
for the kernel of κ, and, under some restrictions, allow us to compute the
integral cohomology rings of symplectic quotients.

Let us recall a number of definitions. Let G be a compact Lie group.
Choose a maximal torus T and let W := N (T )/T be the corresponding Weyl
group. Let ε : W −→ ±1 take the value 1 on all elements of even length,
and −1 on all elements of odd length. Choose a positive Weyl chamber, and
let ρ denote the product of the positive weights.

Let EG be a contractible space on which G acts freely. Given a G action
on a space X , define the equivariant cohomology of X as H∗

G(X,Q) :=
H∗(X ×G EG,Q).

There is a natural fibration π : Y ×T EG −→ Y ×G EG, with
fiber G/T . Moreover, as long as we restrict to rational coefficients, ev-
ery cohomology class on G/T extends globally to one on Y ×T EG.
Hence, by the Leray-Hirsch Theorem, there exists an isomorphism between
H∗

G(X,Q) ⊗ H∗(G/T,Q) and H∗
T (X,Q); this isomorphism naturally iden-

tifies H∗
G(X,Q) with the Weyl invariant part of H∗

T (X,Q), which we shall
denote by H∗

T (X,Q)W .
Recall also that the natural projection X ×T ET −→ ET/T induces a

map in cohomology that makes H∗
T (X,Q) into an H∗

T (·,Q) module. Ad-
ditionally, there is a natural identification of H∗

T (·,Q) with the symmetric
algebra in the group of characters of T . Composing these two maps, we
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may consider ρ as an element of H∗
T (X,Q). We can now state the our main

theorem.

Theorem 1. Let a compact Lie group G with maximal torus T act on a
compact symplectic manifold M with moment map φ : M −→ g∗; let φT :
M −→ t∗ denote the moment map for the induced action of T . Assume that
0 is a regular value of φT and of φ. Let F denote the set of fixed points of
the T action. For all ξ ∈ t, define

Mξ := {m ∈M | 〈φ(m), ξ〉 ≤ 0},
Kξ := {α ∈ H∗(M ; Q) | α|F∩Mξ

= 0 }, and

K :=
∑
ξ∈t

Kξ.

Then, under the identification of H∗
G(M,Q) with H∗

T (M,Q)W , the kernel
of the Kirwan map κG : H∗

T (M,Q)W −→ H∗(M//G,Q) is given by
{
ρ−1

∑
w∈W

ε(w) · w(k) | k ∈ K ⊂ H∗
T (M,Q)

}
. (1.1)

Theorem 1 follows immediately from Proposition 6.1 and Theorem 3 of
Section 5. Proposition 6.1 reduces the proof of Theorem 1 to the case of
the action of an abelian group; this case is proved in Theorem 3, which is
the main technical result of this paper. The main ingredient of the proof
of Theorem 3 is an application of Morse theory (as extended by Bott and
Kirwan) to functions associated to the moment map φ. Specifically, we study
the functions given by the components φξ of the moment map, and by its
square ||φ||2. The Morse theory of these functions has remarkable properties,
as shown by Frankel ([F]) and by Atiyah and Bott [AB1, AB2]. These
properties can be summarized by the statement that as Morse functions,
these functions are self-completing, and equivariantly, they are locally self-
completing. More technically, we choose some critical value c of the relevant
function f , and suppose that the interval [c − ε, c + ε] contains no critical
values of f other than c. Write M± = f−1(−∞, c± ε). Then the long exact
sequence of the pair (M+,M−) breaks up into short exact sequences

0 −→ H∗(M+,M−) −→ H∗(M+) −→ H∗(M−) −→ 0,

where the H∗(·) denotes either ordinary or equivariant rational cohomology.
When applied to the function f = φξ for some ξ in the Lie algebra of T ,

this sequence can be used to study the equivariant cohomology of T . For



754 S. Tolman and J. Weitsman

example, Kirwan used this approach to prove that f is a perfect and equivari-
antly perfect Morse function, and that the cohomology of M is equivariantly
formal. More importantly for our purposes, Kirwan also showed that the re-
striction of the equivariant cohomology of M to the equivariant cohomology
of the fixed point set in an injection. This technique is used in a companion
paper to analyze the image of this map [TW].

In order to study the symplectic quotient Mred, we consider instead the
Morse theory associated to the function f = ||φ||2. This is convenient be-
cause the minimum of this function is precisely φ−1(0), whose equivariant
cohomology coincides with the (ordinary) cohomology of Mred. In the con-
text of gauge theory such Morse functions were studied by Atiyah and Bott
[AB2]; in the context of finite-dimensional manifolds they were studied by
Kirwan [K]. This variant of Morse theory is the key ingredient in the proof
of the surjectivity theorem cited above. It is also the key element in our
proof of Theorem 3.

The remainder of this paper is structured as follows. In Section 2, we
study the key local lemma, due to Atiyah and Bott, which implies the equiv-
ariant perfection of the various Morse functions which we will study. We
then proceed, in Section 3, to give a simple proof of a version (Theorem 2)
of our main theorem which applies to the case where the torus T is one-
dimensional. This serves to illustrate the basic ideas of our proof in a simple
setting, where we may use Morse-Bott theory rather than its elaboration to
the case of degenerate Morse functions. We then bite the bullet in Section 4,
introducing the ideas of Morse-Kirwan theory that will be required in Sec-
tion 5, where the main theorem (Theorem 3) is proved for the case of abelian
group actions; we include a version for noncompact manifolds as Theorem
4. In Section 6 we show how the formula of Theorem 3 can be combined
with the results of Martin (Theorem 6.5 [M], see also Brion [B]) to provide
a formula (Theorem 6.1) for the kernel of the Kirwan map in the case of
nonabelian group actions. Combined with Theorem 3, this result gives the
main result of our paper (Theorem 1).

The last three sections are devoted to extensions of the basic ideas of
the paper. In Section 7, we state and prove versions of our results which
hold for cohomology with integer coefficients. In Section 8 we use methods
similar to those used in the proof of the main theorem to give a condition for
the cohomology rings of symplectic quotients to be torsion-free. Finally in
Section 9 we show how our method can be used to compute the cohomology
rings of compact smooth projective toric varieties (which are all given as
symplectic quotients by tori of Euclidean spaces).

Acknowledgements: We would like to thank Victor Guillemin, who
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2. The key lemma.

The first step in the proof of our main theorem is a local lemma. This
lemma, due to Atiyah and Bott, is the key fact behind many of the results
we describe.

Lemma 2.1. (Atiyah-Bott) Let a compact Lie group G act on a manifold
X and an oriented real vector bundle E over X . Assume that a circle

subgroup S1 ⊂ G acts on E so that the fixed point set is precisely X .
Choose an invariant metric on E, and let D and S denote the unit disk and

sphere bundle, respectively. Then the natural long exact sequence in relative
equivariant cohomology splits into a short exact sequence:

0 −→ H∗
G(D, S; Q) −→ H∗

G(D; Q) −→ H∗
G(S; Q) −→ 0.

Since D is homotopic to X , we have an identification of H∗
G(D; Q) and

H∗
G(X ; Q). Moreover, the Thom isomorphism identifies H∗−λ

G (X ; Q) and
H∗

G(D, S; Q). Under these identifications, the natural map H∗
G(D, S; Q) −→

H∗
G(D; Q) in the long exact sequence in relative cohomology is identified

with the map from H∗−λ
G (X ; Q) to H∗

G(X ; Q) given by multiplication by the
equivariant Euler class of E, where λ is the dimension of E. An alternate
formulation of this lemma is that this Euler class is not a zero divisor.

Notice that the corresponding sequence in ordinary cohomology is never
exact for any vector bundle of positive rank for dimensional reasons.

3. The simplest case: S1 actions.

In this section we prove our theorem in a special case. Specifically, we com-
pute the rational cohomology ring of the reduction of a compact symplectic
manifold by a circle. The essential features of our argument are already clear
in this case.
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Lemma 3.1. Let the circle S1 act on a compact symplectic manifold M
with a moment map φ : M −→ R. Let a function f : M −→ R be defined in

any of the three following ways: let f := φ2, let f := φ, or let f := −φ.
Let C be a critical set of index λ for f , and assume that C is the only criti-

cal set in f−1(f(C)−ε, f(C)+ε) for ε > 0. DefineM+ := f−1(−∞, f(C)+ε),
and M− := f−1(−∞, f(C)− ε). Then there exists a short exact sequence in
equivariant cohomology

0 −→ H∗−λ
S1 (C; Q) −→ H∗

S1(M+; Q) −→ H∗
S1(M−; Q) −→ 0.

Moreover, the composition of the injection H∗−λ
S1 (C) −→ H∗

S1(M+) with the
restriction map H∗

S1(M+) −→ H∗
S1(C) is the cup product with the Euler

class of the negative normal bundle of C.

In other words, every equivariant cohomology class on M− extends to
M+. The restriction to C of cohomology classes on M+ which vanish on
M− is injective and its image is the set of multiples of the Euler class of the
negative normal bundle of C.

Proof. Except in the case where f = φ2 and C = φ−1(0), the function f is
Morse-Bott at every connected component C of the critical set, the set C is
a component of the fixed point set, and the negative normal bundle to C is
oriented. By Morse-Bott theory and the Thom isomorphism, there is a long
exact sequence

· · ·−→H∗−λ
S1 (C;Q)−→H∗

S1(M+;Q)−→H∗
S1(M−;Q)−→H∗+1−λ

S1 (C;Q)−→· · ·.

Moreover, the composition of the map H∗−λ
S1 (C; Q) −→ H∗

S1(M+; Q) with
the restriction map from H∗

S1(M+; Q) −→ H∗
S1(C; Q) is precisely multiplica-

tion by the Euler class of the negative normal bundle. Since the circle fixes
C but otherwise acts freely on the negative normal bundle, the Euler class
is not a zero divisor by Lemma 2.1. Therefore, this composition is injective.
Thus the map H∗−λ

S1 (C; Q) −→ H∗
S1(M+; Q) is also injective.

In contrast, the function φ2 is not Morse-Bott at the critical set C :=
φ−1(0). Nevertheless, because C is the minimum of φ2, the spaces M+ and
C are homotopic, and M− is empty. So the lemma follows immediately. �

Lemma 3.1 leads immediately to the following theorems of Kirwan.

Theorem 3.2. (Kirwan) Let S1 act on a compact symplectic manifold M
with a moment map and let F denote the fixed point set. The natural

restriction H∗
S1(M ; Q) −→ H∗

S1(F ; Q) is injective.
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This is a corollary of Lemma 3.1 when we take the moment map as our
Morse function. It is proved by induction on the proposition that the natural
restrictionH∗

S1(φ−1(−∞, a); Q) −→ H∗
S1(F ∩ φ−1(−∞, a); Q) is an injection

for a regular value a with n critical values below it.

Theorem 3.3. (Kirwan) Let S1 act on a compact symplectic manifold M
with a moment map φ : M −→ R. The Kirwan map κ : H∗

S1(M ; Q) −→
H∗(Mred; Q) is surjective.

This is also a corollary of Lemma 3.1 by an argument analogous to The-
orem 3.2 when we take the function φ2 as our Morse function and note that
0 is its minimum value.

We can now state and prove our main theorem for this special case.

Theorem 2. Let S1 act on a compact symplectic manifoldM with moment

map φ : M −→ R. Assume that 0 is a regular value of φ. Let F denote the
set of fixed points; write M− := φ−1(−∞, 0), and M+ := φ−1(0,∞). Define

K± := {α ∈ H∗
S1(M ; Q) | α|F∩M± = 0}, and

K := K+ ⊕K−.

Then there is a short exact sequence:

0 −→ K −→ H∗
S1(M ; Q) κ−→ H∗(Mred; Q) −→ 0,

where κ : H∗(M ; Q) −→ H∗(Mred; Q) is the Kirwan map.

Remark 3.4. More generally, let a circle act on a manifold M . A formal
moment map is a Morse-Bott function Φ : M −→ R such that the critical
points of Φ correspond exactly to the fixed points. (See Ginzburg-Guillemin-
Karshon [GGK].) Then, as long as M is compact and 0 is a regular value of
Φ, the theorem above is also true for any formal moment map; this follows
easily from a quick examination of the proof.

Remark 3.5. Let i± : M± −→ M denote the natural inclusions. By The-
orem 3.2, K± = ker i∗±. In this case, a simple proof of our theorem can
be given by an application of the Mayer-Vietoris sequence to the triple
(M,M+,M−). The proof given below is one which generalizes to actions
of higher-rank tori.
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Proof. The injectivity of the inclusion K −→ H∗
S1(M ; Q) is obvious, and the

surjectivity of the Kirwan map κ : H∗
S1(M ; Q) −→ H∗(Mred; Q) is Theo-

rem 3.3.
First, we show that K ⊆ ker(κ). By definition, for every α ∈ K+,

α|F∩M+ = 0. As in the proof of Theorem 3.2, applying Lemma 3.1 to the
function φ and using induction, we see that α|φ−1(−∞,ε) = 0 for small ε > 0.
In particular α|φ−1(0) = 0. Therefore, K+ ⊆ ker(κ). A similar argument
using the function −φ shows that K− ⊆ ker(κ). Therefore, K = K+⊕K− ⊆
ker(κ).

It remains to show that ker(κ) ⊆ K. Order the set of connected compo-
nents of the fixed point set {Fi}N

i=1 ofM so that if i < j then φ(Fi)2 ≤ φ(Fj)2.
We wish to show that if α ∈ H∗

S1(M ; Q) satisfies α|φ−1(0) = 0, then α is in
K. By Theorem 4.2 it suffices to find α′ ∈ K such that α|Fi = α′|Fi for all i.
By induction, it suffices to prove that given p > 0 and any α ∈ H∗

S1(M ; Q)
which vanishes on φ−1(0) and on Fi for all i < p, there exits α′ ∈ K such
that α′|φ−1(0) = α|φ−1(0) and α′|Fi = α|Fi for all i ≤ p.

Assume that we are given such an α. Applying Lemma 3.1 to the function
φ2, we see that α|Fp is a multiple of the Euler class e of the negative normal
bundle of Fp for the function φ2. By symmetry, we may assume that φ(Fp) >
0. Then Fp is also a critical set for the function φ, and the Euler class of
the negative normal bundle of Fp for φ is also e. Applying induction and
Lemma 3.1 to the function φ, we see that there exists α′ ∈ H∗

S1(M ; Q) such
that α′|Fp = α|Fp , and such that the restriction of α′ to φ−1(−∞, f(Fp)− ε)
is trivial for all ε > 0. In particular, α′|Fi = 0 for all i such that φ(Fi) ≤ 0,
and thus α′ ∈ K− ⊂ K. Similarly, α′|Fi = 0 for all i < p. The result follows.
�

4. Torus actions and Morse-Kirwan theory.

In this section, we review Morse-Kirwan theory and Kirwan’s application of
it to the cohomology ring of symplectic manifolds with Hamiltonian torus
actions. The basic idea is that in order to generalize the earlier result, we do
not really require our function to be a non-degenerate Morse-Bott function.
All we need is that our function behave like a Morse function on the level of
cohomology, and that Lemma 2.1 holds for the normal bundles of the critical
sets. Kirwan shows that although functions arising from the square of the
moment map are not non-degenerate, they do satisfy both these properties.

We have already encountered something of this kind in the first section.
Let the circle S1 act on a compact symplectic manifold M with moment
map φ : M −→ R. As mentioned in the proof of Lemma 3.1, the critical set
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φ−1(0) of function φ2 is degenerate. However, as 0 is a minimum, the second
Morse lemma still holds at this critical level, so that this kind of degeneracy
is inconsequential.

Kirwan developed an extension of Morse theory which applies to func-
tions which have well behaved degeneracies – morally, they look like the
product of a minimum and a non-degenerate Morse-Bott function. In par-
ticular, she shows that for a critical set C of such a function f : M −→ R

there is a long exact sequence

· · ·−→H∗−λ
S1 (C;Q)−→H∗

S1(M+;Q)−→H∗
S1(M−;Q)−→H∗+1−λ

S1 (C;Q)−→· · ·.

and that the composition of the map H∗−λ
S1 (C; Q) −→ H∗

S1(M+; Q) with
the restriction map from H∗

S1(M+; Q) −→ H∗
S1(C; Q) is precisely multi-

plication by the Euler class of the negative normal bundle to C. Here,
M+ := f−1(f(C)+ ε), and M− := f−1(f(C)− ε). Kirwan then showed that
this extension of Morse theory applies to the square of the moment map for
a torus action on a manifold. Finally, she used this theory and Lemma 2.1
to argue exactly as in the proof of Lemma 3.1, and thus prove the following
Lemma:

Lemma 4.1. (Kirwan) Let a torus T act on a symplectic manifold M with
a proper moment map φ : M −→ t∗. Choose a fixed inner product on the

dual of the Lie algebra t∗. Let a function be defined f : M −→ R in either
of the two following ways

1. Given a ∈ t∗, define f : M −→ R by f(x) = 〈φ(x)− a, φ(x)− a〉.

2. Given any ξ ∈ t, define f := φξ.

Let C be a critical set of index λ for f and assume that C is the
only critical set in f−1(f(C) − ε, f(C) + ε) for some ε > 0. Define

M+ := f−1(−∞, f(C) + ε), and M− := f−1(−∞, f(C) − ε). Then there
exists a short exact sequence in equivariant cohomology

0 −→ H∗−λ
T (C; Q) −→ H∗

T (M+; Q) −→ H∗
T (M−; Q) −→ 0.

Moreover, the composition of the injection from H∗−λ
T (C; Q) −→ H∗

T (M ; Q)
with the restriction map from H∗

T (M ; Q) −→ H∗
T (C; Q) is the cup product

with the equivariant Euler class of the negative normal bundle.

The following theorems are direct consequences of this Lemma:
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Theorem 4.2. (Kirwan) Let T act on a symplectic manifold M with a
moment map φ. Assume that the set of connected components of F , the fixed

point set, is finite, and that there exists a generic ξ ∈ t such that φξ is proper
and bounded below. Then the natural restriction H∗

T (M ; Q) −→ H∗
T (F ; Q)

is an injection.

This follows by applying Lemma 4.1 to the function φη for a generic η ∈ t

close to ξ, as in Theorem 3.2.
Note that the restriction map may not be injective if we drop the as-

sumption on the image of M ; for example, consider the cotangent bundle to
S1.

Theorem 4.3. (Kirwan) Let T act on a symplectic manifold M with a
proper moment map, and assume that the set of connected components of

the fixed point set is finite. If 0 is a regular value of φ, then the Kirwan map
κ : H∗

T (M ; Q) −→ H∗(Mred; Q) is a surjection.

This follows by applying Lemma 4.1 to the function ||φ||2, as in Theorem
3.3.

5. The main theorem for abelian group actions.

We now apply the ideas in the previous section to the case we are interested
in: computing the cohomology of reduced spaces.

Theorem 3. Let a torus T act on a compact symplectic manifold M with a

moment map φ : M −→ t∗. Assume 0 is a regular value of φ. Let F denote
the set of fixed points. For all ξ ∈ t, define

Mξ := {m ∈M | 〈φ(m), ξ〉 ≤ 0},
Kξ := {α ∈ H∗(M ; Q) | α|F∩Mξ

= 0 }, and

K :=
∑
ξ∈t

Kξ.

Then there is a short exact sequence:

0 −→ K −→ H∗
T (M ; Q) κ−→ H∗(Mred; Q) −→ 0,

where κ : H∗
T (M ; Q) −→ H∗(Mred; Q) is the Kirwan map.

Remark 5.1. As before, if we denote by iξ the inclusion map iξ : Mξ −→
M , then Kξ = ker i∗ξ .
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Proof. The injectivity of the inclusion K −→ H∗
T (M ; Q) is obvious. The sur-

jectivity of the Kirwan map κ : H∗
T (M ; Q) −→ H∗(Mred; Q) is Theorem 4.3.

It remains to show that K = ker(κ).
First we show that K ⊆ ker(κ). Choose ξ ∈ t and α ∈ Kξ. By applying

Lemma 4.1 to the function f := φξ inductively, as in the proof of Theo-
rem 4.2, we get α|Mξ

= 0. In particular, α|φ−1(0) = 0. Since there are only a
finite number of distinct Kξ’s, we are done.

It remains to show that ker(κ) ⊂ K. Order the critical sets {Ci}N
i=1 of

||φ||2 so that i < j exactly if ||φ(Ci)||2 < ||φ(Cj)||2. (We may assume for
simplicity that no two critical sets assume the same value.) We wish to show
that if α ∈ H∗

T (M) satisfies α|φ−1(0) = 0, then α is in K. By Theorem 4.2
it suffices to find α′ ∈ K such that α|F = α′|F . By induction, it suffices to
prove that given any p > 1 and any α ∈ H∗

T (M) which vanishes on Ci for all
i < p, there exists α′ ∈ K such that α′|Ci = α|Ci for all i ≤ p. Here, we use
the fact that every fixed set is a critical set, and that the first critical set is
C1 = φ−1(0).

Assume that we are given such an α. Applying Lemma 4.1 to the function
||φ||2, we see that α|Cp is a multiple of the Euler class e of the negative normal
bundle of Cp for the function ||φ||2. The point x ∈M is critical for ||φ−a||2
exactly if the vector (φ(x) − a)M is zero, where for any b ∈ t∗, bM denotes
the vector field on M associated to the one parameter subgroup generated
by the element in t associated to b by the invariant inner product. Therefore,
for any λ ∈ R+, Cp is a critical set for the function ||φ+λφ(Cp)||2. Moreover,
the Euler class of the negative normal bundle on Cp for this new function is
still e.

SinceM is compact, for sufficiently large λ, ||φ(F )+λφ(Cp)||2 < ||φ(Cp)+
λφ(Cp)||2 for all F ∈ F whose inner product with Cp is negative. Choose
such a λ and apply Lemma 4.1 to the function f := ||φ + λφ(Cp)||2.
Since α|Cp is a multiple of e ∈ H∗

T (Cp), there exists α′ ∈ H∗(M) such that
α′|Cp = α|Cp and the restriction α|Ci is trivial for all i such that f(Ci) <
f(Cp). In particular, α′|F = 0 for all Ci whose inner product with φ(Cp) is
negative. Hence α′ lies in K. Finally, for all i < p, ||φ(Ci) + λφ(Cp)||2 <
||φ(Cp) + λφ(Cp)||2, and hence α′|Ci = 0. �

Remark 5.2. (Chern classes) Theorem 3 allows the cohomology ring of
the reduced space Mred to be computed in terms of fixed point data on M ,
namely the cohomology ring of the fixed point set and the restriction of
each equivariant cohomology class on M to this set. The Chern classes of
the reduced space Mred can also be computed in terms of fixed point data,
namely, the restriction of each equivariant Chern class to the fixed point
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set. This is because TM |φ−1(0) = π∗TMred ⊕ t∗
C
, where π : φ−1(0) −→

φ−1(0)/T = Mred is the projection, and t∗
C

is a trivial bundle. Thus, in
terms of the Kirwan map κ, ci(Mred) = κ(ci(M)). On the other hand, by
injectivity, ci(M) is determined by its image in H∗

T (F ).

Remark 5.3. (Computability) The description of the kernel of κ given in
Theorem 3 is algorithmically computable in the following sense. The coho-
mology ring H∗

T (M) is a finitely generated module over H∗
T (pt). Suppose we

are given a finite basis for this module. Then by solving a finite set of linear
equations, we can produce a finite basis for the submodule Kξ, for any ξ.
Since only a finite number of elements ξ ∈ t∗ give rise to distinct submodules
Kξ, we may produce a finite basis for K.

Theorem 4. Let a torus T act on a symplectic manifold M with a moment
map φ : M −→ t∗. Assume 0 is a regular value. Assume that the set

of connected components of the set of fixed points is finite and that there
exists η ∈ t such that φη is proper and bounded below. For all ξ ∈ t, define

Mξ := {m ∈M | 〈φ(m), ξ〉 ≤ 0},

Kξ := {α ∈ H∗(M ; Q) | α|Mξ
= 0 }, and

K :=
∑
ξ∈t

Kξ.

Then there is a short exact sequence:

0 −→ K −→ H∗(M ; Q) κ−→ H∗(Mred; Q) −→ 0,

where κ : H∗
T (M ; Q) −→ H∗(Mred; Q) is the Kirwan map.

The argument in the non-compact case is nearly identical to the proof in
the compact case; except that since φξ may not be proper, there may exist
cohomology classes which vanish on Mξ ∩ F but not on Mξ itself.

6. Reduction from the non-abelian to the abelian case.

In this section, we show that, in order to compute the cohomology ring for
symplectic quotients by non-abelian groups, it suffices to find the kernel of
the Kirwan map for the abelian case.

We begin by repeating some notions from the Introduction. Let G be a
compact Lie group. Choose a maximal torus T and let W := N (T )/T be
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the corresponding Weyl group. Let ε : W −→ ±1 take the value 1 on all
elements of even length, and −1 on all elements of odd length. Choose a
positive Weyl chamber, and let ρ denote the product of the positive weights.

Let EG be any contractible space on which G acts freely. Given a G

action on a manifold X , define the equivariant cohomology of X to be
H∗

G(X,Q) := H∗(X ×G EG,Q).
There is a natural fibration π : Y ×T EG −→ Y ×G EG, with

fiber G/T . Moreover, as long as we restrict to rational coefficients, ev-
ery cohomology class on G/T extends globally to one on Y ×T EG.
Hence, by the Leray-Hirsch Theorem, there exists an isomorphism between
H∗

G(X,Q) ⊗ H∗(G/T,Q) and H∗
T (X,Q); this isomorphism naturally iden-

tifies H∗
G(X,Q) with the Weyl invariant part of H∗

T (X,Q), which we shall
denote by H∗

T (X,Q)W .
Recall also that the natural projection X ×T ET −→ ET/T induces a

map in cohomology that makes H∗
T (X,Q) into an H∗

T (·,Q) module. Ad-
ditionally, there is a natural identification of H∗

T (·,Q) with the symmetric
algebra in the group of characters of T . Composing these two maps, we may
consider ρ as an element of H∗

T (X,Q). We can now state the main result of
this section.

Proposition 6.1. Let a compact Lie group G with maximal torus T act on

a compact symplectic manifold M with a G moment map φ : M −→ g∗; let
φT : M −→ t∗ denote the moment map for the induced action of T . Assume
that 0 is a regular value of φT . Let K be the kernel of the Kirwan map for

the torus κT : H∗
T (M,Q) −→ H∗(M//T,Q).

Then, under the identification of H∗
G(M,Q) with H∗

T (M,Q)W , the kernel
of the Kirwan map for G, κG : H∗

T (M,Q)W −→ H∗(M//G,Q), is given by

{
ρ−1

∑
w∈W

ε(w) · w(k) | k ∈ K ⊂ H∗
T (M,Q)

}
. (6.2)

Corollary 6.3. Let L be a W -submodule of K that generates K. Then the

kernel of κG is generated by

{
ρ−1

∑
w∈W

ε(w)·w(l·α)) | l ∈ L ⊂ H∗
T (M,Q) and α ∈ H∗(G/T,Q)

}
. (6.4)

Moreover, the dimension (over Q) of 6.4 is at most that of L itself.

These results were proved in the algebraic case by Brion [B]. The Corol-
lary follows from Proposition 6.1 exactly as in [B]. The main ingredient in
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our extension of the Proposition 6.1 to the symplectic case is the following
result of Martin [M].

Theorem 6.5. Let a compact Lie group G with maximal torus T act on
a compact symplectic manifold M with a moment map φ : M −→ g∗. Let

φT : M −→ t∗ be the induced moment map for the restriction of the action
to the torus T , and assume that 0 is a regular value of φT . Let K be the

kernel of the Kirwan map for the torus κT : H∗
T (M,Q) −→ H∗(M//T,Q).

Then the kernel of the natural restriction H∗
T (M,Q) −→ H∗

T (φ−1(0),Q) is

the set of elements

{a ∈ H∗
T (M,Q) | a · ρ ∈ K}.

Proof of Proposition 6.1. By Theorem 6.5 and the discussion above, we
see immediately that the kernel for the Kirwan map for G is exactly those
a ∈ H∗

T (M,Q)W such that a · ρ is in K.
We say that x ∈ H∗

T (M,Q) is Weyl anti-invariant if w(x) = ε(w) · x for
all w ∈W . Clearly, multiplying any anti-invariant element by ρ will make it
anit-invariant. On the other hand, every anti-invariant element is a multiple
of ρ. Thus, the kernel for the Kirwan map for G is exactly all elements of
the form b/ρ, where b ∈ K is Weyl anti-invariant.

Finally, define p : H∗
T (M,Q) −→ H∗

T (M,Q) by p(c) :=
∑

w∈W ε(w)·w(c).
Clearly p(α) is a surjection to the anti-invariant elements of H∗

T (M,Q), and
it additionally preserves K. �

Remark 6.6. (Chern classes) As in the abelian case, the Chern classes
of the reduced space Mred can be computed in terms of fixed point data,
namely, the restriction of each equivariant Chern class to the fixed point set.
This is because TM ∼= T (φ−1(0)) ⊕ g∗, while T (M//G) ⊕ g ∼= T (φ−1(0)).
Thus TM ∼= T (M//G) ⊕ gC, and c(T (M//G)) = κG(c(TM)/ρ); and again,
by injectivity, c(TM) ∈ HG(M,Q) = (HT (M,Q))W is determined by fixed
point data.

Remark 6.7. (Computability) We noted in Remark 5.3 that the descrip-
tion given in Theorem 3 for the kernel of the Kirwan map in the abelian case
was effectively computable. The same holds for our description of the kernel
of the Kirwan map in the nonabelian case given in in Proposition 6.1. This
is because Corollary 6.3 shows that the kernel of κG can be obtained from
that of κT by a finite algorithm.



The Cohomology Rings of Symplectic Quotients 765

7. Extending to the integers.

So far in this paper we have restricted our attention to rational cohomology.
In fact, many of the results we have proved have their analogs in integral
cohomology; but there are a number of subtleties which occur.

In order to use any of the methods of this paper, we must verify that
an analog of Lemma 2.1 holds over the integers. It is easy to see that
the naive generalization of Lemma 2.1 is false. Consider, for example, the
trivial plane bundle C ⊕ C over RP3, and let S1 act on the plane bundle
by λ · (y, z) = (λy, λ2z). Since S1 acts trivially on RP3, the equivariant
cohomology of RP3 is the tensor product of the cohomology of RP3 and the
cohomology of BS1 = CP∞. The Euler class of this bundle is 2x2, where x
denotes the generator of the cohomology of CP∞. This class clearly is a zero
divisor, as it annihilates the two dimensional cohomology of RP3.

In order to avoid such examples, we have to place some restrictions on
the action, or else on the cohomology of the fixed point set. The local result
we obtain is the following.

Lemma 7.1. Let a torus T act on an oriented vector bundle E over a man-

ifold X , fixing X . Assume that there exists S1 ⊂ T which does not fix any
point in E � X . Assume also that, for each prime p, one of the following

two conditions is satisfied:

1. The cohomology of X has no p torsion.

2. For every point m ∈ E �X , there exists a Z/p ⊂ T which acts freely
on m.

Choose an invariant metric on E, and let D and S denote the unit disk
and sphere bundle, respectively. The natural long exact sequence in relative

equivariant cohomology splits into a short exact sequence:

0 −→ H∗(D, S; Z) −→ H∗(D; Z) −→ H∗(S; Z) −→ 0.

Again, this is equivalent to the statement that the Euler class of E is
not a zero divisor. To prove this, it suffices to show that each weight is not
a zero divisor. Therefore, it is enough to note that for any T -representation
on C, the corresponding weight is not divisible by p if there exists a Z/p ⊂ T

which acts freely on every point except 0.
Checking the proof of Kirwan’s injectivity theorem (Theorem 4.2), it

is easy to see that it holds over the integers wherever this version of the
Atiyah-Bott lemma holds for every fixed point. Thus:
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Proposition 7.2. Let a torus T act on a symplectic manifold M with a
moment map φ. Assume that the set of connected components of F , the

fixed point set, is finite, and that there exists a generic ξ ∈ t such that φξ is
proper and bounded below. Suppose in addition that for every prime p, one
of the following two conditions is satisfied:

1. The integral cohomology of F has no p-torsion, or:

2. For every point m ∈ M which is not fixed by the T−action, there

exists a subgroup of T congruent to Z/p which acts freely on m.

Then the natural restriction H∗
T (M ; Z) −→ H∗

T (F ; Z) is an injection.

In particular, injectivity holds if the fixed point set has no torsion, or if
the action is quasi-free.

Integer analogues of Kirwan’s surjectivity theorem (Theorem 4.3), and
our main result (Theorem 3) also hold under a similar set of restrictions in
the case of an S1 action. Once again, the proof amounts to noting that the
proofs given earlier go through without change as long as the Atiyah-Bott
lemma holds for the negative normal bundle at each critical point. In this
case, each critical point is either fixed, in which case we apply Lemma 7.1
above, or the minimum, which works automatically.

Proposition 7.3. Let S1 act on a compact symplectic manifold M with

a moment map φ : M −→ R. Assume that for every prime p, one of the
following two conditions is satisfied:

1. The integral cohomology of F has no p-torsion, or:

2. For every point m ∈ M which is not fixed by the T−action, there
exists a subgroup of T congruent to Z/p which acts freely on m.

Then the Kirwan map κ : H∗
S1(M ; Z) −→ H∗(Mred; Z) is surjective.

Likewise,

Proposition 7.4. Let S1 act on a compact symplectic manifold M with

moment map φ : M −→ R. Assume that 0 is a regular value. Let F denote
the set of fixed points. Assume that for every prime p, one of the following

two conditions is satisfied:

1. The integral cohomology of F has no p-torsion, or:

2. For every point m ∈ M which is not fixed by the T−action, there

exists a subgroup of T congruent to Z/p which acts freely on m.
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Define

K+ := {α ∈ H∗
S1(M ; Z) | α|F+ = 0}, where F+ := F ∩ φ−1(0,∞);

K− := {α ∈ H∗
S1(M ; Z) | α|F− = 0}, where F− := F ∩ φ−1(−∞, 0); and

K := K+ ⊕K−.

Then there is a short exact sequence:

0 −→ K −→ H∗
S1(M ; Z) κ−→ H∗(Mred; Z) −→ 0,

where κ : H∗(M ; Z) −→ H∗(Mred; Z) is the Kirwan map.

Remark 7.5. In the case where S1 does not act freely on φ−1(0), the coho-
mology group H∗(Mred,Z) which enters into both these results is the orbifold
cohomology ofMred, not the cohomology of the underlying topological space.
These are of course identical over R but are, in general, different over Z.

On the other hand, when a higher-rank torus T acts on a manifold,
Kirwan’s surjectivity Theorem 4.3, and our main result (Theorem 3) require
a more subtle application of the Atiyah-Bott Lemma, in that the critical
points of the Morse function φ2 include spaces more complicated than the
fixed points. In order to generalize our proofs, we need a version of Lemma
7.1 which holds at all of these critical points. There are various conditions
under which this can be seen to hold, but the statements of these conditions
can be cumbersome. We therefore restrict our attention to the quasi-free
case, where the Euler class of the negative normal bundle (at any critical
manifold) is not a zero divisor; thus the conditions of Lemma 6.1 are met at
every point of the fixed set.

Proposition 7.6. (Kirwan) Let T act quasi-freely on a symplectic mani-

fold M with a proper moment map, and assume that the set of connected
components of the fixed point set is finite.

If 0 is a regular value, then the Kirwan map κ : H∗
T (M ; Z) −→

H∗(Mred; Z) is a surjection.

Finally we have an integer version of our main result:

Proposition 7.7. Let a torus T act quasi-freely on a symplectic manifold
M with a moment map φ : M −→ R. Assume 0 is a regular value. Assume
that the set of connected components of F , the set of fixed points, is finite

and that there exists ξ ∈ t such that φξ is proper and bounded below. For
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all ξ ∈ t, define Kξ to be the set of α ∈ H∗(M ; Z) such that α vanish when
restricted to the set Mξ = (φξ)−1(0,∞). Define K :=

∑
ξ∈tKξ. Then there

is a short exact sequence:

0 −→ K −→ H∗(M ; Z) κ−→ H∗(Mred; Z) −→ 0,

where κ : H∗
T (M ; Z) −→ H∗(Mred; Z) is the Kirwan map.

8. Torsion-free reduced spaces.

In a large class of examples, the integer cohomology of the reduced spaces
is torsion-free. We begin with the case of reduction by an S1 action.

Theorem 5. Let the circle S1 act on a compact symplectic manifold M with
a moment map φ. Assume that the integer cohomology H∗(F ; Z) of the fixed
point set F is torsion-free, and that S1 acts freely on φ−1(0). Then the
integer cohomology ring of the reduced space is also torsion-free.

Proof. Note first that because the fixed point set is torsion-free, the condi-
tions of Propositions 6.2 and 6.3 are met. Assume that p ∈ Z is a prime
and α ∈ H∗

S1(M ; Z) is a cohomology class and pα|φ−1(0) = 0. We must show
that α|φ−1(0) = 0. Order the set of connected components of the fixed point
set {Fi}N

i=1 of M so that if i < j then φ(Fi)2 ≤ φ(Fj)2. By Theorem 4.2 it
suffices to find α′ ∈ H∗

S1(M ; Z) such that α′|φ−1(0) = 0 and αFi = α′|Fi for
all i. By induction, it suffices to prove that given an integer q > 0 and any
α ∈ H∗

S1(M ; Z) which vanishes on Fi for all i < q and such that pα vanishes
on φ−1(0), there exists α′ ∈ H∗

S1(M ; Z) such that and α′|Fi = α|Fi for all
i ≤ q and α′ vanishes on φ−1(0).

Assume that we are given such an α. Applying Lemma 3.1 to the function
φ2 and the class pα, we see that pα|Fq is a multiple of the Euler class e of the
negative normal bundle of Fq for the function φ2. We now have two cases
two consider.

First, assume that p � | e. Then, by Lemma 8.1, α|Fq is also a multiple of
e. By symmetry, we may assume that φ(Fq) > 0. Then Fq is also a critical
set for the function φ, and the Euler class of the negative normal bundle of
Fq for φ is still e. Applying induction and Lemma 3.1 to the function φ,
we see that there exists α′ ∈ H∗

S1(M ; Q) such that α′|Fq = α|Fq , and such
that the restriction of α′ to φ−1(−∞, f(Fq) − ε) is trivial for all ε > 0. In
particular, α′|Fi = 0 for all i < p. and α′ vanishes on φ−1(0).
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More generally, let N ⊂ M be the connected component of the set of
points which is fixed by Z/(p) which contains Fq . Let a be the downward
Euler class for Fq in N using the Morse-Bott function φ, an b be the Euler
class for the complimentary bundle, so e = ab. Since the action on φ−1(0)
is free, the induction hypothesis assures that α|Fi = 0 for all i such that
φ(Fi) < φ(Fq) and Fi ⊂ N Therefore α|Fq = aη, for some η. Since pα|Fq =
eξ = abξ, we can substitute to get paη = abξ. Since a cannot be a zero-
divisor, this implies that pη = bξ. As before, this implies that ξ = pξ′, etc.
�

Lemma 8.1. Let a compact torus T act on an oriented real vector bundle E
over a manifold X . Assume that a circle subgroup S1 ⊂ T acts on E so that
the fixed point set of S1 and Z/(p) ⊂ S1 is precisely X for p ∈ N. Assume
also that H∗(X ;Z) is torsion-free. Let e be the equivariant Euler class of E.
Then for any cohomology classes α and β such that pα = ξe, there exists ξ′

such that pξ′ = ξ.

We start by assuming that X is fixed by T .

Proof. Identify the torus T with (S1)n. Order n-tuples as follows: first by the
sum of all coordinates, then by the first coordinate, the second coordinate,
etc. Because the action fixes X , the cohomology ring H∗

T (X ; Z) is simply the
polynomial ring in n generators on H∗(X ; Z). Every term of e such that the
sum of the coefficients is λ is an integer, where λ is the rank of E. Because
the action is p-free outside X , p cannot divide all these integers. Let I be
the largest n-tuple such that p � |ξI , and J be the largest n-tuple such that
p � |eJ . Note that be the above discussion eJ is an integer. Now consider the
coefficients of the term XI+J in the expression pα = eξ. It is

αI+J =
∑

I′+J ′=I+J

eI′ξJ ′ .

But if I ′ + J ′ = I + J, then either I = I ′ and J = J ′ or I ′ > I or J ′ > J.
Therefore, eIξJ = pβ, for some β. We can find integers s and t so that
1 = sp+ teI . Therefore, ξJ = spξJ + teIξJ = p(sξJ + tβ). �

Remark 8.2. Note that if S1 does not act freely on φ−1(0), then the the
cohomology of the reduced space must have torsion.

By examining the proof of Theorem 5, we see what difficulties will arise
in the case of reduction by the action of a torus of rank r > 1: we require
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surjectivity of the Kirwan map, which, in turn, requires a condition on either
the stabilizers of points or on the cohomology of critical points of the square
of the moment map. These are themselves reduced spaces, whose cohomol-
ogy being torsion-free will depend on a version of Theorem 5 for reduction
by tori of rank r − 1. Thus the reduced spaces will be torsion-free under
a complicated set of conditions, defined inductively. These conditions can
easily be verified in examples but are not so easy to state in full generality;
we content ourselves with the following statement.

Theorem 6. Let a torus T act quasi-freely on a symplectic manifold M with
moment map φ. Suppose 0 is a regular value of the moment map, and that
the integer cohomology H∗(F ; Z) of the fixed point set F is torsion-free. Then
the cohomology H∗(Mred; Z) of the reduced space Mred is also torsion-free.

9. Example: Smooth Toric Varieties.

In this section, to demonstrate our theorem, we show how it provides a simple
method to obtain the cohomology rings of smooth compact projective toric
varieties (see e.g. [D]). These compact symplectic manifolds can all be
obtained as symplectic quotients of Euclidean spaces.

The moment map ψ : CN −→ RN∗ for the natural action of (S1)N on
CN is ψ(z1, . . . , zN) = (|z1|2, . . . , |zN |2). The image of this moment map is
given by ψ(CN) = {ξ ∈ RN∗ | ξi ≥ 0 for all i}.

Consider a subgroup G ⊂ (S1)N . This inclusion gives rise to a short
exact sequence of Lie algebras

0 −→ g
i−→ RN π−→ t −→ 0

and its dual sequence

0 −→ t∗ π∗−→ RN∗ i∗−→ g∗ −→ 0.

For any η ∈ g∗, the function φ := i∗ ◦ ψ − η is a moment map for
the induced action of G on CN . Assume that φ is proper, and that 0 is a
regular value of φ. Let M be the reduction of CN by G at 0. The torus
T := (S1)N/G acts symplectically on M . The image of moment map for
the T action can be identified with the polytope ∆ := {ξ ∈ RN ∗ | ξj ≥
0 for all j and i∗(ξ)− η = 0}.

There is a (possibly empty) facet of ∆ for each i ∈ (1, . . . , N ), given
by ξ ∈ RN∗ such that ξj ≥ 0 for all j , i∗(ξ) − η = 0 and ξi = 0. For
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I ⊂ (1, . . . , N ), we say that the I facets intersect if the intersection of these
sets is not empty.

Since dimT = 1
2 dimM , M is a compact smooth toric variety.

Theorem 7. Let the ideals I and J ⊂ Q[x1, . . . , xN ] be defined as follows:
J = {∑αixi | α ∈ π∗(t∗)}, and I is the ideal generated by

∏
i∈I xi for all

I ⊂ (1, . . . , N ) such that the I facets do not intersect in the polytope ∆. The
cohomology ring H∗(M ; Q) is given by Q[x1, . . . , xN ]/(I,J ).

Proof. The G-equivariant cohomology of CN can be expressed as

H∗
G(CN ; Q) = Q[x1, . . . , xN ]/J .

From the construction of φ, it is clear that since φ is proper, there exists
ζ such that φζ is proper and bounded below. Therefore, we may apply
Theorem 4.

Consider a generic ξ ∈ g. The only critical point of φξ is 0, and the only
critical value is −〈η, ξ〉. If 〈η, ξ〉> 0, then 0 ∈Mξ. Since every cohomology
class which vanishes when restricted to 0 is trivial, Kξ = 0.

Now consider the case 〈η, ξ〉 < 0. The subbundle of the tangent space at
0 consisting of points with all the coordinates zero except the i’th is in the
negative normal bundle for φξ exactly if 〈βi, ξ〉 < 0, where βi = π∗(ei), and
the ei’s are the standard basis of RN ∗. Therefore, Kξ is generated by

∏
i∈I xi,

where I := {i ∈ (1, . . . , N ) | 〈βi, ξ〉 < 0}. (We know that its restriction to 0
must be of this form, and every class is determined by its restriction to 0.)

Putting this together, it is clear that K is generated by the products∏
i∈I xi, over all sets I such that there exists ξ with 〈η, ξ〉< 0 and 〈βj, ξ〉 > 0

for all j �∈ I .
Given I ⊂ (1, . . . , N ) it is clear that η is not in

∑
j �∈I R+βj exactly if

there exists ξ such that 〈η, ξ〉 < 0 and 〈βj, ξ〉 > 0 for all j �∈ I . Thus, K is
generated by

∏
i∈I xi for all sets I such that η is not in

∑
j �∈I R+βj. Finally,

η is in
∑

j �∈I R+βj exactly if the facets corresponding to the elements of I
intersect in ∆. �
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