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Evolution of radial graphs in hyperbolic space by

their mean curvature

Philip Unterberger1

We consider the evolution of a surface F : Mn �→ Hn+1 in hyperbolic
space by mean curvature flow. That is, we study the one parameter family
Ft = F(., t) of immersions with corresponding images Mt = Ft(Mn) such
that

∂
∂tF(p, t) = H(p, t), p ∈Mn

F(p, 0) = F0(p)
(1)

where H(p, t) is the mean curvature vector of the hypersurface Mt at F(p, t)
in hyperbolic space.

Mean curvature flow was first studied by Brakke [Bra78] in the context
of geometric measure theory. Later, smooth compact surfaces evolving in
Euclidean space were investigated in [Hui84] and [Hui90], and on arbitrary
ambient manifolds in [Hui86]. The study of the evolution of complete graphs
in Rn+1 was also studied in [EH89], the results being improved in [EH91].

Minimal and constant mean curvature surfaces in hyperbolic space have
also been studied by many authors with Anderson [And82] (see also [And83])
first showing that given any immersed closed submanifold Mn−1 in the
boundary at infinity there exists a complete area minimising current with
Mn−1 as its asymptotic boundary. Hardt and Lin [HL87] then considered
the boundary regularity at infinity of these currents after which Lin [Lin89]
showed that the regularity of a particular type of minimal graph is the same
as that of its asymptotic boundary. During this period first Do Carmo and
Lawson [DCL83] and then Levitt and Rosenberg [LR85] classified, under
certain assumptions, constant mean curvature surfaces in hyperbolic space.

We will consider only initial surfaces F0(Mn) which in the upper half
space model of hyperbolic space, Hn+1, can be written as entire Euclidean

1This article is published posthumously by Philip Unterberger who passed away
on 8 October 2002. In 1998, Phil completed his PhD in Mathematics at the Univer-
sity of Melbourne. This paper is part of his doctoral thesis. Afterwards Phil held
a position as a Senior Analyst with the National Australia Bank. His courage and
love of life were truly inspirational. He is sadly missed by his wife, daughter, family
and all who knew him.

675



676 P. Unterberger

radial graphs above the hyperplane Sn
+ = Sn

+(1), the Euclidean upper hemi-
sphere of radius one about the origin. That is F0(Mn) ⊂ Rn × (0,∞) and
〈ν, x〉 > 0 where ν is an outward normal to F0(Mn). If h is the log of the
Euclidean radial height of Mt above Sn

+ and H
H

is the mean curvature of
the surface as seen from hyperbolic space, then we will see in section 3 that
(1) is equivalent up to tangential diffeomorphisms to

∂

∂t
h = −xn+1〈ν, x|x|〉

−1H
H
. (2)

The term 〈ν, x
|x|〉−1 accounts for the fact that we are flowing in the normal

direction rather than in the direction of x. This implies that provided we stay
in the class of solutions with finite curvature, the asymptotic boundary of a
flowing surface is fixed. The geometrical nature of this problem, that of an
evolving radial graph in hyperbolic space, suggests its study by calculations
on the hypersurface as seen from hyperbolic space.

Our main result, for Bn ⊂ Rn+1 an open ball, is

Theorem 0.1. For M0 = F0(Bn) a locally Lipschitz continuous entire ra-

dial graph over Sn
+ ⊂ Hn+1 the initial value problem (1) has a smooth

solution Mt = Ft(Bn) for all time t > 0. Moreover each Mt is an entire

radial graph over Sn
+.

In particular we do not require any initial bounds on either the radial height
(defined to be log |x|) or gradient. Thus a horosphere for example could
be taken as our initial surface and an initial surface can be found whose
asymptotic boundary is any given star shaped manifold. If these boundaries
are compact and have non-negative mean curvature and we obtain a limit
surface M∞ which is minimal then by a uniqueness result of Lin [Lin89] the
surface M∞ is one of the type studied by Lin [Lin89]. If we also include the
condition that the geodesic height of our initial surface over Sn

+ is bounded
we obtain the following convergence result:

Theorem 0.2. If M0 has bounded hyperbolic height over Sn
+ then under

mean curvature flow Mt converges in C∞ to Sn
+.

Remarks.
1. From Lin [Lin89] any radial graph with asymptotic boundary ∂M which
is a minimal surface, is the unique area minimising surface with asymptotic
boundary ∂M . This can also be shown using a calibration method [Mor87,
pg 72].
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2. There exists a geodesic graph, a surface which intersects each geodesic
perpendicular to Sn

+ once, which is rotationally symmetric about the xn+1

axis, and which does not remain a graph under mean curvature flow. In
fact using a ’clearing out’ lemma it can be shown that a neck of this graph
pinches under the flow [Unt98].
3. A curve which is a geodesic graph (in H2) remains a graph throughout
its flow.

I’d like to thank my supervisor Prof. Klaus Ecker for his enthusiasm,
patience and support, without which this work would not have been possible.
My thanks also to my fellow students, Miles, Nick, and Denis, for many useful
and interesting discussions.

1. Hyperbolic space.

We begin this section by defining some notation and noting some of the
relevant facts about hyperbolic space and the model of it that we will use:

The (n + 1)−dimensional upper half space model of hyperbolic space is
the space Rn × (0,∞) endowed with the metric gij(x) = 1

x2
n+1

δij , and we

will denote by ∂Hn+1 = (Rn × {0}) ∪ {∞} the boundary of its standard
compactification. The Riemannian curvature tensor and Ricci and scalar
curvatures are given by

R
H
ijkl =

1
x4

n+1

(δjkδil − δikδjl), R
H
ij = −n 1

x2
n+1

δij and R
H

= −n(n + 1). (3)

Expressions in hyperbolic space will, where necessary, be denoted by the
subscript or superscript H. We will identify points in TpRn+1 and TpHn+1

so for ν a unit vector in TRn+1, νH = xn+1ν is a unit vector in THn+1.
Letting fλ(x) = (1+λ)x we see 〈fλ(x), fλ(y)〉H = 〈x, y〉H which makes fλ

an isometry for all λ. Differentiating fλ with respect to λ implies that the
vector field x is a Killing vector field. Integral curves of this vector field will
be called radial lines, and we define a radial graph to be any hypersurface
which intersects each radial line at most once. For a point p ∈Mt we define
the height and gradient of our graph to be

h(
p

|p|) = log|x(p)| and

v = 〈ν, ω〉−1 = 〈νH, ωH〉−1
H = (1 + |∇h|2) 1

2

respectively where ν is the normal to Mt and ω = x
|x| (We note that the

height function used is the one induced by the Killing vector field x.) . By
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using

∇H
XY = ∇XY + 〈X, Y 〉He

H
n+1 − 〈X, eHn+1〉HY − 〈Y, eHn+1〉HX (4)

(see [GKM75, pg90]) to obtain

divHX = 〈∇H

e
H
i

X, e
H
i 〉H

= 〈∇ei
X + 〈X, ei〉He

H
n+1 − 〈ei, eHn+1〉HX − 〈X, eHn+1〉Hei, ei〉

= divX − 〈〈X, eHn+1〉Hei, ei〉
= divX − n+1

2 〈X,∇x2
n+1〉H,

(5)

and so
H

H
= xn+1H

R − n〈νR , en+1〉, (6)

we are also able to calculate the mean curvature of many graphs quite simply.
Finally we also need that the distance between two points, see [BP92], is
given by

d
H
(p, q) = cosh−1

(
d
R
(p, q)2

2pn+1qn+1
+ 1

)
. (7)

We are now able to consider a number of examples of surfaces in hyperbolic
space and their evolution under mean curvature flow in some detail. Apart
from being interesting in their own right they can be used as barriers to other
flowing surfaces and motivate many of the methods used in the remainder
of the paper.

The Hyperplane M0 = {x | |x| = c}.
These appear as Euclidean hemispheres with centres on ∂Hn+1 (in par-

ticular Sn
+) and are radial graphs of constant height, gradient of 1, and zero

mean curvature. Therefore

Mt = {x | |x| = c}.

They are totally geodesic and we consider our graphs to be graphs over
Sn

+(1).
The Horosphere M0 = {x | xn+1 = c}.

This surface is an entire radial graph of unbounded height and gradient.
It has constant curvature −n and evolves by translation in the en+1 direction
with

Mt = {x | xn+1 = cent}.
The Sphere M0 = {x |dH

(p, x) = r}.
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This sphere of radius r with centre p is not a radial graph. It is a compact
surface of constant curvature n coth r and looks like a Euclidean sphere of
radius xn+1(p) sinhr. It contracts by homothety to a point with

Mt = {x | coshd
H
(p, x) = e−nt cosh r}.

If we surround any compact minimal surface in Hn+1 by a sphere and then
flow both surfaces they will touch at some time. By the compact maximum
principle this cannot occur and so there don’t exist any compact minimal
surfaces in Hn+1 .
The Hypersphere M0 = {x| x2

1+ ...+x2
n+(xn+1 − sinh a0)2 = cosh2 a0}.

These are level sets of the signed distance a from Sn
+(1), and look like

the intersections of Euclidean spheres with the upper half space. They are
geodesic graphs of constant curvature n tanh a, remain hyperspheres under
(1) with

Mt = {x | x2
1 + ...+ x2

n + (xn+1 − sinh at)2 = cosh2 at}
where sinh at = sinh a0e

−nt, and collapse to Sn
+(1) in infinite time. So by

(2) and a compact maximum principle any surface which evolves for all time
and initially lies between two hyperspheres must converge to Sn

+(1). We note
that sinh a = |x|2−1

2xn+1
for later reference.

The Cylinder M0 = {x | |x|
xn+1

= c}.
This surface is found by rotating a radial line about the xn+1-axis. It

has distance r to the xn+1-axis where cosh r = |x|
xn+1

, is not a radial graph,
and has constant curvature (n− 1) cothr + tanh r. It collapses to the xn+1

axis in finite time with

Mt = {x | |x|
xn+1

=

√
1
n

(1 + (nc2 − 1)e−2nt)}

and will be employed in defining cut-off functions for use in interior estimates.
In the existance proof for solutions of (1) we will also be required to consider
the evolution of our surfaces restricted to various cylinders.

2. Heat Equations.

Using methods similar to those in [EH91] we establish interior estimates
for the height and all its derivatives. In determining an interior gradient
estimate however, we are required to consider a combination of gradient
and height which leads to an estimate which increases in time. In order to
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understand how the geometry ofMt changes under (1) it will be necessary to
calculate

(
∂
∂t − ∆M

)
of many geometric quantities where ∆M is the Laplace-

Beltrami operator on Mt.

Proposition 2.1. Any function f : Mt �→ R on Mt ⊂ Hn+1 satisfies(
∂
∂t − ∆M

)
f = −x2

n+1(∆f − 〈∇ν∇f, ν〉)
+xn+1((n− 2)〈∇f, en+1〉+ 2〈∇f, ν〉〈ν, en+1〉)

Proof. For any function f and vector field X

divHfX = fdivHX +X(f),

and ∇H
f = x2

n+1∇f.
Making use of (4) and (5) we then have(

∂
∂t − ∆

M

)
f =−div

M
∇H

f

=−divH∇
H
f + 〈∇H

ν∇
H
f, ν〉

=−x2
n+1divH∇f−∇f(x2

n+1)+x
2
n+1〈∇

H
ν∇f, ν〉+〈∇f, ν〉ν(x2

n+1)
=−x2

n+1∆f + n+1
2 〈∇f,∇x2

n+1〉 −∇f(x2
n+1)

+x2
n+1〈∇ν∇f + 〈ν,∇f〉He

H
n+1 − 〈∇f, eHn+1〉Hν

−〈ν, eHn+1〉H∇f, ν〉 + 〈∇f, ν〉〈∇x2
n+1, ν〉

=−x2
n+1(∆f − 〈∇ν∇f, ν〉)

+xn+1((n− 2)〈∇f, en+1〉+ 2〈∇f, ν〉〈ν, en+1〉)
�

Using this result we now calculate the heat operator of a number of expres-
sions suggested in part by the examples at the end of the first section.

Lemma 2.2. For a radial graph Mt evolving by (1) we have(
∂

∂t
− ∆

M

)
|x|2 = −4|x|2〈ω, en+1〉(〈ω, en+1〉 − 〈ν, ω〉〈ν, en+1〉), (8)

(
∂

∂t
− ∆M

)
xn+1 = (n− 2)xn+1 + 2xn+1〈ν, en+1〉2, (9)

(
∂

∂t
− ∆M

)
sinh a = −n sinh a, and (10)

(
∂

∂t
− ∆M

)
cosh r =

1
cosh r

(1− 〈ν, ω〉2)− n cosh r. (11)

where a is the signed distance from Sn
+(1) and r is the distance to the xn+1-

axis.
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Proof. For the proof of (8) we use proposition 2.1 and note

∇xn+1 = en+1,

∇ν∇xn+1 = 0 and
∆xn+1 = 0.

To prove (9) we proceed similarly noting

∇|x|2 = 2x,
∇ν∇|x|2 = 2ν and
∆|x|2 = 2(n+ 1).

For (10) we use the identity sinha = |x|2−1
2xn+1

and calculate

∇|x|2 − 1
2xn+1

=
x

xn+1
− |x|2 − 1

2x2
n+1

en+1,

∇ν∇
|x|2 − 1
2xn+1

=
1

xn+1
ν − 1

x2
n+1

〈ν, en+1〉x− 1
x2

n+1

〈x, ν〉en+1

+
|x|2 − 1
x3

n+1

〈en+1, ν〉en+1, and

∆
|x|2 − 1
2xn+1

=
n− 1
xn+1

+
|x|2 − 1
x3

n+1

.

Identity (11) is found noting that cosh r = |x|
xn+1

(see the cylinder example)
and using

∇ |x|
xn+1

=
x

xn+1|x| −
|x|
x2

n+1

en+1,

∇ν∇
|x|
xn+1

= − 1
xn+1|x|〈ν, ω〉ω − 1

x2
n+1

〈ν, en+1〉ω +
1

xn+1|x|ν

+
2|x|
x3

n+1

〈ν, en+1〉en+1 − 1
x2

n+1

〈ν, ω〉en+1 and

∆
|x|
xn+1

=
n − 2
xn+1|x| +

2|x|
x3

n+1

.

�
To bound the gradient 〈ν, ω〉−1 we need to consider the heat operator of the
inner product of the normal and some vector �u in the direction of the Killing
vector field x. As there exist examples where the gradient increases during
the flow (see [Unt98]) the heat operator of the gradient is not in itself useful.
We start by considering �u to be the Killing vector field x itself.
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Proposition 2.3. For a radial graph Mt evolving by mean curvature flow
in hyperbolic space we have

(
∂

∂t
− ∆M

)
〈νH, x〉H = (|A|2 − n)〈νH , x〉H. (12)

Proof. We combine the well known formula

∆
M
〈νH , x〉H = 〈∇M

H
H
, x〉H − 〈νH, x〉HR

H
νHνH

− 〈νH , x〉H|A|2 − x(H)

(see [Bar84]) where x(H) is the rate with which the mean curvature changes
as the manifold is translated along the vector field x, with

∂

∂t
〈νH, x〉H = −HH

νH(〈νH, x〉H)

= 〈∇M
H

H
, x〉H +H

H〈νH,∇
H
νH
x〉H

to derive(
∂

∂t
− ∆

M

)
〈νH , x〉H = 〈νH, x〉H(|A|2 +R

H
νHνH

) + x(H
H

)−H
H〈∇H

νH
x, νH〉H.

(13)
Since R

H
νHνH

= −n by (3) and x(H
H
) = 0 as x is a Killing vector field, we

only need to show the last term is 0. Using (4) we calculate

〈∇H
νH
x, νH〉H = 〈∇H

νx, ν〉

= 〈∇νx, ν〉+
1

xn+1
(〈ν, x〉〈en+1, ν〉 − 〈ν, en+1〉〈x, ν〉

− 〈x, en+1〉〈ν, ν〉)
= 0

since 〈∇νx, ν〉 = 〈ν, ν〉. �
We now look at the heat operator of 〈ν, x〉 which is the product of 〈νH, x〉H
and the inverse of the square root of the conformal factor.

Corollary 2.4. Under the conditions as in the previous proposition

(
∂

∂t
− ∆M

)
〈ν, x〉 = 〈ν, x〉|A|2 − 2〈∇M〈ν, x〉, xn+1en+1〉H.
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Proof. Combining (9) and (12) implies,(
∂
∂t − ∆M

)〈ν, x〉= xn+1

(
∂
∂t − ∆M

) 〈νH , x〉H + 〈νH , x〉H
(

∂
∂t − ∆M

)
xn+1

−2〈∇H
xn+1,∇H〈νH, x〉H〉H

= (|A|2 − n)〈ν, x〉+ (n− 2)〈ν, x〉+ 2〈ν, x〉〈ν, en+1〉2
−2〈∇M 〈ν, x〉 − 〈νH, x〉H∇

M
xn+1,

1
xn+1

∇H
xn+1〉H

= 〈ν, x〉(|A|2 − 2 + 2〈ν, en+1〉2) − 2〈∇M 〈ν, x〉, xn+1en+1〉H
+2〈ν, x〉(1− 〈ν, en+1〉2)

= 〈ν, x〉|A|2 − 2〈∇M〈ν, x〉, xn+1en+1〉H.
�

We can now use these results to obtain interior estimates.

Lemma 2.5. Let Mt ⊂ Hn+1 be a radial graph evolving by mean curvature

flow and η = coshR− ent cosh r where r is the distance from the xn+1 axis.
Then (

∂

∂t
− ∆

M

)
η3〈ν, x〉−1 ≤ 2η3〈ν, x〉−1

on the support of η
+
(the positive part of η).

Proof. From (11) we obtain
(

∂
∂t − ∆

M

)
η ≤ 0 and

(
∂
∂t − ∆

M

)
η3 ≤

−6η|∇M
η|2. Corollary 2.4 then gives(

∂
∂t − ∆

M

) 〈ν, x〉−1 = −〈ν, x〉−1|A|2 − 2〈∇M〈ν, x〉−1, e
H
n+1〉H

−2〈ν, x〉−3|∇M 〈ν, x〉|2.
Thus(

∂
∂t − ∆

M

)
η3〈ν, x〉−1 ≤ −η3〈ν, x〉−1|A|2 − 2η3〈∇M 〈ν, x〉−1, e

H
n+1〉H

−2η3〈ν, x〉−3|∇M 〈ν, x〉|2 − 6η〈ν, x〉−1|∇M
η|2

+6η2〈ν, x〉−2〈∇M
η,∇M〈ν, x〉〉H.

The result follows by making the substitutions

−2η3〈∇M 〈ν, x〉−1, e
H
n+1〉H ≤ 1

2
η3〈ν, x〉−3|∇M 〈ν, x〉|2 + 2η3〈ν, x〉−1

and

6η2〈ν, x〉−2〈∇M
η,∇M〈ν, x〉〉H ≤ 6η〈ν, x〉−1|∇M

η|2 +
3
2
η3〈ν, x〉−3|∇M 〈ν, x〉|2.

�
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Lemma 2.6. Let ω = x
|x| and R > 0 be such that {x ∈ Mt | ent cosh r ≤

coshR} is a compact radial graph for all t ∈ [0, T ]. Then for any t ∈ [0, T ]
and 0 ≤ θ < 1 we have the estimate

sup
{x∈Mt | ent cosh r≤θ coshR}

〈ν, ω〉−1 ≤ e2T+hmax−hmin(1−θ)−3 sup
{x∈M0 | r≤R}

〈ν, ω〉−1

where hmax and hmin are the supremum and infimum respectively of the
radial height in {x ∈Mt | r ≤ R}.
Proof. The previous Lemma with ([Ham89]) imply for almost every t ∈
(0, T )

∂

∂t
max
Mt

η3〈ν, x〉−1 ≤ 2 max
Mt

η3〈ν, x〉−1.

Integrating from 0 to T then gives

max
MT

η3〈ν, x〉−1 ≤ e2T max
M0

η3〈ν, x〉−1

and using hmin ≤ log|x| ≤ hmax we have

max
MT

η3〈ν, ω〉−1 ≤ e2T+hmax−hmin max
M0

η3〈ν, ω〉−1.

Since in {x ∈ Mt | ent cosh r ≤ θ coshR}, η3 ≥ (1 − θ)3 cosh3R, we finally
obtain by letting T be any t ∈ [0, T ]

sup
{x∈Mt | ent cosh r≤θ coshR}

〈ν, ω〉−1 ≤ e2T+hmax−hmin(1−θ)−3 sup
{x∈M0 | r≤R}

〈ν, ω〉−1

�

Proposition 2.7. For Mt ⊂ Hn+1 evolving by mean curvature flow

i
(

∂
∂t − ∆M

) |A|2 = −2|∇A|2 + 2|A|2(|A|2 + n) − 4H2,

ii
(

∂
∂t − ∆M

) |∇Mm
A|2 ≤ −2|∇Mm+1

A|2
+C(n,m)(

∑
i+j+k=m |∇Mi

A||∇Mj
A||∇Mk

A||∇Mm
A|

+|∇Mm
A|2).

Proof. The first formula was derived in [Hui86] for general manifolds.
Direct substitution gives the result in the case of Hn+1 . From this the
second is derived as in [Hui84] and [Ham82, Ch13]. �
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Lemma 2.8. Let Mt ⊂ Hn+1 evolve by (1) and define

cT =
1

2 sup[0,T ) supMt
〈ν, x〉−2

, and ϕ = ϕ(〈ν, x〉−2) =
〈ν, x〉−2

1 − cT 〈ν, x〉−2
.

Then(
∂

∂t
− ∆

M

)
|A|2ϕ ≤ −2cT |A|4ϕ2 + (

c(n)
cT

− cTϕ
′|∇M 〈ν, x〉−1|2)|A|2ϕ

−ϕ−1〈∇M
ϕ,∇M

(|A|2ϕ)〉H.

Proof. From Corollary 2.4 we derive

(
∂

∂t
− ∆M

)
〈ν, x〉−2 = −2〈ν, x〉−2|A|2 + 4〈ν, x〉−3〈∇M 〈ν, x〉, eHn+1〉H

−6〈ν, x〉−4|∇M 〈ν, x〉|2.

Following the steps in [EH91, Theorem 3.1] yields the result. �

Lemma 2.9. Let R > 0 be such that {x ∈Mt | r ≤ R} is a compact radial
graph for any t ∈ [0, T ]. Then for any t ∈ [0, T ] and 0 ≤ θ < 1 we have the
estimate

sup
{x∈Mt | cosh r≤θ coshR}

|A|2 ≤ c(n)(1− θ)−2(1 +
1
t
) sup
{x∈Ms | r≤R,s∈[0,t]}

v4.

Proof. In this proof we restrict ourselves to the region {x | r < R} and
utilize the methods of [EH91]. Replacing |A|2ϕ by g in the previous lemma
leads to (

∂

∂t
− ∆M

)
g = −2cTg2 + (

c(n)
cT

− cTϕ
′|∇M 〈ν, x〉−2|2)g

−2ϕ〈ν, x〉3〈∇M 〈ν, x〉−1,∇M
g〉H,

and for η = (coshR− cosh r)2 we have using (11)

(
∂

∂t
− ∆M

)
η ≤ 2n cosh2R− 2|∇M

cosh r|2



686 P. Unterberger

and |∇M
cosh r| ≤ sinh r. Now

−2ϕ〈ν, x〉3〈∇M 〈ν, x〉−1,∇M
g〉Hη ≤ −2ϕ〈ν, x〉3〈∇M 〈ν, x〉−1,∇M

gη〉H
+cTϕ′|∇M 〈ν, x〉−1|2gη

+
ϕ2

cTϕ′ 〈ν, x〉6g
(η′)2

η
|∇M

cosh r|2

= −2ϕ〈ν, x〉3〈∇M 〈ν, x〉−1,∇M
gη〉H

+cTϕ′|∇M 〈ν, x〉−1|2gη
+

4
cT

〈ν, x〉2g|∇M
cosh r|2.

Thus(
∂

∂t
− ∆

M

)
gη = −2cT g2η + (

c(n)
cT

− cTϕ
′|∇M 〈ν, x〉−2|2)gη

−2ϕ〈ν, x〉3〈∇M 〈ν, x〉−1,∇M
g〉Hη

+2ng cosh2R+ 6|∇M
cosh r|2g

−2η−1〈∇M
(gη),∇H

η〉H
≤ −2cT g2η +

c(n)
cT

gη

−2〈η−1∇M
η + ϕ〈ν, x〉3∇M 〈ν, x〉−1,∇H

gη〉H
+2ng cosh2R+ (6 +

4
cT

〈ν, x〉2)6|∇M
cosh r|2g

≤ −2cT g2η +
c(n)
cT

gη

−2〈η−1∇M
η + ϕ〈ν, x〉3∇M 〈ν, x〉−1,∇H

gη〉H
+c(n)(1 +

〈ν, x〉2
cT

)g cosh2R,

Therefore(
∂

∂t
− ∆

M

)
gηt ≤ −2cTg2ηt+ (

c(n)
cT

t+ 1)gη

−2〈η−1∇M
η + ϕ〈ν, x〉3∇M 〈ν, x〉−1,∇H

gηt〉H
+c(n)(1 +

〈ν, x〉2
cT

)gt cosh2R.
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At a point where sup0≤t≤T supx∈Mt | r≤R tgη �= 0 is attained for t0 > 0 we
compute

2cTg2ηt ≤ (
c(n)
cT

t+ 1)gη+ c(n)(1 +
〈ν, x〉2
cT

) cosh2Rgt.

Dividing by 2cTg we compute

gηT ≤ 1
2cT

(
c(n)
cT

T + 1)η +
c(n)
2cT

(1 +
1
cT

) cosh2RT,

and since η ≤ cosh2R we have

gηT ≤ 1
2cT

(
c(n)
cT

T + 1) cosh2R+
c(n)
cT

(1 +
1
cT

) cosh2RT

≤ c(n)
c2T

(1 + T ) cosh2 R

in the set {x ∈Mt | r ≤ R}.
As η ≥ (1−θ)2 cosh2R in {x ∈Mt | cosh r ≤ θ coshR} we obtain the required
result by replacing T by any t ∈ [0, T ]. �

Lemma 2.10. Let R > 0 be such that {x ∈Mt | r ≤ R} is a compact radial

graph for any t ∈ [0, T ]. Then for any t ∈ [0, T ], m ≥ 0, and 0 ≤ θ < 1 we
have the estimate

sup
{x∈Mt | cosh r≤θ coshR}

|∇Mm
A|2 ≤ cm(1 − θ)−2(1 +

1
t
)m+1

where cm = cm(n,m, sup{x∈Ms | r≤R,s∈[0,t]} v).

Proof. Throughout this proof we restrict ourselves to the region {x | r < R}.
Lemma 2.9 implies that the above holds for m = 0. Suppose now that for
R > 0 and ψ(t) = t

t+1

sup
{x∈Mt | r≤R,t∈[0,T ]}

ψk|∇Mk−1
A|2 ≤ ck−1

has been established for 0 ≤ k ≤ m. We then want to estimate
ψm+1|∇Mm

A|2 in {x ∈Mt | cosh r ≤ θ coshR, t ∈ [0, T ]}.
Making use of proposition 2.7 we adopt the same method as in [EH91] with
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f =ψm+1|∇Mm
A|2(7cm−1+1+ψm|∇Mm−1

A|2) and c = (n,m, c0, ..., cm−1) to
obtain (

∂

∂t
− ∆

M

)
f ≤ −ψ−1(δf2 − c)

where δ has the same dependence as c. Using η as in lemma 2.9 we have(
∂

∂t
− ∆M

)
ηf ≤ −ψ−1δηf2 + ψ−1cη + 2nf cosh2R

−2|∇M
cosh r|2f − 2〈∇M

η,∇H
f〉H

and

−2〈∇M
η,∇H

f〉H = −4η−
1
2 〈∇M

η
1
2 ,∇H

(ηf)〉H + 8|∇M
cosh r|2f

which imply(
∂

∂t
− ∆

M

)
ηf ≤ −ψ−1δηf2 + ψ−1cη + 2nf cosh2R+ 6|∇M

cosh r|2f

−4η−
1
2 〈∇M

η
1
2 ,∇H

(ηf)〉H.

Since ψ(0) = 0 we have ηf = 0 at time t = 0. At the point where, for t0 > 0,
m(T ) = sup0<t0≤T sup{x∈Mt | coshr≤coshR} ηf is attained we have

δηf2 ≤ cη + 6ψ|∇M
η

1
2 |2f + 2nψf cosh2R

≤ cη + 6|∇M
η

1
2 |2f + 2nf cosh2 R

≤ c cosh2R+ 6f cosh2 R+ 2nf cosh2R.

On {x | cosh r ≤ θ coshR}, the inequality η ≥ (1 − θ)2 cosh2R holds and so

(1 − θ)2δf2 ≤ c+ (6 + 2n)f

≤ c(1− θ)−2 + (1− θ)2
δ

2
f2,

which implies f ≤ c(1− θ)2.

Thus

sup
{x∈Mt | coshr≤θ coshR,t∈[0,T ]}

ψm+1|∇Mm
A|2 ≤ cm(1− θ)−2

and sup
{x∈Mt | cosh r≤θ coshR,t∈[0,T ]}

|∇Mm
A|2 ≤ cm(1− θ)−2(1 +

1
t
)m+1.
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�

To find solutions of (1) we are first required to restrict the problem to
obtaining solutions over a compact subset of Sn

+.
Define Ωε = {Sn

+ | xn+1 ≥ ε} and ΣR = {Ωε | d(x) ≤ R} where here
d(x) = distE(x, ∂Ωε) is the Euclidean distance as measured on Ωε from x to
∂Ωε. We now find an upper barrier for the flow over Ωε. That is we show
there exists a surface which lies over ΣR, above the initial surface and has
positive mean curvature. This prevents the gradient of the evolving surface
over Ωε from increasing on ∂Ωε.

Proposition 2.11. Let h = log |x| ∈ C2(Ωε) be the height of the section of
the initial surface, F0(Mn), which lies over Ωε. Then

δ+ = h(x) +
1
c

log(1 + βd(x)).

for appropriate c(n, h) and β(n, h) is an upper barrier for mean curvature
flow in Hn+1 over Ωε.

Proof. [Giu84]. �

3. Existence of solutions.

We reformulate the problem to simplify the analysis. Firstly note that the
system (

∂

∂t
F(p, t)

)⊥
= H(p, t)

is, up to tangential diffeomorphisms, equivalent to (1). Using a coordinate
chart in which the first n coordinates �θ(p, t) represent a point on Sn

+ and the
(n + 1)st coordinate the Euclidean radial height over Sn

+ we have F(p, t) =
(�θ(p, t), eh(�θ(p,t),t)) and νH = xn+1(−∇h,1)√

1+|∇h|2 so that

〈 ∂
∂t

F, νH〉H =
1

xn+1

√
1 + |∇h|2

∂

∂t
h = −HH

and
∂

∂t
h = −xn+1〈ν, ω〉−1HH.



690 P. Unterberger

Using HH = divMνH we then obtain

∂

∂t
h = x2

n+1

(
∆sh − gikgjl

∇s

ih∇
s

jh

1 + |∇sh|2∇
s

k∇
s

lh

)
− nxn+1〈∇s

h, en+1〉

− x2
n+1|∇

s
h|2

(1 + |∇s
h|2) on Sn

+

h(�θ, 0) = h0(�θ)

where ∆
s
, ∇s

, and gij, are the Laplacian, gradient and metric coefficients on
Sn

+ with the metric induced from Rn+1. By projecting down onto Bn
1 (0) ⊂

Rn, defining s(y) = h((y, xn+1)) for y ∈ Bn
1 (0) we arrive at

∂

∂t
s = A(x, s, Ds,D2s) on Bn

1 (0)

s(y, 0) = s0(y)

where

A(x, s, Ds,D2s) = (1− |y|2)aijDiDjs

+ (1 − |y|2)
(
n+

1
1 + |Ds|2 − (Ds.y)2

)
Ds.y

+ (1 − |y|2) |Ds|2 − (Ds.y)2

1 + |Ds|2 − (Ds.y)2

and

aij = δij − yiyj − (Ds− (Ds.y)y)i(Ds− (Ds.y)y)j

1 + |Ds|2 − (Ds.y)2
.

The coefficient matrix aij has :
1. For y ‖ Ds an eigenvalue 1−|y|2

1+(1−|y|2)|Ds|2 with multiplicity 1 and an eigen-
value 1 with multiplicity n− 1.
2. For y ⊥ Ds eigenvalues 1 − |y|2 and 1

1+|Ds|2 with multiplicity 1 and an
eigenvalue 1 with multiplicity n − 2, and
3. Otherwise two eigenvalues

(1− |y|2)(1+|Ds|2)+1±√(1 − (1 − |y|2)(1+|Ds|2))2 + 4(1− |y|2)(Ds.y)2
2(1 + |Ds|2 − (Ds.y)2)

with multiplicity 1 and an eigenvalue 1 with multiplicity n− 2.
Clearly as |y| → 1 or |Ds| → ∞ some eigenvalues may become zero and

thus our equation may not be uniformly parabolic. This is one of the main
problems in proving existence of a solution of the flow.
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Theorem 3.1. Suppose F0(Mn
ε ) is a smooth radial graph over Ωε =

{Sn
+ | xn+1 ≥ ε}. Then the initial value problem

∂
∂tF(p, t) = H(p, t), p ∈Mn

ε

F(p, 0) = F0(p), p ∈Mn
ε

F(p, t) = F0(p), p ∈ ∂Mn
ε

(14)

has a smooth radial graph solution for all time.

Proof. The result follows if we have a smooth solution for all time to the
problem

∂
∂ts = A(x, s, Ds,D2s), y ∈ Bn√

1−ε2(0)
s(y, 0) = s0(y), y ∈ Bn√

1−ε2(0)
s(y, t) = s0(y), y ∈ ∂Bn√

1−ε2(0).
(15)

As |y| ≤ √
1 − ε2, this system is uniformly parabolic (see eigenvalues

on previous page) provided |Ds| < ∞. Given these the results of La-
dyzhenskaya et al. [LSU68] apply and yield a smooth solution of (15).
Since |Ds|2 ≤ |∇h|2

ε2 = v2−1
ε2 our result follows provided v−1 = 〈ν, ω〉 is

bounded away form zero. Employing Corollary 2.4 and a compact maxi-
mum principle shows 〈ν, x〉 takes its minimum on the parabolic boundary
Bn√

1−ε2(0)×0∪∂Bn√
1−ε2(0)×(0,∞). Initial bounds and the barriers (Propo-

sition 2.11) imply 〈ν, x〉 is bounded here. The barrier Sn
+(ehmax) is used to

bound |x| above, and so 〈ν, ω〉 is bounded away from zero completing the
proof. �

Theorem 3.2. Let M0 = F0(Bn) be a locally Lipschitz continuous entire
radial graph over Sn

+ ⊂ Hn+1 . Then the initial value problem (1) has a

smooth solution Mt = Ft(Bn) for all time t > 0. Moreover, each Mt is an
entire graph over Sn

+.

Proof. We first assume M0 is smooth. For the solid cylinder Cε =
{x | |x|

xn+1
≤ 1

ε} , let M ε
t be the solution of (14) with Mn

ε = F−1
0 (M0 ∩ Cε)

which by Theorem 3.1 exists for all time, and let hε
t and sεt be the radial

height of M ε
t over Sn

+ and its projection onto a ball in Rn respectively.
Denote now by Bn

R the restriction of the hyperbolic ball of radius R
and center (�0, 1) to Sn

+. Then choose R0 so that Bn
4R0

⊂⊂ Ωε. For hm =
sup{x∈M0 | r<4R0} h

ε
0 we find (see “The Sphere” example)

M ε
0 ∩Bn+1

4R0
(p+) = ∅
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where p+ = (�0, 1+ehm

cosh 4R0−sinh 4R0
). Furthermore

∂M ε
t ∩ Bn+1

4R0
(p+) = ∅.

Using a compact maximum principle (see Lemma 3.2 of [Hui86]) and “The
Sphere” example we infer

M ε
t ∩ Bn+1

2R0
(p+) = ∅

for t ∈ [0, t0] where t0 = 1
n log cosh 4R0

cosh 2R0
. Using a similar argument with

Bn+1
4R0

(p−) where p− = (�0, ehm

2 coshR+sinhR ) and hm = inf{x∈M0 | r<4R0} h
ε
0 we

conclude that the height function satisfies

sup
Bn

2R0
×[0,t0]

|sεt | < c0,

where c0 depends only on n, R0 and supBn
4R0

×{0} |hε
0|.

Applying the gradient estimate of Lemma 2.6 we obtain

sup
Bn

3
2 R0

×[0,t1]
|Dsεt | ≤ c1

where t1 < t0 and c1 = c1(n, R0, c02, supBn
2R0

×{0} |Dsεt |). We note that as
R0 → ∞ both t0 and t1 may approach ∞. From Lemma 2.10 we then
conclude for any integer m ≥ 0

sup
Bn

R0
×[0,t1]

|Dmsεt | ≤ cm

where cm = cm(m, n, R0, c1).
Since R0 and t1 are arbitrary we can select a sequence of solutions (sεi

t ) for
εi → 0 (εi < ε) such that sεi

t
i→∞→ s in C∞ uniformly on compact subsets

of Mn × (0,∞). This establishes the existence of a family of entire graphs
Mt = graph ht solving (1) where h ∈ C∞(Sn

+ × (0,∞)). As the second and
higher order derivative estimates for h on each compact subset of Sn

+ depend
only on the initial gradient on a slightly larger subset, an approximation
argument yields a smooth solution of (1) also for locally Lipschitz initial
data. �

Theorem 3.3. If M0 has bounded gradient and hyperbolic height over Sn
+

then under mean curvature flow Mt converges in C∞ to Sn
+.
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Proof. As M0 has bounded hyperbolic height it lies between two hyper-
spheres (see “The Hypersphere” example). In view of (2), the solution Mt

does not move at the boundary and therefore by the compact maximum
principle remains between the evolving barriers. Since both barriers evolve
to Sn

+ our solution converges uniformly to Sn
+ in height.

Allowing R → ∞ in lemma 2.6 we infer that v remains bounded on some
small time interval [0, T ] and hence by lettingR→ ∞ in the interior estimate
for |A|2, lemma 2.9, that |A|2 is bounded on some small time interval [t0, T ]
for t0 > 0. We may thus use the non compact maximum principle [EH91,
Theorem 4.3] which with the equation for the heat operator of 〈ν, x〉−1,
Corollary 2.4, imply that 〈ν, x〉−1 is bounded above on [t0, T ] by its maximum
value at time t0. It follows that 〈ν, x〉−1 is bounded above by its initial
maximum for all time. Our height bounds then imply that v is bounded
independent of time. From the interior estimate, lemma 2.10, with R → ∞
we then obtain bounds for |∇Mm

A|2 for m ≥ 0 independent of time. Thus
height and all its derivatives are bounded independent of time. Employing
the Theorem of Arzela-Ascoli the result follows. �
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