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Infinitesimal Bendings of Homogeneous Surfaces

with Nonnegative Curvature

Abdelhamid Meziani

1. Introduction.

This paper deals with infinitesimal bendings of a surface S in a neighborhood
of a point p ∈ S. More precisely, consider a surface S embedded in R3 and
given by parametric equation

R(u, v) = (x(u, v), y(u, v), z(u, v)) ∈ R3, (1.1)

with (u, v) ∈ R2 and p = R(0, 0) = 0. An infinitesimal bending of S is a
deformation St, with −δ < t < δ, given by an embedding

Rt(u, v) = R(u, v) + tU(u, v), (1.2)

such that the first fundamental forms of St and S satisfy

ds2t = ds2 +O(t2). (1.3)

The main question is whether a given surface S admits nontrivial infinites-
imal bendings in a neighborhood of p. By nontrivial infinitesimal bendings
we mean those bendings that are not induced by the rigid motions of the
ambient space R3. The study of this question and related problems is very
old and goes back at least to Darboux ([D]). Local and global aspects of
such problems, as well as the physical applications (elasticity of thin shells
for example), have been studied in [A], [BG], [C], [D], [E1], [E2], [EU], [K],
[P], [S1], [S2], [S3], [S], [U1], [U2], [V].

Let K(u, v) be the gaussian curvature of S. WhenK(0) �= 0, the infinites-
imal bendings of S are well understood (see [D] or [V]). The case K(0) = 0
leads to equations with singularities. In 1948, Efimov [E3] proved that the
surface (u, v, u9 +λu7v2 + v9), with λ ∈ R a transcendental number, is rigid
under real analytic bendings. Later on, he proved that most real analytic
surfaces are rigid under real analytic bendings.

697



698 A. Meziani

For surfaces with K(0) = 0, the only case that is well understood is the
case of rotation surfaces (u, v, (u2 + v2)m) and their perturbations: surfaces
of the form

(u, v, (u2 + v2)mf(u, v))

with f(0) �= 0 (see [U1] and [U2]).
In this paper we consider surfaces S of the form

R(u, v) = (u, v, Fm(u, v)) (1.4)

with Fm(u, v) ≥ 0 a homogeneous function of order m. We assume that
the surface is located on one side of its tangent plane at 0; that it has
nonnegative gaussian curvature (K ≥ 0); and that the curvature is almost
everywhere positive (the homogeneity of F implies that the set of points
where K = 0 is a union of curves through 0). We prove (section 3) that
the surface S admits nontrivial infinitesimal bendings. In section 5, we
consider the case when S has positive curvature except at 0. In this case
we give a complete description of the space of infinitesimal bendings. We
approach the problem by studying the induced Hamiltonian systems and
using eigenfunctions expansion. A method used recently by the author to
study singular Cauchy-Riemann equations [M2].

2. Equations for the bending field.

In this section, we recall the definitions and the systems of differential equa-
tions for the field of infinitesimal bending.

Let S be a surface of class Cl, with l > 2, in R3. We can choose
coordinates (x, y, z) in R3 so that 0 ∈ S, S is given near 0 by the graph of
a function z = z(x, y), and S is tangent at 0 to the xy-plane. That is,

S = {R(x, y) = (x, y, z(x, y)) ∈ R3 : (x, y) ∈ Dε}, (2.1)

where Dε is the disc with center at 0 and radius ε, z ∈ Cl(Dε), z(0) = 0, and
zx(0) = zy(0) = 0. An infinitesimal bending of S of class Cl′ is a deformation
St given by

St = {Rt(x, y) = R(x, y) + tU(x, y) ∈ R3 : (x, y) ∈ Dε}, (2.2)

with −δ < t < δ (δ > 0) and U ∈ Cl′(Dε; R3), and such that the first
fundamental forms satisfy

dR2
t = dR2 + O(t2) − δ < t < δ. (2.3)
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Note that since
dR2

t = dR2 + 2tdR · dU + t2dU2, (2.4)

then in order for (2.3) to hold, it is necessary that the field of infinitesimal
bending U satisfies the equation

dR · dU = 0 in Dε. (2.5)

Hence, under an infinitesimal bending, the curves of S undergo only stretch-
ing. Also, if Σt is an isometric deformation of S given by the position vector

R̃t(x, y) (with R̃0 = R), then the linear approximation R + t
dR̃0

dt
is an in-

finitesimal bending of S.
If A, B ∈ R3, then

R(x, y) + t (A× R(x, y) + B) , (2.6)

where × denotes the vector product in R3, is an infinitesimal bending of S.
These infinitesimal bendings are said to be trivial. A surface S is said to be
rigid if its only infinitesimal bendings are the trivial ones.

Let
U(x, y) = (ξ(x, y), η(x, y), ζ(x, y)) (2.7)

be a field of infinitesimal bending of S, where ξ, η, and ζ are in Cl′(Dε; R).
In terms of these functions, equation (2.5) takes the form

ξx + zxζx = 0
ηy + zyζy = 0

ξy + ηx + zxζy + zyζx = 0
(2.8)

The elimination of ξ and η in the system (2.8) leads to the second order pde
for ζ (see [V])

zyyζxx − 2zxyζxy + zxxζyy = 0. (2.9)

For every solution ζ of (2.9), the system (2.8) can be solved by quadrature
for ξ and η to produce the field U . The system (2.8) can also be reduced to
a first order 2 × 2 system as follows. Let

f = ξ + zxζ and g = η + zyζ. (2.10)

It follows at once from (2.8) that

fx = zxxζ, gy = zyyζ, and fy + gx = 2zxyζ. (2.11)
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The elimination of ζ leads to the system

2zxyfx − zxx(fy + gx) = 0
2zxygy − zyy(fy + gx) = 0

(2.12)

A solution (f, g) of (2.12) corresponds to a solution (ξ, η, ζ) of (2.8). Thus
finding a bending field U is equivalent to solving either of the equations (2.8),
(2.9), or (2.12).

Let K(x, y) be the Gaussian curvature of S. From now on we will assume
that K(x, y) ≥ 0. Recall that

K(x, y) =
zxxzyy − z2

xy

(1 + z2
x + z2

y)2
. (2.13)

Without loss of generality, we assume that

zxx(x, y) ≥ 0 zyy(x, y) ≥ 0 for (x, y) �= (0, 0).(2.14)

Remark 2.1 Let

ϑ =
−zxy + i

√
zxxzyy − z2

xy

zyy
(2.15)

be the (complex) asymptotic direction of S and let

w = f + ϑg, (2.16)

where f and g are given in (2.11). A direct calculation shows that the system
(2.12) is equivalent to the equation

(ϑ− ϑ)Lw = Lϑ(w−w), (2.17)

where L is the complex vector field

L =
∂

∂x
+ ϑ

∂

∂y
. (2.18)

When the curvature K vanishes only at 0 and is positive elsewhere, then
equation (2.17) can be considerably simplified by using polar coordinates
and a normalization result (see [M]). It is then equivalent to an equation of
the form (

∂

∂θ
+ irc(θ)

∂

∂r

)
w = A(r, θ)(w−w) (2.19)
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in a neighborhood of the circle S1×{0} ⊂ S1×R, where c(θ) is a function de-

pending on θ alone and satisfies Rec(θ) �= 0. The vector field
∂

∂θ
+ irc(θ)

∂

∂r
is of infinite type along the circle S1 × {0} (see [T] or [M1]). For surfaces
of nonnegative curvature, the study of infinitesimal bendings is therefore
closely connected to solvability of complex vector fields.

3. Existence of infinitesimal bendings.

In this section we prove that the graph of a homogeneous function with a
positive curvature almost everywhere has nontrivial infinitesimal bendings.
More precisely, we have the following result.

Theorem 3.1 Let z(x, y) be a homogeneous function of order m and of class
Cl, with 3 ≤ l ≤ ∞. Let S be the graph of z. Suppose that z(x, y) > 0
for (x, y) �= 0 and that the Gaussian curvature K(x, y) is almost everywhere

positive. Then, for l <∞, there exist U ∈ Cl−2(R2; R3) such that

Rt(x, y) = (x, y, z(x, y))+ tU(x, y) (3.1)

is a nontrivial infinitesimal bending of S. When l = ∞, then for every

N ∈ Z+, the surface S admits a nontrivial bending field U ∈ CN (R2; R3).

The remainder of this section is devoted to the proof of the theorem.
The idea is to solve system (2.12) using methods of Hamiltonian differential
equations. We start by rewriting the system using polar coordinates

x = r cos θ and y = r sin θ. (3.2)

The homogeneous function z takes the form

z = rmP (θ), (3.3)

where P ∈ Cl(R) is 2π-periodic and

P (θ) > 0 ∀θ ∈ [0, 2π]. (3.4)

The nonnegativity of the curvature is expressed in terms of the function P
as

m2P (θ)2 +mP (θ)P ′′(θ) − (m− 1)P ′(θ)2 ≥ 0. (3.5)
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Furthermore, the above inequality is strict for almost every θ. To rewrite
the system (2.12) in polar coordinates, we need the partial derivatives of z
in terms of r and θ:

zxx =rm−2
[
(m(m−1) cos2 θ+m sin2 θ)P−2(m−1) cosθ sin θP ′+sin2 θP ′′]

zxy =rm−2
[
m(m−2) cosθ sin θP−(m−1)(cos2 θ−sin2 θ)P ′−sin θ cos θP ′′]

zyy =rm−2
[
(m(m−1) sin2 θ+m cos2 θ)P+2(m−1) cosθ sin θP ′+cos2 θP ′′]

(3.6)
Let

V =
(
f
g

)
, (3.7)

where f and g are given by (2.10). The system (2.12) is then equivalent to
the system

1
r
CVθ = DVr, (3.8)

where

C =
(

zyy sin θ zxx cos θ
−zyy cos θ 2zxy cos θ + zyy sin θ

)
,

D =
(
zyy cos θ −zxx sin θ
zyy sin θ −2zxy sin θ + zyy cos θ

)
.

(3.9)

Equation (3.8) can be written as

1
r
Vθ = MVr, (3.10)

where

M = 1
rm−2m(m−1)P (θ)

(
a b
c d

)
;

a = 2zxy cos2 θ + (zyy − zxx) cosθ sin θ
b = −zxx

c = zyy

d = −2zxy sin2 θ + (zyy − zxx) cos θ sin θ.

(3.11)

Note that M = M(θ) is independent on the radius r. By using (3.11) and
expressions (3.6), it is verified that the trace of M is

Tr(M) =
2P ′(θ)
mP (θ)

. (3.12)

It will be more convenient to us to have a system in which the trace is 0. To
achieve this situation, we make the change of variables where the new radius
is

ρ = rP (θ)
1
m . (3.13)
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With respect to the coordinates (ρ, θ), the system (3.10) becomes

1
ρ
Vθ =

(
M − P ′

mP
I

)
Vρ = A(θ)Vρ. (3.14)

Now the matrix A has trace zero and is given by

A(θ) =
1

m(m− 1)rm−2P

(
zxy −zxx

zyy −zxy

)
. (3.15)

We will seek solutions of (3.14) in the form

V (ρ, θ) = ρλX(θ), (3.16)

with λ ∈ R and X(θ) a 2π-periodic function of θ. A function V , in (3.16),
solves (3.14) if and only if the function X satisfies the ode

X ′(θ) = λA(θ)X(θ). (3.17)

We rewrite (3.17) in the form

JX ′(θ) = λH(θ)X(θ), (3.18)

with

J =
(

0 −1
1 0

)
, H = JA =

1
m(m− 1)rm−2P

(
zyy −zxy

−zxy zxx

)
. (3.19)

The next proposition gives the spectrum of equation (3.18).

Proposition 3.1 There exists a sequence

· · · < λ−−2 ≤ λ+
−2 < λ−−1 ≤ λ+

−1 < λ0 = 0 < λ−1 ≤ λ+
1 < λ−2 ≤ λ+

2 < · · ·

with

lim
j→±∞

λ±j = ±∞ (3.20)

such that equation

JX ′ = λHX (3.21)λ

has a nontrivial periodic solution if and only if λ = λ±j for some j ∈ Z.

Furthermore, the fundamental matrix of (3.21)λ+
j

is 2π-periodic if and only

if λ+
j = λ−j .
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Proof. It follows from the hypotheses (z(x, y) > 0 for (x, y) �= 0, z ∈ Cl,
with l ≥ 3, and K(x, y) > 0 almost everywhere) that the eigenvalues h− and
h+ of H depend continuously on θ and they satisfy

0 ≤ h−(θ) ≤ h+(θ) ∀θ ∈ [0, 2π]. (3.22)

and that h−(θ) > 0 for almost every θ. Hence,

∫ 2π

0
h−(θ)dθ > 0. (3.23)

This is a sufficient condition for equation (3.18) to have spectrum as in the
proposition (see [YS] Chapter VIII page 762) �

Remark 3.1 For every λ ∈ (λ−j , λ
+
j ), equation (3.21)λ is unstable. For

every λ ∈ (λ+
j , λ

−
j+1), equation (3.21)λ is stable. All solutions of (3.21)λ+

j

are 2π-periodic if and only if λ−j = λ+
j (see [YS] page 761).

Now we will construct a field of infinitesimal bending for the surface S.
For j ∈ Z, let

ϕ±
j (θ) =

(
p±j (θ)
q±j (θ)

)
∈ Cl−1(R; R2) (3.24)

be an eigenfunction of (3.18) corresponding to the eigenvalue λ±j . The func-
tions

f(r, θ) = rλ±
j P (θ)

λ±
j

m p±j (θ), g(r, θ) = rλ±
j P (θ)

λ±
j

m q±j (θ) (3.25)

solve the system (2.12).
It follows from (3.4), (3.5), and expressions (3.6) that

zxx + zyy

rm−2
= m2P (θ) + P ′′(θ) > 0 ∀θ. (3.26)

Let
ζ(r, θ) =

fx + gy

zxx + zyy
= rλ±

j −m+1γ±j (θ), (3.27)

where γ±j ∈ Cl−2(R) is 2π-periodic. Then the functions ξ and η are

ξ = f − zxζ = rλ±
j α±

j (θ)

η = g − zyζ = rλ±
j β±j (θ)

(3.28)
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where α±
j and β±j are 2π-periodic and in Cl−2(R). The field

U±
j (r, θ) =

(
rλ±

j α±
j (θ), rλ±

j β±j (θ), rλ±
j −m+1γ±j (θ)

)
(3.29)

is an infinitesimal bending of the surface S. It is clear that if λ±j is large
enough, then Uj is in the class Cl−2. Furthermore, when l = ∞, the eigen-
functions ϕ±

j ∈ C∞ and so are the functions α±
j ,β±j and γ±j . The field U±

j is
then C∞ away from 0 and for any given N ∈ Z+, we can take j large enough
so that U±

j vanishes to high order at 0 in such a way that it is of class CN

at 0. This completes the proof of the theorem �

4. Periodicity of the fundamental matrices.

In this section, we prove that the fundamental matrices of (3.21)λ are peri-
odic for each λ in the spectrum. We first prove the result when P (θ) is a
trigonometric polynomial.

Lemma 4.1 Let z be as in (3.3) with P (θ) a trigonometric polynomial

satisfying (3.4) and (3.5) and let J and H be the matrices defined in (3.19).
Let

Σ = { λ±j ; j ∈ Z } (4.1)

be the spectrum of the equation

JX ′(θ) = λH(θ)X(θ) . (4.2)λ

Then for every λ±j ∈ Σ, the fundamental matrix of (4.2)λ±
j

is 2π-periodic.

Proof. It follows from Floquet theory (see [YS] Chapter VIII page 617)
that the fundamental matrix of (4.2)λ has the form

Wλ(θ) = Fλ(θ)eθKλ (4.3)λ

where Fλ is a 2π periodic 2×2 matrix and Kλ is a constant matrix satisfying

Tr(Kλ) = 0. (4.4)

Note that since here H(θ) is real analytic, then the solutions of (4.2)λ are
real analytic. The monodromy matrix of (4.2)λ is

Bλ = e2πKλ (4.5)
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and has determinant equal to 1. The characteristic exponents have the form

ρ1(λ) = eµ(λ) and ρ2(λ) =
1

ρ1(λ
= e−µ(λ), (4.6)

where µ(λ) and −µ(λ) are the eigenvalues ofKλ and µ(λ) ∈ R or µ(λ) ∈ iR.
Furthermore, µ depends continuously on λ and

µ(λ) = 0 if and only if λ = λj ∈ Σ. (4.7)

It follows that

Kλj = 0 or Kλj ∼
(

0 1
0 0

)
, λj ∈ Σ, (4.8)

where ∼ stands for similarity of matrices. To prove the lemma, we need to
show that Kλj = 0.

To show the vanishing of Kλj , we will make use of the second order
pde (2.9). We will show that the corresponding pde has two independent
solutions. We rewrite (2.9) in polar coordinates (using z = rmP (θ)):

(mP + P ′′)ζrr − 2(m− 1)
r

P ′ζrθ +
m(m− 1)

r2
Pζθθ+

m(m− 1)
r

Pζr +
2(m− 1)

r2
P ′ζθ = 0.

(4.9)
Equation (4.9) has a solution ζ of the form

ζ = rσγ(θ) (4.10)

if and only if the 2π periodic function γ solves the Sturmian problem

m(m− 1)Pγ ′′ − 2(m− 1)(σ − 1)P ′γ ′ + σ
[
(σ − 1)P ′′ + (m+ σ − 2)

]
γ = 0

γ(0) = γ(2π) (4.11)

We know, thanks to proposition 3.1 and relations (2.9) and (2.12) (see
also(3.27)), that the spectrum of problem (4.11) consists of

σ±j = λ±j − (m− 1) with λ±j ∈ Σ. (4.12)

To prove that (4.11) has two independent solutions, we extend it to the
Riemann sphere C and consider it as a Fuchsian equation.

We write the positive trigonometric polynomial P as

P (θ) = a0 +
s∑

j=1

ajeijθ +
s∑

j=1

aje−ijθ (4.13)
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and extend it as a rational function R(w) on C as

R(w) = a0 +
s∑

j=1

ajw
j +

s∑
j=1

aj
1
wj
. (4.14)

Let f(w) be the holomorphic extension of the function γ(θ) considered a real
analytic on the unit circle in C. Since

P ′(θ) = R′(eiθ)ieiθ, P ′′(θ) = −R′′(eiθ)e2iθ −R′(eiθ)eiθ (4.15)

and similar relations hold between the derivatives of f and γ, then a calcu-
lation shows that γ(θ) solves (4.11) if and only if f(w) solves the differential
equation

f ′′(w) +Aσ(w)f ′(w) +Bσ(w)f(w) = 0, (4.16)σ

with

Aσ(w) =
1
w

− 2(σ − 1)
m

R′(w)
R(w)

Bσ(w) = σ

(
σ − 1

m(m− 1)
R′′(w)
R(w)

+
σ − 1

m(m− 1)
1
w

R′(w)
R(w)

− m+ σ − 2
m− 1

1
w2

)

(4.17)
We will prove that for each σ = σ±j (given by (4.12)), the Fuchsian

equation (4.16)σ±
j

has two independent solutions that are holomorphic in
a neighborhood of the unit circle. For this, we show that the monodromy
matrix corresponding to the unit circle is the identity. We know that for
σ �= σ±j , the monodromy matrix of (4.16)σ has eigenvalues

eµ(σ) and e−µ(σ) (4.18)

with µ satisfying (4.7). Let fj(w) be a nonzero solution of (4.16)σ±
j

such that
fj is holomorphic in a neighborhood of the unit circle. For δ > 0, consider
the annulus

Oδ = {w ∈ C : 1 − δ < |z| < 1 + δ}. (4.19)

Choose δ small enough so that

R(w) �= 0 ∀w ∈ Oδ and fj(w) �= 0 ∀w ∈ Oδ with |w| �= 1. (4.20)

Note that such a choice of δ is possible since R(eiθ) = P (θ) > 0 and fj ,
holomorphic near the circle, has isolated zeros. Since the coefficient Aσ and
Bσ of (4.16) depend analytically on the parameter σ, then we can find a



708 A. Meziani

(multivalued) solution Uσ(w), that depends analytically on σ, and such that
Uσ±

j
= fj . For σ �= σ±j and |σ− σ±j | < τ (τ small), equation (4.16)σ has two

independent solutions of the form

F 1
σ (w) = wα(σ)G1

σ(w) and F 2
σ (w) = w−α(σ)G2

σ(w), (4.21)

with µ(σ) = 2πiα(σ) and G1
σ, G2

σ holomorphic in the annulus Oδ. We can
further assume that the functions G1

σ and G2
σ are uniformly bounded in

Oδ (replace G1
σ and G1

σ by their multiples, if necessary). This implies that
these families of holomorphic functions have convergent subsequences as σ
approaches σj. We can therefore assume that

Gk
σ±

j
(w) = lim

σ→σ±
j

Gk
σ(w), k = 1, 2 (4.22)

are holomorphic functions in Oδ. Since Uσ is a linear combination of F 1
σ and

F 2
σ , then it follows from (4.7) and (4.22) that fj is a linear combination of

the functions G1
σ±

j

and G2
σ±

j

. The next step is to prove that G1
σ±

j

and G2
σ±

j

are independent solutions of (4.16)σ±
j
.

Since a linear combination of G1
σ±

j

and G2
σ±

j

gives the nonzero function

fj , then we can assume that G1
σ±

j

(1) �= 0. Let C be a loop based at 1,

contained in the annulus Oδ, homotopic to the unit circle in Oδ, and such
that G1

σ±
j

(w) �= 0 for all points w ∈ C. Let N (C) be a tubular neighborhood

of C, such that N (C) ⊂ Oδ and

G1
σ(w) �= 0 ∀w ∈ N (C), ∀σ, |σ − σj| < τ. (4.23)

Starting with the solution F 1
σ (w) of (4.16)σ, we construct a second solution

F̂ 1
σ (w) by the method of variation of parameter. We find

F̂ 1
σ (w) = F 1

σ (w)I1
σ(w), w ∈ N (C) (4.24)

with

I1
σ(w) =

∫
Γ(1,w)

1
s

R(s)2(σ−1)/m

F 1
σ (s)

ds , (4.25)

where Γ(1, w) is a curve in N (C) connecting 1 to w. Of course I1
σ(w) could

be multivalued and a holomorphic branch is well defined in any simply con-
nected domain in N (C) containing 1. The new solution F̂ 1

σ (w) is also a
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linear combination of F 1
σ and F 2

σ . Hence there exist constants C1
σ and C2

σ

such that

F̂ 1
σ (w) = C1

σw
α(σ)G1

σ(w)+C2
σw

−α(σ)G2
σ(w) ∀w ∈ N (C), ∀σ : |σ−σj| < τ.

(4.26)
It follows from (4.24) and (4.26) that

I1
σ(w) = C1

σ +C2
σw

−2α(σ)G
2
σ(w)

G1
σ(w)

. (4.27)

Hence,

I1
σ±

j
(w) = lim

σ→σ±
j

I1
σ(w) = C1

σ±
j

+C2
σ±

j

G2
σ±

j

(w)

G1
σ±

j

(w)
(4.28)

is holomorphic in N (C). Therefore

F̂ 1
σ±

j
(w) = F 1

σ±
j
(w)I1

σ±
j
(w) (4.30)

is a second (independent) holomorphic solution of (4.16)σ±
j

in N (C). Hence
the monodromy matrix of (4.16)σ±

j
corresponding to the loop C is the iden-

tity. Since the matrix depends only on the homotopy class of the loop (see
[Y] for example), and since C and the unit circle are homotopic in Oδ, then
the monodromy matrix of (4.16)σ±

j
corresponding to the unit circle is the

identity. This completes the proof of the lemma �

This lemma together with Remark 3.1 give the following consequence

Corollary 4.1 Under the hypotheses of lemma 4.1, equation (4.2)λ is stable
for every λ ∈ R.

To prove the result when P is not real analytic, we will use a property
of the rotation function for solutions of a system

JẎ (θ) = A(θ)Y (θ), (4.31)

where A is a 2 by 2 symmetric matrix with periodic coefficients. Let

Y (θ, ν) =
(
y1(θ, ν)
y2(θ, ν)

)
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be the solution of (4.31) such that y1(0, ν) = cos ν and y2(0, ν) = sin ν. Let
ϑ(θ, ν) be a continuous branch of the argument of Y (θ, ν). The rotation
function φ(ν) is defined by

φ(ν) = ϑ(2π, ν)− ϑ(0, ν) =
∫ 2π

0

dϑ(θ, ν)
dθ

dθ. (4.32)

An expression for the rotation function that does not involve ϑ can be ob-
tained as follows.

dϑ

dθ
=

d

dθ
arctan(

y2
y1

) =
1

y2
1 + y2

2

∣∣∣∣ y1 ẏ1
y2 ẏ2

∣∣∣∣
Using the fact that the matrix A is symmetric, Y satisfies (4.31), and that
for vectors u and v of R2

det (u, Jv) = uT v,

we have that the rotation function satisfies

φ(ν) =
∫ 2π

0

−Y
T (θ, ν)A(θ)Y (θ, ν)
Y T (θ, ν)Y (θ, ν)

dθ. (4.33)

Let
m = min

0≤ν≤π
φ(ν) and M = max

0≤ν≤π
φ(ν). (4.34)

The proof of the following lemma can be found in [YS] vol 2 page 662.

Lemma 4.2 The system (4.31) is unstable if and only if the extreme values

m and M of the rotation function satisfy

m < kπ < M (4.35)

for some k ∈ Z

We have the following proposition

Proposition 4.1 Let z be as in (3.3) with P (θ) a 2π-periodic Cl function

satisfying (3.4) and (3.5) and let J and H be the matrices defined in (3.19).
Let

Σ = { λ±j ; j ∈ Z } (4.36)

be the spectrum of the equation

JX ′(θ) = λH(θ)X(θ) . (4.37)λ
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Then for every λ±j ∈ Σ, the fundamental matrix of (4.37)λ±
j

is 2π-periodic.

Proof. We use Fourier series to approximate H by trigonometric polyno-
mials. Let

H(θ) =
∑
j∈Z

Hjeijθ, Hj =
1
2π

∫ 2π

0
H(θ)e−ijθdθ. (4.38)

For m ∈ Z+, let
Mm(θ) =

∑
−m≤j≤m

Hjeijθ. (4.39)

Then Mm is real analytic and converges uniformly to H as m −→ ∞. Con-
sider the corresponding system

JẊ(θ) = λMm(θ)X(θ). (4.40)m
λ

Let φλ(ν) and φm
λ (ν) be the rotation functions of systems (4.37)λ and

(4.40)m
λ , respectively. It follows from formula (4.33) and from the defini-

tion of Mm that φm
λ (ν) converges uniformly to φλ(ν) as m −→ ∞.

Now we complete the proof of the proposition by contradiction. Suppose
that there exists j ∈ Z such that λ−j �= λ+

j . Then for every λ ∈ R,

λ−j < λ < λ+
j , (4.41)

equation (4.37)λ is unstable (see remark 3.1). It follows (lemma 4.2) that

min
0≤ν≤π

φλ(ν) < kπ < max
0≤ν≤π

φλ(ν) (4.42)

for some k ∈ Z. Consequently, for m large enough we also have

min
0≤ν≤π

φm
λ (ν) < kπ < max

0≤ν≤π
φm

λ (ν). (4.43)

This would mean that the analytic system (4.40)m
λ is unstable and this is a

contradiction (Corollary 4.1) �

5. Structure of the space of infinitesimal bendings.

For surfaces given as the graph of z = rmP (θ) with P > 0 and with positive
curvature everywhere except at 0, we give a complete description of the space
of infinitesimal bendings. We use a Fourier method approach to establish
our result.
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Let S be the graph of the function z given in polar coordinates by

z(r, θ) = rmP (θ), (5.1)

with P ∈ Cl, 2π-periodic, and satisfying

m2P (θ)2 +mP (θ)P ′′(θ) − (m− 1)P ′(θ)2 > 0. (5.2)

Thus, S has positive curvature everywhere except at the flat point 0. Let
J and H be the matrices given by (3.19). It follows from (5.2) that the
eigenvalues h−(θ) and h+(θ) of H(θ) are positive for every θ. The spectrum
of the equation

JX ′(θ) = λH(θ)X(θ) (5.3)λ

consists of the set Σ = {λj : j ∈ Z} with limj→±∞ λj = ±∞ (Proposition
3.1). Furthermore for each j ∈ Z, the fundamental matrix of (5.3)λj is
2π-periodic (Proposition 4.1).

Let L2(S1; R2) be the space of square integrable functions from the circle
S1 to R2. That is

f(θ) =
(
f1(θ)
f2(θ)

)
∈ L2(S1; R2) ⇐⇒

∫ 2π

0

f2
k (θ)dθ < ∞ for k = 1, 2.

(5.4)
Define an inner product in L2(S1; R2) by

(f, g)H =
1
2π

∫ 2π

0

fT (θ)H(θ)g(θ)dθ, (5.5)

where fT denotes the transpose of f . The following proposition establishes
the orthogonality of the eigenfunctions of (5.3)λ with respect to the inner
product ( , )H .

Proposition 5.1 Let Xj(θ) and Xk(θ) be two eigenfunctions of (5.3)λ cor-

responding to distinct eigenvalues λj, λk ∈ Σ. Then

(Xj, Xk)H = 0. (5.6)

Proof. Suppose that λk �= 0. We have

(Xj, Xk)H =
1
2π

∫ 2π

0
XT

j HXkdθ =
1

2πλk

∫ 2π

0
XT

j JX
′
kdθ

=
1

2πλk

∫ 2π

0

(
(XT

j JXk)′−X ′
jJXk

)
dθ =

1
2πλk

∫ 2π

0
(JX ′

j)
TXkdθ

=
λj

2πλk

∫ 2π

0
XT

j HXkdθ =
λj

λk
(Xj, Xk)H .
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Therefore (Xj, Xk)H = 0 since λj �= λk.

For each j ∈ Z, let (φj(θ), ψj(θ)) be an orthonormal fundamental matrix
of (5.3)λj . That is φj and ψj are 2π-periodic solutions (of class Cl−1) such
that

(φj, ψj)H = 0 (φj, φj)H = (ψj, ψj)H = 1. (5.7)

Proposition 5.2 The system {φj, ψj}j∈Z forms a basis of L2(S1; R2).

Proof. To prove the completeness of {φj, ψj}j∈Z, we need the asymptotic
behavior of the eigenvalues λj and of the fundamental matrix (φj, ψj). It
can be shown (see [YS] Chapter VIII page 776) that the λj’s have the form

λj =
2π
b1
j +

b2
b1

+ O(
1
|j|), (5.8)

with

b1 =
∫ 2π

0

√
detH(θ) dθ, and b2 =

∫ 2π

0

β(θ)
4
√

detH(θ)

(
ln
α(θ)
γ(θ)

)′
dθ,

(5.9)
where we have set

H(θ) =
(
α(θ) β(θ)
β(θ) γ(θ)

)
;

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α(θ) =
zyy

m(m− 1)rm−2P (θ)
β(θ) =

−zxy

m(m− 1)rm−2P (θ)
γ(θ) =

zxx

m(m− 1)rm−2P (θ)

(5.10)

and zxx, zxy, and zyy are given by (3.6).
To obtain the asymptotic behavior of the fundamental matrix, we use

the fact that H(θ) is positive and symmetric to write it as

H(θ) = Λ(θ)TD(θ)Λ(θ) , (5.11)

with Λ(θ) orthogonal, D(θ) diagonal. Let

Λ(θ) =
(

cos k(θ) − sin k(θ)
sink(θ) cos k(θ)

)
and D(θ) =

(
h+(θ) 0

0 h−(θ)

)
,

(5.13)
where k(θ+2π) = k(θ) mod(2π) and 0 < h− ≤ h+ are the eigenvalues of H .
We can also assume that h−(0) = h+(0) = 1. Let

Y (θ) = Λ(θ)X(θ). (5.13)
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It follows from (5.11) and from ΛJΛT = J that if X solves (5.3), then Y
solves the equation

JY ′(θ) =
(
λD(θ) + k′(θ)I

)
Y (θ). (5.14)

Define functions b and ϑ and matrices R, B1 and B2 as follows

b(θ) =
√

det(D(θ)) =
√
h−(θ)h+(θ), ϑ(θ) =

i

2b(θ)
k′(θ)(h+(θ) − h−(θ)),

(5.15)

R(θ) =
( −ib(θ) h−(θ)

−h+(θ) ib(θ)

)
, B1(θ) =

(
ib(θ) 0

0 −ib(θ)
)
,

and B2(θ) =
(

(lnh+(θ))′ − ϑ(θ) 0
0 ϑ(θ) + (lnh−(θ))′

)
. (5.16)

Let

Y 0
λ (θ) = R(θ)

[
exp

∫ θ

0

(λB1(s) +B2(s))ds
]
R(0)−1. (5.17)

It can be proved (see [YS] Chapter VIII page 774 ) that as |λ| → ∞, the
fundamental matrix Yλ of (5.14) satisfies

Yλ(θ) = Y 0
λ (θ) + O(

1
|λ|). (5.18)

Now, let

c(θ) =
∫ θ

0
b(s)ds and l(θ) =

∫ θ

0

k′(s)(h+(s)− h−(s))
2b(s)

ds (5.19)

and let Wλ(θ) be the real part of the matrix Y 0
λ (θ). A direct calculation

shows that

Wλ =
1
2

(
(bh+ + h2−) cos(λc− l) −(bh+ + h2−) sin(λc− l)
(bh− + h2

+) sin(λc− l) (bh− + h2
+) cos(λc− l)

)
(5.20)

which can be rewritten as

Wλ =
1
2

(
bh+ + h2− 0

0 bh− + h2
+

)(
cos l sin l
− sin l cos l

) (
cosλc − sinλc
sinλc cosλc

)
.

(5.21)
The system of R2 valued functions {E1

j , E
2
j}j∈Z given by

E1
j =

⎛
⎜⎝ cos

2πj + b2
b1

c(θ)

sin
2πj + b2

b1
c(θ)

⎞
⎟⎠ E2

j =

⎛
⎜⎝ − sin

2πj + b2
b1

c(θ)

cos
2πj + b2

b1
c(θ)

⎞
⎟⎠ (5.22)
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is complete in L2(S1; R2) (since c′(θ) = b(θ) > 0). It follows from the
standard theory of eigenfunction expansion (see [BR] page 337) that the
following system of functions is also complete

F 1
j (θ) =

(
cos λjc(θ)
sinλjc(θ)

)
, F 2

j (θ) =
( − sinλjc(θ)

cosλjc(θ)

)
, (5.23)

where the λj’s are the eigenvalues given asymptotically by (5.8). Conse-
quently, the columns φ0

j(θ) and ψ0
j (θ) of Wλj(θ) form a complete system in

L2(S1; R2) since
(φ0

j , ψ
0
j ) = M(F 1

j , F
2
j ) (5.24)

with det(M) > 0 (see (5.21)). This in turn implies, thanks to (5.17), that the
columns of the matrices Yλj form a complete system. Finally, the columns
of the fundamental matrices Xλj are

(φλj , ψλj) = ΛTYλj , (5.25)

where Λ is the orthogonal matrix given in (5.12), and they form a basis of
L2(S1; R2). This completes the proof of the proposition �

It follows from Proposition 5.2 that every f ∈ L2(S1; R2) can be de-
composed as

f(θ) =
∑
j∈Z

ajφj(θ) + bjψj(θ) (5.26)

where
aj = (f, φj)H and bj = (f, ψj)H . (5.27)

Consider the operator

dH : C1(S1; R2) −→ L2(S1; R2) dHf(θ) = H−1(θ)Jf ′(θ), (5.28)

where f ′ is the derivative of f . We have then

dHφj = λjφj and dHψj = λjψj. (5.29)

If f differentiable, then it follows from (5.26) and (5,29) that

dHf =
∑
j∈Z

λjajφj + λjbjψj. (5.30)

More generally, for f ∈ Ck(S1; R2), we have

dk
Hf =

∑
j∈Z

λk
jajφj + λk

j bjψj (5.31)
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(provided that k < l − 2).Consequently, the coefficients aj and bj decay
faster than |j|−k as |j| → ∞. This follows from the standard theory of
Fourier series and the asymptotic behavior of λj given in (5.8).

For each j ∈ Z, let

V 1
j (r, θ) = ρλjφj(θ) = rλjP (θ)λj/mφj(θ)
V 2

j (r, θ) = ρλjψj(θ) = rλjP (θ)λj/mψj(θ)
(5.32)

be independent solutions of (3.14), where ρ = rP 1/m. To V 1
j and V 2

j cor-
respond two independent fields of infinitesimal bendings U1

j and U2
j of the

surface S. These fields are given by

U1
j (r, θ) = rλj−(m−1)

(
rm−1α1

j(θ), r
m−1β1

j (θ), γ1
j (θ)

)
U2

j (r, θ) = rλj−(m−1)
(
rm−1α2

j(θ), r
m−1β2

j (θ), γ2
j (θ)

)
,

(5.33)

where αk
j , β

k
j , γ

k
j are of class Cl−1 and 2π-periodic (k = 1, 2). The following

theorem describes the infinitesimal bendings of S.

Theorem 5.1 Let S be a surface given as the graph of a function z as in
(5.1), where the positive function P satisfies (5.2). For j ∈ Z, let U1

j and U2
j

be the fields of infinitesimal bendings given in (5.33). Then for every field of
infinitesimal bending U of class Ck (k ≤ l − 2) of the surface S there exist

sequences of real numbers Aj and Bj satisfying

lim
j→∞

Ajj
k = 0 , lim

j→∞
Bjj

k = 0 (5.34)

such that

U(x, y) =
∑

j

AjU
1
j (x, y) +BjU

2
j (x, y) . (5.35)

Furthermore, Aj = Bj = 0 for each j ∈ Z such that λj < m.

Proof. Let
U(r, θ) = (ξ(r, θ), η(r, θ), ζ(r, θ)) (5.36)

be a field of infinitesimal bending of S of class Ck. Let

f = ξ + zxζ , g = η + zyζ , and V =
(
f

g

)
. (5.37)

The function V (ρ, θ) (again ρ = rP (θ)1/m) satisfies equation (3.14). It
follows from proposition 5.2 that

V (ρ, θ) =
∑
j∈Z

pj(ρ)φj(θ) + qj(ρ)ψj(θ) , (5.38)
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where

pj(ρ) = (V (ρ, θ), φj(θ))H and qj(ρ) = (V (ρ, θ), ψj(θ))H . (5.39)

Equation (3.14) and expansion (5.38) imply that the functions pj(ρ) and
qj(ρ) satisfy the differential equations

p′j(ρ) = λjρpj(ρ) and q′j(ρ) = λjρqj(ρ) . (5.40)

Thus, there exist constants Aj , Bj ∈ R such that

pj(ρ) = Ajρ
λj and qj(ρ) = Bjρ

λj . (5.41)

Therefore,
V (ρ, θ) =

∑
j∈Z

Ajρ
λjφj(θ) + Bjρ

λjψj(θ) , (5.42)

In order for V to be of class Ck it is necessary that the coefficients Aj and
Bj decay faster that j−k as |j| → ∞. This combined with the relationships
(5.37) shows that the field U has the desired form (5.35). Moreover, it follows
from (5.33) and U defined at 0 that Aj = Bj = 0 for λj < m. This completes
the proof of the theorem �
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