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Convergence of spectral structures: a functional

analytic theory and its applications to spectral

geometry

Kazuhiro Kuwae and Takashi Shioya

We present a functional analytic framework of some natural topolo-
gies on a given family of spectral structures on Hilbert spaces,
and study convergence of Riemannian manifolds and their spectral
structure induced from the Laplacian. We also consider conver-
gence of Alexandrov spaces, locally finite graphs, and metric spaces
with Dirichlet forms. Our study covers convergence of noncompact
(or incomplete) spaces whose Laplacian has continuous spectrum.

CONTENTS

1. Introduction
2. Topologies on a family of spectral structures
2.1. Measured Gromov-Hausdorff topology
2.2. Convergence of Hilbert spaces
2.3. Convergence of bounded operators
2.4. Convergence of spectral measures on complex Hilbert spaces
2.5. Convergence of quadratic forms
2.6. Convergence of spectral structures
2.7. Asymptotic behavior of spectra
3. Convergence of manifolds
3.1. Preliminaries for Lipschitz-Riemannian manifold
3.2. Compact Lipschitz convergence and spectral structure
3.2.1. Blowing up
3.2.2. Magnifying

1The first author is partially supported by a Grant-in-Aid for Scientific Research
No. 11740112 from the Ministry of Education, Science, Sports and Culture, Japan.

2The second author is partially supported by a Grant-in-Aid for Scientific Re-
search No. 11440023, 14540056 from the Ministry of Education, Science, Sports and
Culture, Japan.

3Dedicated to Professor Yukio Ogura on the occasion of his sixtieth birthday.

599



600 K. Kuwae and T. Shioya

3.2.3. Tower of coverings
3.2.4. Degeneration
3.3. Convergence of manifolds under a bound of local isoperimetric constant
3.3.1. Shrinking
3.3.2. Iteration of attaching small manifolds
3.4. Collapsing of warped product manifolds
3.5. Convergence of noncompact Alexandrov spaces
4. Convergence of graphs
4.1. Graph with simplicial metric
4.2. Convergence of graphs and spectral structure
4.3. Negligibility of boundary
5. Convergence of measured metric spaces with Dirichlet forms
5.1. Preliminaries for Dirichlet form
5.2. Asymptotic compactness of Dirichlet forms
5.3. Convergence of (noncompact) manifolds under a lower bound of Ricci

curvature

1. Introduction.

The classical perturbation theory of linear operators tells us that if we per-
turb a Riemannian metric on a fixed manifold, then the spectral objects such
as the spectral measure, the spectrum of the Laplacian etc. are continuous
in metrics with respect to a suitable topology. What if we perturb not only
the metric but also the topology of a manifold? In this case, there are no
more natural identification between L2 spaces of Riemannian manifolds and
so we cannot rely on the standard perturbation theory. Nevertheless, we
obtain some asymptotic correspondence between them under convergence of
Riemannian volume measures. In this direction, Fukaya [23] first defined
the measured Gromov-Hausdorff topology on the set of metric spaces with
Radon measures (cf. §2.1 of this paper), and studied the convergence as
i → ∞ of the eigenvalues of the Laplacian of closed Riemannian manifolds
Mi, i = 1, 2, . . . , under a uniform bound of sectional curvature, when Mi is
convergent with respect to the measured Gromov-Hausdorff topology. After
that, Kasue-Kumura [32, 33] (see also [7]) introduced a natural distance,
called the spectral distance, between closed Riemannian manifolds under a
uniform bound (in some sense) of heat kernel. The spectral distance ex-
presses how close analytic structures are and is a powerful tool to study
convergence of Riemannian manifolds and their analytic structure. In this
paper, we present a systematic and functional analytic framework of some
topologies on the set of spectral structures, which is much more general than
the spectral distance. In particular, we do not need the existence of heat
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kernel (or the integral kernel of the semigroup), and also the spectrum is
not needed to be discrete. Our framework is especially useful to investi-
gate the behavior of spectrum of Laplacian under a perturbation of not only
the metric but also the topology of (not necessarily compact) Riemannian
manifolds.

We precisely mean by a spectral structure on a Hilbert space a compatible
set Σ = (A, E , E, {Tt}, {Rζ}) of a (nonnegative and selfadjoint) infinitesimal
generator A, a closed nonnegative quadratic form E , a spectral measure E, a
strongly continuous contraction semigroup {Tt}, and a strongly continuous
resolvent {Rζ} on the Hilbert space. An important example of spectral struc-
ture is one whose generator is the Friedrichs extension of the C∞ Laplacian
acting on the set, say C∞

0 (M), of smooth functions with compact support
on a (not necessarily complete) Riemannian manifold M .

In what follows, let (X, p) be any pointed, locally compact, and separa-
ble metric space and m any Radon measure on it. We denote by L2(X ;m)
the set of real valued L2 functions with respect to m, equipped with L2

inner product (·, ·)L2(X ;m). Then, this is a separable Hilbert space over R.
Consider the family S of all (X, p,m,Σ), where Σ is any spectral struc-
ture on L2(X ;m), and also the family Sc of (X, p,m,Σ) ∈ S for which
Σ has compact resolvent. In the first part (§2) of this paper, we intro-
duce a natural topology on S (resp. Sc), called the strong (resp. compact)
spectral topology (Definition 2.14), such that the projection S (resp. Sc)
� (X, p,m,Σ) �→ (X, p,m) is continuous with respect to the pointed mea-
sured Gromov-Hausdorff topology on the family {(X, p,m)}. The conver-
gence of spectral structures with respect to the strong (compact) spectral
topology can be rephrased in terms of the quadratic forms, resolvent fam-
ilies, semigroups, and spectral measures respectively (Theorem 2.4). We
investigate, when a sequence (Xi, pi, mi,Σi) ∈ S, i = 1, 2, . . . , converges
with respect to the strong (compact) spectral topology, the asymptotic be-
havior of the spectrum σ(Ai) of the generator Ai of Σi (Proposition 2.5 and
Theorem 2.6). These results are generalizations of the classical topologi-
cal perturbation theory (cf. [36, 47, 48]) and also of the recent study on
convergence of bilinear forms, due to Mosco [42]. Remark here that even
if (Xi, pi, mi) for a large i is close enough to (X, p,m) with respect to the
measured pointed Gromov-Hausdorff topology, we have no natural linear
bijection between L2(Xi;mi) and L2(X ;m), and even no natural linear in-
jection L2(Xi;mi) → L2(X ;m) or L2(X ;m)→ L2(Xi;mi) for noncompact
X . This makes some differences from the standard theory. Remark also that
the concept of the compact spectral topology is newly defined and investi-
gated in this paper. We indeed give the definitions of the strong and compact
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spectral topologies on the set of spectral structures on general Hilbert spaces,
so that it can also be applied to that defined on L2 differential forms, L2

sections of vector bundles, L2 functions on graphs, etc.
In the second part (§3) of this paper, we apply the above functional

analytic study on spectral structures to some sorts of shrinking, blowing-
up, and degenerating sequences of Riemannian manifolds. We define a new
topology on the set of Riemannian manifolds, for which the sequences of
manifolds as above are all convergent.

Definition 1.1 (Compact Lipschitz convergence). We say that a sequence
{Mi}i=1,2,... of Riemannian manifolds compact Lipschitz converges to a Rie-
mannian manifold M if for any relatively compact open subset O ⊂M there
exists a sequence of relatively compact open subsets Oi ⊂ Mi such that as
i→∞, Oi Lipschitz converges to O, i.e., the Lipschitz distance

dL(Oi, O) := inf{ | lndil(f)|+ | ln dil(f−1)| ;
f : Oi → O is a bi-Lipschitz homeomorphism }

tends to zero, where dil(f) is the smallest Lipschitz constant of f .

Note that compact Lipschitz convergence is only noncollapsing, i.e., pre-
serving dimensions.

Let M be a Riemannian manifold and W 1,2(M) the (1, 2)-Sobolev space
of functions on M (i.e., the set of real valued L2 functions admitting L2 weak
derivative). Note that W 1,2(M) is a real Hilbert space. Let W 1,2

0 (M) be the
closure inW 1,2(M) of C∞

0 (M). We denote by Σ(M) the spectral structure on
L2(M) induced from the Friedrichs extension, say ∆M , of the C∞ Laplacian
acting on C∞

0 (M). Indicate by σ(·) the spectrum of an operator. The
following theorem is a primitive application of our study on the spectral
topologies.

Theorem 1.1. Let {Mi}i=1,2,... be a sequence of (possibly noncompact,
incomplete) Riemannian manifolds (with boundary), and M a (possibly
noncompact, incomplete) Riemannian manifold (with boundary) such that

W 1,2(M) = W 1,2
0 (M). If Mi compact Lipschitz converges to M , then the

spectral structure Σ(Mi) converges to Σ(M) with respect to the strong spec-

tral topology, and consequently we have

σ(∆M) ⊂ lim
i→∞

σ(∆Mi),

i.e., for any λ ∈ σ(∆M) there exist λi ∈ σ(∆Mi) with λi → λ.
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Here, the condition W
1,2
0 (M) = W 1,2(M) is almost equivalent to the

negligibility of the boundary in the sense of [25, 26, 27]. Note that in Theo-
rem 1.1, the limit set of σ(∆Mi) does not necessarily coincides with σ(∆M)
(Remark 3.2).

Although most of earlier studies treat only compact manifolds, there are
some works for convergence Mi → M of complete noncompact manifolds:
Colbois-Courtois [17] studied convergence of eigenvalues less than the infi-
mum of essential spectrum of M , depending on control of the Dirichlet first
eigenvalue around the ends of Mi. On the other hand, Theorem 1.1 says the
semi-continuity of the whole spectrum. Also there are many works on degen-
eration of hyperbolic manifolds (see [56] for example), which is an example
of compact Lipschitz convergence.

As a direct consequence of Theorem 1.1, we have an asymptotic esti-
mate of the spectral gaps of a Riemannian manifold (Corollary 3.1). We
extend Theorem 1.1 to collapsing of warped product manifolds (Theorem
3.3). Since the theorem is also true for Lipschitz-Riemannian manifolds, it
can be applied to convergence of Alexandrov spaces (§3.5). We also study
convergence of (locally finite) graphs (§4), results which are analogous to
compact Lipschitz convergence of manifolds.

In the final part (§5) of this paper, we consider a family of measured
metric spaces with (abstract) Dirichlet forms. Under some uniform condition
on the metrics and measures, and a uniform bound of Poincaré constants, we
prove the asymptotic compactness of the set of spectral structures associated
with spaces in such a family (Theorems 5.1 and 5.2). Remark that we do
not assume the doubling condition for the measures and also the existence
of heat kernel (or the integral kernel of the semigroup). The results can be
thought as generalizations of those due to Kasue-Kumura [32, 33]. Our proof
is achieved in a different approach from theirs.

We have some geometric applications of that study. The first one is on
convergence of compact Riemannian manifolds under a bound of isoperi-
metric constant. Let M be an n-dimensional Riemannian manifold and
r > 0. An r-net of M is defined to be a discrete (possibly finite) sequence
{pk}k=1,2,... of points in M with

⋃
k B(pk, r) = M , where B(p, r) denotes the

open metric ball centered at a point p and of radius r. An r-net {pk} of M
is said to be r-discrete if d(pk, p�) ≥ r for all k �= �, where d is the distance
function on M . We define the r-isoperimetric constant of M

Ir(M) := sup
{pk}

inf
k,Ω1,Ω2

r · area(∂Ω1 ∩ ∂Ω2)
vol(Ω1) ∧ vol(Ω2)

,

where {pk} runs over all r-discrete r-nets of M and (Ω1,Ω2) over all pairs
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of two disjoint open domains in B(pk, r) with piecewise smooth boundary
such that vol(B(pk, r) \ (Ω1 ∪ Ω2)) = 0, and we set x ∧ y := min{x, y} for
x, y ∈ R. For the completion M̄ of an incomplete Riemannian manifold M ,
let us define a measure volM̄ on M̄ to be the Riemannian volume measure
volM on M and to be zero on M̄ \M . With these notation, we have:

Theorem 1.2. Let {Mi}i=1,2,... be a sequence of compact Riemannian man-
ifold (with boundary), and M a (incomplete) Riemannian manifold (with

boundary). We assume the following (1)–(5).

(1) limr↘0 limi→∞ Ir(Mi) > 0.

(2) W 1,2(M) = W 1,2
0 (M).

(3) The completion M̄ of M is compact.

(4) (Mi, volMi) converges to (M̄, volM̄ ) with respect to the measured
Gromov-Hausdorff topology.

(5) Mi compact Lipschitz converges to M .

Then, the spectral structure Σ(Mi) converges to Σ(M) with respect to the

compact topology. Consequently, Σ(M) has compact resolvent and for any
fixed k ∈ N, the kth eigenvalue of ∆Mi converges to that of ∆M as i→∞.

We construct an example of a sequence {Mi} satisfying (1)–(5) by iterat-
ing to attach small manifolds. Such the manifoldMi increases its topological
complexity as i→∞ and the limit M has infinite topological type (§3.3.2).
In the same manner as in Theorem 3.3, it is possible to extend Theorem 1.2
to collapsing of warped product manifolds, which we omit to explore.

The second application is on convergence of complete noncompact Rie-
mannian manifolds with a lower Ricci curvature bound. For a monotone
nondecreasing function c : [ 0,∞ ) → [ 0,∞ ) and for a number n ≥ 2, let
PR(n, c) be the set of (M, p, µp), where (M, p) is any n-dimensional complete
(possibly noncompact) pointed Riemannian manifold whose Ricci curvature
satisfies RicM ≥ −(n − 1) c(R) on the metric ball B(p, R) for every R > 0,
and we set µp := volM / vol(B(p, 1)). For (M, p, µp) ∈ PR(n, c), we de-
fine the (1, 2)-Sobolev space W 1,2(M ; µp) to be the set of u ∈ L2(M ; µp)
admitting weak derivative du with

∫
M |du|2M dµp < ∞, where | · |M de-

notes the norm induced from the Riemannian metric on M . Let E(M,µp) :
W 1,2(M ; µp)×W 1,2(M ; µp)→ R be a Dirichlet form defined by

E(M,µp)(u, v) :=
∫

M
〈du, dv〉M dµp, u, v ∈W 1,2(M ; µp),
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and Σ(M, µp) the induced spectral structure on L2(M ; µp). Cheeger-Colding
[16] defined a canonical Dirichlet form, say E(X,m), on L2(X ;m) for each mea-
sured pointed Gromov-Hausdorff limit (X, p0, m) of PR(n, c). That induces
a spectral structure on L2(X ;m), say Σ(X,m). We have the following:

Theorem 1.3. Let a sequence {(Mi, pi, µpi)}i=1,2,... ⊂ PR(n, c) converge to

a space (X, p,m) with respect to the pointed measured Gromov-Hausdorff
topology. Then, the spectral structure Σ(Mi, µpi) converges to Σ(X,m) with

respect to the strong spectral topology. Consequently we have

σ(∆) ⊂ lim
i
σ(∆i),

where ∆,∆i are the generators of Σ(X,m),Σ(Mi, µpi) respectively.

Note that we see from the discussions in [32, 16, 15] that if X is compact
in Theorem 1.3, then Σ(Mi, µpi) converges to Σ(X,m) with respect to the
compact spectral topology (see Remark 5.1).

Acknowledgment. The authors would like to thank Professors Atsushi Ka-
sue, Yukio Ogura, Toshikazu Sunada, and Takao Yamaguchi for valuable
discussions and comments.

2. Topologies on a family of spectral structures.

2.1. Measured Gromov-Hausdorff topology.

In this section, we shall define the (resp. measured) Gromov-Hausdorff topol-
ogy on the set of pointed (resp. pointed and measured) metric spaces, which
is originally defined by Gromov [28] (resp. Fukaya [23]). We establish some
extensions of them for noncompact (or incomplete) spaces, and also present
a natural definition of the L2 topology over the set of L2 functions on all
locally compact separable measured metric spaces.

Throughout this paper, let A and B be any directed sets. Denote by
Met the set of isometry classes of locally compact separable pointed metric
spaces and by Metc the set of spaces in Met any bounded subset of which
is relatively compact.

Definition 2.1 ((Compact) Gromov-Hausdorff topology). We say that a
net {(Xα, pα)}α∈A of spaces in Met converges to a space (X, p) ∈ Met
in the sense of pointed compact Gromov-Hausdorff convergence (or com-
pact GH convergence) if and only if for any relatively compact open subset
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O ⊂ X containing p, there exist positive numbers εα ↘ 0, relatively compact
open subsets Oα ⊂ Xα containing pα, and (not necessarily continuous) maps
fα : (Oα, pα)→ (O, p), α ∈ A, called εα-approximations, such that

| d(fα(x), fα(y))− dα(x, y) |< εα for any x, y ∈ Oα, (2.1)
O ⊂ B(fα(Oα), εα), (2.2)

where dα, d denote the distance functions on Xα, X respectively, and B(A, r)
the open metric r-ball of a set A in a metric space. It follows from a straight
forward discussion that this convergence induces a topology on Met, say
the pointed compact Gromov-Hausdorff topology, or the compact GH topology
for simplicity. We also define a stronger topology on Metc, say the pointed
Gromov-Hausdorff topology or the GH topology, by restricting O = B(p, r)
and Oα = B(pα, rα) in the above, where r is any positive number and {rα}
a net of positive numbers depending on r such that rα → r.

Note that a notion of convergence of sequence of countable elements is
not enough to define a topology and we need convergence of net for it.

The Gromov-Hausdorff topology on Metc is originally defined in [28].
The compact Gromov-Hausdorff topology onMet introduced here is needed
to cover the compact Lipschitz convergence of Riemannian manifolds.

Remark 2.1. (1) The restricted topology on Metc of the compact GH
topology is different from (or strictly weaker than) the GH topology. In
fact, setting La := { (x, a) | x ∈ R } ⊂ R2, X := L0, and Xα := L0∪L1

for all α ∈ A equipped with the restricted metrics of the Euclidean
metric on R2, we have (Xα, o) → (X, o) with respect to the compact
GH topology, but not the GH topology.

(2) The GH topology onMetc is Hausdorff (see [28]). On the other hand,
the compact GH topology on Met is not Hausdorff, as is observed
in (1) above. In general, if a net {(Xα, pα)} ⊂ Met compact GH
converges to a space (X, p) ∈Met, then it also compact GH converges
to (Y, p) for any open subset Y ⊂ X containing p.

(3) Let a net {(Xα, pα)} ⊂ Met compact GH converge to a space
(X, p) ∈ Met. Then, a diagonal argument yields the existence of
εα-approximations fα : (Oα, pα) → (O′

α, p) with εα ↘ 0, where {O′
α}

is a monotone increasing net of relatively compact open subsets of X
containing p and with

⋃
α O

′
α = X , and Oα ⊂ Xα relatively compact

open subsets containing pα.
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Denote by M the set of isomorphism classes of triples (X, p,m) with
(X, p) ∈ Met and positive Radon measure m on X , and by Mc the set of
(X, p,m) ∈M with (X, p) ∈Metc.

Definition 2.2 ( Measured (and compact) Gromov-Hausdorff topology ).
We say that a net {(Xα, pα, mα)}α∈A of spaces in M converges to a space
(X, p,m) ∈ M in the sense of pointed, measured, and compact Gromov-
Hausdorff convergence (or measured compact GH) if and only if for any
relatively compact open subset O ⊂ X containing p, there exist positive
numbers εα ↘ 0, relatively compact open subsets Oα ⊂ Xα containing pα,
and mα-measurable εα-approximations fα : (Oα, pα)→ (O, p) such that the
push-forward measure fα∗(mα|Oα) vaguely converges to m|O, i.e.,

lim
α

∫
Oα

u ◦ fα dmα =
∫

O

u dm for any u ∈ C0(O),

where C0(O) is the set of real valued continuous functions on O with compact
support in O. We call such a family of maps {fα} a family of measured εα-
approximations. This convergence induces a non-Hausdorff topology onM,
say the pointed, measured, and compact Gromov-Hausdorff topology, or the
measured compact GH topology. RestrictingO = B(p, r) and Oα = B(pα, rα)
for r > 0 and rα → r in the above defines a stronger topology on Mc, say
the measured GH topology.

Remark 2.2. A measured compact GH convergence (Xα, pα, mα) →
(X, p,m) is equivalent to the existence of mα-measurable εα-approximations
fα : (Oα, pα)→ (O′

α, p), εα ↘ 0, such that {O′
α} is a monotone nondecreas-

ing net of relatively compact open subsets of X covering X and that

lim
α

∫
Oα

u ◦ fα dmα =
∫

X

u dm for any u ∈ C0(X).

This also holds for a measured GH convergence in Mc if we take Oα :=
B(pα, rα) and O′

α := B(p, r′α) for some rα, r′α ↗ ∞ in the above. We also
call such a family {fα} a family of measured εα-approximations.

The measured GH topology was first introduced by Fukaya [23] on the
set of compact metric spaces with Radon measures (see also §31

2 of [28]).
Note that if a sequence of Riemannian manifolds compact Lipschitz con-

verges to a Riemannian manifold, then, by (3.1) in §3.1 below, this is also
a convergence with respect to the measured compact GH topology defined
here, by taking some reference points. For simplicity, we say (especially in
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§3 and §4) that (Xα, mα) converges to (X,m) with respect to the measured
(compact) GH topology when (Xα, pα, mα) converges to (X, p,m) for some
reference points pα ∈ Xα and p ∈ X .

Proposition 2.1. The measured GH topology onMc is Hausdorff.

Proof. Assume that a net {(Xα, pα, mα)}α∈A ⊂ Mc converges to
two spaces (X, p,m), (X ′, p′, m′) ∈ Mc. Then, there exist two mea-
sured εα-approximations fα : (B(pα, rα), pα) → (B(p, sα), p) and gα :
(B(pα, r

′
α), pα) → (B(p′, sα), p′) with εα ↘ 0, rα, r′α, sα ↗ ∞. Here, tak-

ing a subnet if necessarily, we may assume that r′α ≥ rα for all α ∈ A. By
(2.1) and (2.2), we can construct 3εα-approximations f̂α : (B(p, sα), p) →
(B(pα, rα), pα) such that d(fα ◦ f̂α(x), x) < εα for any x ∈ B(p, sα) and that
d(f̂α ◦ fα(x), x) < εα for any x ∈ B(pα, rα). The maps hα := gα ◦ f̂α :
(B(p, sα), p) → (B(p′, sα), p′) are 4εα-approximations and converge to an
isometry ι : (X, p)→ (X ′, p′) by taking a subnet (cf. 3.6 Proposition of [28]).
We have

lim
α

sup
x∈B(pα,rα)

d(ι ◦ fα(x), gα(x)) = 0. (2.3)

Let u ∈ C0(X ′) be any fixed function. The uniform continuity of u and (2.3)
together show that for any ε > 0 there exists αε ∈ A such that |u◦ ι◦fα(x)−
u ◦ gα(x)| < ε for any α ≥ αε and x ∈ B(pα, rα). Therefore,

lim
α

∣∣∣∣∣
∫

B(pα,rα)
u ◦ ι ◦ fα dmα −

∫
B(pα,rα)

u ◦ gα dmα

∣∣∣∣∣
≤ ε lim

α
mα((ι ◦ fα)−1(suppu) ∪ g−1

α (suppu)) ≤ εm(B(supp u, ε)).

Since suppu ⊂ B(p′, sα) for all sufficiently large α, we have∫
X ′
u ◦ ι dm = lim

α

∫
B(pα,rα)

u ◦ ι ◦ fα dmα

= lim
α

∫
B(pα,rα)

u ◦ gα dmα =
∫

X ′
u dm′,

which means that ι∗m = m′. Thus, (X, p,m) and (X ′, p′, m′) are isomorphic
as pointed measured metric space. This completes the proof. �

Let h : [ 0,∞ )→ [ 0,∞ ) be a monotone nondecreasing function, and set

Mc(h) := { (X, p,m) ∈Mc | m(B(p, r)) ≤ h(r) for all r > 0 }.
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Proposition 2.2. The projectionMc(h) � (X, p,m) �→ (X, p) ∈Metc is a
proper map.

Proof. Let {(Xα, pα, mα)}α∈A be a net of spaces inMc(h) such that (Xα, pα)
GH converges to some space (X, p) ∈ Metc. It suffices to prove that there
exists a Radon measure m on X with (X, p,m) ∈ Mc(h) such that some
subnet of {(Xα, pα, mα)} converges to (X, p,m) with respect to the measured
GH topology. We shall prove that εα-approximations fα : (B(pα, rα), pα)→
(B(p, r′α), p), εα ↘ 0, rα, r′α↗∞, can be perturbed to mα-measurable 2εα-
approximations. In fact, we first perturb them to satisfy that their images
are discrete, which is easy to be done. We in addition perturb them to ones
such that the preimage of each point in X is a Borel subset of Xα, which can
be done by dividing Xα into disjoint Borel subsets of small diameters. Then,
the perturbed approximations are mα-measurable. We may thus assume
that the approximations fα are mα-measurable from the beginning. It is
easy to see that for any r > 0 and α ∈ A with r′α ≥ r, the push-forward
measure mα,r := (fα∗(mα|B(pα, rα))|B(p,r) is a Radon measure on B(p, r)
with limα mα,r(B(p, r)) ≤ h(r). We take a sequence r(i)↗∞, i = 1, 2, . . . .
By taking a subnet and by a diagonal argument, for each fixed i the measure
mα,r(i) vaguely converges to a Radon measure mr(i) on B(p, r(i)) with total
measure ≤ h(r(i)) and with the property that mr(i+1)|B(p,r(i)) = mr(i). The
inductive limit, say m, of mr(i) as i→∞ is a Radon measure on X , so that
in particular (X, p,m) ∈ Mc. It is obvious that (Xα, pα, mα) converges to
(X, p,m) with respect to the measured GH topology. This completes the
proof. �

The following is a direct consequence of the proposition.

Corollary 2.1. Let C be a subset ofMc(h) such that { (X, p) | (X, p,m) ∈
C } is GH relatively compact in Metc. Then, C is measured GH relatively

compact inMc.

For (X, p,m) ∈ M and K = R or C, we denote by C0(X,K) the set of
K-valued continuous functions on X with compact support in X , and by
L2(X,K;m) the set of K-valued L2 functions on X with respect to m with
L2 inner product defined by

(u, v)L2 := (u, v)L2(X,K;m) :=
∫

X
uv̄ dm, u, v ∈ L2(X,K;m).
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Define the norm ‖u‖L2 := ‖u‖L2(X,K;m) :=
√

(u, u)L2(X,K;m). It follows that

L2(X,K;m) is a separable Hilbert space over K. Note that C0(suppm,K)
is densely embedded into L2(X,K;m) and that C0(X,K) is not embedded
into L2(X,K;m) if suppm �= X . We sometimes omit K and write L2(X ;m)
and C0(X) only when K = R.

Definition 2.3 (L2 topology). Let {(Xα, pα, mα)}α∈A be a net of spaces
in M and (X, p,m) ∈ M be a space. A net {uα}α∈A of functions
with uα ∈ L2(Xα, K;mα) is said to (strongly) L2 converges to a function
u ∈ L2(X,K;m) if (Xα, pα, mα) converges to (X, p,m) with respect to the
measured compact GH topology and if there exists a net {ũβ}β∈B of func-
tions in C0(suppm,K) tending to u in L2(X,K;m) such that

lim
β

lim
α
‖Φαũβ − uα‖L2(Xα,K;mα) = 0,

where fα : (Oα, pα) → (O′
α, p) are εα-approximations with

⋃
αO

′
α = X

and εα ↘ 0, and where for v ∈ C0(suppm,K), Φαv := v ◦ fα on Oα and
Φαv := 0 on Xα \Oα. This convergence defines a topology, say the (strong)
L2 topology, on the disjoint union

L2(M, K) :=
⊔

(X,p,m)∈M
L2(X,K;m).

We also define the L2 topology on L2(Mc, K) in the same manner by using
the measured GH topology onMc. We sometimes omit K and write L2(M)
and L2(Mc) if K = R.

We could consider L2(M, K) (resp. L2(Mc, K)) as a Hilbert space bundle
overM (resp.Mc). It follows that the natural projections L2(M, K)→M
and L2(Mc, K) → Mc are continuous. Obviously, the inclusion map
L2(Mc, K) → L2(M, K) is continuous. Proposition 2.1 implies the Haus-
dorff property of L2(Mc, K) (see Corollary 2.2 below for the precise proof
in a more general setting). On the other hand, L2(M, K) is not Hausdorff
because M is not Hausdorff.

We can extend Definition 2.3 for the space of L2 differential forms on
manifolds and also for the space of L2 sections on vector bundles based on
compact Lipschitz convergence. By this reason, it is most convenient to
generalize it for general Hilbert spaces by forgetting base spaces.
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2.2. Convergence of Hilbert spaces.

Let K := R or C be fixed. For any Hilbert space H over K, we denote the
inner product by (·, ·)H and the norm by ‖ · ‖H . Here we assume that u �→
(u, v)H is linear and (u, v)H = (v, u)H for any u, v ∈ H whenK = C. Assume
also that all Hilbert spaces in this paper are separable. Let us give a family
{Hν}ν∈N of Hilbert spaces over K and a family {Φν,µ : Cν → Hµ}ν,µ∈N of
linear maps with dense domains Cν ⊂ Hν such that Φν,ν for each ν ∈ N
is the identity operator on Cν . Assume that {Hν}ν∈N (i.e., N ) has a (not
necessarily Hausdorff) topology such that a net {Hνα}α∈A converges to an
Hν if and only if, setting

Hα := Hνα , H := Hν, Φα := Φν,να , C := Cν
for simplicity, we have

lim
α
‖Φαu‖Hα = ‖u‖H for any u ∈ C.

Note that Φα is asymptotically close to a unitary operator, however it is not
necessarily injective even for sufficiently large α. Throughout this and later
sections, we suppose:

Assumption 2.1. A net {Hα}α∈A converges to an H .

Definition 2.4 (Strong topology on H). We say that a net {uα}α∈A with
uα ∈ Hα (strongly) converges to a vector u ∈ H if there exists a net
{ũβ}β∈B ⊂ C tending to u in H such that

lim
β

lim
α
‖Φαũβ − uα‖Hα = 0.

We call the topology on the disjoint union H :=
⊔

ν∈N Hν induced from this
convergence the strong topology on H.

We define a topology on the family

{L2(X ;m)}(X,p,m)∈Mc
(resp. {L2(X ;m)}(X,p,m)∈M)

by the measured (resp. compact and measured) GH topology on Mc

(resp. M). Then, H is seen to be a generalization of L2(M, K) and
L2(Mc, K).

Lemma 2.1. Let {uα}α∈A, {vα}α∈A be two nets of vectors in H with

uα, vα ∈ Hα, and let u, v ∈ H . Then, we have the following:
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(1) uα → 0 ∈ H in H if and only if ‖uα‖Hα → 0.

(2) If uα → u in H, then ‖uα‖Hα → ‖u‖H .

(3) If uα → u and vα → v in H, then auα + bvα → au + bv in H for any
a, b ∈ K.

(4) If uα → u and vα → v in H, then (uα, vα)Hα → (u, v)H.

(5) If ‖uα − vα‖Hα → 0 and uα → u in H, then vα → u in H.

(6) If uα → u and vα → u in H, then ‖uα − vα‖Hα → 0.

(7) For any w ∈ H there exists a net {wα}α∈A with wα ∈ Hα which

converges to w in H.

Proof. We prove only (6), because the proofs of the others are easy. Assume
that uα → u and vα → u in H. Then, there are ũα, ṽα ∈ C both tending to
u in H such that

lim
β

lim
α
‖Φαũβ − uα‖Hα = lim

β
lim
α
‖Φαṽβ − vα‖Hα = 0. (2.4)

It follows that

lim
β

lim
α
‖Φαũβ − Φαṽβ‖Hα = lim

β
lim
α
‖Φα(ũβ − ṽβ)‖Hα

= lim
β
‖ũβ − ṽβ‖H = 0,

which together with (2.4) completes the proof. �

Corollary 2.2. The strong topology on H is Hausdorff if and only if
{Hν}ν∈N is Hausdorff.

Proof. It is obvious that the Hausdorff property of {Hν}ν∈N implies that
of the strong topology on H. Let us prove the converse. We assume that
{Hν}ν∈N is Hausdorff, so that the limit of a convergent net {Hα}α∈A ⊂
{Hν}ν∈N is only one. Under Assumption 2.1 we suppose that a net uα ∈ Hα

strongly converges to two vectors u, v ∈ H . Then, Lemma 2.1(3) implies
that 0 = uα − uα ∈ Hα converges to u − v. By Lemma 2.1(2), we have
‖u− v‖H = 0. This completes the proof. �
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Definition 2.5 (Weak topology on H). We say that a net {uα}α∈A with
uα ∈ Hα weakly converges to vector u ∈ H if

lim
α

(uα, vα)Hα = (u, v)H (2.5)

for any net {vα}α∈A with vα ∈ Hα tending to a v ∈ H inH. This convergence
induces a topology on H, say the weak topology on H.

It is easy to see that the weak topology on H is Hausdorff if and only
if so is {Hν}ν∈N . By Lemma 2.1(4), a strong convergence implies the weak
convergence, so that the strong topology on H is stronger than the weak
topology on H.

Lemma 2.2. Let {uα}α∈A be a net with uα ∈ Hα. If ‖uα‖Hα is uniformly

bounded for α ∈ A, there exists a weakly convergent subnet of {uα}α∈A.

Proof. The proof is little more delicate than the standard. Let {ϕk}k∈N be
a complete orthonormal basis of H . For each k there is a net {ϕ̃k,β}β∈B ⊂ C
such that limβ ϕ̃k,β = ϕk in H . Replacing with subnets of A and B if
necessarily, we assume that the limit

lim
β

lim
α

(uα,Φαϕ̃1,β)Hα =: a1 ∈ K̄

exists, where K̄ denotes the one-point compactification ofK. Here, it follows
from the uniform boundedness of ‖uα‖Hα that a1 ∈ K. Repeating this
procedure, we may assume that

lim
β

lim
α

(uα,Φαϕ̃k,β)Hα =: ak ∈ K

exists for every k ∈ N. Let us fix a number N ∈ N for a while. For any
ε > 0 there is a βε ∈ B such that | (ϕ̃k,β, ϕ̃l,β)H − δkl | < ε for any k, l =
1, . . . , N and β ≥ βε. Moreover, for any β ≥ βε there is an αε,β ∈ A such
that | (Φαϕ̃k,β ,Φαϕ̃l,β)Hα − δkl | < 2ε for any k, l = 1, . . . , N and α ≥ αε,β .
Therefore, setting Lα,β := 〈Φαϕ̃k,β〉k=1,...,N (linear span), we have∣∣∣∣∣

N∑
k=1

|(uα,Φαϕ̃k,β)Hα|2 − ‖PLα,β
uα‖2Hα

∣∣∣∣∣ < θN (ε)

for any α ≥ αε,β and β ≥ βε, where PL : Hα → L denotes the projection
to a linear subspace L ⊂ Hα and θN (·) some function depending only on N
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such that limε→0 θN (ε) = 0. This implies

N∑
k=1

|ak|2 = lim
β

lim
α

N∑
k=1

|(uα,Φαϕ̃k,β)Hα |2 = lim
β

lim
α
‖PLα,β

uα‖2Hα

≤ lim
α
‖uα‖2Hα

<∞

for any N ∈ N, so that

u :=
∞∑

k=1

akϕk ∈ H.

We shall prove that some subnet of {uα}α∈A weakly converges to u. Take
any v ∈ H and set bk := (v, ϕk)H . By Lemma 2.1(6), it suffices to show that
(2.5) holds for some net {vα}α∈A. Let ṽN

β :=
∑N

k=1 bkϕ̃k,β. Clearly, ṽN
β ∈ C

and limN→∞ limβ ṽ
N
β = v (strongly). We have

lim
β

lim
α

(uα,Φαṽ
N
β )Hα = lim

β
lim
α

N∑
k=1

bk(uα,Φαϕ̃k,β)Hα =
N∑

k=1

akbk,

which tends to (u, v)H as N → ∞. Thus, there exists a net {Nβ}β∈B of
natural numbers (slowly) tending to ∞ such that limβ ṽ

Nβ

β = v (strongly)
and

lim
β

lim
α

(uα,Φαṽ
Nβ

β )Hα = (u, v)H.

This completes the proof. �

Lemma 2.3. Let {uα}α∈A be a net with uα ∈ Hα weakly converging to a

vector u ∈ H . Then we have

sup
α
‖uα‖Hα <∞ and ‖u‖H ≤ lim

α
‖uα‖Hα.

Moreover, uα → u strongly if and only if

‖u‖H = lim
α
‖uα‖Hα .

Proof. Suppose supα ‖uα‖ =∞. Then, there is a countable subnet {uαk
}∞k=1

of {uα} such that ‖uαk
‖Hαk

≥ k. Setting

vk :=
1
k
· uαk

‖uαk
‖Hαk

,
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one has ‖vk‖Hαk
= 1/k → 0 and hence vk → 0 in H, which implies

(uαk
, vk)Hαk

→ (u, 0)H = 0. On the other hand,

(uαk
, vk)Hαk

=
1
k
‖uαk

‖Hαk
≥ 1

This is a contradiction and thus we obtain supα ‖uα‖ <∞.
Let {vα} be a net with vα ∈ Hα which strongly converges to u. Then,

(uα, vα)Hα → (u, u)H . Hence,

0 ≤ lim
α
‖uα − vα‖2Hα

= lim
α

(‖uα‖2Hα
− 2 Re(uα, vα)Hα + ‖vα‖2Hα

)

= lim
α
‖uα‖2Hα

− ‖u‖2H .

This completes the proof of the first assertion. The second also follows from
the above and Lemma 2.1(5),(6). �

Lemma 2.4. Let u ∈ H and let {uα}α∈A be a net of vectors uα ∈ Hα.
Then, uα → u strongly if and only if (uα, vα)Hα → (u, v)H for any net

{vα}α∈A of vectors vα ∈ Hα weakly tending to a vector v ∈ H .

Proof. The ‘only if’ part is trivial. We prove the ‘if ’ part. The assumption
implies that uα → u weakly. Setting vα := uα and v := u in the assumption,
we have ‖uα‖Hα → ‖u‖H . This completes the proof. �

2.3. Convergence of bounded operators.

Denote by L(H) the set of bounded linear operators on H , and by ‖ · ‖L(H)

the operator norm. Let B ∈ L(H) and Bα ∈ L(Hα) for all α ∈ A.

Definition 2.6 (Convergence of operators). We say that {Bα}α∈A strongly
(resp. weakly) converges to B if Bαuα → Bu strongly (resp. weakly) for any
net {uα}α∈A with uα ∈ Hα strongly (resp. weakly) tending to a u ∈ H .
We say that {Bα}α∈A compactly converges to B if Bαuα → Bu weakly
for any net {uα}α∈A with uα ∈ Hα strongly tending to a u ∈ H . The
topology induced from the strong convergence is called the strong topology
on L(H) :=

⊔
ν∈N L(Hν).

Remark that if Hα = H (i.e., να = ν) for all α ∈ A, the concept of
the strong and weak convergence in L(H) defined here is different from the
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ordinary one (cf. Lemma 2.8). The strong topology on L(H) is Hausdorff if
so is {Hν}ν∈N . It is clear that if Bα → B compactly, then Bα → B strongly
and weakly. The compact convergence does not induce a topology on L(H)
as is seen in Remark 2.3 below.

Lemma 2.5. Let u, v ∈ H be any vectors and {uα}α∈A, {vα}α∈A any nets
of vectors with uα, vα ∈ Hα. Then we have the following:

(1) Bα → B strongly if and only if

lim
α

(Bαuα, vα)Hα = (Bu, v)H (2.6)

for any {uα}, {vα}, u, v such that uα → u strongly and vα → v weakly.

(2) Bα → B weakly if and only if (2.6) holds for any {uα}, {vα}, u, v such
that uα → u weakly and vα → v strongly.

(3) Bα → B compactly if and only if (2.6) holds for any {uα}, {vα}, u, v
such that uα → u weakly and vα → v weakly.

Proof. The lemma follows from the definitions of convergences and Lemma
2.4. �

Denote by A∗ the adjoint of an operator A. The following is a direct
consequence of Lemma 2.5.

Lemma 2.6. (1) Bα → B strongly if and only if B∗
α → B∗ weakly. In par-

ticular, the strong convergence is equivalent to the weak convergence
for symmetric operators.

(2) Bα → B compactly if and only if B∗
α → B∗ compactly.

Lemma 2.7. If Bα → B compactly, then B and B∗ are both compact
operators.

Proof. Note that the compactness of B is equivalent to that of B∗. Let
{uβ}β∈B be a net of vectors in H weakly converging to a vector u ∈ H . It
suffices to prove that B∗uβ → B∗u H-strongly. We easily see that B∗uβ →
B∗u H-weakly. For each β ∈ B, there is a net {uβ,α}α∈A with uβ,α ∈ Hα

such that limα uβ,α = uβ H-strongly. Since B∗
α → B∗ strongly, we have
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limαB
∗
αuβ,α = B∗uβ H-strongly. A diagonal argument yields that there is a

subnet {α(β)}β∈B of A such that

lim
β
uβ,α(β) = u H-weakly, (2.7)

lim
β
| ‖B∗

α(β)uβ,α(β)‖Hα(β)
− ‖B∗uβ‖H | = 0. (2.8)

The compact convergence B∗
α → B∗ and (2.7) together show that

limβ B
∗
α(β)uβ,α(β) = B∗u H-strongly. Hence, by (2.8), ‖B∗uβ‖H → ‖B∗u‖H

and so B∗uβ → B∗u H-strongly. This completes the proof. �

Remark 2.3. If B is a noncompact operator, then Bα := B does not com-
pactly converge to B by Lemma 2.7. Therefore, the compact convergence on
L(H) does not induce a topology on L(H) in general and induces a topology
only on the set of compact operators in L(H).

Lemma 2.8. Assume that Hα = H (i.e., να = ν) for all α ∈ A. Then we
have the following (1) and (2).

(1) Supposing {‖Bα‖L(H)} is uniformly bounded, we obtain Bα → B
strongly in L(H) if and only if Bα → B strongly in L(H), i.e.,

limα ‖Bαu −Bu‖H = 0 for any u ∈ H .

(2) Bα → B compactly in L(H) if and only if ‖Bα − B‖L(H) → 0 and B

is compact.

Proof. (1) follows from

‖Bαuα −Bαu‖Hα ≤ ‖Bα‖L(H) ‖uα − u‖H .

(2): Assume that Bα → B compactly in L(H). The compactness of B
follows from Lemma 2.7. To prove ‖Bα − B‖L(H) → 0, we suppose that
limα ‖Bα−B‖L(H) > 0. There exists a net of unit vectors uα ∈ H such that

lim
α
| ‖Bα −B‖L(H) − ‖Bαuα − Buα‖H | = 0. (2.9)

By replacing a subnet, uα weakly converges to some vector u ∈ H with
‖u‖H ≤ 1, which together with the compact convergence Bα → B implies
Bαuα → Bu strongly. Besides, by the compactness of B, we have Buα →
Bu strongly. Thus, by (2.9), we obtain ‖Bα − B‖L(H) → 0, which is a
contradiction.
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Conversely, we assume that ‖Bα − B‖L(H) → 0 and B is compact. For
any net uα ∈ H weakly converging to a vector u ∈ H , we have

‖Bαuα −Bu‖H ≤ ‖Bα −B‖L(H)‖uα‖H + ‖Buα −Bu‖H → 0.

This completes the proof. �

Lemma 2.9. (1) If Bα → B strongly, then

lim
α
‖Bα‖L(Hα) ≥ ‖B‖L(H).

(2) If Bα → B compactly, then

lim
α
‖Bα‖L(Hα) = ‖B‖L(H).

Proof. (1): For any ε > 0 there is a unit vector u ∈ H such that ‖Bu‖H >

‖B‖L(H) − ε. Find a net uα ∈ Hα strongly converging to u. Note that
‖uα‖Hα → 1. Since Bα → B strongly, we have ‖Bαuα‖Hα → ‖Bu‖H and
therefore,

lim
α
‖Bα‖L(Hα) ≥ lim

α

‖Bαuα‖Hα

‖uα‖Hα

= ‖Bu‖H > ‖B‖L(H) − ε.

This completes the proof of (1).
(2): There is a net of unit vectors uα ∈ Hα such that | ‖Bα‖L(Hα) −

‖Bαuα‖ | → 0. Replacing with a subnet of A, we assume that uα weakly
converges a vector u ∈ H with ‖u‖H ≤ 1. Since Bαuα → Bu strongly by
the assumption, we have

‖B‖L(H) ≥
‖Bu‖H
‖u‖H ≥ ‖Bu‖H = lim

α
‖Bαuα‖Hα = lim

α
‖Bα‖L(Hα).

This together with (1) completes the proof. �

2.4. Convergence of spectral measures on complex Hilbert spaces.

Throughout this section, we assume that H and Hα have complex coefficient
K = C under Assumption 2.1. Let A and Aα be selfadjoint operators on
H and Hα respectively. Denote by E and Eα the spectral measures of A
and Aα, and by {Rζ}ζ∈ρ(A) and {Rα

ζ }ζ∈ρ(Aα) their resolvents (i.e., Rζ :=
(ζ −A)−1 and Rα

ζ := (ζ − Aα)−1), where ρ(·) denotes the resolvent set. We
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say that a continuous function ϕ : R → C vanishes at infinity if and only
if lim|x|→∞ f(x) = 0. We set i :=

√−1 and indicate by Im ζ the imaginary
part of a ζ ∈ C.

Theorem 2.1. The following are all equivalent:

(1) Rα
ζ → Rζ strongly (resp. compactly) for some ζ ∈ C with Im ζ �= 0.

(2) ϕ(Aα)→ ϕ(A) strongly (resp. compactly) for any continuous function
ϕ : R→ C with compact support.

(3) ϕα(Aα)→ ϕ(A) strongly (resp. compactly) for any net {ϕα : R→ C}
of continuous functions vanishing at infinity which uniformly converges
to a continuous function ϕ : R→ C vanishing at infinity.

(4) Eα(( λ, µ ]) → E(( λ, µ ]) strongly (resp. compactly) for any two real
numbers λ < µ which are not in the point spectrum of A.

(5) (Eαuα, vα)Hα → (Eu, v)H vaguely for any nets {uα}α∈A, {vα}α∈A of
vectors uα, vα ∈ Hα and any u, v ∈ H such that uα → u strongly and

vα → v weakly (resp. uα → u weakly and vα → v weakly).

Proof. It is trivial that (3) implies (1) and (2).
Let us prove (1) =⇒ (2). The idea of this proof is essentially due to

XI §11.4 of [48]. Consider the set A of continuous functions ϕ : R → C

vanishing at infinity such that ϕ(Aα) → ϕ(A) strongly (resp. compactly).
Note that for any bounded continuous functions ϕ, ψ : R→ C, we have

‖ϕ(Aα)− ψ(Aα)‖L(Hα), ‖ϕ(A)− ψ(A)‖L(H) ≤ sup
x∈R

|ϕ(x)− ψ(x)|, (2.10)

which proves that a uniform limit of functions in A is also a function in
A. Thus, A is a uniformly closed algebra which is closed under complex
conjugation. By (1), it contains the function x �→ (ζ−x)−1 and so separates
the points on R (i.e., x �= y =⇒ (ζ − x)−1 �= (ζ − y)−1). Thus, by the
Stone-Weierstrass theorem, A contains all continuous functions vanishing at
infinity, which implies (2).

Let u, v ∈ H and let {uα}α∈A, {vα}α∈A be two nets of vectors uα, vα ∈
Hα such that uα → u strongly and vα → v weakly (resp. uα → u weakly and
vα → v weakly). Letting aα := (Eαuα, vα)Hα and a := (Eu, v)H, we have

(ϕ(A)u, v)H =
∫

R

ϕ da, a(( λ, µ ]) = ((E( λ, µ ])u, v)H,
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and also the similar formulas for aα, Aα, Eα(( λ, µ ]). Thus, by Lemma 2.5,
we obtain the equivalence between (2)–(5). �

Remark 2.4. If one (or all) of the compact convergence conditions of The-
orem 2.1 holds, then, by Lemma 2.7, all Rζ and E(( λ, µ ]) are compact
operators, and in particular A has only discrete spectrum.

Definition 2.7. The strong graph limit Γ∞ of {Aα}α∈A is defined to be the
set of pairs (u, v) ∈ H×H such that there exists a net of vectors uα ∈ D(Aα)
with uα → u and Aαuα → v strongly.

Theorem 2.2. Only for the strong convergences, the conditions (1)–(5) of
Theorem 2.1 are also equivalent to each of the following:

(6) eitAα → eitA strongly for any t ∈ R.

(7) ϕα(Aα)→ ϕ(A) strongly for any net {ϕα : R→ C} of bounded contin-
uous functions uniformly converging to a bounded continuous function

ϕ : R→ C.

(8) The strong graph limit Γ∞ of {Aα}α∈A coincides with the graph of A.

Proof. It is trivial that (7) =⇒ (3),(6).
Let us prove (6) =⇒ (2). Let Hα � uα → u ∈ H strongly and

Hα � vα → v ∈ H weakly. Then, by (6),

(eitAαuα, vα)Hα → (eitAu, v)H

for any t ∈ R. The dominated convergence theorem shows that for any
ϕ ∈ L1(R),∫ ∞

−∞
(ϕ(t) eitAαuα, vα)Hα dt→

∫ ∞

−∞
(ϕ(t) eitAu, v)H dt

and hence (ϕ̂(Aα)uα, vα)Hα → (ϕ̂(A)u, v)H, where ϕ̂ denotes the Fourier
transform of ϕ. Thus, ϕ̂(Aα) → ϕ̂(A) strongly. Since { ϕ̂ | ϕ ∈ L1(R) } is
dense in the set of continuous functions with compact support with respect
to the uniform norm, we obtain (2).

Let us prove (4),(5) =⇒ (7). Let Hα � uα → u ∈ H strongly, Hα �
vα → v ∈ H weakly, aα := (Eαuα, vα)Hα , and a := (Eu, v)H. We take
any two real numbers λ < µ which are not point spectrum of A, and a
continuous function h : R→ [ 0, 1 ] with compact support such that h = 1 on



Convergence of Spectral Structures 621

the interval I := ( λ, µ ]. We note that the identity operator on Hα strongly
converges to that on H , which implies aα(R)→ a(R). Thus, (4) shows that
aα(I), aα(R\I) respectively converges to a(I), a(R\I). Since aα → a vaguely
and hϕα → hϕ uniformly, we obtain

lim
α

∣∣∣∣
∫

R

ϕα daα −
∫

R

ϕ da

∣∣∣∣
≤ lim

α

∣∣∣∣
∫

R

hϕα daα −
∫

R

hϕ da

∣∣∣∣
+ lim

α

∫
R

(1− h)|ϕα| daα +
∫

R

(1− h)|ϕ| da
≤ 2 sup |ϕ| a(R \ I).

The arbitrariness of I leads to the convergence

(ϕα(Aα)uα, vα)Hα =
∫

R

ϕα daα →
∫

R

ϕ da = (ϕ(A)u, v)H,

which shows (7).
To prove (1) =⇒ (8), we assume Rα

i → Ri strongly. For any u ∈ D(A),
there exists a net of vectors wα ∈ Hα strongly converging to (i−A)u. Setting
uα := Rα

i wα, we have uα → Ri(i− A)u = u by the assumption. Moreover,

Aαuα = iuα − wα → iu− (i−A)u = Au.

This implies (u, Au) ∈ Γ∞. Thus, the graph of A is contained in Γ∞.
Conversely, we assume that D(Aα) � uα → u ∈ H and Aαuα → v ∈ H .

Since (i − Aα)uα → iu − v, the assumption shows uα = Rα
i (i − Aα)uα →

Ri(iu− v) =: w. Here we must have u = w. It follows that

Au = Aw = iRi(iu− v) + v − iu = v.

Thus we obtain (8).
We will at last prove (8) =⇒ (1). By (8), for any w ∈ D(A) there exists

a net of vectors wα ∈ D(Aα) with wα → w and Aαwα → Aw. It follows that

(i−Aα)wα→ (i−A)w,
Rα

i (i−Aα)wα = wα → w = Ri(i− A)w.

Since (i− A)H = H , i.e., (i − A)w, w ∈ D(A), runs over all vectors in H ,
the above implies that for any u ∈ H there exists a net of vectors uα ∈ H
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with uα → u and Rα
i uα → Riu. Taking any net of vectors vα ∈ Hα with

vα → u, we have

‖Rα
i uα − Rα

i vα ‖Hα ≤ ‖ uα − vα‖Hα → 0

and therefore Rα
i vα → Riu. This completes the proof of the theorem. �

Remark 2.5. The identity operator on Hα does not compactly converge
to that on H provided H has infinite dimensional. In particular, Theorem
2.2(7) does not hold for the compact convergence in general.

2.5. Convergence of quadratic forms.

First we introduce the extended notion of Γ-convergence of functions on Hα

with values in R̄ := R ∪ {−∞,∞}. Compare [18].

Definition 2.8 (Γ-convergence). Under Assumption 2.1, we say that a net
{Fα : Hα → R̄}α∈A of functions Γ-converges to a function F : H → R̄ (or F
is a Γ-limit of {Fα}α∈A) if and only if the two following (F1) and (F2) hold:

(F1) If a net {uα}α∈A with uα ∈ Hα strongly converges to a u ∈ H in H,
then

F (u) ≤ lim
α
Fα(uα).

(F2) For any u ∈ H there exists a net {uα}α∈A with uα ∈ Hα which strongly
converges to u in H and

F (u) = lim
α
Fα(uα).

Lemma 2.10. If a net {Fα : Hα → R̄}α∈A of functions Γ-converges to a

function F : H → R̄, then F is lower semi-continuous.

Proof. Let {uβ}β∈B be a net of vectors in H strongly converging to a vector
u ∈ H . Then, by (F2), for each β ∈ B there exists a net {uα

β}α∈A with
uα

β ∈ Hα such that limα u
α
β = uβ (strongly) and limα Fα(uα

β) = F (uβ). For a
net εβ ↘ 0, we find a subnet {αβ}β∈B of A such that uαβ

β → u strongly and

|F (uβ)− Fαβ
(uαβ

β ) | < εβ for any β ∈ B.
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Therefore, by (F1),

lim
β
F (uβ) = lim

β
Fαβ

(uαβ

β ) ≥ F (u).

This completes the proof. �

A quadratic form on a Hilbert space H over K is, by definition, a
sesquilinear (or bilinear if K = R) form E : D(E) × D(E) → K, where
D(E) ⊂ H is a (not necessarily dense) linear subspace. We assume that
any quadratic form E in this paper is nonnegative and symmetric, i.e.,
u �→ E(u, v) is linear, E(u, v) = E(v, u), and E(u, u) ≥ 0 for any u, v ∈ D(E).
Note that E1(u, v) := (u, v)H + E(u, v), u, v ∈ D(E), is also a (nonnegative
and symmetric) quadratic form, so that D(E) with E1 becomes a (not nec-
essarily complete) inner product space over K. We say that E is closed if
and only if D(E) is E1-complete. We sometimes identify a quadratic form E
on H with a function H � u �→ E(u, u) =: E(u) ∈ R̄ by setting E(u) := ∞
for u ∈ H \ D(E). Then, the closedness of E is equivalent to the lower
semi-continuity of E : H → R̄.

Lemma 2.11. If a net {Eα}α∈A of quadratic forms Eα on Hα Γ-converges

to a function F : H → R̄, then F is identified with a closed quadratic form
on H .

Proof. To see that F is identified with a quadratic form, it suffices to show
that for any u, v ∈ H and a ∈ K,

F (u) ≥ 0, F (au) = |a|2F (u),
F (u+ v) + F (u − v) = 2 (F (u) + F (v)).

In fact, these are proved by an easy discussion using (F2). The closedness
of F follows from Lemma 2.10. �

Denote by F (H) the set of closed quadratic forms on Hν, ν ∈ N .

Proposition 2.3. The Γ-convergence induces a topology on F (H). It is

Hausdorff if {Hν}ν∈N is Hausdorff.

Proof. If Hα = H and Eα = E for all α ∈ A, then Eα Γ-converges to E
provided E is a closed quadratic form. This together with (F1) and (F2)
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shows the first assertion. If {Hν}ν∈N is Hausdorff, then (F2) implies the
uniqueness of a Γ-limit. �

Definition 2.9 (Γ-topology). We call the topology induced from the Γ-
convergence on F (H) the Γ-topology.

Our next purpose is to prove:

Theorem 2.3. Any net {Eα}α∈A of quadratic forms Eα on Hα has a Γ-
convergent subnet whose Γ-limit is a closed quadratic form on H . In partic-

ular, F (H) is sequentially compact with respect to the Γ-topology provided
{Hν}ν∈N is sequentially compact.

In order to prove this theorem, we need to recall the definition of Γ-limit
of functions on a topological space X , due to E. De Giorgi. Note that if we
assume the first countability of X , the following definition is equivalent to
the original one.

Definition 2.10 (Γ-convergence (original)). Let X be a topological space.
We say that a net {Fβ : X → R̄}β∈B of functions Γ-converges to a function
F : X → R̄ (or F is a Γ-limit of {Fα}α∈A) if and only if the two following
(G1) and (G2) hold:

(G1) If a net {xβ}β∈B of points in X converges to a point x ∈ X , then

F (x) ≤ lim
β
Fβ(xβ).

(G2) For any x ∈ X there exists a net {xβ}β∈B of points in X converging
to x such that

F (x) = lim
β
Fβ(xβ).

We apply the above definition to X := H =
⊔

ν∈N Hν with the strong
topology. For a function F : H → R̄ we set D(F ) := { u ∈ H | F (u) <∞}.
The following describes the connection between Definitions 2.8 and 2.10.

Lemma 2.12. Let {Hβ}β∈B be a net of {Hν}ν∈N and {Fβ : H → R̄}β∈B
a Γ-convergent (in the sense of Definition 2.10) net of functions such that

D(Fβ) ⊂ Hβ for each β ∈ B. Then, the Γ-limit F : H → R̄ of {Fβ} satisfies
that D(F ) is contained in the union of all limits of {Hβ}β∈B. If in addition
Hβ converges to an H∞ ∈ {Hν}ν∈N , then Fβ |Hβ

Γ-converges to F |H∞ in the

sense of Definition 2.8.
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Proof. Let H ∈ {Hν}ν∈N be any Hilbert space which is not a limit of
{Hβ}β∈B. Then, there exists a neighborhood U at H in {Hν}ν∈N such that
Hβ /∈ U for all sufficiently large β ∈ B. It then follows that for sufficiently
large β ∈ B, Fβ =∞ on each H ′ ∈ U . Since

⊔U ⊂ H is a neighborhood at
each u ∈ H in H and by (G2), we have F = ∞ on H , i.e., D(F ) ∩H = ∅.
This completes the proof of the first assertion. The second is clear. �

We know the following:

Fact 2.1 (Theorem 8.5 of [18]). If X is a second countable topological

space, then any net {Fβ : X → R̄}β∈B of functions has a Γ-convergent
subnet.

We intend to use Fact 2.1 to prove Theorem 2.3. A trouble here is that
H is not second countable in general. The following is a trick to avoid this
trouble.

Lemma 2.13. Let {Hα(j)}j∈N be a countable subnet of {Hα}α∈A. Then,
the subspace H′ :=

⊔∞
j=1 Hα(j) �H of H is second countable.

Proof. The separability of H allows us to find a countable dense subset
{ui}i∈N of H . For each i there are uij ∈ Hα(j), j ∈ N, tending to ui as
j →∞. For any i, j, k ∈ N we set

Oijk := B(ui, 1/k)∪
∞⋃

j′=j

B(uij′ , 1/k) ⊂ H′,

where B(u, r) := { v ∈ Hν | ‖u − v‖Hν < r } is the metric ball for u ∈
Hν , r > 0. Obviously, Oijk is an open neighborhood of ui in H′. We
take a countable basis Oj of open subsets of each Hα(j). Let us prove that
{Oijk}i,j,k∈N ∪

⋃
j∈N
Oj is a countable basis of open subsets of H′. Assume

that u ∈ Oi1j1k1∩Oi2j2k2 ∩H . It suffices to prove that there are i3, j3, k3 ∈ N

such that
u ∈ Oi3j3k3 ⊂ Oi1j1k1 ∩Oi2j2k2. (2.11)

Since ‖u− uip‖H < 1/kp for p = 1, 2, we find a number k3 ∈ N such that

‖u− uip‖H + 1/k3 < 1/kp, p = 1, 2,

and then find a number i3 ∈ N such that

‖u− ui3‖H < 1/k3, (2.12)
‖ui3 − uip‖H + 1/k3 < 1/kp, p = 1, 2. (2.13)
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There exists j3 ∈ N such that for any j ≥ j3 and p = 1, 2,

‖ui3j − uipj‖Hα(j)
+ 1/k3 < 1/kp. (2.14)

The inequalities (2.12), (2.13), (2.14), and triangle inequality together imply
(2.11). This completes the proof. �

Lemma 2.14. Let {Fα : Hα → R̄}α∈A be a net of functions. Then some

subnet of it Γ-converges in the sense of Definition 2.8.

Proof. We take a countable subnet {Hα(j)}j∈N of {Hα}α∈A and set H′ :=⊔∞
j=1 Hα(j) � H . Extend Fα(j) to Fα(j) : H′ → R̄ by setting Fα(j) := ∞ on
H′ \Hα(j). Then, Lemma 2.13 and Fact 2.1 together show that {Fα(j)}j∈N

has a subnet which Γ-converges in H′ to some function F : H′ → R̄. By
Lemma 2.12, F |Hα(j)

Γ-converges to F |H in the sense of Definition 2.8. This
completes the proof. �

Proof of Theorem 2.3. The theorem follows from Lemmas 2.14 and 2.11. �

The following definitions are originally due to Mosco [42] for a fixed
Hilbert space. Let {Eα}α∈A be a net of closed quadratic forms Eα on Hα

and E a closed quadratic form on H .

Definition 2.11 (Mosco topology). We say that {Eα}α∈A Mosco converges
to E if both (F2) and the following (F1’) hold:

(F1’) If a net {uα}α∈A with uα ∈ Hα weakly converges to a u ∈ H , then

E(u) ≤ lim
α
Eα(uα).

It follows that the Mosco convergence induces a topology, say the Mosco
topology on F (H).

Clearly, a Mosco convergence implies the Γ-convergence, so that the
Mosco topology is stronger than the Γ-topology. The Mosco topology is
Hausdorff if {Hν}ν∈N is Hausdorff.

Definition 2.12 (Asymptotic compactness). The net {Eα}α∈A is said to
be asymptotically compact if for any net {uα}α∈A such that uα ∈ Hα and
limα(Eα(uα) + ‖uα‖2Hα

) < ∞, there exists a strongly convergent subnet of
{uα}α∈A.
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It is easy to see the following (cf. Lemma 2.3.2 of [42]):

Lemma 2.15. Assume that {Eα}α∈A is asymptotically compact. Then,
{Eα}α∈A Γ-converges to E if and only if {Eα}α∈A Mosco converges to E .

Definition 2.13. We say that Eα → E compactly if Eα → E with respect to
the Mosco topology and if {Eα}α∈A is asymptotically compact.

Theorem 2.3 and Lemma 2.15 together imply:

Corollary 2.3. If {Eα}α∈A is asymptotically compact, it has a compact
convergent subnet.

2.6. Convergence of spectral structures.

A spectral structure on a Hilbert spaceH over K is defined to be a compatible
set

Σ = (A, E , E, {Tt}, {Rζ}),
where A is a selfadjoint nonnegative definite linear operator on H , which
is considered as an infinitesimal generator associated with a densely de-
fined closed quadratic form E (determined by D(E) = D(

√
A) and E(u, v) =

(
√
Au,
√
Av)H , u, v ∈ D(E)), a spectral measure E, a strongly continuous

contraction semigroup {Tt}t≥0 (Tt = e−tA, t ≥ 0), and with a strongly con-
tinuous resolvent {Rζ}ζ∈ρ(A) (Rζ = (ζ−A)−1, ζ ∈ ρ(A)), where ρ(A) denotes
the resolvent set of A.

Throughout this and the next section, let

Σ = (A, E , E, {Tt}, {Rζ}), Σα = (Aα, Eα, Eα, {Tα
t }, {Rα

ζ })

be given spectral structures on H and Hα respectively.

Theorem 2.4. The following are all equivalent:

(1) Eα → E with respect to the Mosco topology (resp. Eα → E compactly).

(2) Rα
ζ → Rζ strongly (resp. compactly) for some ζ < 0.

(3) Tα
t → Tt strongly (resp. compactly) for some t > 0.

(4) ϕ(Aα)→ ϕ(A) strongly (resp. compactly) for any continuous function

ϕ : [ 0,∞ )→ K with compact support.
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(5) ϕα(Aα)→ ϕ(A) strongly (resp. compactly) for any net {ϕα : [ 0,∞ )→
K} of continuous functions vanishing at infinity which uniformly con-

verges to a continuous function ϕ : [ 0,∞ )→ K vanishing at infinity.

(6) Eα(( λ, µ ]) → E(( λ, µ ]) strongly (resp. compactly) for any two real

numbers λ < µ which are not in the point spectrum of A.

(7) (Eαuα, vα)Hα → (Eu, v)H vaguely for any nets {uα}α∈A, {vα}α∈A of
vectors uα, vα ∈ Hα and any u, v ∈ H such that uα → u strongly and

vα → v weakly (resp. uα → u weakly and vα → v weakly).

Proof. The equivalence between (2)–(7) is obtained in the same way as in
the proof of Theorem 2.1.

The equivalence between (1) and (2) for the Mosco/strong topology is
proved in the same way as in the proof of Theorem 2.4.1 of [42]. (Although
the definition of the resolvent Gζ := (ζ+A)−1, ζ ∈ ρ(−A), in [42] is different
from our resolvent Rζ = (ζ −A)−1, it can be translated by Rζ = −G−ζ .)

Let us prove (6) =⇒ (1) for the compact topologies. It suffices to show
the asymptotic compactness of {Eα}. Assume that

sup
α

(Eα(uα) + ‖uα‖2Hα
) ≤M <∞.

Replacing with a subnet of A, we assume that uα → u weakly. Let ρ > 0 be
a number which is not in the point spectrum of A. Since∫

(ρ,∞ )
d(Eαuα, uα)Hα ≤

1
ρ

∫
(ρ,∞ )

λ d(Eα(λ)uα, uα)Hα ≤
Eα(uα)
ρ

≤ M

ρ
,

we have
‖uα‖2Hα

≤
∫

[ 0,ρ ]
d(Eαuα, uα)Hα +

M

ρ

and hence, by (6),

lim
α
‖uα‖2Hα

≤
∫

[ 0,ρ ]
d(Eu, u)H +

M

ρ
≤ ‖u‖2H +

M

ρ
.

Since ρ > 0 can be taken to be arbitrarily large, we obtain

lim
α
‖uα‖Hα ≤ ‖u‖H ,

which shows that uα → u strongly. Thus, {Eα} is asymptotically compact.
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Let us prove (1) =⇒ (3) for the compact topologies. Fix a number
t > 0, and let {uα} be a net of vectors uα ∈ Hα weakly converging to a
vector u ∈ H . We have already proved Tα

t → Tt strongly. Then, by Lemma
2.6(1), Tα

t uα → Ttu weakly. By setting M := supα ‖uα‖Hα , it follows that

Eα(Tα
t uα) =

∫
[ 0,∞ )

λ e−2λt d(Eα(λ)uα, uα)Hα

≤
∫

[ 0,∞ )

1− e−2λt

2t
d(Eα(λ)uα, uα)Hα

=
‖uα‖2Hα

− ‖Tα
t uα‖2Hα

2t
≤ M

2t

and
sup
α
‖Tα

t uα‖ ≤M.

Hence, the asymptotic compactness of {Eα} shows that Tα
t uα → Ttu strongly

by replacing with a subnet of A. This completes the proof. �

Definition 2.14. If one (or all) of the conditions in Theorem 2.4 holds, we
say that {Σα}α∈A strongly (resp. compactly) converges to Σ. Denote by S(H)
the set of all spectral structures onHν, ν ∈ N , and by Sc(H) the set of all Σ ∈
S(H) which has compact resolvent. The strong (resp. compact) convergence
induces a topology on S(H) (resp. Sc(H)), say the strong (resp. compact)
spectral topology.

Remark 2.6. If Σα → Σ compactly, then Rζ, Tt, and E(( λ, µ ]) are all
compact operators by Lemma 2.7. Therefore, if Rζ is not compact, Σα := Σ
cannot compactly converge to Σ. Thus, the compact convergence does not
induces a topology on the set of all spectral structures on Hν , ν ∈ N , in
general.

For a real Hilbert spaceH we have the complex Hilbert space Ĥ := H⊗C.
Conversely, for a given complex Hilbert space Ĥ we have the real Hilbert
space H with Ĥ = H⊗C. There is a 1-1 correspondence between selfadjoint
operators A on H and selfadjoint operators Â on Ĥ such that Â(u+ iv) =
Au + iAv for u, v ∈ H , or Â|H = A. Of-course, A is nonnegative if and
only if so is Â. Assume that Hα, H are real Hilbert spaces, and Σ̂α, Σ̂ the
spectral structures associated with nonnegative selfadjoint operators Âα, Â
on Ĥα, Ĥ respectively. We obviously have the following:

Proposition 2.4. The following are all equivalent:
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(1) Σα → Σ strongly (resp. compactly).

(2) Σ̂α → Σ̂ strongly (resp. compactly).

(3) One of the conditions in Theorem 2.1 for Â, Âα holds.

Theorem 2.2 and Proposition 2.4 together imply:

Theorem 2.5. For a fixed K := R or C, let Hα, H have coefficient field K.

The following are all equivalent:

(1) Σα → Σ strongly.

(2) ϕα(Aα) → ϕ(A) strongly for any net {ϕα : [ 0,∞ )→ K} of bounded
continuous functions uniformly converging to a bounded continuous

function ϕ : [ 0,∞ )→ K.

(3) The strong graph limit Γ∞ of {Aα}α∈A coincides with the graph of A.

Remark 2.7. We should notice that, although the statements of Theorems
2.1–2.5 and Proposition 2.4 are similar to those of the well-known theorems
for a fixed Hilbert space (cf. [36, 42, 47, 48]), yet they are never exactly
the same even if we assume Hα = H for all α ∈ A. This is because of the
difference of the definition of the strong convergence of operators. Our case
is a little more delicate. Besides, the statement for compact convergence is
quite new.

As a consequence of Theorem 2.4, we have the following well-known
statement. The proof is omitted.

Corollary 2.4. The following are equivalent:

(1) The embedding (D(E), E1) ↪→ H is compact.

(2) Rζ is compact for some ζ ∈ ρ(A).

(3) Tt is compact for some t > 0.

(4) ϕ(A) is compact for any continuous function ϕ : σ(A)→ K vanishing
at infinity.

(5) E(( λ, µ ]) is compact for any two real numbers λ < µ which are not in
the point spectrum of A.

(6) (Euα, vα)H → (Eu, v)H vaguely for any nets {uα}α∈A, {vα}α∈A ⊂ H
such that uα → u and vα → v weakly.
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2.7. Asymptotic behavior of spectra.

Denote by σ(·) the spectrum of an operator.

Proposition 2.5. If Σα → Σ strongly, then

σ(A) ⊂ lim
α∈A

σ(Aα),

i.e., for any λ ∈ σ(A) there exist λα ∈ σ(Aα) tending to λ.

Proof. We prove the proposition in the same way as in the proof of Theorem
1.14 in VIII §2 of [36]. By Proposition 2.4 and since σ(A) = σ(Â), we may
assume that H and Hα are all complex Hilbert spaces.

Take any λ ∈ σ(A) and fix it. For a number ε > 0 we set ζ := λ + iε.
Then,

‖Rα
ζ ‖L(Hα) =

1
infρ∈σ(Aα) |ζ − ρ|

, and ‖Rζ‖L(H) =
1

infρ∈σ(A) |ζ − ρ|
=

1
ε
.

Applying Theorem 2.1(3) yields that Rα
ζ → Rζ strongly. Hence, by Lemma

2.9,
lim
α

inf
ρ∈σ(Aα)

|ζ − ρ| ≤ ε

Since ε > 0 is arbitrary, this completes the proof. �

Remark 2.8. The conclusion of Proposition 2.5 actually holds even if A
and Aα are not necessarily nonnegative and if one (or all) of the conditions
in Theorem 2.1 holds.

Lemma 2.16. If two extended real numbers a, b with −∞ ≤ a < b ≤ ∞
are both not in the point spectrum of A, we have

a ≤ E(u)‖u‖2H
≤ b for any u ∈ E(( a, b ])H \ {o}.

Here we agree that E(( a, b ]) = E(( a,∞)) for b =∞.

Proof. Let a < b be not in the point spectrum of A and let u ∈ E(( a, b ])H \
{o}. Then, ∫

( a,b ]
dEu = E(( a, b ])u= u =

∫
R

dEu
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and hence (Eu, u) = 0 on R \ ( a, b ]. Therefore, if u ∈ D(A),

E(u) = (Au, u)H =
∫

R

λ d(E(λ)u, u)H =
∫

( a,b ]
λ d(E(λ)u, u)H

which is not less than a
∫
(a,b ] d(Eu, u)H = a ‖u‖2H and not greater than

b
∫
(a,b ] d(Eu, u)H = b ‖u‖2H. This completes the proof. �

Define n(I) := dimE(I)H and nα(I) := dimEα(I)H for a Borel subset
I ⊂ R.

Proposition 2.6. Let a < b be two numbers which are not in the point
spectrum of A. If Σα → Σ strongly, we have

lim
α
nα(( a, b ])≥ n(( a, b ]) (2.15)

and in particular,

lim
α

dimHα ≥ dimH. (2.16)

Proof. Take a complete orthonormal basis {ϕk}n((a,b ])
k=1 of E(( a, b ])H . Let

n ∈ N be any fixed number if n(( a, b ]) =∞, and n := n(( a, b ]) if n(( a, b ])<
∞. There are ϕα

k ∈ Hα, k = 1, . . . , n, with limα ϕ
α
k = ϕk. Since Eα(( a, b ])→

E(( a, b ]) strongly, setting ψα
k := Eα(( a, b ])ϕα

k ∈ Eα(( a, b ])Hα we have

lim
α
ψα

k = E(( a, b ])ϕk = ϕk

and so
lim
α

(ψα
k , ψ

α
� )Hα = (ϕk, ϕ�)H = δk�.

This proves that {ψα
k }nk=1 is linearly independent for all sufficiently large α

and hence limα nα(( a, b ])≥ n. This proves (2.15). Since n(( a, b ])→ dimH
as a→ −∞, b→∞, we obtain (2.16). �

Theorem 2.6. Assume that Σα → Σ compactly. Then, for any a, b ∈
R \ σ(A) with a < b, we have nα(( a, b ]) = n(( a, b ]) for sufficiently large α.
In particular, the limit set of σ(Aα) coincides with σ(A).

Remark 2.9. Under the assumption of this theorem, Lemma 2.7 implies
that Rζ , Tt, and E(( λ, µ ]) are all compact operators, so that A has only
discrete spectrum and n(( a, b ])<∞ for any a < b <∞.
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Proof of Theorem 2.6. The spectrum σ(A) ofA is a finite or infinite sequence
of eigenvalues (0 ≤)λ1 ≤ λ2 ≤ · · · ≤ λn, n ∈ {0} ∪ N ∪ {∞}, with no
accumulation, where n = 0 means that it is the empty sequence, and n =∞
means that it is an infinite sequence tending to infinity. We set Lα

1 :=
Eα((−∞, λ1+ ε0 ])Hα and L1 := H for a fixed ε0 > 0, where λ1 + ε0 = λ1 :=
∞ if n = 0. Let

µ1 := lim
α

inf{ Eα(u) | ‖u‖Hα = 1, u ∈ Lα
1 }.

Then, by Lemma 2.16, we have limα nα((−∞, µ ]) = 0 for any µ ∈ (−∞, µ1 ),
which together with Proposition 2.6 shows µ1 ≤ λ1. Therefore, when
µ1 = ∞, we have n = 0 and Hα = o for sufficiently large α, which im-
plies the theorem. Suppose µ1 < ∞. There exist unit vectors ϕα

1 ∈ Lα
1

for all sufficiently large α such that limα Eα(ϕα
1 ) = µ1. Since Eα → E com-

pactly and by replacing with a subnet of A, there exists a strong limit
ϕ1 := limα ϕ

α
1 ∈ L1 with E(ϕ1) ≤ µ1. It follows that ‖ϕ1‖H = 1 and

λ1 = inf{ E(u) | u ∈ L1, ‖u‖H = 1 } ≤ E(ϕ1) ≤ µ1 < ∞. Thus, we obtain
n ≥ 1, λ1 = µ1 = E(ϕ1), and that ϕ1 is a unit eigenvector for λ1 of A. Since
Eα(( λ1− ε, λ1 + ε ])→ E(( λ1− ε, λ1 + ε ]) strongly for any fixed ε > 0 and
since E(( λ1 − ε, λ1 + ε ]) → E({λ1}) strongly as ε ↘ 0, there exists a net
of positive numbers εα1 → 0 such that Eα(( λ1 − εα1 , λ1 + εα1 ]) → E({λ1})
strongly. Then we have ψα

1 := Eα(( λ1− εα1 , λ1 + εα1 ])ϕα
1 → E({λ1})ϕ1 = ϕ1.

We next set Lα
2 := Eα((−∞, λ2 + ε0 ])Hα ∩ 〈ψα

1 〉⊥, L2 := 〈ϕ1〉⊥, and

µ2 := lim
α

inf{ Eα(u) | ‖u‖Hα = 1, u ∈ Lα
2 }.

Then, by Lemma 2.16, we have limα nα((−∞, µ ]) = 1 for any µ ∈ ( µ1, µ2 ),
which together with Proposition 2.6 shows µ2 ≤ λ2. Therefore, when µ2 =
∞, we have n = 1 and Hα = 〈ψα

1 〉 for sufficiently large α. Suppose µ2 <∞.
We take unit vectors ϕα

2 ∈ Lα
2 such that limα Eα(ϕα

2 ) = µ2. Then, the same
discussion as above yields n ≥ 2, λ2 = µ2, and that ϕα

2 strongly converges to
a unit eigenvector ϕ2 for λ2 of A, by replacing with a subnet of A. For some
net of positive numbers εα2 → 0, we have ψα

2 := Eα(( λ2− εα2 , λ2 + εα2 ])ϕα
2 →

ϕ2. We see that for any ε > 0 there exists αε ∈ A such that for any α ≥ αε,

(1) ψα
i ∈ Eα(( λi− ε, λi + ε ])Hα for each i = 1, 2,

(2) if λ1 + 2ε < λ2 then

Eα(( λ1− ε, λ1 + ε ])Hα = 〈ψα
1 〉 and Eα(( λ1 + ε, λ2 − ε ])Hα = o.
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We repeat this procedure. Setting Lα
k := Eα((−∞, λk + ε0 ])Hα ∩

〈ψ1, . . . , ψk−1〉⊥, we have

λk = µk := lim
α

inf{ Eα(u) | ‖u‖Hα = 1, u ∈ Lα
k },

while k ≤ n. Let k = 1, 2, . . . , n be any number and ε > 0 be sufficiently
small compared with k. Then, there exists αk,ε ∈ A such that for any
α ≥ αk,ε,

(1) for each λ ∈ {λ1, . . . , λk−1} with λ < λk,

Eα(( λ− ε, λ+ ε ])Hα = 〈ψα
i | pλ ≤ i ≤ qλ〉,

where pλ := min{i ∈ N | λi = λ} and qλ := max{i ∈ N | λi = λ},
(2) for each i = 1, . . . , k − 1 with λi < λi+1,

Eα(( λi + ε, λi+1 − ε ])Hα = o.

Let a, b ∈ [ 0,∞ )\σ(A) be two given numbers with a < b. The above implies
that

Eα(( a, b ])Hα = 〈ψα
k | k = 1, . . . , n with a < λk ≤ b〉

for all sufficiently large α. Thus, nα(( a, b ]) coincides with the number of k’s
with a < λk ≤ b, namely n(( a, b ]). This completes the proof. �

Corollary 2.5. Assume that Σα → Σ compactly and that the resolventsRα
ζ

are all compact. Denote by λk (resp. λα
k ) the kth eigenvalue of A (resp. Aα)

with multiplicity. We set λk :=∞ for all k ≥ dimH + 1 when dimH < ∞,

and λα
k :=∞ for all k ≥ dimHα + 1 when dimHα <∞. Then we have

lim
α
λα

k = λk for any k.

Moreover, let {ϕα
k}dimHα

k=1 be an orthonormal basis on Hα such that ϕα
k is an

eigenvector for λα
k of Aα. Then, by replacing with a subnet of A if necessar-

ily, for each fixed k ∈ N with k ≤ dimH , the vector ϕα
k strongly converges

to some eigenvector ϕk for λk of A such that {ϕk}dimH
k=1 is a complete or-

thonormal basis on H .

Proof. In the proof of Theorem 2.6, we can choose ϕα
k as in the statement of

the corollary. Thus, the corollary follows from the discussion in the proof of
Theorem 2.6. �
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Remark 2.10. Throughout this section, we have assumed the separability
of Hilbert spaces for the simplicity of proofs. However, this is not essential
and all results except Theorem 2.3 still hold for non-separable Hilbert spaces.

3. Convergence of manifolds.

3.1. Preliminaries for Lipschitz-Riemannian manifold.

Let us first recall Lipschitz manifold (see [55] for more details). A Lipschitz
manifold is defined to be a paracompact topological manifold with atlas
{(Uλ, ϕλ)}λ∈Λ whose chart transformationsϕµ◦ϕ−1

λ : ϕλ(Uλ∩Uµ)→ ϕµ(Uλ∩
Uµ) are bi-Lipschitz maps between open subsets of Rn. A Riemannian metric
on a Lipschitz manifold with atlas {(Uλ, ϕλ)}λ∈Λ is defined to be a family
of measurable Riemannian metrics gλ on ϕλ(Uλ) ⊂ Rn for all λ ∈ Λ which
satisfies the two following conditions:

(1) the compatibility condition on chart transformations

(ϕµ ◦ ϕ−1
λ )∗ gµ = gλ a.e.

(2) for each λ ∈ Λ there exists a constant cλ ∈ ( 0, 1 ) such that

cλ ‖ω‖L2(Rn) ≤ ‖ω‖L2(gλ) ≤ c−1
λ ‖ω‖L2(Rn)

for any C∞ differential form ω on R
n with compact support in ϕλ(Uλ),

where ‖ · ‖L2(Rn) and ‖ · ‖L2(gλ) denote the L2 norms with respect to
the Euclidean metric and gλ respectively.

Note that (2) is required to define the L2 norm of differential form on the
manifold. We also define a Lipschitz manifold with boundary in an ordinary
manner.

Let M be a Lipschitz-Riemannian manifold (possibly with boundary),
i.e., a Lipschitz manifold equipped with a Riemannian metric. Then, we have
the distance function on M induced from the Riemannian metric (see [20]).
It follows that the n-dimensional Hausdorff measure and the Riemannian
volume coincide for any Borel subset of M (cf. §7.1 of [45]). We define the
(1, 2)-Sobolev space W 1,2(M) to be the set of real valued L2 functions u
on M admitting L2 weak derivative du. A canonical Dirichlet form EM :
W 1,2(M)×W 1,2(M)→ R is defined by

EM (u, v) :=
∫

M
〈du, dv〉M dvolM , u, v ∈W 1,2(M),
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where 〈·, ·〉M and dvolM respectively denote the inner product and volume
measure induced from the Riemannian metric on M . A (Hilbert) inner
product (resp. norm) on W 1,2(M) is defined by (·, ·)W 1,2 = (·, ·)L2 + EM(·, ·)
(resp. ‖·‖2W 1,2 = ‖·‖2L2 +EM (·)). Denote by W 1,2

0 (M) the W 1,2 closure of the
set of W 1,2 functions with compact support on M . A standard partition-
of-unity argument using Theorem 3 in §4.2.1 of [21] shows that the set of
Lipschitz functions with compact support on M is dense in W 1,2

0 (M). The
canonical spectral structure Σ(M) on M is defined to be that induced from
the symmetric bilinear form (EM , W 1,2

0 (M)), where we mean by (EM ,F )
the symmetric bilinear form EM with domain restricted on F ⊂ W 1,2(M).
Note that (EM , W 1,2

0 (M)) is a strongly local regular Dirichlet form in the
sense of the abstract Dirichlet form theory (see §5.1). We call its infinites-
imal generator the Laplacian ∆M on M . Remark that if M is a smooth
Riemannian manifold, W 1,2

0 (M) coincides with the W 1,2 closure of the set
C∞

0 (M) of smooth functions with compact support on M and the Laplacian
∆M defined here is the Friedrichs extension of the C∞ Laplacian defined
on C∞

0 (M). Note that when M has nonempty boundary, the eigenvalue
problem ∆Mu = λu, u ∈ D(∆M), means one under the free (or Neumann)
boundary condition on ∂M . If we consider the interiorM◦ := M \∂M , then
the eigenvalue problem ∆M◦u = λu, u ∈ D(∆M◦) is corresponding to one
under the Dirichlet boundary condition on ∂M .

Let M and N be two Lipschitz-Riemannian manifolds. By using the
short-time asymptotic formula for heat kernel ([43]), it is easy to prove that if
a measurable map f : M → N with f∗ volN = volM induces an isomorphism
between the spectral structures of M and N , i.e., D(∆M) = { u ◦ f | u ∈
D(∆N ) } and ∆M(u ◦ f) = (∆Nu) ◦ f for any u ∈ D(∆N ), then M and
N are isometric. In other words, each isomorphism class of (X, p,m,Σ) for
(X, p,m) ∈M and a spectral structure Σ on L2(X ;m) contains at most one
(M, p, volM ,Σ(M)) induced from a Lipschitz-Riemannian manifold M .

An ε-almost isometry from M to N is defined to be a bi-Lipschitz home-
omorphism f : M → N with | lndil(f)| + | ln dil(f−1)| ≤ ε, where dil(f)
denotes the dilatation of f , i.e., the smallest Lipschitz constant of f . If
f : M → N is an ε-almost isometry, the push-forward measure f∗ volM
satisfies

e−nε volN ≤ f∗ volM ≤ enε volN , (3.1)

where n := dimM = dimN , and we consequently have

| ‖f∗u‖L2 − ‖u‖L2 | ≤ θn(ε) ‖u‖L2 (3.2)
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for any u ∈ L2(M), and

| EN(f∗u)− EM (u) | ≤ θn(ε) EM(u) (3.3)

for any u ∈ W 1,2(M) (cf. Theorem 4(ii) in 4.2.2 of [21] and its Remark),
where θn is some function depending only on n such that limε→0 θn(ε) = 0.
In other words, the push-forward f∗ is a θn(ε)-isometry with respect to the
L2 and W 1,2 norms.

The Lipschitz distance dL(M,N ) between M and N is defined to be the
infimum of ε > 0 such that an ε-almost isometry from M to N exists. The
topology on the set of isometry classes of Lipschitz-Riemannian manifolds
induced from the Lipschitz distance dL is called the Lipschitz topology.

3.2. Compact Lipschitz convergence and spectral structure.

In the following, Lipschitz-Riemannian manifolds may have nonempty
boundaries and we do not assume the completeness of them. Let us first
present a trivial proposition.

Proposition 3.1. Let {Mα}α∈A be a net of Lipschitz-Riemannian mani-

folds and M a Lipschitz-Riemannian manifold such that the embedding of
W 1,2(M) into L2(M) is compact. If {Mα}α∈A converges to M with respect

to the Lipschitz topology, then (Mα, volMα) converges to (M, volM) with
respect to the measured GH topology, and the spectral structure Σ(Mα)
compactly converges to Σ(M). Consequently, the spectrum σ(∆Mα) con-
verges to σ(∆M).

Proof. By the definition of the Lipschitz topology, there is a net of εα-almost
isometries fα : Mα → M , εα → 0. It is clear from (3.1) that (Mα, volMα)
converges to (M, volM ) with respect to the measured GH topology. In order
to prove the compact convergence of spectral structures, it suffices to show
that the canonical Dirichlet form EMα on L2(Mα) compactly converges to
the canonical Dirichlet form EM on L2(M). From (3.2) and (3.3), we easily
verify (F1) and (F2) in §2.5. The asymptotic compactness of {EMα} follows
from the compactness of the embedding W 1,2(M) ↪→ L2(M). This completes
the proof. �

Let us briefly discuss the compactness of the embedding W 1,2(M) ↪→
L2(M), which is obtained if one of the following holds:

(1) M is a compact Lipschitz-Riemannian manifold (with boundary).
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(2) More generally,M is covered by finitely many open subsets bi-Lipschitz
homeomorphic to an open unit disk.

We see an example of M satisfying (2) in the following:

Example 3.1 (Lipschitz cone manifold). Define a notion of (non-branched)
Lipschitz cone manifold inductively as follows. A one-dimensional Lips-
chitz cone manifolds is, by definition, a one-dimensional Riemannian man-
ifold (possibly with boundary). For n ≥ 2, an n-dimensional Lipschitz
cone manifold is defined to be a metric space X such that any point in
X admits a neighborhood bi-Lipschitz homeomorphic to a neighborhood of
the vertex in the Euclidean cone over an (n− 1)-dimensional compact con-
nected Lipschitz cone manifold. See [8] for the definition of Euclidean cone.
Any n-dimensional Lipschitz cone manifold X splits into an n-dimensional
Lipschitz-Riemannian manifold, say the regular set, and the set of points
which do not have neighborhoods bi-Lipschitz homeomorphic to an open
subsets of Rn, say the singular set. The singular set is of Hausdorff dimen-
sion ≤ n− 1. The regular set of a compact Lipschitz cone manifold satisfies
the condition (2) above. Because, if X is covered by finitely many open
subsets bi-Lipschitz homeomorphic to an open unit disk, so is the r-ball at
the vertex in the Euclidean cone over X for each r > 0.

Perelman claims that every Alexandrov space is a Lipschitz cone mani-
fold, the proof of which is unpublished. Another proof of the compactness
of the embedding W 1,2(M) ↪→ L2(M) for compact Alexandrov space M is
seen in [38].

The purpose of this section is to extend the above proposition for mani-
folds which may have continuous spectra of Laplacian. We here define a new
notion of convergence of manifolds.

Definition 3.1 (Compact Lipschitz topology). We say that a net {Mα}α∈A
of Lipschitz-Riemannian manifolds compact Lipschitz converges to a
Lipschitz-Riemannian manifold M if for any relatively compact open subset
O ⊂ M there exists a net of relatively compact open subsets Oα ⊂ Mα

such that Oα Lipschitz converges to O. This convergence induces a topol-
ogy on the set of Lipschitz-Riemannian manifolds, say the compact Lipschitz
topology.

Remark 3.1. Let M be a Lipschitz-Riemannian manifold and {Mα}α∈A a
net of Lipschitz-Riemannian manifolds.
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(1) If Mα Lipschitz converges to M , then Mα compact Lipschitz converge
to M . However, the converse is not true in general.

(2) If there exist open subsets Nα ⊂ Mα which compact Lipschitz con-
verges to M , then Mα compact Lipschitz converges to M . In particu-
lar, the compact Lipschitz topology is not Hausdorff.

(3) If {Mα}α∈A is an increasing net of open subsets of M with
⋃

αMα =
M , then Mα compact Lipschitz converges to M .

Theorem 1.1 is more precisely restated as follows:

Theorem 3.1. Let {Mα} be a net of Lipschitz-Riemannian manifolds and

M a Lipschitz-Riemannian manifold with W 1,2(M) = W 1,2
0 (M). If Mα com-

pact Lipschitz converges to M , then (Mα, volMα) converges to (M, volM )
with respect to the measured compact GH topology and the spectral struc-
ture Σ(Mα) strongly converges to Σ(M), in particular

σ(∆M) ⊂ lim
α
σ(∆Mα).

Proof. The definition of the compact Lipschitz convergence leads to the ex-
istence of εα-almost isometries fα : Mα ⊃ Oα → fα(Oα) ⊂M , εα ↘ 0, such
that Oα and fα(Oα) for each α are both relatively compact open subsets and
{fα(Oα)}α is a monotone increasing net covering M . We easily verify that
(Mα, volMα) converges to (M, volM) with respect to the measured compact
GH topology. It suffices to show that the canonical Dirichlet form EMα on
L2(Mα) converges to the canonical Dirichlet form EM on L2(M) with respect
to the Mosco topology. To verify (F1’) in §2.5, we take a net uα ∈W 1,2(Mα)
with

R := lim
α
‖uα‖W 1,2(Mα) <∞.

For a relatively compact open subset C ⊂M with Lipschitz boundary, there
exists αC ∈ A such that C ⊂ fα(Oα) for all α ≥ αC . Setting ūα := uα ◦
f−1
α |C ∈W 1,2(C) for α ≥ αC , we have

lim
α
‖ūα‖W 1,2(C) ≤ R.

Hence, by replacing with a subnet, for each C, {ūα}α∈A W 1,2-weakly and
L2 strongly converges to some uC ∈ W 1,2(C) with ‖uC‖W 1,2(C) ≤ R. We
take a monotone increasing sequence of C covering M and use the diagonal
argument to obtain a function u ∈W 1,2(M) such that, when replacing with a
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subnet of A, limα ūα = u|C (L2 strongly) for each C, and that ‖u‖W 1,2 ≤ R.
This implies (F1’).

To verify (F2), let us take any u ∈W 1,2(M) and fix it. Since W 1,2(M) =
W 1,2

0 (M), for any ε > 0 there is a Lipschitz function ũε in C0(M) such that
‖u − ũε‖W 1,2 < ε. There exists a large α(ε) ∈ A such that C := supp ũε ⊂
fα(Oα) for all α ≥ α(ε) and that the function uε ∈ W 1,2(Mα(ε)) defined by
uε := ũε ◦ fα(ε)|C on C and by uε := 0 outside C satisfies

| EMα(ε)
(uε)− EM (ũε) | < ε and | ‖uε‖L2(Mα(ε))

− ‖ũε‖L2(M ) | < ε.

Then we have uε → u in L2(M) and EMα(ε)
(uε) → EM(u) as ε → 0. This

together with Proposition 2.5 completes the proof. �

Remark 3.2. In Theorem 3.1, the equality σ(∆M) = limα σ(∆Mα) does
not hold in general. In fact, we take a complete noncompact Riemannian
manifold M with inf σ(∆M) > 0 (some hyperbolic manifold satisfy this).
Then there exists a net of closed Riemannian manifolds Mα which com-
pact Lipschitz converges to M . Here, the bottom of spectrum of ∆Mα is
inf σ(∆Mα) = 0, so that σ(∆M) �= limα σ(∆Mα).

By looking at Theorem 3.1, it is important to investigate the criteria
of the condition W 1,2(M) = W 1,2

0 (M). We know the following sufficient
conditions for it:

• M is a complete Lipschitz-Riemannian manifold, which is obtained in
a standard way (see [25, 26, 27])).

• M is isometric to N \ S, where N is a complete smooth Riemannian
manifold and S ⊂ N a compact smooth submanifold of codimension
≥ 2 ([39, 41]).

• The completion M̄ of M is an Alexandrov space of curvature bounded
below and M̄ \M consists of non-boundary singular points of M̄ ([38]).

• M is a Lipschitz-Riemannian manifold and M̄ \ M has Minkowski
codimension > 2, which is obtained by the same way as in [41].

Let us see some examples of compact Lipschitz convergence in the fol-
lowing:



Convergence of Spectral Structures 641

3.2.1. Blowing up. Let M be a smooth manifold and S ⊂ M a closed
subset. When a net {gα} of Riemannian metrics on M converges to a com-
plete Riemannian metric g on M \S uniformly on compact sets on M \S, it
is easy to show that (M, gα) compact Lipschitz converges to (M \S, g). Since
(M \ S, g) is complete and by Theorem 3.1, the spectral structure Σ(M, gα)
strongly converges to Σ(M \ S, g).

3.2.2. Magnifying. Let M be a smooth Riemannian manifold with metric
g, and rM denote the manifold M with metric r2g, r > 0. Then, as r→∞,
rM compact Lipschitz converges to R

n, where n := dimM . Therefore,
Σ(rM) strongly converges to Σ(Rn).

Corollary 3.1. Let M be a smooth Riemannian manifold. Then we have

lim
a,b→∞

a

b
= 1,

where ( a, b )⊂ [ 0,∞ ) is any spectral gap, i.e., ( a, b )∩ σ(∆M) = ∅.

Proof. Theorem 3.1 implies that σ(∆rM) = r−2σ(∆M) converges to σ(Rn) =
[ 0,∞ ). This proves the corollary. �

3.2.3. Tower of coverings. Let M0 ←M1 ←M2 ← . . . be a sequence of
Riemannian coverings of complete Riemannian manifolds with fundamental
groups Gk := π1(Mk), k = 0, 1, 2, . . . . Then Gk+1 is a subgroup of Gk

for any k ≥ 0. Since G∞ :=
⋂

k Gk is a subgroup of G0, there exists a
Riemannian covering space M∞ of M0 with fundamental group G∞. It is
easy to see that Mk compact Lipschitz converges to M∞ as k → ∞ and
therefore Σ(Mk) strongly converges to Σ(M∞).

3.2.4. Degeneration. Let M be a smooth manifold and g a degenerate
Riemannian metric on M , i.e., a positive semi-definite symmetric smooth
(0, 2)-tensor. Then, g induces a pseudo-distance function dg on M and the
quotient space of M modulo the equivalence relation dg(·, ·) = 0 becomes an
intrinsic metric (or length) space, say M̂g. Here, an intrinsic metric space is
a metric space X such that the distance between any two points inX is equal
to the infimum of length of continuous curves joining them (cf. [28]). Denote
by πg : M → M̂g the projection. The nondegenerate part, say Mg, of g in M
is an open subset of M and the degenerate part, say Sg, of g in M is closed.
We equip Mg with the metric g, so that Mg is isometrically embedded into
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M̂g. Assume that a net {gα} of Riemannian metrics converges to g uniformly
on compact sets on M , in which case we say that gα degenerates to g. It
is easy to prove that (M, p, gα) GH converges to (M̂g, πg(p)) and (M, gα)
compact Lipschitz converges to Mg.

Example 3.2. Let Mε := { (x, y, z) ∈ R
3 | x2+y2−z2 = ε } for ε ≥ 0. Then,

as ε→ 0, the surface Mε compact Lipschitz converges to the double of cone,
C := M0 \ {o}, with the origin excluded. We see that W 1,2(C) = W

1,2
0 (C)

and therefore Σ(Mε) strongly converges to Σ(C).

Remark 3.3. Consider the set R(c) of isometry classes of pointed complete
two-dimensional Riemannian manifolds with L1 norm of curvature ≤ c for
a constant c > 0. In [50], the second author proved the GH relative com-
pactness of R(c) and characterized the topology of the GH limit spaces of
R(c). Note here that the limit may degenerate partially. It seems not so
hard to construct a Lipschitz-Riemannian metric on the nondegenerate part
of a limit space and to prove that if a net Mα ∈ R(c) GH converges to a
space M , then the spectral structure Σ(Mα) strongly converges to Σ(M).

We see some interesting works in [2, 35] for degeneration.

3.3. Convergence of manifolds under a bound of local
isoperimetric constant.

Let M be an n-dimensional smooth Riemannian manifold (with boundary).
Define the isoperimetric constant of M by

I(M) := inf
area(∂Ω1 ∩ ∂Ω2)
vol(Ω1) ∧ vol(Ω2)

,

where (Ω1,Ω2) run over all pairs of two disjoint open domains in M with
piecewise smooth boundary such that vol(M \ (Ω1 ∪ Ω2)) = 0, and x ∧ y :=
min{x, y} for x, y ∈ R. For r > 0 we define the r-isoperimetric constant
Ir(M) of M by

Ir(M) := r · sup
{pk}

inf
k
I(B(pk, r)),

where {pk} is any r-discrete r-net of M . Note that Iar(aM) = Ir(M) for
any a, r > 0. For the completion M̄ of an incomplete Riemannian manifold
M , let us define a measure volM̄ on M̄ to be volM on M and zero on M̄ \M .

Applying Theorem 3.1 and a result in §5 below, we have the following:
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Theorem 3.2. Let {Mα}α∈A be a net of compact Riemannian manifold
(possibly with boundary) and M an incomplete Riemannian manifold. We

assume the following (1)–(5).

(1) limr↘0 limα Ir(Mα) > 0.

(2) W 1,2(M) = W 1,2
0 (M).

(3) The completion M̄ of M is compact.

(4) (Mα, volMα) measured GH converges to (M̄, volM̄ ).

(5) Mα compact Lipschitz converges to M .

Then, the spectral structure Σ(Mα) compactly converges to Σ(M). In partic-

ular, Σ(M) has compact resolvent and for any fixed k ∈ N, the kth eigenvalue
of ∆Mα converges to that of ∆M .

Proof. Consider the family Sc(L2(Mc)) of spectral structures on L2(X ;m)
with compact resolvent, where (X, p,m) ∈ Mc runs over all spaces. Recall
that Sc(L2(Mc)) has the compact spectral topology based on the measured
GH topology on Mc. Suppose that Σ(Mα) does not compactly converge
to Σ(M), so that there exist a subnet B of A and a neighborhood U in
Sc(L2(Mc)) of Σ(M) such that Σ(Mβ) for any β ∈ B is not contained in U .
According to Corollary 1 of [57], the assumption for isoperimetric constant,
(1), implies the estimate for the Poincaré constant, (P) in §5. Also, (D)
and (N) in §5 are clear. Hence, Theorem 5.1 below shows the existence of a
compactly convergent subnet of {Σ(Mβ)}. By Theorem 3.1, the limit must
be Σ(M), which is a contradiction. Thus, Σ(Mα) compactly converges to
Σ(M).

The rest follows from Remark 2.6 and Corollary 2.5. This completes the
proof. �

Remark 3.4. (1) In general, a net of manifolds {Mα} in Theorem 3.2
has no bound of the isoperimetric constant of Chavel-Feldman [12].
We shall see such an example in Example 3.3 below. It is not clear
that there exists a bound of heat kernel needed to apply the theory
of Kasue-Kumura [32], for manifolds satisfying (1)–(5) of the theorem.
On the other hand, if the heat kernel is bounded in the sense of [33],
or if the isoperimetric constant is bounded in the sense of [12], then
this does not necessarily imply (1) of Theorem 3.2.
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(2) Both of the assumptions (4) and (5) of Theorem 3.2 can be replaced
with the following equivalent condition: There exists bi-Lipschitz
homeomorphisms fα from open subsets Oα ⊂ Mα to relatively com-
pact open subsets O′

α ⊂ M such that {O′
α} is a monotone increasing

net covering M and that

lim
α

vol(Mα \Oα) = lim
α

sup
x∈Mα\Oα

d(x, Oα) = 0.

(3) Theorem 3.2 is true also for Lipschitz-Riemannian manifolds instead
of smooth Riemannian manifolds, which follows from the same proof.

We see more definite cases of Theorem 3.2 in the following sections.

3.3.1. Shrinking. Let M be a smooth Riemannian manifold with
W 1,2(M) = W 1,2

0 (M), and N ⊂ M a compact smooth submanifold of
codimension ≥ 2. It then follows that W 1,2

0 (M \ N ) = W 1,2
0 (M) and so

Σ(M \N ) = Σ(M). We take a family {Mr}r∈( 0,r0 ) of smooth Riemannian
manifolds in such a way that each Mr contains an open subset Ur such that
Mr \ Ur is isometric to M \ B(N, r), where B(N, r) is the open r-ball of
N . Then, as r → 0, Mr compact Lipschitz converges to M \ N . Thus, by
Theorem 3.1, the spectral structure Σ(Mr) strongly converges to Σ(M) as
r→ 0.

Assume further that M is compact, N consists of a single point, the
diameter and volume of Ur both tend to zero as r → 0, and r · I(Ur) is
bounded away from zero. Then, it is easy to verify that all the assumptions
of Theorem 3.2 are satisfied, so that the spectral structure Σ(Mr) compactly
converges to Σ(M).

A nontrivial example of such a family {Ur} is seen in the following:

Example 3.3. Let T := (R/2πZ) × S with coordinate (θ, s) for a com-
pact manifold S with a Riemannian metric ds2, and let {fr : R/2πZ →
( 0,∞ )}r∈(0,r0 ) be a family of smooth functions such that

(1) fr for each r is monotone nonincreasing on [ 0, π ] and monotone non-
decreasing on [ π, 2π ],

(2) we have limr↘0 fr(π) = 0,

(3) there is an a ∈ ( 0, π ) such that fr|[−a,a ] ≡ 1 for any r.
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(For instance, we may take fr(θ) as a smooth deformation of (cos θ+1+r)∧1.)
Assuming that (S, ds2) contains a flat disk of radius a ∈ ( 0, π ), say B(x, a),
we find a flat disk of radius a, B((0, x), a), in the Riemannian manifold
(T, dθ2 + fr(θ)2ds2) by (3). We consider the rescaled Riemannian manifold
Tr := (T, (r/a)2(dθ2 + fr(θ)2ds2)) and so the flat disk is rescaled as one
with radius r. Remove the disk from Tr and denote the rest by Ur. We
deform the metric of Ur around ∂Ur such that the gluing Mr of M \B(N, r)
and Ur along their boundaries is a smooth Riemannian manifold. Then, the
construction of Ur yields that the diameter and volume of Ur both tend to
zero as r → 0 and that infr r · I(Ur) > 0.

For such a family {Mr}, we now consider the condition that

inf
r>0, Ω⊂Mr

area(∂Ω)n

vol(Ω)n−1
> 0, (3.4)

where n := dimMr. Note that this is required in [12] to obtain convergence
of eigenvalue. Let us see that by choosing a suitable fr, the family {Mr}
does not satisfy (3.4). In fact, it follows that (3.4) does not hold if

lim
r→0

inf
a<θ1<θ2<2π−a

(fr(θ1) + fr(θ2))n(∫ θ2

θ1
fr(θ) dθ

)n−1 = 0, (3.5)

(cf. §8 of [33]). For instance, if fr(θ) tends to |θ− π|n ∧ 1 as r→ 0, we have
(3.5).

3.3.2. Iteration of attaching small manifolds. For a fixed n ≥ 2, let
{Nk}k=0,1,2,... be a sequence of n-dimensional closed Riemannian manifolds
such that vol(Nk), diam(Nk), and 1/I(Nk) are all uniformly bounded from
above. (For example, such the boundedness is obtained if the Ricci curva-
ture of Nk satisfies RicNk

≥ n − 1.) Assume that every Nk contains two
disjoint unit open metric balls, say B(pk, 1) and B(qk, 1), both isometric to
Bn(1), where Bn(r) denotes an n-dimensional Euclidean open disk of ra-
dius r. We shall construct another sequence of closed Riemannian manifolds
{Mk} such that each Mk contains a metric ball B(xk, 100−k) isometric to
Bn(100−k). We first set M0 := N0 and x0 := q0. Supposing that Mk is
defined for a number k, we define Mk+1 as the connected sum of Mk and
N ′

k := 100−(k+1)Nk with the metric described as follows. We deform the met-
rics of M̂k := Mk \B(xk, 100−(k+1)/2) and N̂k := N ′

k \B(pk+1, 100−(k+1)/2)
around the boundaries so that the gluing of M̂k and N̂k along their bound-
aries is a smooth Riemannian manifold, which is the desired Mk+1. A point
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xk+1 ∈ Mk+1 is defined to be qk+1 in N̂k. Then, B(xk+1, 100−(k+1)) is iso-
metric to Bn(100−(k+1)).

By the construction, we have the infinite sequence of the isometric em-
beddings

M0 \B(x0, 1) ↪→M1 \B(x1, 100−1) ↪→ . . . ↪→Mk \B(xk, 100−k) ↪→ . . . .

The inductive limit, say M , is a precompact incomplete Riemannian man-
ifold with finite volume such that M̄ \ M consists of a single point. Re-
mark that if we take each Nk to be non-simply connected, then π1(M) is
not finitely generated. It is easy to verify that {Mk} and M together sat-
isfy the assumptions (1)–(5) of Theorem 3.2. Here, (1) is deduced from
supk I(Nk) <∞, and (2) is proved by constructing cut-off functions around
M̄ \M in a similar way as in [10, 39], for which we omit the detail. Thus,
Σ(Mk) compactly converges to Σ(M).

3.4. Collapsing of warped product manifolds.

Let {Nα}α∈A be a net of (incomplete) Riemannian manifolds which com-
pact Lipschitz converges to a Riemannian manifold N , let F be a compact
Riemannian manifold, and let {ϕα : Nα → ( 0,∞ )}α∈A be a net of C∞

functions. We consider the warped product Mα := Nα ×ϕα F , i.e., Mα is
a product manifold Nα × F with Riemannian metric gMα := gNα + ϕ2

αgF ,
where gX denotes the metric of a Riemannian manifold X . We denote the
projection by πNα : Mα → Nα. Assume that there exist a net rα → 0 of
positive numbers and a constant c ∈ ( 0, 1 ) such that for any α ∈ A and any
x ∈ Nα,

c ≤ ϕα(x)
rα

≤ c−1. (3.6)

Then, by taking a subnet of A, the push-forward (πNα)∗µα of the measure
µα := r−k

α volMα vaguely converges to a positive Radon measure m on N ,
where k := dimF . Since

µα(dxdy) = r−k
α ϕk

α(x) volF (dy) volNα(dx),

the measures m and volN are mutually absolute continuous.

Theorem 3.3. Assume thatW 1,2(N ;m) = W
1,2
0 (N ;m). Then, the spectral

structure Σ(Mα, µα) strongly converges to Σ(N,m). If the embedding of
W 1,2(N ;m) into L2(N ;m) is compact and if Nα Lipschitz converges to N ,

then Σ(Mα, µα) compactly converges to Σ(N,m).
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Proof. Let us prove the later assertion of the theorem. Let u ∈ L2(Mα; µα)
be any function. We set

ū(x) :=
1

vol(F )

∫
F

u(x, y) volF (dy), x ∈ Nα.

Assume that u is of C∞. Since |d(x,y)u(x, y)|2Mα
= |dxu(x, y)|2Nα

+
ϕ−2

α (x)|dyu(x, y)|2F for any x ∈ Nα and y ∈ F , we have

E(Nα,(πNα)∗µα)(ū) ≤ E(Mα;µα)(u). (3.7)

It follows from the Poincaré inequality on F that∫
F
(u(x, y)− ū(x))2 volF (dy) ≤ const

∫
F
|dyu(x, y)|2F volF (dy)

≤ const r2α

∫
F
|d(x,y)u(x, y)|2F volF (dy),

where ‘const’ is a constant depending on F . Hence,

‖u− ū ◦ πNα‖2L2(Mα;µα) (3.8)

≤ const r2α

∫
Nα×F

∫
F
|d(x,y)u(x, y)|2F volF (dy) r−kϕk(x) volF (dy1) volNα(dx)

≤ const r2αE(Mα,µα)(u).

Now, let uα ∈W 1,2(Mα; µα) be a net with

sup
α

(‖uα‖2L2(Mα;µα) + E(Mα,µα)(uα)) <∞.

There exists a net of εα-almost isometries fα : Nα → N , εα → 0. By (3.7)
and (3.8), we have

sup
α

(‖ūα ◦ f−1
α ‖2L2(N ;m) + E(N,m)(ūα ◦ f−1

α )) <∞,

which implies the existence of an L2(N ;m)-strongly convergent subnet of
{ūα ◦ f−1

α }. Therefore, {E(Mα,µα)} is asymptotically compact. Assume that
{ūα◦f−1

α } converges to a function u ∈ L2(N ;m) strongly in L2(N ;m). Then,
by (3.7),

E(N,m)(u) ≤ lim
α
E(Nα,(πNα)∗µα)(ūα) ≤ lim

α
E(Mα;µα)(uα),

which proves (F1).
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For any fixed u ∈W 1,2(N ;m), we set uα := u ◦ fα ◦ πNα . Then, uα → u
in L2(M) and E(Mα,µα)(uα)→ E(N,m)(u). This proves (F2).

The proof of the first assertion is similar to that of Theorem 3.1 and is
omitted. �

Note that it is difficult to relax the assumption (3.6). See [1, 35] for such
attempts.

3.5. Convergence of noncompact Alexandrov spaces.

Denote by A(n,D, v) the set of compact n-dimensional Alexandrov spaces
of curvature ≥ −1, diameter ≤ D, and n-dimensional Hausdorff measure
≥ v, where n ∈ N, D, v > 0 are constants. In [51], we proved that the
topology induced from the spectral distance coincides with the GH topology
on A(n,D, v). In particular, if a net {Mα} ⊂ A(n,D, v) GH converges to
an M ∈ A(n,D, v), then the spectral structure Σ(Mα) compactly converges
to Σ(M). Here, we equip n-dimensional Alexandrov spaces with the n-
dimensional Hausdorff measure Hn. The purpose of this section is to prove
the following:

Theorem 3.4. Let {(Mα, pα)} be a net of (possibly noncompact) pointed
n-dimensional Alexandrov spaces of curvature ≥ −1 which GH converges

to a pointed n-dimensional Alexandrov space (M, p). Then, (Mα, pα,Hn)
converges to (M, p,Hn) with respect to the measured GH topology and the

spectral structure Σ(Mα) strongly converges to Σ(M).

As a consequence to the theorem, we prove:

Corollary 3.2. Let M be a noncompact nonnegatively curved Alexandrov
space such that limr→∞Hn(B(p, r))/rn > 0 for some point p ∈ M , where
n := dimM . Then, we have inf σ(∆M) \ {0}= 0, and spectral gaps ( a, b )⊂
[ 0,∞ ) \ σ(∆M) satisfy

lim
a,b→0

a

b
= 1.

We briefly describe some convention for Alexandrov spaces. Refer to
[8, 45, 38] for the details. Let M be an n-dimensional Alexandrov space
with curvature ≥ −1. For δ > 0, the δ-singular set Sδ of M is defined to
be the set of x ∈M such that Hn−1(Σx) ≤ ωn−1 − δ, where Σx is the space
of directions at x and ωn−1 the volume of the unit (n − 1)-sphere. Then,
the δ-singular set for any δ > 0 is of Hausdorff dimension ≤ n− 1 ([8, 45]).
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There exists a δn > 0 depending only on the dimension n such that M \ Sδn

is a (incomplete) Lipschitz-Riemannian manifold ([45]). The canonical spec-
tral structure Σ(M) on L2(M ;Hn) is induced from the canonical Dirichlet
form (EM , W 1,2

0 (M \ Sδn)) as defined in §3.1. The double dbl(M) of M is
obtained by gluing two copies of M along their boundaries. The double of an
Alexandrov space with nonempty boundary is an Alexandrov space without
boundary and of the same lower bound of curvature ([8, 46]). We have a
natural isometric embedding ι : M → dbl(M). Denote by Ŝδ the preimage
in M of the δ-singular set of dbl(M) contained in ι(M). Clearly, if ∂M = ∅,
then Ŝδ = Sδ. It follows that Ŝδ ⊂ Sδ and Sδ \ Ŝδ ⊂ ∂M . The two following
theorems are essential for the proof of Theorem 3.4.

Theorem 3.5 (Theorem 1.1 of [38]). The set Ŝδ for any δ > 0 is of ca-

pacity zero, i.e., W 1,2
0 (M \ Ŝδ) = W 1,2(M \ Ŝδ).

Theorem 3.6 (Theorem 3.1 of [51]). Assume that a net {(Mα, pα)} of

pointed n-dimensional Alexandrov spaces of curvature ≥ −1 GH converges
to a pointed n-dimensional Alexandrov space (M, p). Then, for any δ with

0 < δ � 1/n, there exist εα-approximations fδ,α : (M, p) → (Mα, pα) for

some εα ↘ 0 and compact subsets Dδ,α ⊂ M \ Ŝδ with
⋃

αDδ,α = M \ Ŝδ

such that the restriction fδ,α : Dδ,α → fδ,α(Dδ,α) is a θ(δ)-almost isometry,

and
lim
α
Hn(Mα \ fδ,α(Dδ,α)) = 0,

where θ is some function with limt→0 θ(t) = 0. In particular, (Mα, pα,Hn)
converges to (M, p,Hn) in the measured GH topology.

Indeed, we assumed the compactness of Alexandrov spaces in the original
statement in [51], which is however not essential for the proof.

Proof of Theorem 3.4. The theorem is proved in the same way as in the proof
of Theorem 3.1 by using the above two theorems. See also the discussion in
§5 of [51]. �

Proof of Corollary 3.2. We first claim that the Laplacian of an Alexandrov
space which is isometric to an Euclidean cone has full spectrum [ 0,∞ ). In
fact, this follows from the invariability of the spectrum up to metric rescaling
and the non-triviality of the Laplacian.

Let M be a noncompact nonnegatively curved Alexandrov space. Con-
sider the ε-rescaled space εM , ε > 0. For a fixed point p ∈ M , as
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ε → 0, (εM, p) GH converges to an Euclidean cone, called the limit cone
‘C∞M ’ of M (see §4 of [6] and Proposition 1.1 of [49]). The assumption
limr→∞Hn(B(p, r))/rn > 0 implies that this convergence does not col-
lapse dimension. Applying Theorem 3.4 and Proposition 2.5 yields that
ε−2σ(∆M) = σ(∆εM) → σ(∆C∞M ) = [ 0,∞ ) as ε → 0. This completes the
proof. �

4. Convergence of graphs.

4.1. Graph with simplicial metric.

A (oriented) graph Γ is defined to be a set (VΓ, EΓ, o, t), where VΓ and EΓ are
at most countable sets and o, t : EΓ → VΓ are maps. We always assume that
all graphs are locally finite, i.e., for any x ∈ o(EΓ) and y ∈ t(EΓ), o−1(x) and
t−1(y) are both finite subsets of EΓ. Each element of VΓ is called a vertex of
Γ and each element of EΓ an edge of Γ. We say that an edge e ∈ EΓ connects
a vertex x ∈ VΓ to a vertex y ∈ VΓ if o(e) = x and t(e) = y. Note that for
two vertices x, y ∈ VΓ, an edge connecting x to y (if any) is not necessarily
unique and that we may have a loop, i.e., an edge e ∈ EΓ with o(e) = t(e).
We denote the disjoint union VΓ �EΓ for a graph Γ by the same symbol Γ.

A simplicial metric on a graph Γ is defined to be a pair of two functions
�, w : EΓ → ( 0,∞ ). Here, � is called the length function and w the weight
function. Let (Γ, g) be a given graph with a simplicial metric g = (�, w).
Denote by C(S) the set of real valued functions on a subset S ⊂ Γ = VΓ�EΓ.
The difference operator d : C(VΓ)→ C(EΓ) is defined by

du(e) := u(t(e))− u(o(e)), u ∈ C(VΓ), e ∈ EΓ.

Define a measure mg over Γ induced from the metric g by

mg :=
∑
x∈VΓ

w(x) δx +
∑
e∈EΓ

�(e) δe,

where δ· denotes the Dirac delta measure. This defines the L2 space
L2(VΓ) := L2(VΓ,R;mg|VΓ

) in the usual manner. For ω1, ω2 ∈ C(EΓ) we
set the L2 inner product :

(ω1, ω2)L2 :=
∫

e∈EΓ

〈ω1(e), ω2(e)〉g mg(de) =
∑
e∈EΓ

ω1(e)ω2(e)
�(e)

if it converges, where 〈x, y〉g := xy/�(e)2 for x, y ∈ R. Then, as well as
for (Lipschitz-)Riemannian manifold, we obtain the spaces L2(EΓ) := {ω ∈
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C(EΓ) | ‖ω‖L2 :=
√

(ω, ω)L2 < ∞} and W 1,2(VΓ) := { u ∈ L2(VΓ) | du ∈
L2(EΓ) }. A closed symmetric bilinear form E(Γ,g) : W 1,2(VΓ)×W 1,2(VΓ)→
R is defined by

E(Γ,g)(u, v) := (du, dv)L2, u, v ∈W 1,2(VΓ).

An inner product (·, ·)W 1,2 on W 1,2(VΓ) is defined in the same manner as for
(Lipschitz-)Riemannian manifold. Consider theW 1,2 closureW 1,2

0 (VΓ) of the
set, say C0(VΓ), of functions on VΓ whose support is a finite subset of VΓ.
We call the restricted closed form (E(Γ,g), W

1,2
0 (VΓ)) the canonical Dirichlet

form induced from g. Note that this is a non-local regular Dirichlet form
on L2(VΓ) in the sense of the abstract Dirichlet form theory (see §5.1). The
spectral structure Σ(Γ, g) on L2(VΓ) associated with the simplicial metric g is
defined to be that induced from the Dirichlet form (E(Γ,g), W

1,2
0 (VΓ)). Define

a linear operator δ : C(EΓ)→ C(EΓ) by

δω(x) :=
1

w(x)

∑
e∈Ex

ω(e)
�(e)

, ω ∈ C(EΓ), x ∈ VΓ,

where Ex denotes the set of all edges connecting x, and the Laplacian ∆̃ =
∆̃(Γ,g) := δd : C(VΓ)→ C(VΓ). The (formal) adjoint d∗ of d|W 1,2(VΓ) satisfies
δ|C0(VΓ) ⊂ d∗ ⊂ δ, and the generator, say ∆ = ∆(Γ,g), of (E(Γ,g), W

1,2
0 (VΓ))

does ∆̃|C0(VΓ) ⊂ ∆ ⊂ ∆̃.

4.2. Convergence of graphs and spectral structure.

Denote by G the set of isomorphism classes of pairs (Γ, g), where Γ runs over
all locally finite graphs and g simplicial metrics on Γ. Let (Γ, g) ∈ G and
denote by MΓ the geometric image of Γ. The length function of g induces a
natural distance function, say dg, on MΓ so that (MΓ, dg) is a locally compact
intrinsic metric space. Let ι : VΓ →MΓ be the natural embedding and define
a measure µg on MΓ to be zero on MΓ \ ι(VΓ) and the push-forward measure
ι∗(mg|VΓ

) on ι(VΓ).

Proposition 4.1. Let (Γ, g) ∈ G and let {(Γα, gα)}α∈A ⊂ G be a net such
that Γ and Γα are all finite graphs. If (MΓα , µgα) converges to (MΓ, µg) with

respect to the measured GH topology, then the spectral structure Σ(Γα, gα)
compactly converges to Σ(Γ, g) and in particular

lim
α
σ(∆(Γα,gα)) = σ(∆(Γ,g)).
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Proof. The proposition is implied by the discussion of [22, 30]. Let fα :
MΓα → MΓ be measured εα-approximations with respect to dgα , mg, dg, mg

for some εα ↘ 0. We may assume that each fα maps vertices to vertices and
set Φαu := u ◦ fα|VΓα

∈ C(VΓα) for u ∈ C(VΓ). It was obtained in [22, 30]
that

E(Γ,g)(u) = lim
α
E(Γα,gα)(Φαu) and ‖u‖L2 = lim

α
‖Φαu‖L2

for any u ∈ C(VΓ). This implies (F2). Also, if we define Ψα : C(VΓα) →
C(VΓ) by

Ψαu(x) :=
1

m(f−1
α (x))

∫
f−1

α (x)∩VΓ

u dmgα, u ∈ C(VΓα), x ∈ VΓ,

then

lim
α
‖Ψαuα‖L2 = 1, lim

α
E(Γ,g)(Ψαuα) ≤ lim

α
E(Γα,gα)(uα)

for any uα ∈ C(VΓα) with ‖uα‖L2 = 1 and supα E(Γα,gα)(uα) < ∞ (see
[22, 30]). Note that W 1,2(VΓ) = L2(VΓ) = C(VΓ) holds because of the
finiteness of Γ. Therefore, for any such {uα}, {Ψαuα} is uniformly bounded
and then has a convergent subnet {Ψβuβ}. Since uβ L2 strongly converges
to limβ Ψβuβ , {E(Γα,gα)} is asymptotically compact. Remarking that E(Γ,g)

is continuous on C(VΓ) with respect to the L∞ norm, we easily see (F1). �

We next consider infinite graphs.

Theorem 4.1. Let {(Γα, gα)}α∈A ⊂ G be a net and (Γ, g) ∈ G be such that

W 1,2(VΓ) = W 1,2
0 (VΓ). If (MΓα , µgα) converges to (MΓ, µg) with respect to

the compact measured GH topology, then the spectral structure Σ(Γα, gα)
strongly converges to Σ(Γ, g) and in particular

σ(∆(Γ,g)) ⊂ lim
α
σ(∆(Γα,gα)).

Proof. The theorem is proved in the almost same way as in the proof of
Theorem 3.1. Here, the only difference is the definition of ū. There exist
measured εα-approximations fα : MΓα ⊃ Oα → fα(Oα) ⊂MΓ, εα ↘ 0, such
that

(1) Oα and fα(Oα) for each α are geometric images of finite subgraphs of
Γα and Γ respectively,
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(2) {fα(Oα)} is a monotone increasing net covering MΓ,

(3) each fα maps vertices to vertices.

Let Ψα : C(Oα) → C0(VΓ) be as in the proof of Proposition 4.1. We now
define ūα := Ψα(uα|Oα). The rest of the proof is completely same as of
Theorem 3.1. �

Remark 4.1. The same proofs yield that Proposition 4.1 and Theorem 4.1
are both true for degeneration of graphs in the sense of [30].

4.3. Negligibility of boundary.

In this section, we discuss the conditionW 1,2(VΓ) = W 1,2
0 (VΓ). Let (Γ, g) ∈ G

be an infinite graph with a simplicial metric g = (�, w).

Proposition 4.2. If CΓ := supx∈VΓ

m(Ex)
w(x) <∞, we have:

(1) W 1,2(VΓ) = L2(VΓ), and moreover ∆̃|L2(VΓ) and d|L2(VΓ) are both

bounded linear operators on L2(VΓ),

(2) W 1,2(VΓ) = W 1,2
0 (VΓ) and ∆ = ∆̃|L2(VΓ).

Note that any finite graph satisfies CΓ <∞.

Proof. (1): Define ϕx ∈ L2(VΓ), x ∈ VΓ, by ϕx(x) := w(x)1/2 and ϕx(y) := 0
for any y �= x. It is easy to see that {ϕx}x∈VΓ

is a complete orthonormal
basis on L2(VΓ). A straight forward calculation shows that for any x, y ∈ VΓ,

|E(Γ,g)(ϕx, ϕy)| = m(Ex ∩Ey)√
w(x)w(y)

≤ CΓ

and hence, for any u =
∑

x∈VΓ
ax ϕx, v =

∑
x∈VΓ

bx ϕx ∈ L2(VΓ),

|(∆̃u, v)L2| = |E(Γ,g)(u, v)| ≤ CΓ

∑
x,y∈VΓ

|ax| |bx| ≤ CΓ ‖u‖L2 ‖v‖L2. (4.1)

This proves (1).
(2): Assume that W 1,2

0 (VΓ) � ui → u ∈ L2(VΓ) as i→∞ with respect to
the L2 norm. Then, (4.1) shows E(Γ,g)(ui−u)→ 0 and hence ‖ui−u‖W 1,2 →
0. This completes the proof of the proposition. �
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Proposition 4.3. If W 1,2(VΓ) = W
1,2
0 (VΓ), then ∆̃|C0(VΓ) is essentially self-

adjoint and its closure coincides with ∆(Γ,g).

Proof. The proof is nothing but a simple modification of that in [25].
Set d0 := d|C0(VΓ) and δ0 := δ|C0(EΓ). Since the adjoint δ∗0 is closed and

d0 ⊂ δ∗0 , we have d̄0 ⊂ δ∗0 .
We shall prove δ∗0 ⊂ d̄0. Let u ∈ D(δ∗0). For any ω ∈ D(δ0) = C0(EΓ) we

have ∫
e∈EΓ

〈du(e), ω(e)〉g mg(de) = (u, δ0ω)L2 = (δ∗0u, ω)L2,

which implies that du = δ∗0u ∈ L2(EΓ). Hence, u ∈ W 1,2(VΓ) = W 1,2
0 (VΓ) =

D(d̄0) and d̄0u = du = δ∗0u. Thus we obtain d̄0 = δ∗0 , which implies the
proposition. �

5. Convergence of measured metric spaces with Dirichlet
forms.

5.1. Preliminaries for Dirichlet form.

In this section, let us briefly recall the basics for Dirichlet form. Refer to
[24] for the details. Let X be a locally compact separable metric space and
m a positive Radon measure with full support. We consider a symmetric
nonnegative definite bilinear form E defined on a (not necessarily dense)
linear domain D(E) ⊂ L2(X ;m). We define an inner product E1 on D(E) by

E1(u, v) := E(u, v) + (u, v)L2(X ;m), u, v ∈ D(E).

The pair (E ,D(E)) or simply E is said to be a Dirichlet form on L2(X ;m)
if it is closed (i.e., D(E) is complete with respect to the E1/2

1 -norm) and if
it is Markovian (i.e., for any u ∈ D(E) we have u� := 0 ∨ u ∧ 1 ∈ D(E) and
E(u�, u�) ≤ E(u, u)). A Dirichlet form E densely defined on L2(X ;m) is said
to be regular if D(E)∩C0(X) is dense in D(E) with respect to the E1/2

1 -norm
and dense in C0(X) with respect to the uniform norm. A Dirichlet form
E on L2(X ;m) is said to be local if E(u, v) = 0 for any u, v ∈ D(E) such
that suppu and supp v are disjoint compact subsets. A Dirichlet form E on
L2(X ;m) is said to be strongly local if E(u, v) = 0 for any u, v ∈ D(E) such
that suppu and supp v are compact and u = const m-a.e. on a neighborhood
of supp v. It follows from Theorem 4.5.3 and Lemma 5.3.3 of [24] that a
regular Dirichlet form E on L2(X ;m) is local (resp. strongly local) if and
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only if E(u, v) = 0 for any u, v ∈ D(E) such that u = 0 (resp. u = const)
m-a.e. on a neighborhood of supp v.

Let E be a strongly local regular Dirichlet form on L2(X ;m). The 1-
capacity Cap(·) over X with respect to E is defined as follows: for any open
subset O of X ,

Cap(O) := inf{ E1(u, u) | u ∈ D(E), u ≥ 1 m-a.e. on O },
and for any subset A of X ,

Cap(A) := inf{Cap(O) | O is open set with A ⊂ O }.
A quasi-continuous m-version ũ of u ∈ D(E) is a function satisfying that
ũ = u m-a.e. and that there exists a sequence {Fk} of closed subsets of X
such that limk→∞ Cap(X \ Fk) = 0 and each ũ|Fk

is continuous on Fk. It is
known that any u ∈ D(E) admits a quasi-continuous m-version (see [24]).

For any u, v ∈ D(E), there exists a unique signed finite Borel measure
Γ(u, v) on X , called the energy measure of E , charging no set of zero 1-
capacity, such that

2
∫

X
w̃ dΓ(u, v) = E(uw, v) + E(u, vw)− E(uv, w),

u, v, w ∈ D(E) ∩ L∞(X ;m),
E(u, v) = Γ(u, v)(X), u, v ∈ D(E).

We set Γ(u) := Γ(u, u) for u ∈ D(E). Note that the energy measure of the
canonical Dirichlet form EM of a Riemannian manifold M coincides with
dΓ(u, v) = 〈du, dv〉M dvolM for u, v ∈W 1,2

0 (M).

Lemma 5.1. For any u, v ∈ D(E) ∩ L∞(X ;m) we have

E(uv)1/2 ≤
(∫

X
ũ2 dΓ(u)

)1/2

+
(∫

X
ṽ2 dΓ(v)

)1/2

.

Proof. Lemma 3.2.5 of [24] implies that

dΓ(uv) = ṽ2 dΓ(u) + 2ũṽ dΓ(u, v) + ũ2 dΓ(v).

Applying Lemma 5.6.1 of [24] yields(∫
X
ũṽ dΓ(u, v)

)2

≤
∫

X
ũ2 dΓ(u)

∫
X
ṽ2 dΓ(v).
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Combining these two formulas completes the proof. �

The intrinsic (or Carathéodory) metric dE : X × X → [ 0,∞ ] induced
from E is defined by

dE(x, y) := sup{ u(x)− u(y) | u ∈ D(E)loc ∩C(X), Γ(u) ≤ m }
for x, y ∈ X , where D(E)loc denotes the localization of D(E). It follows that
dE is a pseudo-distance function on X . According to [52, 53], if dE coincides
with the original metric on X , then

• it is a length metric,

• X is complete if and only if any bounded subset is relatively compact.

5.2. Asymptotic compactness of Dirichlet forms.

We denote by consta,b,... some constant depending only on a, b, . . . . Let
MDc be the set of all (X, p,m, E), where (X, p,m) ∈ Mc (defined in 2.1)
and E is any strongly local regular Dirichlet form on L2(X ;m). For a net
{(Xα, pα, mα, Eα)}α∈A ⊂MDc, we consider the following conditions.

(N) For any R > r > 0, any sufficiently large α compared with R, r, and for
any x ∈ Xα, the number of elements of any r-discrete net in B̄(x, R)
is at most constr/R.

(D) We have
lim
α

diamXα <∞.

(M) For each r, R > 0,

lim
α
mα(B(pα, r)) <∞ and lim

α
inf

x∈B(pα,R)
mα(B(x, r)) > 0.

(C) The intrinsic metric dEα of Eα coincides with the original distance func-
tion on Xα for any α.

(P) There exists a sequence rj ↘ 0, j = 1, 2, . . . , such that for any R > 0
and j ≥ 1 there is αR,j ∈ A such that for each α ≥ αR,j we can find
an rj-discrete rj-net {xα

jk}k of B(pα, R) satisfying

‖u− ūα
jk‖L2(B(xα

jk,rj);m) ≤ constR · rj
(∫

B(xα
jk,constrj )

dΓα(u)

)1/2
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for any k and u ∈ D(Eα), where ūα
jk is some constant depending only

on u, j, k, and α.

The purpose of this section is to prove the two following theorems:

Theorem 5.1. Let a net {(Xα, pα, mα, Eα)}α∈A ⊂ MDc satisfy (N), (D),
(M), and (P). Then, there exists a subnet of A for which (Xα, pα, mα) mea-

sured GH converges to some (X, p,m) ∈ Mc and the Dirichlet form Eα
compactly converges to some Dirichlet form on L2(X ;m).

Theorem 5.2. Let a net {(Xα, pα, mα, Eα)}α∈A ⊂MDc satisfies (N), (M),
(C), and (P). Then, there exists a subnet of A for which (Xα, pα, mα) mea-
sured GH converges to some (X, p,m) ∈ Mc and the Dirichlet form Eα
Mosco converges to some Dirichlet form on L2(X ;m).

Note that in Theorems 5.1 and 5.2, the limit Dirichlet form is not nec-
essarily densely defined on L2(X ;m). For instance, if E is a densely defined
Dirichlet form on L2(X ;m), then, as r →∞, the rescaled Dirichlet form rE
converges to the Dirichlet form Ê defined by

Ê(u) := 0, u ∈ D(Ê) = Ker E ,

which is not densely defined in general.
The following is an immediate consequence of Theorem 5.1.

Corollary 5.1. Let X be a compact metric space, m a positive finite Borel

measure onX with full support, and E a strongly local regular Dirichlet form
on L2(X ;m). Assume that there exists a sequence rj ↘ 0, j = 1, 2, . . . , such

that for any j there is an rj-discrete rj-net {xjk}k of X satisfying

‖u− ūjk‖L2(B(xjk,rj);m) ≤ const · rj
(∫

B(xjk,constrj)
dΓ(u)

)1/2

for any k and u ∈ D(E), where ūjk is some constant depending only on u, j,

and k. Then, the embedding (D(E), E1) ↪→ L2(X ;m) is compact.

If we assume (N), (D), (M), (C), the doubling condition for measure:

mα(B(x, 2r))
mα(B(x, r))

≤ const,
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and the weak Poincaré inequality on balls:

‖u− ūx,r‖L2(B(x,r);m) ≤ const · r
(∫

B(x,constr)
dΓα(u)

)1/2

for any x ∈ Xα, r ∈ ( 0, const ), and α ∈ A, where ūx,r is the average of u
on B(x, r), then the conclusion of Theorem 5.1 can also be obtained by the
method of Kasue and Kumura [33] using heat kernels. Under the assumption
of Theorem 5.1 or 5.2, the heat kernel bound in [33] cannot be obtained in
general—even the heat kernel (i.e., the integral kernel of the semigroup)
does not necessarily exist. Under the doubling condition for measure and
the weak Poincaré inequality on balls for (X,m, E) as in Corollary 5.1, the
compactness of the embedding (D(E), E1) ↪→ L2(X ;m) is well-known. The
corollary says that this holds without the doubling condition for measure.

We apply Theorem 5.1 to prove Theorem 3.2. Theorem 5.2 has an appli-
cation to convergence of complete noncompact Riemannian manifolds with
a uniform lower bound of Ricci curvature (see §5.3).

Let us first discuss the conditions (N), (D), and (M). If {(Xα, pα)}α∈A is
GH convergent, we have (N). In this case, (D) is equivalent to the compact-
ness of the limit. If {(Xα, pα, mα)}α∈A is measured GH convergent, then
the first formula of (M) holds and the second is equivalent to the fullness of
the support of the limit measure. Conversely, it is well-known (see [28]) that
(N) implies the existence of a subnet of {(Xα, pα)} which converges inMetc
with respect to the GH topology. This together with Corollary 2.1 leads to
the following:

Lemma 5.2. If a net {(Xα, pα, mα)}α∈A ⊂Mc satisfies (N) and (M), then

there exists a measured GH convergent subnet of {(Xα, pα, mα)} in Mc

whose limit measure has full support.

Let us give a net {(Xα, pα, mα, Eα)}α∈A ⊂ MDc. By Lemma 5.2, we
may suppose the following for the proof of Theorems 5.1 and 5.2.

Assumption 5.1. The net {(Xα, pα, mα)} measured GH converges to a
space (X, p,m) ∈Mc such that m has full support.

Under this assumption, we shall show some lemmas.

Lemma 5.3. If a net uα ∈ L2(Xα;mα) L2 strongly converges to a function

u ∈ L2(X ;m), then u�
α → u� L2 strongly.
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Proof. Assume that L2(Xα;mα) � uα → u ∈ L2(X ;m) L2 strongly. Then,
there is a net ũβ ∈ C0(X) such that ũβ → u in L2(X ;m) and

lim
β

lim
α
‖Φαũβ − uα‖L2 = 0,

where Φα : L2(X ;m)→ L2(Xα;mα) is defined in Definition 2.3. Remarking
that |x�−y�| ≤ |x−y| for any x, y ∈ R, we have ‖ũ�

β−u�‖L2 ≤ ‖ũβ−u‖L2 → 0
and

‖Φαũ
�
β − u�

α‖L2 = ‖(Φαũβ)� − u�
α‖L2 ≤ ‖Φαũβ − uα‖L2,

which completes the proof. �

Lemma 5.4. If Eα is Γ-convergent, then the Γ-limit is a Dirichlet form on

L2(X ;m).

Proof. Assume that Eα Γ-converges to E . Then, by Lemma 2.11, E is a closed
bilinear form on L2(X ;m). It suffices to show the Markovian property of
E . Take any u ∈ D(E) and fix it. By (F2), there exists a net uα ∈ D(Eα)
such that uα → u L2 strongly and Eα(uα)→ E(u). Lemma 5.3 implies that
u�

α → u� L2 strongly. Hence, from (F1) and the Markovian property of Eα,

E(u�) ≤ lim
α
Eα(u�

α) ≤ lim
α
Eα(uα) = E(u),

which completes the proof of Lemma 5.4. �

In addition to Assumption 5.1, we assume (P). For any α ∈ A and R > 0,
we denote by ER

α the restriction of Eα on the Eα,1-closure, say D(ER
α ), of the

set of u ∈ D(Eα) with suppu ⊂ B(pα, R). Note that we have (ER
α ,D(ER

α )) =
(Eα,D(Eα)) for sufficiently large R > 0 provided (D) is satisfied. Let us
fix R > 0, j ≥ 1, and α ≥ αR,j, where αR,j is as in (P). By taking a

rj-discrete rj-net {xα
jk}

Nα
j

k=1 of B̄(pα, R) as in (P), it follows from (N) that
Nα

j ≤ constrj/R. For any u ∈ D(ER
α ), we define a function ūα

j : Xα → R

by ūα
j := ūα

jk on each Uα
jk := B(xα

jk, rj) \
⋃k−1

�=1 B(xα
j�, rj) and ūα

j := 0 on

X \⋃Nα
j

k=1 U
α
jk. Note that Uα

jk ∩ Uα
j� = ∅ for any k �= � and that B̄(pα, R) ⊂⋃Nα

j

k=1 U
α
jk ⊂ B(pα, R+ rj).

Lemma 5.5. We have

‖u− ūα
j ‖L2(Xα;mα) ≤ constR · rj

(∫
B(pα,R+constrj )

dΓα(u)

)1/2

.
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Proof. By (P),

‖u− ūα
j ‖2L2(Xα;mα) =

Nα
j∑

k=1

‖u− ūα
jk‖2L2(Uα

jk;mα)

≤ constR · r2j
Nα

j∑
k=1

∫
B(xα

jk,const rj)
dΓα(u).

It follows from (N) that #{ k | d(x, xα
jk) < const rj } is bounded uniformly

for x ∈ X and large α. Therefore, the right hand side of the above is

≤ constR · r2j
∫

B(pα,R+constrj)
dΓα(u)

This completes the proof. �

For convenience in the later discussions, we define two functions
L+(x, a, b) : S → [ 0, 1 ] and L−(x, a, b) : S → [ 0, 1 ] for a < b and
x ∈ S ∈Metc by

L+(x, a, b)(y) :=
(
d(x, y)− a
b− a

)�

, L−(x, a, b)(y) :=
(
b− d(x, y)
b− a

)�

for any y ∈ S, where d is the distance function on S. Then, L±(x, a, b) are
Lipschitz functions on S with Lipschitz constant 1/(b− a).

Theorem 5.1 is derived from Lemma 5.4, Corollary 2.3, and the following:

Theorem 5.3. Under Assumption 5.1 and (P), the net {ER
α }α∈A is asymp-

totically compact for each fixed R > 0.

Proof. Fix an R > 0 and let uα ∈ D(ER
α ) be such that supα Eα,1(uα) < ∞.

It suffices to prove that {uα}α∈A has an L2 convergent subnet. There are
measured εα-approximations fα : (B(pα, tα), pα)→ (B(p, t′α), p) with εα ↘ 0
and tα, t′α ↗∞. For any j ≥ 1 and α ≥ αR,j, let xα

jk and Uα
jk, k = 1, . . . , Nα

j ,
be as above. There is a subnet Aj of A depending on j such that for
every k = 1, . . . , Nα

j , the limits xjk := limα fα(xα
jk), Nj := limαN

α
j , and

cjk := limα ū
α
jk all exist. Replacing with a subnet of Aj , we assume that

Nj = Nα
j for all α ∈ Aj . We may also assume that Aj+1 ⊂ Aj for any j ≥ 1.

Therefore, by a diagonal argument, we find a common cofinal subnet of all
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Aj and write it also by A. Set Ujk := B(xjk, rj) \
⋃k−1

�=1 B(xj�, rj). For any
ε > 0, x ∈ B̄(p, R), and any set A, we define

χε
B(x,rj)

:= L−(x, rj − 2ε, rj − ε) : X → [ 0, 1 ],

χε
Ujk

:= χε
B(xjk,rj)

·
k−1∏
�=1

(1− χε
B(xj�,rj)

) : X → [ 0, 1 ],

IA(x) :=

{
1 if x ∈ A,
0 if x /∈ A.

Claim 5.1. We have

lim
ε↘0
‖χε

Ujk
− IUjk

‖L2(X ;m) = 0, (5.1)

lim
ε↘0

lim
α
‖Φαχ

ε
Ujk
− IUα

k
‖L2(Xα;mα) = 0 (5.2)

for any j = 1, 2, . . . and k = 1, . . . , Nj, where Φα is associated with fα.

Proof. We set A(x, r, R) := B(x, R) \ B(x, r). Since {IUjk
�= χε

Ujk
} ⊂⋃Nj

�=1 A(xj�, rj − 2ε, rj − ε), we have

‖IUjk
− χε

Ujk
‖L2(X ;m) ≤

Nj∑
�=1

m(A(xj�, rj − 2ε, rj − ε)),

which implies (5.1).
Let α ∈ A be sufficient large compared with an arbitrarily fixed ε > 0.

For any y ∈ B(pα, tα) and � = 1, . . . , Nj, we have

| d(xα
j�, fα(y))− d(xj�, y) | < εα < ε/2

and hence {IUα
jk
�= χε

Ujk
◦ fα} ⊂

⋃Nj

�=1 A
α
�ε, where Aα

�ε := A(xα
j�, rj − 3ε, rj −

ε/2), so that

‖IUα
jk
− χε

Ujk
◦ fα‖L2(B(pα,tα);mα) ≤

Nj∑
�=1

m(Aα
�ε).

Setting

ϕ�ε := L−(xj�, rj − ε/4, rj − ε/8) · L+(xj�, rj − 5ε, rj − 4ε) : X → [ 0, 1 ],
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we have IAα
�ε
≤ ϕ�ε ◦ fα for large α and so

lim
α
m(Aα

�ε) ≤ lim
α

∫
B(pα,tα)

ϕ�ε ◦ fα dmα =
∫

X

ϕ�ε dm,

which tends to zero as ε→ 0. This completes the proof of the claim. �

Let ūα
j be as above, and define two functions on X by

ūj :=
Nj∑
k=1

cjkIUjk
and ũε

j :=
Nj∑
k=1

cjk χ
ε
Ujk
.

Claim 5.2. For any j = 1, 2, . . . we have

lim
ε↘0
‖ũε

j − ūj‖L2(X ;m) = 0,

lim
ε↘0

lim
α
‖Φαũ

ε
j − ūα

j ‖L2(Xα;mα) = 0.

Consequently, limα ū
α
j = ūj (L2 strongly).

Proof. The claim directly follows from Claim 5.1. �

Claim 5.3. The sequence {ūj} is Cauchy in L2(X ;m).

Proof. By Claim 5.2, for any j and j ′,

‖ūj − ūj′‖L2(X ;m) = lim
ε↘0
‖ũε

j − ũε
j′‖L2(X ;m)

= lim
ε↘0

lim
α
‖Φαũ

ε
j − Φαũ

ε
j′‖L2(Xα;mα)

= lim
α
‖ūα

j − ūα
j′‖L2(Xα;mα)

≤ lim
α

(‖ūα
j − uα‖L2(Xα;mα)

+ ‖uα − ūα
j′‖L2(Xα;mα)),

which tends to zero as j, j ′ → ∞ because of Lemma 5.5. This shows the
claim. �

Let u := limj→∞ ūj ∈ L2(X ;m). We prove that uα → u L2 strongly in
the following. In fact, there exists a sequence εj ↘ 0 such that limj ũ

εj

j = u
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and

lim
j

lim
α
‖Φαũ

εj

j − uα‖L2(Xα;mα)

≤ lim
j

lim
ε↘0

lim
α
‖Φαũ

ε
j − uα‖L2(Xα;mα).

By Claim 5.2, the right hand side of the above inequality is

≤ lim
j

lim
α
‖ūα

j − uα‖L2(Xα;mα) = 0.

This completes the proof of Theorem 5.3. �

Under Assumption 5.1, we have a Γ-convergent subnet of {Eα} by The-
orem 2.3. Assume that Eα Γ-converges to a Dirichlet form E on L2(X ;m).
Supposing (P), Theorem 5.3, Corollary 2.3, and Lemma 5.4 together show
the existence of a subnet {ER

α }α∈AR
depending on R > 0 which compactly

converges to a Dirichlet form ER on L2(X ;m). The following is obvious.

Lemma 5.6. We have D(ER) ⊂ D(E) and ER(u) = E(u) for any u ∈ D(ER),
R > 0.

With these preparations, we finally give:

Proof of Theorem 5.2. Assume that L2(Xα;mα) � uα → u ∈ L2(X ;m) L2

weakly and supα Eα,1(uα) <∞. It suffices to prove (F1’), i.e.,

E(u) ≤ lim
α∈A
Eα(uα).

Since each uα can be Eα,1-approximated by a bounded function, we may
assume that each uα is bounded.

Let fα : (B(pα, tα), pα) → (B(p, t′α), p) be measured εα-approximations
with εα ↘ 0 and tα, t

′
α ↗∞, and Φα be as in Definition 2.3. We set ϕR :=

L−(p, R/4, R/2) : X → [ 0, 1 ] and ϕα
R := L−(pα, R/4, R/2) : Xα → [ 0, 1 ] for

R > 0 and α ∈ A.

Claim 5.4. We have the following:

(1) limR↗∞ ‖ϕR u− u‖L2 = 0.

(2) limR↗∞ E(ϕR u) ≥ E(u).
(3) ‖ϕα

R uα‖L2 ≤ ‖uα‖L2 for any R > 0 and α ∈ A.
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(4) Eα(ϕα
R uα)1/2 ≤ Eα(uα)1/2 + 4‖uα‖L2/R for any R > 0 and α ∈ A.

(5) limα ‖ΦαϕR − ϕα
R‖L∞ = 0 for any R > 0.

(6) If L2(Xα;m) � vα → v ∈ L2(X ;m) L2 strongly, then ϕα
R vα → ϕR v

L2 strongly for any R > 0.

(7) ϕα
R uα → ϕR u L

2 weakly for any R > 0.

Proof. The proofs of (1) and (3) are easy and omitted. (2) follows from (1)
and the closedness of E (see Lemma 2.11). (4) follows from Lemma 5.1 and
dΓ(ϕR) ≤ 16 dm/R2 (see Lemma 1 of [52]).

(5): Since | d(pα, x)− d(p, fα(x)) | < εα for any x ∈ B(pα, tα), we have
|ϕR ◦ fα − ϕα

R | ≤ 4εα/R. This implies (5).
(6): Assume that L2(Xα;m) � vα → v ∈ L2(X ;m) L2 strongly. Then,

there exists a net of functions ṽβ ∈ C0(X) such that ṽβ → v in L2(X ;m)
and

lim
β

lim
α
‖vα − Φαṽβ‖L2 = 0.

Since ϕR ṽβ → ϕR v in L2(X ;m), it suffices to prove that

lim
β

lim
α
‖ϕα

R vα −Φα(ϕR ṽβ)‖L2 = 0.

In fact, the left hand side is

≤ lim
β

lim
α

(‖ϕα
R vα − ϕα

RΦαṽβ‖L2 + ‖ϕα
RΦαṽβ − Φα(ϕR ṽβ)‖L2)

≤ lim
β

lim
α

(‖ϕα
R‖L∞‖vα − Φαṽβ‖L2 + ‖ϕα

R −ΦαϕR‖L∞‖Φαṽβ‖L2)

= 0.

(7): Take any functions vα ∈ L2(Xα;mα) and v ∈ L2(X ;m) such that
vα → v L2 strongly. Since (6) implies ϕα

R vα → ϕR v L
2 strongly, we have

(ϕα
Ruα, vα)L2 = (uα, ϕ

α
R vα)L2 → (u, ϕR v)L2 = (ϕR u, v)L2

for any fixed R > 0. This completes the proof of Claim 5.4. �

By Claim 5.4(3)(4), Eα,1(ϕα
R uα) is uniformly bounded for all α ∈ A and

R ≥ 1. Therefore, the compact convergence ER
α → ER, α ∈ AR, leads to

the existence of a subnet {ϕα
R uα}α∈A′

R
of {ϕα

R uα}α∈AR
which L2 strongly
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converges to a function v ∈ L2(X ;m). Claim 5.4(7) implies v = ϕR u. By
Lemma 5.6, (F1) for ER

α → ER, and Claim 5.4(4), we have

E(ϕR u) ≤ lim
α∈A′

R

Eα(ϕα
R uα) ≤ lim

α∈A′
R

(Eα(uα)1/2 + 4 ‖uα‖L2/R)2.

From this and Claim 5.4(2),

E(u) ≤ lim
R↗∞

E(ϕR u) ≤ lim
α∈A
Eα(uα).

This completes the proof of Theorem 5.2. �

5.3. Convergence of (noncompact) manifolds under a lower
bound of Ricci curvature.

In this section, we shall prove Theorem 1.3 as an application of Theorem
5.2.

Let PR(n, c) be as defined in §1. Recall that S(L2(Mc)) is the set of
spectral structures on L2(X ;m), where (X, p,m) ∈Mc runs over all spaces
(see Definitions 2.3 and 2.14). We first prove:

Lemma 5.7. The closure of {Σ(M, µp) | (M, p, µp) ∈ PR(n,D)} is sequen-

tially compact in S(L2(Mc)) with respect to the strong spectral topology.

Proof. Since any net in PR(n, c) satisfies (N), (M), (C), and (P) (see [28, 9]),
Theorem 5.2 implies the theorem. �

Assume from now on that a net {(Mα, pα, µpα)}α∈A ⊂ PR(n, c) con-
verges to a space (X, p,m) ∈Mc with respect to the measured GH topology.
We set Eα := E(Mα,µpα ) and E := E(X,m) for simplicity.

Lemma 5.8. Let R > 0 be a fixed number. Denote by λk (resp. λα
k ) the

kth eigenvalue of the Laplacian on B(p, R) (resp. B(pα, R)) with Dirichlet
boundary condition and with multiplicity. Then we have λα

k → λk for each

k. Moreover, for any orthonormal basis {ϕk}k=1,2,... on L2(B(p, R);m) con-
sisting of eigenfunctions for {λk}, there exists an orthonormal basis {ϕα

k} on
L2(B(pα, R); µpα) consisting of eigenfunctions for {λα

k} such that ϕα
k → ϕk

L2 strongly for each k.

Proof. The lemma follows basically from the same discussion as in §7 of [16].
An essential part of the proof is the following:
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Claim 5.5. (1) For any u ∈ D(E) ∩ C0(B(p, R)) there exists a net uα ∈
W 1,2

0 (B(pα, R); µp) such that uα → u L2 strongly and

E(u) ≥ lim
α
Eα(uα).

(2) For any net of Dirichlet eigenfunctions uα on B(p, R) of the Laplacian
with eigenvalues λα with supα λα <∞ and ‖uα‖L2 = 1, there exists a

subnet of {uα} which L2 strongly converges to some function u such
that

E(u) ≤ lim
α
Eα(uα).

Proof. (1) follows from Lemma 10.7 of [15].
We will prove (2). By Theorem 5.3, {uα} has an L2 strong convergent

subnet. Without loss of generality, we may assume that uα L2 strongly
converges to a function u ∈ L2(B(p, R)). Take any r ∈ ( 0, R ) and fix it.
Then, by Li-Yau’s gradient estimate [40], we obtain the uniform bound of
the norm of the gradient of uα on B(pα, r) (see also [31]). We also have the
uniform bound of ‖∇|∇uα| ‖L2 from the Weitzenböck formula and the lower
bound of Ricci curvature. Thus, Proposition 16.43 of [15] (see also Lemma
16.39 of [15]) shows that, taking εα-approximations fα : B(p, r)→ B(pα, r)
with εα ↘ 0, i.e.,

| dα(fα(x), fα(y))− d(x, y) |< εα for any x, y ∈ B(p, r),
B(pα, r) ⊂ B(fα(B(p, r)), εα),

the function ûα := uα ◦ fα L2 converges to a function, say ur, on B(p, r)
such that

E(ur) ≤ lim
α
Eα(uα|B(pα,r)) ≤ lim

α
Eα(uα).

Since ur = u|B(p,r), we obtain (2). �

Once we obtain the claim above, Lemma 5.8 follows from a standard
inductive argument (a simplified version of the proof of Theorem 2.6). �

Lemma 5.9. Eα Γ-converges to E .

Proof. We will check (F1). Assume that a net uα ∈ L2(Mα; µpα) L2 strongly
converges to a function u ∈ L2(X ;m), and that supα Eα(uα) < ∞. Since



Convergence of Spectral Structures 667

D(E) ∩ C0(X) is dense in (D(E), E1/2
1 ) (see [16]), for any ε > 0 there is a

function ũ on X with compact support such that E1(u − ũ) < ε. Taking a
number R > 0 with supp ũ ⊂ B(p, R), we set, for k, N ∈ N,

ck := (u, ϕk)L2, c̃k := (ũ, ϕk)L2, cαk := (uα, ϕk)L2,

u(N) :=
N∑

k=1

ckϕk, ũ(N) :=
N∑

k=1

c̃kϕk, u(N)
α :=

N∑
k=1

cαkϕ
α
k ,

where ϕk, ϕ
α
k are as in Lemma 5.8. Then we have for each k ∈ N,

| ck − c̃k | < ε and lim
α
cαk = ck.

Since for any N ∈ N,

Eα(uα) ≥ Eα(uα|B(pα,R)) ≥ E(u(N)
α ) =

N∑
k=1

λα
k (cαk )2,

Lemma 5.8 shows

lim
α
Eα(uα) ≥

N∑
k=1

λkc
2
k ≥ (1− θ(ε))

N∑
k=1

λkc̃
2
k = (1− θ(ε)) E(ũ(N)).

Letting N →∞ yields

lim
α
Eα(uα) ≥ (1− θ(ε)) E(ũ) ≥ (1− θ(ε)) (E(u)− θ(ε)).

This completes the proof of (F1).
(F2) is implied by Claim 5.5(1) and (F1). �

We restate Theorem 1.3.

Theorem 5.4. Let a net {(Mα, pα, µpα)}α∈A ⊂ PR(n, c) converge to a
space (X, p,m) ∈ Mc with respect to the measured GH topology. Then,

the spectral structure Σ(Mα, µpα) strongly converges to Σ(X,m). In partic-
ular we have

σ(∆) ⊂ lim
α
σ(∆α),

where ∆,∆α are the generators of Σ(X,m),Σ(Mα, µpα) respectively.
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Proof. It suffices to prove that Eα := E(Mα,µpα) Mosco converges to E :=
E(X,m). Suppose the contrary, so that there exists a subnet B ⊂ A and
a neighborhood U of E in the space F (L2(Mc)) of closed bilinear forms
equipped with the Mosco topology such that Eβ for any β ∈ B is not con-
tained in U . Lemma 5.7 implies the existence of a Mosco convergent subnet
of {Eβ}β∈B, the limit of which must coincide with the Γ-limit E (see Lemma
5.9). This is a contradiction and the proof is completed. �

Remark 5.1. For n ≥ 2 and D > 0, let R(n,D) be the set of (M, µM ),
where M is any closed Riemannian manifold of RicM ≥ −(n − 1) and
diamM ≤ D and where µM := volM / vol(M). Combining the works of
Kasue-Kumura [32] and Cheeger-Colding [16] yields that the topology in-
duced from the spectral distance coincides with the measured GH topology
on the measured GH closure of R(n,D). Note that the topology induced
from the spectral distance is stronger than the compact spectral topology
in general. In particular, if X is compact in Theorem 5.4, the conclusion
‘strongly converges’ can be replaced with ‘compactly converges’.
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[3] , Formes différentielles sur des variétés avec des anses
fines, Actes de la Table Ronde de Géométrie Différentielle (Luminy,
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