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DaviD HOFFMAN AND JOHN McCuAN

Introduction.

In [5], the genus one helicoid was constructed and strong evidence was given
that it is embedded. The surface has infinite total curvature and contains
two orthogonal, intersecting straight lines. Its single end has Weierstrass
data modeled on that of the helicoid. It is conformally a punctured disk,
on which both dh and dg/g have double poles at the puncture. Moreover,
these forms have no residues. (See the next section for details about the
Weierstrass representation and the helicoid.) In this paper we study this
type of end. Our main result is the following.

Theorem 1. Let E be a complete, minimal annular end that is conformally a
punctured disk. Suppose dg/g and dh each have a double pole at the puncture
and that dh has no residue. If E contains a vertical ray and a horizontal
ray, then a sub-end of F is embedded and is asymptotic to a helicoid.

In particular, the genus one helicoid is embedded outside of a compact set of
R3; see Figure 1. Although our initial motivation was to establish this fact,
ends with Weierstrass data of the type described in the Theorem 1 are of
independent interest. The ends of a complete embedded minimal surface of
finite total curvature are well understood (every such end is asymptotic to
a catenoid or to a plane), but a similar characterization for embedded ends

!'Hoffman was supported by research grant DE-FG03-95ER25250 of the Applied
Mathematical Science subprogram of the Office of Energy Research, U.S. Depart-
ment of Energy, and by research grants DMS-95-96201 and DMS-0139410 of the
National Science Foundation, Division of Mathematical Sciences. Research at MSRI
is supported in part by NSF grant DMS-90-22140.

2During the writing of this paper, McCuan was supported by a National Sci-
ence Foundation Postdoctoral Fellowship at MSRI and the University of California,
Berkeley. Research at MSRI is supported in part by NSF grant DMS-9701755. He
is currently supported by NSF grant DMS-0103848

721



722 D. Hoffman and J. McCuan

of infinite total curvature is not yet known. A complete minimal surface of
finite total curvature is conformally a compact Riemann surface, punctured
in a finite number of points corresponding to the ends of the minimal surface.
The holomorphic one form dh and the meromorphic function g extend mero-
morphically to the compactification. This means that dg/g has, at worst,
a simple pole, and the poles of dh, if there are any, are restricted to the
punctures. In the catenoidal case, dh has a simple pole, which means that
on a nonplanar embedded end of finite total curvature, both dg/g and dh
have simple poles. If one desires to produce an end of infinite total curvature
with the conformal type of an isolated singularity, then dg/g must have a
pole of order two or greater.

Figure 1: The genus one helicoid.

The end of the helicoid, on which dg/g and dh both have double poles
with no residue, is the only classical, embedded annular end of infinite total
curvature. It is therefore natural to ask whether embedded, complete, min-
imal annular ends, on which both dh and dg/g have double poles, must be
embedded or asymptotic to a helicoid.

Furthermore, as a consequence of Collin’s recent positive resolution of
the generalized Nitsche Conjecture [1], a complete embedded minimal sur-
face with finite topology and more than one end must have finite total cur-
vature. This means that a complete, embedded minimal surface with finite
topology but infinite total curvature must have just one end. So if we wish to
restrict ourselves to looking at an embedded annular end with infinite total
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curvature, which is an end of a complete embedded minimal surface with
finite topology, then it is necessarily the only end of the surface. Since dh is
holomorphic on the punctured surface, its pole can only occur at the punc-
ture. The sum of the residues of any meromorphic one-form on a compact
Riemann surface is zero—a simple consequence of the fact that the union of
closed curves around the punctures bounds a compact region that is pole-
free. In particular, dh must have zero residue at its single pole. Because of
this, it is reasonable to assume, as we have in the theorem above, that the
ends we study have this property.

The authors wish to thank Harold Rosenberg, Hermann Karcher, and
Robert Osserman for useful conversations and advice.

1. The Weierstrass representation of the Helicoid.

The helicoid is a simply connected, embedded, ruled minimal surface that is
generated by a family of lines, all of which meet a fixed line orthogonally. If
we assume that the fixed line is the z3-axis, then a horizontal line that sweeps
out the helicoid rotates with constant speed (as a function of z3). From
this geometric description, we will derive an analytical one: a Weierstrass
representation of the helicoid.

A minimal surface is smooth enough so that the metric induced from
R3 has a conformal structure, making it a Riemann surface, M. The stere-
ographic projection of the Gauss map, g : M — S2, is holomorphic, and
the coordinate functions are harmonic. Let h be the holomorphic function
whose real part is 3. Even though h is, in general, only locally defined, dh
is globally defined, and one has the Weierstrass representation

P 1, _ i, _

X = X0 +Re [0, 0= (G -0 507 va)1) an ()
Po

In this representation, the integration takes place on M, and the triple

(g, dh, M) is referred to as the Weierstrass data.

On the helicoid h is globally defined, since the helicoid is simply con-
nected. Furthermore, from our geometric description, we know that a ver-
tical helix passes through each point of the surface, so dh is never zero. It
follows that h is a diffeomorphism of the helicoid with C. We desire the
horizontal lines of the helicoid to correspond to horizontal lines in C. To do
this, set z = ¢h. Then dh = —idz and, up to an additive constant,

x3(z) = Re /z dh =Im(z),

20
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where zg and z are points in C.

In particular, X maps the lines Im(z) = constant onto horizontal lines.
Since the vertical line meets the horizontal lines orthogonally and the Weier-
strass representation (1) is conformal, the preimage of the vertical line on the
the surface is a line Re(z) = « in the z—plane. Without loss of generality,
we may assume that this line is the imaginary axis, Re(z) = 0.

To determine g as a function of z, note that along the vertical axis, the
normal to the helicoid is always horizontal and rotates at a constant rate:
g(it) = €i“*, for some nonzero real constant c. By scaling in R? or by scaling
z, we may assume, without loss of generality, that ¢ = 1. Since g¢(z) is
holomorphic, g(z) = €*.

To summarize: the Weierstrass data for the helicoid may be written as

g=¢€*, dh = —idz on C.

We have explicitly written the helicoid as the conformal image of C (i.e.,
the Riemann sphere punctured at oo). Up to a real translation in z and a
rotation in R3, this data is equivalent to

dg/g=dz, dh = —idz on C. (2)

For our purposes, we want to consider it in this form.
2. Helicoid-type ends: Weierstrass representation.

We are interested in understanding the behavior of a complete, minimal,
annular end, E, that is conformally a punctured disk and has the property
that both dg/g and dh have double poles at the puncture. We choose to
represent the end on a neighborhood of infinity and so may write dh =
(co+ c1/z + (1/2%)f(2))dz, where f(z) is holomorphic and bounded. The
assumption that dh has a double pole at infinity implies that ¢ # 0. If
Im(c1) # 0, then z3 = Re [dh is not well defined on a neighborhood of
infinity. We will make the additional assumption that ¢; = 0. As was
explained in the introduction, if F is an end of a complete embedded minimal
surface of finite topology, this is always the case. Under this assumption,
((z) = i [dh is a well defined change of variables in a neighborhood of
infinity, in terms of which
dh = —idC.

Renaming the variable, we may write dh and dg/g in the following form:

dg/g = (a0 +ar/z+ (1/2°) f(2))dz,  dh = —idz, (3)
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where f(z) is holomorphic and bounded on a neighborhood of infinity. Note
that the Weierstrass representation maps any segment of Im(z) = constant
in the domain onto a curve in a horizontal plane in R3.

We will prove the following propositions.

Proposition 1. Let E be a complete, minimal end with Weierstrass data
satisfying (3). Assume that E contains a vertical ray and a horizontal ray.
Then E can be represented by Weierstrass data of the form

dg/g = (ro+ (1/22)f(2))dz, dh = —idz, (4)
where -
flz) = ropz® 2k (5)
k=1
The coefficients ror, k =0,1,2, ... are real, and must satisfy the condition

Res J <H eckzl—2k> _ 0’ (6)
k=0

cr = ro/(1 — 2k).

Conversely, suppose f is a bounded analytic function on a neighborhood
of oo, whose series representation (5) has real coefficients satisfying (6).
Then the condition on the Weierstrass data (4) determines a minimal end
containing vertical and horizontal rays, and that end is the unique end with
these properties.

Proposition 2. Any end of the type described in Proposition 1 is embedded
and asymptotic to a helicoid.

3. The proof of Proposition 1.

As noted above, the level curves of F are the images under X of lines Im z =
constant in C. After a purely imaginary translation in z, we may assume
without loss of generality that the horizontal ray is the image of a portion
of the real axis t > p (or t < —p) for some p > 0. On the other hand, the
second fundamental form for E, as noted in [3, (2.12)], is given by

d
(50) ) = Re { L0y an)
g
where v is a tangent vector to E. In particular, along ¢ > p (or t < —p),
whose image is a line and hence an asymptotic curve, we have that (dg/g) dh
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is purely imaginary. Substituting from (3), this means that
ag + a1/t + (1/t2) f(t) € R. (7)

On the other hand, f(z) may be expressed as

f(z) = i a;z*.
=2

In order for (7) to hold for all large ¢, it must be the case that all the
aj, j > 0, are real.

Through each point on the vertical ray v passes a level curve of z3 or-
thogonal to v. Since X is conformal and the level curves are the images of
the lines Im z = constant, it follows that v is the image of a ray « + it for
t > p (ort < —p). By a purely real translation in z, we may assume that
a = 0. The condition for an asymptotic curve then yields

e .
> ai(it) 7 eR.
=0
Hence, a; = 0 for j odd. It follows from this that (4) and (5) are satisfied,

and the coefficients are real. Because of this, we will write 75 := ay.
Next we integrate the expression for dg/g given in (4) to obtain

g=c¢° H P AG(z), (8)
k=0

where A = €, ¢ being the constant of integration, and c; = o/ (1 — 2k).
The residue condition (6) is precisely the requirement that

/G(z) dz=0
.
for v a circle centered at 0.
Note that G(z) satisfies G(Z) = G(z), and G(—z) = 1/G(z). Conse-

quently,
/WG(Z) dz-[y%dz _ —AG(Z) dz. )

On the other hand, the Weierstrass representation (1) yields a well defined
immersion on a neighborhood of infinity provided

Re /(g_l—g) dh—Rei/(g_l—l—g) dh =0 (10)
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for a sufficiently large circle v centered at 0 € C. This is equivalent to

/g—ldh_/gdh,
i i
/g_ldz—l—/gdZ—O
i i

since dh = —idz. Substituting into this identity the expression for g from
(8) and using (9), we obtain

<Z+ %) AG(z)dz = 0.

This equation can by satisfied if and only if fv G(z) dz = 0, which, as noted,
establishes (6).

On the other hand, Weierstrass data satisfying (4) and (5) will produce a
well defined immersion (1) provided (6) holds. For any choice of A, such an
immersion always contains a horizontal ray. To see this, we use the formula
for the planar curvature of the level curves of a minimal surface expressed
in terms of a Weierstrass representation with dh = —i dz (cf. [4]):

or

k= Tm (%) (lgl + o)~ (1)

From (8) it is clear that ¢/(t)/g(t) is real for ¢ € R. Hence x = 0 on the
image of any segment of the real axis, and it follows that the image of |t| > p
is a pair of horizontal rays.

On the imaginary axis, the expression for the Gauss map (8) is unitary
provided |A| = 1, in which case the image of any segment of the imaginary
axis is a vertical line segment.

Remark 1. The lines V and H that contain the vertical and the horizontal
rays must intersect. If they do mot, we can produce, by Schwarz reflection
about V', H, and their images, an infinite sequence of disjoint vertical and
horizontal lines, each of which contains a ray in the end. The images of H
all lie in the same horizontal plane, forcing all their preimages in C to lie
on a line of the form Im(z) = constant. By completeness, such a line can
contain the preimage of at most two disjoint rays.

Applying rotations around the lines V and H above, we see that E must
contain both “ends” of H and of V.



728 D. Hoffman and J. McCuan

Different choices of the purely imaginary constant of integration ¢ (i.e.,
of the unitary constant A) lead to rigid rotations of the same end about the
vertical ray described above. We will show that—except for the Weierstrass
data that gives the helicoid—if A is not unitary, then any immersion defined
by (1,4,5) contains no vertical ray.

Suppose we have Weierstrass data in this form, defined in a neighborhood
O of infinity. We have shown above that the image of R N O lies on a
horizontal line. The Gauss map g = AG in (8) is unitary on iR N O if
and only if A is unitary there. We have seen above that such a choice of
A produces an end containing two rays on a single vertical line, and that
different unitary choices of A produce surfaces that differ by a rotation about
a vertical axis.

What happens if we choose |A| # 1?7 For the end to contain vertical rays,
there must be a line L, = o+ it C C such that g is unitary on L, N O, i.e.
|G| = 1/]A|. From the definition of G in (8), this is in equivalent to the
requirement that coz + H(z) has constant real part on L,, where

o
H(z) = Z ezt T2k,
k=1

Since H(z) — 0 as z — oo and Re{cpz} = cpa on Ly, our requirement is in
fact the geometric condition that H(L, N O) C iR

Inversion z — 1/z produces the function h(z) := H(1/z) =
> 52, cxz? 71, holomorphic in a neighborhood O’ of 0, whose series ex-
pansion is odd with real coefficients. In particular, h(iR N O’) C iR and
h(Cq N O') C iR, where C, is the circle produced by inverting L,. Note
that C, is tangent to iR at 0, yet they are both mapped into iR by the
holomorphic map h(z). This is impossible unless h(z) = 0, i.e. H(z) =0
and g(z) = Ae“?  the Gauss map of the helicoid. It can be put into the
standard form of §1 by the simple change of variables ¢ = z +c; ' In|A|. O

Remark 2. The arguments in the next section rely on the presence of a
vertical ray in the surface. It should be noted, however, that if one chooses a
non-unitary value of A, then X given by (1),(4) is a well defined immersion
containing a horizontal ray. It may be the case that such an end is asymptotic
to a helicoid, but the techniques of the present paper do not apply.

Remark 3. The condition (6) evidently restricts the coefficients, cj. Some
indication of the nature of this restriction can be obtained by considering a
simple case. Assume that co =1 and ¢, = 0 for k > 1. What are the possible



Embedded Minimal Ends Asymptotic to the Helicoid 729
values of c1 = a # 0, subject to the condition
Res,—g (ez+a2> =07

Ezpanding the exponentials in series and setting the coefficient of 1/z equal
to zero, we obtain

2 (=1)(—a)! 1
Y - e =

§=0
where Jy is the first Bessel function [8, pp. 534-535]. In particular, there
is an unbounded sequence of values, a, satisfying the residue condition and
yielding ends of the type described in Propositions 1 and 2. One member of
this family of ends is illustrated in Figure 2. We will return to this simple
class of ends at the end of the next section.

Figure 2: The end with Gauss map exp(z + a/z) where a is determined by
the first zero of the first Bessel function.

4. The Proof of Proposition 2.

We assume that our end F is defined on a neighborhood of co by Weierstrass
data of the form (1),(4). Without loss of generality, we may assume that the
constant of integration c is zero and—after scaling if necessary—that ¢ = 1.
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We then have

o0
g=2¢€* H eh " (12)
k=1

Also, we may restrict attention to a subend of the form X (D) where D =
{z=t+ia:|a| > Aor|t| > T} We will show that if A and T are large
enough, then the level curves v,(t) = X (¢ + i), are embedded. Note that
for |af > A, v4(t) is defined for all ¢, while for || < A, ,(t) consists of two
curves (t > T or t < —=T)).

The End is Embedded.

We first obtain a general estimate on the curvature of the level curves. We
may express the curvature of 7, in terms of the Gauss map. From (11), we

have ,

walt) =1 (£) (gl 117,

valid for an immersed minimal surface with Gauss map g and dh = —idz;
the right-hand side is evaluated at z = t 4+ ¢. In our case, it is convenient
to use the relation ¢'/g = —i(dg/g)/dh to write (using (4) and (5))

(Igl+ g Ykalt) = —Re (dg / dh)

9

o
= —Re <’L <’I”0 + Z?”ka_2k>>
k=1
o
= Im ngkz_%.
k=1

The metric on X (D) is given by ds = (1/4)(|g| +|g|~)|dz|. Hence, along

Ya(t) = X (t +ic)
. 2k |72k ]
Zmz (Z BEG ) 22
k=1

We assume, without loss of generality, that A and T are large enough so
that the series 3 79,22 72¥ is absolutely convergent for all z € D. All values
of 3 |rorz22k| for z € D are clearly bounded by some S > 0.

The total absolute curvature of 7, is estimated by:

S dt S

ds
4"’%&‘% <
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In particular, when |a| > S/4, the total absolute curvature is strictly less
that w. Hence, when |a| > A; = max (A, S/4), 7, is an embedding of R.

For |a < A;, we can apply the first inequality in (13) to show that, for
some T} > T, 7, is an embedding of ¢t > T}. In fact,

[ Gasd [T <2 TR 2
T N I A A

for Ty > max {7, S/4x}.

By symmetry 7v,(—t), t > T} is also an embedded curve. In order to see
that {74(¢)} and {ya(—1)}, t > T; are disjoint for T large enough, we derive
a general asymptotic expression (15) for the direction of +/, which will also
be needed to understand the asymptotic behavior of E.

Since v, is a curve in the plane {x3 = a}, there is a natural projection
of 7, into C by the map (z1,z2, ) — x1 + ixg. It causes no confusion
to refer to the resulting “complex version” of 7, by the same name. As
such, the tangent vector 7/, is a complex number whose argument expresses
the direction of the tangent to the level curve 7,. Moreover, arg~y/, can be
computed explicitly as follows:

The horizontal projection of the Gauss map of X (D) at z =t + ia is a
normal to the plane curve 7, at v4(t). Thus, ig/|g| is a unit tangent vector
to Y4(t), whose direction is given by arg(ig). In our case,

arg (¢9) = o+ Im F(2), (14)

where F(z) = Y22, ck2!72F. We may assume, without loss of generality,
that A and T have been chosen so that 3 |cx2? 72| < C < oo for z € D. In
this way,
= C
Im F(2)| < 2|7t 2k o =
Im F(2)] < 271 e[z < 2
k=0
Combining these remarks, we obtain

arg v, (t) = g +a+0 (%) = g +a+0 (\t2 + o?\‘l/?) ., (15)
where O(1/|z|) < C/|z|, with C independent of o and t.

In applying (15) it will be convenient to consider certain (large) neigh-
borhoods about (the ends of) the lines ruling the helicoid. Let L, be the
line through 0 € R? containing the direction 7, = (sina, cosa, 0), and let 1,
be the ray {¢7, : ¢ > 0}. For a fixed € > 0, let N,, be the neighborhood

U &

|B—al<e
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about [,. Finally, given any set S in R? and an angle o that will be evident
from the context, we will denote by S the lifted set {(p,a) € R®: p € S}.

We return now to our original use of =, to denote the level curve at
height o in R3®—except where the context dictates otherwise. From the
uniform bound in (15) it is straightforward to show the following:

Lemma 1. For any e > 0, there is some T' > 0, independent of o, such that
Ya(t) € Ny for allt > T.

By symmetry, vo(—t) € Nair for t large enough. Since Ny, and N, are
disjoint, it is clear that the ends of each level curve are disjoint.

The end is asymptotic to a helicoid.

We noted in §3 that, after a rigid translation of E in R3 if necessary, we
can assume that X (ia) = (0,0, «) is the point on the standard helicoid with
Weierstrass data (2). It is to this particular helicoid that we will show E is
asymptotic.

The helicoid is ruled by lines I:a, —00 < a < oo. Let H. be the e
neighborhood of the helicoid. It intersects the plane {z3 = 0} in a set large
enough to contain Ny U N,. See Figure 3.

Figure 3: A subset of H. N {x3 = 0}.

Similarly,
NoUNqir C H N {zs = a}.
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Note that a small neighborhood of the helicoid in R? contains quite large
neighborhoods of the ruling lines in each plane {z3 = a}. We have already
shown in Lemma 1 that, for |¢| large enough, X (t + i) € H. Let To > T}
be such that |t| > Tb satisfies this condition. We need only consider 7y, ()
for |a] > A; and || < To.

By (15), there is some As > A; such that for |a| > Ay we have

larg VA (t) — (a + 7/2)| < e.

Combining this with our normalization X (iat) = 7,(0) = (0,0, @), we see
that v4(t) € Ny C He for @« > As. Symmetry requires, as above, that
Ya(—t) € Notr. This establishes that the end is in H..

Remark 4. It cannot be expected that the level curves of the ends described
by Theorem 1 are asymptotic to the lines ruling the helicoid or, in fact, to
any lines. If, for example, ¢ = a where Ji(2y/—a) = 0 as in the remark at
the end of §3, we see that

gives rise to an end E with the following property: IfE is obtained from E by
a clockwise rotation about its vertical axis by an angle a, i.e., § = e "“g(z),
then in the plane {xs = a} we have arg Y, (t) — 7/2, but up to an additive

constant
i+t 1 1
:Z’lt) = Re/ —<7—§)dh
( e 2 g
¢ a
= —Im/ sinh <t—|— - ) dt
0 o+t
t
. aa a
/0 S1n <m) COSh <t + mt) dt

Straightforward estimation leads to values T, C > 0 such that fort > T,

t t 1
/ sin _aa cosh | ¢t + Lt dt < —C/ —e! dt.
T o? 4 t2 o? 4 t2 T t?

Since the indefinite integral f;o t=2et dt = 0o, we see that & is unbounded.
Therefore, 4, is not asymptotic to any line, and neither is its rigid rotation

Ya-
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Authors’ note

Years having passed between the acceptance of this paper and its ap-
pearance, a short note is warranted about progress directly related to the
research presented here. In [2], Hauswirth, Perez and Romon investigated
ends of a complete embedded minimal surface in R? of finite type and infi-
nite total curvature. They gave conditions—complementary to those derived
here—for such an end to be asymptotic to a helicoid. Under slightly differ-
ent conditions, they extend the results of this paper. In [7], Hoffman and
Wei derived Weierstrass data for a family of screw-motion-invariant genus
one helicoids that contain the singly periodic genus-one helicoid, whose exis-
tence and embeddedness was proved in [6]. They gave strong computational
evidence that this family exists, that its members are all embedded surfaces,
and that they limit to an embedded surface of genus one with one end sat-
isfying the hypotheses of Theorem 1. Such a surface would be an embedded
surface of genus one with a single end asympotic to the helicoid. Weber,
Wolf and Hoffman, [9] have proved that this continuous family exists and, as
predicted, does limit to an embedded genus-one helicoid, the sort of surface
whose existence in proved in [5].
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