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1. Introduction.

Starting with the work of Yau [Y1], Donaldson [D1], and Uhlenbeck-Yau
[UY], the notion of stability has revealed itself under many guises to be
closely related to the existence of canonical metrics in Kähler geometry.
The equivalence between Hermitian-Einstein metrics on vector bundles and
Mumford stability was proved by Donaldson and Uhlenbeck-Yau in [D1] and
[UY], while the existence of Kähler-Einstein metrics was conjectured in the
early 1980’s by Yau [Y2] to be equivalent to stability in geometric invariant
theory. At the present time, the Yau conjecture has been at least partially
confirmed. The existence of Kähler-Einstein metrics has been shown to
implyK-stability and CM -stability by Tian [T2], and more recently to imply
Chow-Mumford stability by Donaldson [D2].

In moduli theory, a non-zero vector Chow(A) in a vector space CN+1 is
associated to geometric objects A (such as vector bundles or varieties). The
vector Chow(A) is defined up to multiplicative constants, and its GL(N+1)
orbit inside PN uniquely determines A. Thus the moduli space can be
constructed as the space of orbits. The vector Chow(A) is said to be stable
if SL(N + 1) · Chow(A) ⊆ CN+1 is closed and the stabilizer of Chow(A)
is finite. Stability is of particular importance, since Geometric Invariant
Theory guarantees that the space of stable orbits has the structure of an
algebraic variety [Mu]. On the other hand, the emergence of stability as
a necessary condition for the existence of canonical metrics can be quite
subtle. Basic to Tian’s approach is a remarkable asymptotic equivalence
between a Lagrangian for constant scalar curvature metrics, namely the
Mabuchi energy, and a norm || · ||Q on the space of Chow vectors which he
constructed by ∂∂̄ methods and identified with suitable Quillen metrics [T1,
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T2]. Quillen metrics had been related earlier to Lagrangians for Hermitian-
Einstein metrics by Donaldson [D3]. The asymptotic equivalence between
|| · ||Q and the Mabuchi energy becomes exact for hypersurfaces in Pn+1.
Donaldson [D2] relies instead on the concept of balanced manifolds and Lu’s
recent evaluation [Lu1] of the Tian-Yau-Zelditch expansion for the Bergman
kernel on positive line bundles.

In this paper, building on the earlier work of Yau [Y3, Y4], Tian [T1,T2] and
Zhang [Z], we construct a semi-norm || · ||# which is defined on the full space
H0(Gr, O(d)) of polynomials of degree d on the Grassmann variety Gr, and
which gives exactly the Mabuchi functional when restricted to the space of
Chow vectors, up to a specific current supported on the singular locus of the
Chow variety. This new semi-norm can be described quite explicitly: Let
Gr = Gr(N − n − 1,PN) be the space of N − n − 1 projective planes in
PN , P� : Gr(N − n − 1,PN) → P(∧N−nCN+1) be the Plücker imbedding,
and O(1) = P�∗H , where H is the hyperplane bundle on P(∧N−nCN+1).
Let ωGr = P�∗ωFS , where ωFS is the Fubini-Study Kähler form on the
space P(ΛN−nCN+1). Let d be an arbitrary positive integer, and denote by
m+ 1 = (N − n)(n+ 1) and D =

∫
Gr ω

m+1
Gr respectively the dimension and

the volume of Gr. Then for any f ∈ H0(Gr, O(d)), we define the norm ||f ||#
of f by

log ||f ||2# =
(m+ 1)

(m+ 2)(d− 1)
· 1
D

∫
Z

log

⎛⎝ωm
Gr ∧ ∂∂̄ |f(z)|2

|P�(z)|2d

ωm+1
Gr

⎞⎠ωm
Gr

+
d−m− 2

(m+ 2)(d− 1)
· 1
D

∫
Gr

log
|f(z)|2
|P�(z)|2d

ωm+1
Gr

(1.1)

where Z = {z ∈ Gr : f(z) = 0}.
One easily sees that ||·||# defines a semi-norm on the finite dimensional vector
space H0(Gr, O(d)): That is, ||λ · f ||# = |λ| · ||f ||# for every λ ∈ C and
f ∈ H0(Gr, O(d)). Moreover, ||f ||# ≥ 0 for all f . On the other hand, || · ||#
is not a norm since for d > 1 there exist non-zero elements f ∈ H0(Gr, O(d))
such that that ||f ||# = 0.

Our main result can be described as follows. Let X ⊆ PN be a smooth
algebraic variety of dimension n, Z ⊆ Gr be the corresponding Chow variety,
and let Chow(X) = f ∈ H0(Gr, O(d)) be a defining section for Z. Note that
Z is a singular variety. We assume that the embedding X ⊆ PN is generic
in the sense defined in §6.



Stability, Energy Functionals, and Kähler-Einstein Metrics 567

Let Zs be the singular locus of Z, and let Ys = {(x, z) ∈ X × Zs; x ∈ z} ⊂
PN ×Gr. Let ωZ be the restriction of ωGr to Z0 = Z \ Zs. Then the Ricci
curvature Ric(ωZ) of ωZ is a smooth (1, 1) form on Z0. Let s(ωZ) be the
scalar curvature of ωZ , V = vol(Z), and define

µ(Z) =
1
V

∫
Z0

s(ωZ)ωm
Z (1.2)

Let [Ys] be the current corresponding to Ys (see §6 for the precise definition)
and define

deg(Ys) =
1
V
〈[Ys], ωm−1

Z 〉
Let ω be the restriction of the Fubini-Study metric to X , and let νω(ϕ)
be the Mabuchi energy on X (see §5 for the precise definition). For each
σ ∈ GL(N + 1), let ϕσ and Φσ be the following functions on PN and Gr

respectively

ϕσ(z) = log
|σz|2
|z|2 , Φσ(z) = log

|P�(σz)|2
|P�(z)|2

Define a generalized Mabuchi energy ν#
ω (ϕσ) by

ν#
ω (ϕσ) = νω(ϕσ) +

1
V
〈[Ys],Φσ

m−1∑
i=0

ωi
Zσ

∗ωm−1−i
Z 〉

− D

V
· m deg(Ys)

m+ 1
· log

||σ · Chow(X)||2
||Chow(X)||2

where || · || is the norm defined in (4.1) below. Then

Theorem 1. For σ ∈ SL(N + 1,C) we have

ν#
ω (ϕσ) =

D(m+ 2)(d− 1)
V (m+ 1)

log
||σ · Chow(X)||2#
||Chow(X)||2#

(1.3)

An interesting new notion emerges from the proof of Theorem 1, namely the
generalized Mabuchi energy ν#

ωZ (Φσ) of the singular Chow variety Z (see
(6.3) for its precise definition). The Chow variety Z contains a singular
locus Zs of codimension 1, and the generalized Mabuchi energy ν#

ωZ (Φσ) is
defined accordingly as consisting of the usual Mabuchi energy νωZ

(Φσ) of
the regular part Z0 = Z \ Zs, together with additional current terms due
to Zs (or more precisely, [Ys]). Theorem 1 is then the consequence of two
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results, which may be interesting in their own right (c.f. Lemmas 6.1 and
6.2). The first result is that the right hand side of (1.3) can be equated
with the generalized Mabuchi energy ν#

ωZ (Φσ) of the singular Chow variety
Z. The second result is that the Mabuchi energy νω(ϕσ) of the projective
variety X can be equated with the Mabuchi energy νωZ

(Φσ) of the regular
part Z0 of its Chow Variety Z.

As mentioned above, a similar formula to (1.3) with an asymptotic bounded
error has been proved by Tian [T1], with || · ||# replaced by the Quillen
metric || · ||Q of a certain virtual line bundle. In the case where X ⊆ PN is a
smooth hypersurface, the version of (1.3) with || · ||Q also becomes exact, and
it is likely that the two notions || · ||# and || · ||Q coincide. This issue is more
complicated for higher codimensions, not just because the error term in the
version of (1.3) with || · ||Q, but also because || · ||Q is presently defined only
on the space of Chow vectors, and not yet on the whole of H0(Gr, O(d)).

Besides the fact that it is completely explicit and satisfies the relation (1.3)
exactly, the semi-norm ||f ||# in (1.1) has several attractive features which
may be valuable in future investigations of the relation between various
notions of stability and the existence of Kähler-Einstein metrics. Indeed,
the existence of Kähler-Einstein metrics is known to imply the bounded-
ness from below of energy functionals (see Siu-Yau [SY], Bando-Mabuchi
[BM], and Ding-Tian [DT]). Theorem 1 suggests that the boundedness from
below of the Mabuchi energy functional can eventually be related to the
boundedness from below of the norm ||f ||#, which is defined even for singu-
lar varieties. Furthermore, ||f ||# is degenerate, so that the condition that
||σ ·Chow(X)||#/||Chow(X)||#→∞ appears to be a stronger notion of sta-
bility than the usual notion of Chow-Mumford stability. It may be closely
related to the notion of CM -stability introduced earlier by Tian [T1].

Our approach is based on an exact evaluation of the derivative of log ||σ(t) ·
Chow(X)|| along each 1 − parameter orbit of SL(N + 1). This method
appears to be technically simpler than the approach in [T1][T2], which is
based instead on the evaluation of ∂∂̄ log ||σ · Chow(X)|| on SL(N + 1).

Our method applies equally well to other contexts, namely to the component
L(h, k) of the Donaldson functional L(k, h) for the existence of Hermitian-
Einstein metrics on vector bundles, and to the component F 0

ω(ϕ) of the
Lagrangian Fω(ϕ) for Kähler-Einstein metrics. In the case of F 0

ω(ϕ), an
exact relation of the form (1.3) had been obtained by Zhang [Z], using the
theory of Deligne pairings [D]. Asymptotic relations modulo O(1) terms had
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been obtained by Paul [P] and Wang [W] respectively for F 0
ω(ϕ) and for

L(h, k). We shall use our approach to give a unified and simpler proof of
these earlier results. We present these results in (§2-§4) before proceeding
to the more complicated calculation of the Mabuchi energy, and take the
opportunity to mildly strengthen earlier results of Zhang [Z], Luo [Luo],
and Wang [W] whenever it is readily possible to do so by our methods. In
particular, we eliminate the O(1) error terms in [W] by showing that L(h, k),
restricted to G = SL(N,C), equals exactly the log of the Gieseker point in
a suitable norm. Wang [W] had shown that a vector bundle can be uniquely
balanced if and only if its Gieseker point is stable. Similarly, we show that
a manifold can be uniquely balanced if and only if its Chow point is stable.

2. The Donaldson energy functional and balanced bundles.

Let (X, ω) be a Kähler manifold and π : E → X a vector bundle of rank
r. The Donaldson functional L(h, k) is defined as follows. Let h, k be two
hermitian metrics on E. Since the space of hermitian metrics is convex, we
can connect k to h be a smooth path of hermitian metrics ht, 0 ≤ t ≤ 1,
h0 = h, h1 = k. Let Rt be the curvature of ht. Then the Donaldson
functional L(h, k) is defined by

L(h, k) =
∫ 1

0
dt

∫
X
i tr(h−1

t ∂tht · Rt)
ωn−1

(n− 1)!
− c

V

∫
X

log (det (k−1h))
ωn

n!

where the constant c is given by c = 2πn
r

∫
X c1(E) ∧ ωn−1. In this section,

V = vol(X) =
∫
X ωn denotes the volume of X with respect to the Kähler

form ω.

Assume E∗ is generated by sections s1, ..., sN ∈ H0(X,E∗). If e ∈ E then
s(e) = (s1(e), ..., sN(e)) ∈ CN so s× π : E ↪→ CN ×X . Let h be the metric
on E defined by h(e) =

∑ |si(e)|2 = |s(e)|2, where | · | is the usual norm on
CN .

Fix {τ1, ..., τk}, a basis for H0(X, det(E∗)). Let T be the matrix T =
(aµ

i1···ir) ∈M , defined by the equation

si1 ∧ · · · ∧ sir = si1···ir =
∑

µ

aµ
i1···irτµ

where M is the space of matrices (Aµ
i1···ir) with 1 ≤ i1 < · · · ir ≤ N and

1 ≤ µ ≤ k. The Gieseker point of s = (s1, ..., sN) is the point [T ] =
(aµ

i1···ir) ∈ P(M). Then [T ] uniquely determines the image of E in CN ×X .



570 D. H. Phong and J. Sturm

For σ ∈ G we shall write sσ = (s1, ..., sN)σ, and hσ(e) = |sσ(e)|. We define

L(σ) = L(h, hσ) =
c

V

∫
X

log
(
det(hσ)
det(h)

)
ωn

n!

which is the second term in the definition of the Donaldson functional
L(k, h). In local coordinates, if e1, ..., er is a basis of smooth sections of E ⊆
CN ×U , then for each m such that 1 ≤ m ≤ r, and for each x ∈ U , em(x) =
eim(x) is a column vector in CN . Hence A(x) = (eim(x)) is an N×r matrix,
and h is the r× r matrix h = tĀA. Thus det(h) =

∑
i1<···<ir

|det(Ai1···ir)|2.
Since si(x) =

∑
eim(x)e∗m we get det(h) =

∑
i1<···<ir

|si1···ir |2.
Thus

L(σ) =
c

V

∫
X

log
(

det(A(x)∗σ∗σA(x))
det(A(x)∗A(x))

)
ωn

n!

=
c

V

∫
X

log

(∑ |(aµ
i1···ir)

στµ(x)|2∑ |aµ
i1···irτµ(x)|2

)
ωn

n!

(2.1)

where A∗ is the conjugate transpose of A, (aµ
i1···ir )

σ is the natural action
of G on M , and the summation is over all µ with 1 ≤ µ ≤ k and all
1 ≤ i1 < · · · < ir ≤ N . We note that the integral in (2.1) is finite. This
suggests defining the following norm on the vector space M : Set for each
a = (aµ

i1···ir ) ∈M

log ||a||2 =
1
V

∫
X

log
∑
|aµ

i1···irτµ(x)|2 ω
n

n!

It is easy to see that || · || is a continuous norm, and hence bounded on any
compact subset of M . In terms of || · ||, the formula (2.1) can be restated as

Theorem 2. Let E ⊆ CN × X be a vector bundle of rank r, let T be the
Gieseker point of E, and let h be the metric on E defined by h(e) = |e|CN .
For σ ∈ G = SL(N,C), let hσ be the metric on E defined by hσ(e) =
|σ(e)|CN . Then

L(h, hσ) = c log
||σT ||2
||T ||2

Remark. This is slightly more precise than a result of Wang [W], who shows
that for any norm || · || on M , one has L(h, hσ) ≥ c log

(||σT ||2) + C for
some constant C.
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According to the theorem of Kempf-Ness [KN], E is Gieseker stable if and
only if ||σT ||2 is a proper map from G to R (the inverse image of a compact
set is compact). This is equivalent to requiring that log ||σT ||2 is bounded
below by a positive constant and that limσ→∞ log ||σT ||2 =∞ (ie, for every
B > 0 there exists a compact subset K ⊆ G such that L(σ) ≥ B if σ /∈ K).
Combining this with Theorem 2 we have the following corollary:

Corollary 2.1 Let E ⊆ CN ×X be a vector bundle of rank r. Then E is
Gieseker stable if and only if the following conditions hold:
1. L(σ) ≥ ε > 0 for some ε.
2. limσ→∞ L(σ) =∞ .

Definition 2.1 We say E ⊆ CN ×X is balanced if

1
V

∫
X
A(x)A(x)∗ dV =

r

N
· IN×N

where A(x) = (a1, · · ·ar) is an orthonormal basis of Ex ⊆ CN . We say E can
be (uniquely) balanced if and only if there exists a (unique) σ0 ∈ SU(N )\G
such that σ0(E) is balanced.

Example. Let X = Gr(r, N ), the Grassmannian variety of all r planes in
CN . Let E be the canonical vector bundle on X of rank r. Then one easily
sees that X is balanced.

Theorem 3. (Wang) Let E ⊆ CN ×X be a vector bundle. Then the bundle
E can be uniquely balanced if and only if its Gieseker point is stable.

Theorem 3 as well as Lemmas 2.1 and 2.2 below are due to Wang [W],
under a slightly different formulation. He uses arguments from the theory
of moment maps. Here we shall provide a direct calculation, along the lines
followed later for the proof of Theorem 1.

Lemma 2.1 L has a critical point at σ0 ∈ G if and only if σ0(E) is balanced.

Proof. Write σ(t) = exp(tc)σ0 where σ0 ∈ G is fixed, and c is traceless.
Then

d

dt
log det(A∗σ∗σA) = tr((A∗σ∗σA)−1(A∗σ∗(c∗ + c)σA) (2.2)

Now σ0 is a critical point if and only if d
dtL(exp(ct)σ0) = 0 for all traceless c.

Replacing A by Aσ0 we may assume that σ0 = I . We may also choose our
local sections e1, ..., er to be orthonormal. Then A∗A = I and (2.2) implies
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that σ0 is critical if and only if∫
X
tr
(
A∗uA

)
dV = 0

for all traceless hermitian u. This condition is equivalent to E being bal-
anced. Q.E.D.

Next we show L(σ) is convex in the following sense: View L(σ) as a function
on the symmetric space SU(N )\G. Then SU(N )\G is a Riemannian mani-
fold whose geodesics are of the form exp(tc)σ0 where c is a traceless matrix
with the property c∗ = c.

Lemma 2.2 Let σ0 ∈ G and let c be an arbitrary traceless self-adjoint
matrix. Then

d2

dt2
L(exp(tc)σ0) ≥ 0 (2.3)

Proof. Differentiating (2.2) again gives

d2

dt2
log det(A∗σ∗σA) = tr

(
(A∗σ∗σA)−1

(
A∗σ∗[c∗(c∗ + c) + (c∗ + c)c]σA

))
− tr

(
(A∗σ∗σA)−1(A∗σ∗(c∗ + c)σA)(A∗σ∗σA)−1(A∗σ∗(c∗ + c)σA)

)
We may assume that σ0 = I and A∗A = I . Let u = c + c∗ = 2c. Thus
u = u∗ and u is traceless. The preceding equation becomes

d2

dt2
log det(A∗σ∗σA) = tr

(
A∗[u2]A

)
− tr

(
(A∗(u)A)(A∗(u)A)

)
=

tr(A∗u(1−AA∗)uA) = tr
(
(1− AA∗)uAA∗u∗

)
This last trace is non-negative since uAA∗u∗ ≥ 0 and 1 − AA∗ ≥ 0. To
see this last inequality, let λ be an eigenvalue of AA∗. Then AA∗v = λv
for some non-zero vector v. Applying A∗ to both sides, and using the fact
that A∗A = I , we get A∗v = λA∗v. Thus λ = 1 or λ = 0. Hence all the
eigenvalues of 1−AA∗ are ≥ 0 and 1− AA∗ ≥ 0.

Proof of Theorem 3. Assume first that L has a critical point σ0. If σ ∈ G is
any other point, then we can join σ0 to σ by a geodesic. Lemma 2.2 implies
that L, restricted to the geodesic, has a minimum at σ0. Thus L(σ) ≥ L(σ0),
so L is bounded below. Theorem 2 implies that ||σT || is bounded below, and
thus by definition the Gieseker point is semi-stable. If the critical point σ0 is
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unique, then L(σ) achieves its minimum at σ0 and the same argument shows
that L, restricted to any geodesic through σ0, goes to infinity. Thus the
Gieseker point is stable (by virtue of the one parameter subgroup criterion)

As for the converse, assume that E is stable. Then the Kempf-Ness theorem
says that log ||σT || is proper on H and bounded below. Thus it has a critical
point. The critical point is unique, for otherwise, log ||σT ||would be constant
on the geodesic joining two critical points and thus it could not be proper.

3. The F 0
ω functional and balanced manifolds.

Consider now a smooth projective varietyX ⊂ PN of degree d and dimension
n. Let Z be the set of (N −n−1)-dimensional planes in PN which intersect
X . Then Z is contained in Gr = Gr(N − n − 1,PN) and has codimension
1. Thus there exists a holomorphic section f ∈ H0(Gr, O(d)), unique up to
scalar multiplication, which vanishes precisely on Z. The section f defines
then a point in PH0(Gr, O(d)), which is called the Chow point of X ↪→ PN ,
and usually denoted by Chow(X).

We shall apply the same method as in the previous section to prove the
following:

Theorem 4. Let X ⊆ CPN be a smooth projective variety. Then the Chow
point of X is stable if and only if there is a unique σ0 in SU(N+1)\SL(N+
1,C) such that σ0(X) is balanced, i.e.,

1
vol(X)

∫
σ0(X)

(
z̄jzi

|z0|2 + · · · |zN |2
)
ωn

FS =
1

N + 1
· δij (3.1)

Remark. This theorem is a mild strengthening of a result of Zhang [Z],
who shows that balanced implies semi-stable and stable implies uniquely
balanced. It also mildly strenghthens a similar theorem of Luo [Luo].

To prove Theorem 4, we make use of the component F 0
ω(ϕ) of a Lagrangian

Fω(ϕ) for Kähler-Einstein metrics

Fω(ϕ) = F 0
ω(ϕ)− log (

1
V

∫
X
ehω−ϕωn)

Here ω is a Kähler metric on X , ϕ is a smooth function in the Kähler
cone of X , ωϕ = ω +

√−1
2π ∂∂̄ϕ, V = vol(X) =

∫
X ωn, and hω is defined

by Ric(ω) − ω =
√−1
2π ∂∂̄hω,

∫
X ehωωn =

∫
X ωn. The component F 0

ω(ϕ) is
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defined by

F 0
ω(ϕ) = Jω(ϕ)− 1

V

∫
X
ϕωn

where the functional J is given by

Jω(ϕ) =
√−1
2πV

· 1
n+ 1

n−1∑
i=0

(i+ 1) ∂ϕ ∧ ∂̄ϕ ∧ ωn−i−1
ϕ ∧ ωi

The variational derivative of the functional Jω(ϕ) is well-known (c.f. [T3]).
For a smoothly varying family of potentials ϕ(t), t ∈ (−ε, ε), we have

− d
dt
F 0

ω(ϕ(t)) =
1
V

∫
X
ϕ̇(t) ωn

ϕ (3.2)

Henceforth we fix ω = ωFS =
√−1
2π ∂∂̄ log |x|2 to be the Fubini-Study Kähler

form on X . For σ ∈ G let

ϕσ = log
( |σx|2
|x|2

)
= log

(
tx̄tσ̄σx

|x|2
)

= log
(
x∗σ∗σx
x∗x

)
Then

σ∗ω = ω +
√−1
2π

∂∂̄ ϕσ ≡ ωϕσ ≡ ωσ .

Let c be a traceless hermitian matrix, σ(t) = exp(ct)σ0, and F (σ0, c, t) =
F 0

ω(ϕσ(t)). We say that σ0 is a critical point of F 0
ω if and only if

F ′(σ0, c, t)|t=0 = 0 for all traceless hermitian c. Note that

d

dt
ϕσ(t) = ϕ̇σ =

x∗σ∗(c∗ + c)σx
x∗σ∗σx

(3.3)

Lemma 3.1

1. A matrix σ0 is a critical point of F 0 if and only if the manifold σ0(X) is
balanced.
2. For all σ0, c and t we have the formula

−F ′(σ0, c, t) =
1
V

∫
X

x∗σ∗(c∗ + c)σx
x∗σ∗σx

ωn
ϕ (3.4)

3. For all σ0, c and t we have −F ′′(σ0, c, t) ≥ 0 . In fact we have

−V F ′′(σ0, c, t) =
1
n!

∫
X
ιc̃(ωn+1

ϕ ) (3.5)
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where c̃ is the vector field on PN generated by the infinitesimal action of
exp(ct).

Remark. The only non-trivial part of the lemma is part 3. Zhang [Z] also
proves that −F ′′(σ0, c, t) ≥ 0, by making use of a result of Deligne [D].
Another proof was given by Tian [T4]. We give a more elementary proof by
a direct calculation.

Proof of Lemma 3.1. Part two follows immediately from (3.2) and (3.3a),
and part one follows from part two. To prove part 3, we differentiate both
sides of (3.4):

−V F ′′=
∫

X

{
(x∗σ∗σx)(x∗σ∗[c∗(c∗ + c)+(c∗ + c)c]σx)−(x∗σ∗(c∗ + c)σx)2

(x∗σ∗σx)2
ωn

ϕ

−n∂
(
x∗σ∗(c∗ + c)σx

x∗σ∗σx

)
∧ ∂̄

(
x∗σ∗(c∗ + c)σx

x∗σ∗σx

)
ωn−1

ϕ

}
(3.5)

We may assume that c is a traceless diagonal matrix with real entries. As
before, we write u = 2c, and we let u0, ..., uN be the diagonal entries of U .
Since we can view PN as the set of elements in PN+1 whose first entry is
zero, we may also assume (after replacing N by N + 1) that u0 = 0.

We may assume that σ = I so that ω = ωFS . Recall that on the coordinate
chart U0 = {(1, z1, ..., zN) ⊆ CPN}, the Fubini-Study metric is given by:

ω =
dzi ∧ dz̄i
1 + |z|2 − z̄idzi ∧ zjdz̄j

(1 + |z|2)2

Thus if A =
∑N

i=1 ai∂zi is a tangent vector at the point x = (1, z1, ..., zN),
then

ω(x)(A, Ā) =
x∗x(|a1|2 + · · ·+ |aN |2)− |a1z̄1 + · · ·+ aN z̄N |2

(x∗x)2
(3.6)

At σ = I and ω = ωFS , the first term in the integrand on the right side
of (3.5) is then immediately seen to coincide with ω(x)(A0, Ā0), where A0

is defined to be the vector A0 = (u1z1, · · · , uNzN ). Similarly, an explicit
calculation gives

∂(
x∗ux
x∗x

)(A) =
1

(x∗x)2

(
x∗x (A|Ā0)− (A|z̄)(z|Ā0)

)
= ω(x)(A, Ā0)
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Let A1, · · · , An be now n arbitrary tangent vectors at the point x. Then, by
the definition of the wedge product,

(∂(x∗ux
x∗x ) ∧∂̄(x∗ux

x∗x ) ∧ ωn−1
)
(A1, · · · , An)

=
∑n

j,k=1(−1)j+kω(Aj, Ā0)ω(A0, Āk)ωn−1({Ap}p �=j , {Ān}q �=k)

But wedge powers of a (1, 1)-form are given by

ωK(A1, · · · , AK , Ā1, · · · , ĀK) = K! detω(Aj, Āk)

Substituting this in the full integrand on the right hand side of (3.5), we
obtain

n!
(
ω(A0, Ā0)det1≤p,q≤n ω(Ap, Āq)

+
n∑

j,k=1

(−1)j+k+1ω(Aj, Ā0)ω(A0, Āk)det p �=j
q �=k

ω(Ap, Āq)
)

The expression between parentheses can be recognized as the expansion
along the first row (or the first column) of the determinant of the (n +
1)× (n + 1) matrix ω(Ap, Āq), 0 ≤ p, q ≤ n. Since A0 is readily recognized
as the vector field c̃, Part 3 of Lemma 3.1 follows. Q.E.D.

Proof of Theorem 4. Once Theorem 5 is available, Theorem 4 can be proved
in exactly the same manner as Theorem 3. Q.E.D.

4. The F 0
ω functional and the Chow point.

Fix positive integers n < N and letGr(N−n−1,PN) be the space ofN−n−1
projective planes in PN . Then Gr(N−n−1,PN) = Gr(N−n,CN+1), the set
of N−n vector subspaces of CN+1. Note that G = SL(N+1,C) acts on Gr
in a natural way. Recall the notation introduced in §1, namely P� : Gr(N −
n − 1,PN) → P(ΛN−nCN+1) is the Plücker embedding, O(1) = P�∗H ,
where H is the hyperplane bundle on P(ΛN−nCN+1), and ωGr = Pl∗ΩFS

where ΩFS is the Fubini-Study metric on P(ΛN−nCN+1).

Now let d be a positive integer and define a norm on the vector space
H0(Gr, O(d)) as follows: If f ∈ H0(Gr, O(d)) then

log ||f ||2 =
1
D

∫
Gr

log
|f(z)|2
|Pl(z)|2d

ωm
Gr

where D =
∫
Gr ω

m+1
Gr and m+ 1 = (N − n)(n+ 1) is the dimension of Gr.
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Theorem 5. Let X ⊆ PN be a smooth projective variety of dimension n.
Let ω be the Fubini-Study metric on X and let f = Chow(X) be the Chow
point of X . Then

−V (n+ 1)F 0
ω(ϕσ) = log

||σ ·Chow(X)||2
||Chow(X)||2 (4.1)

This theorem is equivalent to one proved by Zhang in [Z], using Deligne
pairings. Paul [P] shows, using a different method, that the difference of the
left and right sides of (4.1) is a bounded continuous function on G. He also
shows how such estimates can be applied to give a new proof of Mumford’s
theorem on the stability of curves. We shall give a different proof of their
theorem, in the spirit of the proof of Theorem 1.

Proof. Let Γ = {(x, z) ∈ PN ×Gr : x ∈ z} and let πi be the projection map
of Γ onto the two factors. We make use of the following formula:

π1∗π∗2ω
m+1
Gr = Dωn+1 (4.2)

Since both sides are invariant under the U(N + 1) action, they are equal up
to a constant. The constant is the ratio of

∫
Gr ω

m+1
Gr and

∫
Pn+1 ω

n+1, which
is equal to D by definition.

Now let σ(t) be a path in G, and set fσ(z) = f(σ−1(z)). We compute

d

dt
log ||fσ||2=

1
D

d

dt

∫
Gr

log
|f(σ−1z)|2
|Pl(z)|2d

ωm+1
Gr

=
1
D

d

dt

∫
Gr

log
|f(z)|2
|Pl(σz)|2d

(σ∗ωGr)m+1

=
1
D

d

dt

∫
Gr

log
|f(z)|2
|Pl(z)|2d

(σ∗ωGr)m+1 − d

D

d

dt

∫
Gr

Φσ(σ∗ωGr)m+1

≡ A − B

(4.3)

where Φσ = log |Pl(σ(z)|2/|Pl(z)|2. Since σ∗ωGr = ωGr +
√−1
2π ∂∂̄Φσ, we

obtain, using the Poincare-Lelong formula

A =
1
D

∫
Gr

log
|f(z)|2
|Pl(z)|2d

(m+ 1)(σ∗ωGr)m

√−1
2π

∂∂̄Φ̇σ

=
1
D

∫
Z

Φ̇σ(m+ 1)(σ∗ωGr)m − d

D

∫
Gr

Φ̇σ(m+ 1)(σ∗ωGr)mωGr

B =
d

D

∫
Gr

Φ̇σ (σ∗ωGr)m+1 +
d

D

∫
Gr

Φσ

√−1
2π

∂∂̄Φ̇σ(m+ 1)(σ∗ωGr)m
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We integrate by parts in the second term in B. Combining the result with
the other term in B and the second term in A, we can rewrite the above
equation as

d

dt
log ||fσ||2 =

1
D

∫
Z

Φ̇σ(m+1)(σ∗ωGr)m − d(m+ 2)
D

∫
Gr

Φ̇σ (σ∗ωGr)m+1

(4.4)
After making a change a variables z �→ σ−1z, we may assume that the σ in
the second integral is the identity. We conclude that the second integral is
zero since the hyperplane bundle over the Grassmannian variety is balanced.
More simply, we may write Φ̇σ(d) = tr(Z∗ d Z) with Z∗Z = 1 and d = c+c∗,
tr(d) = 0. Then the integral

M(d) =
∫

Gr
tr(Z∗ d Z)ωm+1

Gr

satisfies M(u∗du) = M(d), M(d1+d2) = M(d1)+M(d2). The first property
allows us to assume that d is diagonal. The second implies that M(d) is the
same if we average it over the permutations of the eigenvalues of d. Thus we
must have

M(d) = 0.

It remains to show that the integral over Z in (4.4) can be reexpressed as an
integral over X . For this, we apply σ(t) = exp(ct)σ0 to both sides of (4.2),
differentiate with respect to t and evaluate at t = 0:

π1∗π∗2
(
(m+ 1)σ∗ωm

Gr∂∂̄Φ̇σ0,c

)
= D(n+ 1)(σ∗ωn)∂∂̄ϕ̇σ0,c (4.5)

where Φσ0,c (resp. ϕσ0,c) is the derivative of Φσ(t) (resp. ϕσ(t)) at t = 0.
This shows that

π1∗π∗2
(
Φ̇σ0,c(m+ 1)(σ∗0ω

m
Gr)

)
= D(n+ 1)ϕ̇σ0,c(σ

∗
0ω

n) + η(σ0, h) (4.6)

for some closed smooth form η(σ0, h) where h = c+c∗ is traceless hermitian.
We claim that η(σ0, h) is exact. Note the following properties: η(σ0, u

∗hu) =
η(uσ0, h) for all unitary matrices u. Also, η(σ0, h) = σ∗0(η(I, h)) where I is
the identity matrix, and η(σ0, h) is a linear function of h. This shows that
we may assume that σ0 = I and h is diagonal with real eigenvalues whose
sum is zero. In fact, using the linearity property we may assume that h is
the matrix whose diagonal entries are (1,−1, 0, ..., 0). Now let ι : Pn ↪→ PN

be the map (x0, ..., xn) �→ (x0, ..., xn, 0, 0, ..., 0) and let X ′ denote the image
of ι. To show that η(I, h) is exact, it suffices to show that its integral over
X ′ is zero.
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To see this, first observe that
∫
X ′ ϕ̇I,hω

n = tr(hM) where M =
∫
X ′ xx

∗ωn

and x is the vector of homogeneous coordinates, normalized to have length
one (this follows form (1.2)). Let Un ⊆ U(N + 1) be the group of unitary
matrices which map X ′ into itself. Then M commutes with Un which means
that it’s a diagonal matrix whose first n + 1 entries are all equal. But this
means that tr(hM) = 0 and thus

∫
X ′ ϕ̇I,hω

n = 0. Similarly,
∫
Z′ Φ̇I,hω

m
Gr = 0

where Z ′ ⊆ Gr is the zero locus of the Chow point of X ′. This implies that∫
X ′ η(I, h) = 0− 0 = 0, which proves our claim.

Plugging this into (4.4) we obtain:

d

dt
log ||fσ||2 =

∫
X

(n+ 1)ϕ̇σ(σ∗ωn)

Comparing this with the derivative of F 0
ω given in (3.2), we obtain Theorem

5. Q.E.D.

Remark. A similar argument shows that for every k such that 0 ≤ k ≤ n,
there is a constant Dk > 0 such that

π1∗π∗2ω
m−k
Gr = Dk · ωn−k

π1∗π∗2
(
Φ̇σ0,c(m+1−k)(σ∗0ωm−k

Gr )
)

= Dk(n+1−k)ϕ̇σ0,c(σ∗0ω
n−k) + ηk(σ0, h)

(4.7)
where ηk(σ0, h) is a smooth exact (n − k, n− k) form.

5. The Mabuchi energy: Hypersurface Case.

We turn now to the setting of main interest in the present paper, namely
that of Theorem 1. In this section, we discuss first the case of hypersurfaces.
In this case, our construction of || · ||# shares many features with Tian’s
construction of || · ||Q in [T1]. However, the explicit formulas in our approach
will facilitate the generalization to higher codimension. We present our proof
of the hypersurface case in such a way as to apply verbatim to the higher
codimension case as much as possible, so that the difficulties inherent to this
latter case will be more transparent in the next section.

We first recall the definition of the Mabuchi energy [M]. Let X be a Kähler
manifold, with Kähler form ω. Then the Mabuchi energy νω(ϕ) is defined for
all Kähler forms ωϕ = ω +

√−1
2π ∂∂̄ϕ by choosing a path ωt = ω +

√−1
2π ∂∂̄ϕt,
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0 ≤ t ≤ 1, ω0 = ω, ω1 = ω, and setting

νω(ϕ) = − 1
vol(X)

∫ 1

0

∫
X
ϕ̇t(s(ωt)− µ) ωn

t dt

= − 1
vol(X)

∫ 1

0

∫
X
ϕ̇t(nRic(ωt)− µωt)ωn−1

t dt

where the function s(ωt) is the scalar curvature of ωt, and µ = n(n+ 2− d)
is the average scalar curvature. The Ricci curvature is defined by Ric(ω) =
−

√−1
2π ∂∂̄ log(ωn). Thus if we view ωn as a metric h on the canonical bundle

K = ΛnT ∗
X , and then the Ricci curvature is just the curvature −

√−1
2π ∂∂̄ log h

of this metric.

There is another more direct way of defining the Mabuchi energy, pointed
out by Tian [T1] and Chen [C1], which does not require an integral along
paths:

νω(ϕ) =
1

vol(X)

∫
X

(
log (

ωn
ϕ

ωn
)ωn

ϕ + hω(ωn − ωn
ϕ)
)
− 1
n

(Iω(ϕ)− Jω(ϕ))

where ωϕ = ω +
√−1
2π ∂∂̄ϕ, vol(X) =

∫
X ωn is the volume of X , Jω(ϕ) is the

functional introduced before, and Iω(ϕ) = 1
vol(X)

∫
X ϕ(ωn− ωn

ϕ) is the other
functional introduced by Yau [Y1] and Aubin. In [Z], Zhang used the Deligne
pairing < L0,L1, · · · ,Ln >(X/S) with Li = O(1) for all 0 ≤ i ≤ n to obtain
the functional F 0

ω . Here π : X → S is a flat projective morphism of integral
schemes of relative dimension n, so that each fiber Xs, s ∈ S is a projective
variety of dimension n, and Li are line bundles over X . If we choose instead
Li = O(1) for 0 ≤ i < n, Ln = K, then we obtain another expression for the
Mabuchi functional which does not require a path integration

νω(ϕ) = −Eω(ϕ)− µ vol(X)F 0
ω(ϕ)

Here the functional E(ϕ) is defined by

< O(1)⊗O(ϕ), · · · , O(1)⊗O(ϕ),K⊗O(log
ωn

ϕ

ωn
) >X/S

=< O(1), · · · , O(1),K>X/S ⊗O(E)

For our purposes, it is most convenient to observe that F 0
ω can be rewritten

in the form proposed by Futaki [F]

F 0
ω(ϕ) = − 1

vol(X)
1

n+ 1

∫
X
ϕ

n∑
i=0

ωiωn−i
ϕ (5.1)
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and to recast the Mabuchi energy νω(ϕ) in the following form

νω(ϕ) =
1

vol(X)

∫
X

{
log

(
ωn

ϕ

ωn

)
ωn

ϕ

− ϕ
(
Ric(ω)

n−1∑
i=0

ωiωn−1−i
ϕ − µ(X)

n+ 1

n∑
i=0

ωiωn−i
ϕ

)} (5.2)

where µ(X), the average of the scalar curvature of ωX , is given by the
following formula:

µ(X) = n(n+ 2− d) (5.3)

Here we use vol(X) to distinguish the volume of X from the volume V =
vol(Z) of the Chow variety Z, which also enters our formulas.

Consider now the case of a smooth hypersurface X ⊂ Pn+1. In this case, X
coincides with its Chow variety Z, n = m, the Grassmannian Gr reduces to
Pm+1 = Pn+1, vol(X) = vol(Z) = V , and the functions Φσ and ϕσ coincide.
Theorem 1 simplifies considerably, and we restate it as follows

Theorem 6. Let Z ⊆ Pm+1 be a smooth hypersurface of degree d and
let f be the section of H0(Pm+1, O(d)) which defines Z. Let ωFS be the
Fubini-Study metric on Pm+1, and let ω be the restriction of ωFS to Z. For
σ ∈ SL(m+ 2,C) we have

νω(Φσ) =
D(m+ 2)(d− 1)

V (m+ 1)
log
||σ · f ||2#
||f ||2#

(5.4)

Proof. We evaluate first the contributions of the logarithmic terms from
||f ||# on the right side of (5.4)

1
V
·
∫

Z

log

⎛⎝σ∗ωm ∧ ∂∂̄ |f(z)|2
|σz|2

σ∗ωm+1

⎞⎠σ∗ωm − 1
V
·
∫

Z

log

⎛⎝ωm ∧ ∂∂̄ |f(z)|2
|z|2

ωm+1

⎞⎠ωm

(5.5)
Writing ωm = (ωm − σ∗ωm) + σ∗ωm in the second integral, the right side of
(5.5) becomes:∫

Z
log

⎛⎝σ∗ωm ∧ ∂∂̄ |f(z)|2
|σz|2

ωm ∧ ∂∂̄ |f(z)|2
|z|2

· ωm+1

σ∗ωm+1

⎞⎠σ∗ωm

−
∫

Z

log

⎛⎝ωm ∧ ∂∂̄ |f(z)|2
|z|2

ωm+1

⎞⎠ (−
√−1
2π

∂∂̄Φσ)
m−1∑
i=0

ωm−iσ∗ωi ≡ A−B
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To evaluate the integrands in the last equation, we choose (m + 1) linearly
independent holomorphic vector fields X1, ...Xm, Y in an open neighborhood
of a point z ∈ X ⊆ Pm+1 in such a way that X1, ..., Xm are tangent to Z.
Using the definition of the wedge product, we evaluate(

σ∗ωm ∧ ∂∂̄
( |f(z)|2
|σz|2d

))
(X1, X2, ..., Xm, Y ) =

∑
π

σ∗(ω)⊗· · ·σ∗(ω)⊗∂∂̄
( |f(z)|2
|σz|2d

)
(X1⊗X̄1⊗X2⊗X̄2 · · ·Xm⊗X̄m, Y⊗Ȳ )π

where π ranges over all the permutations π of the sequence
(X1, X̄1, ..., Xm, X̄m, Y, Ȳ ). Since f vanishes on Z, the only terms in the
sum which are non-zero are those corresponding to permutations which per-
mute the Xi and the X̄i, but fix Y and Ȳ . Furthermore, note that when we
apply ∂∂̄ to

( |f(z)|2
|σz|2d

)
, the product rule will yield several terms. But when

we restrict to X , the only term which doesn’t vanish is the one where the
∂∂̄ lands on |f(z)|2 (again, since f vanishes on Z). Thus

∂∂̄

( |f(z)|2
|σz|2d

)
(Y ⊗ Ȳ )

∣∣∣∣∣
Z

=
1
|σz|2d

· |Y (f)|2 (5.6)

and we may write

A =
∫

Z
log

⎛⎝σ∗ωm(X1, ..., Xm) · |Y (f)|2
|σz|2d

ωm(X1, ..., Xm) · |Y (f)|2
|z|2d

· ωm+1

σ∗ωm+1

⎞⎠σ∗ωm

B =
∫

Z
log

⎛⎝ωm(X1, ..., Xm) · |Y (f)|2
|z|2d

ωm+1(X1, ..., Xm, Y )

⎞⎠ (−
√−1
2π

∂∂̄Φσ)ησ

Cancelling the common factor |Y (f)|2 in A, and using the simple fact that
log σ∗ωm+1

ωm+1 = −(m+ 2)Φσ, we obtain

A =
∫

Z

{
log

(
σ∗ωm

ωm

)
+ (m+ 2− d)Φσ

}
· σ∗ωm

To evaluate B, we integrate by parts. Since Z is smooth, we have

B =
∫

Z

−
√−1
2π

∂∂̄ log

⎛⎝ωm(X1, ..., Xm) · |Y (f)|2
|z|2d

ωm+1(X1, ..., Xm, Y )

⎞⎠Φσ

m−1∑
i=0

ωiωm−1−i
σ (5.7)
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Now we clearly have

−
√−1
2π

∂X ∂̄X log
{ |Y (f)|2
|z|2d

}
= d · ω (5.8)

since Y is a transversal holomorphic vector field and Y (f) is a non-vanishing
holomorphic function on Z. Also −

√−1
2π ∂∂̄ logωm+1 = (m + 2)ω and

−
√−1
2π ∂X ∂̄X log (σ∗ωm) = Ric(σ∗ωm) by definition. Thus

B =
∫

Z
Φσ

(
Ric(ω) + d ω − (m+ 2)ω

)
·
m−1∑
i=0

ωiωm−1−i
σ

This calculation of the B term is very similar to a curvature calculation in
Tian [T1] (see also Lu [Lu2]). Finally, the remaining contributions from

log
||σ·Chow(X)||2#
||Chow(X)||2#

only involve terms of the form ||σ·Chow(X)||2
||Chow(X)||2 , which are

known from Theorem 5

− D

V (m+ 1)
log
||σ · Chow(X)||2
||Chow(X)||2 =F 0

ω(Φσ)=− 1
V (m+ 1)

∫
Z
Φσ

m−1∑
i=0

ωiωm−1−i
σ

Assembling all terms gives Theorem 6. Q.E.D.

6. The Mabuchi energy: General Case.

In this section we establish Theorem 1 for arbitrary codimension. Our no-
tation is the one introduced in §1.

Let X ⊆ PN be a smooth variety of dimension n and let Z ⊆ Gr be the
corresponding Chow variety, and f ∈ H0(Gr, O(d)) be a defining section for
Z. Then Z is a singular variety. We say that the embedding X ⊆ PN is
generic if it satisfies the following conditions:

1. If Zs ⊆ Z is the singular set of Z, then Zs has codimension one.

2. There exists a subvariety Zss ⊆ Zs of codimension at least one (and
hence Zss ⊆ Gr has codimension at least two) such that Zs\Zss is a divisor
with normal crossings. In other words, for all z ∈ Zs\Zss, there exist local
coordinates (z0, ..., zm), centered at z, such that f(z0, ..., zm) = z0z1.

3. Let Z0 = Z\Zs be the set of smooth points of Z. Then the scalar
curvature s(ωZ) is L1(Z0) with respect to the volume form ωm

Z .
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The proof consists of two parts. In the first part, the proof is identical to
that for hypersurfaces in the preceding section, if we view the arguments
given there as applying to the Chow variety Z, which is a codimension 1
subvariety of the Grassmannian. The result of this first part is to express

log
||σ·Chow(X)||2#
||Chow(X)||2#

as the generalized Mabuchi energy ν#
ωZ (Φσ) associated to

the singular variety Z (see Lemma 6.1 below). The second part of the proof
consists in identifying the regular part of the generalized Mabuchi functional
ν#
ωZ (Φσ) with the Mabuchi energy νωX

(ϕσ) associated to the projective va-
riety X itself (see Lemma 6.2).

Let ω = ωZ be the restriction of ωGr to Z0, the set of smooth points of Z.
Then Ric(ωZ), the Ricci curvature of ωZ , is a smooth (1, 1) form on Z0. Let
V = V (Z) be the volume of Z, and let ΓX = {(x, z) : z ∈ Gr, x ∈ X ∩ z}.
Let p1 : ΓX → X and p2 : ΓX → Z be the projection maps, and let
Ys = p−1

2 (Zs) ⊆ ΓX and Yss = p−1
2 (Zss).

Since |s(ωZ)| is in L1(Z0), we can set µ(Z) = 1
V

∫
Z0
s(ωZ)ωm

Z and define the
Mabuchi functional νωZ

(Φσ) associated with the regular variety Z0 as before
by

νωZ
(Φσ) =

1
V

∫
Z0

{
log

(
σ∗ωm

Z

ωm
Z

)
σ∗ωm

Z

−Φσ

(
Ric(ωZ)

m−1∑
i=0

ωi
Zσ

∗ωm−1−i
Z − µ(Z)

m+ 1

m∑
i=0

ωi
Zσ

∗ωm−i
Z

)}
(6.1)

Associated to the variety Ys is a closed current [Ys], supported on Ys, which
is defined by the following equation of currents on ΓX :

−
√−1
2π

∂∂̄ log

⎛⎝ωm
Z ∧ ∂∂̄ |f(z)|2

|P�(z)|2d

ωm+1
Z

⎞⎠ = Ric(ωZ)− (m+2−d)ωZ− [Ys] (6.2)

The generalized Mabuchi energy ν#
ωZ (Φσ) associated to the singular variety

Z can now be defined by

ν#
ωZ

(Φσ) = νωZ
(Φσ) +

1
V
〈[Ys],Φσ

m−1∑
i=0

ωi
Zσ

∗ωm−1−i
Z 〉

− D

V
· m deg(Ys)

m+ 1
· log

||σ · f ||2
||f ||2

(6.3)
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where || · || is the norm introduced in (4.1) and deg(Ys) = 1
V 〈[Ys], ωm−1

Z 〉.
Lemma 6.1 Under the above hypotheses, we have

ν#
ωZ

(Φσ) =
D(m+ 2)(d− 1)

V (m+ 1)
log
||σ · f ||2#
||f ||2#

(6.4)

Proof. Since the map p2 : ΓX → Z is birational, we can pull back integrals
over Z to integrals over ΓZ and express the right side of (6.4) as A′−B′ +T

where

A′ =
1
V
·
∫

ΓX

log

⎛⎝σ∗ωm ∧ ∂∂̄ |f(z)|2
|P�(σz)|2

σ∗ωm+1

⎞⎠ σ∗ωm

B′ =
1
V
·
∫

ΓX

log

⎛⎝ωm ∧ ∂∂̄ |f(z)|2
|P�(z)|2

ωm+1

⎞⎠ωm

(6.5)

and

T = (m+2−d) ·F 0
ω(Φσ) = −(m+ 2− d)

(m+ 1)
· 1
V

∫
ΓX

Φσ ·
( m∑

i=0

ωi∧σ∗ωm−i
)

where we write ω for ωZ .

Replacing ωm by (ωm−σ∗ωm) +σ∗ωm in (6.5), we obtain A′−B′ = A−B
where

A =
1
V

∫
ΓX

log

⎛⎝σ∗ωm ∧ ∂∂̄ |f(z)|2
|P�(σz)|2

ωm ∧ ∂∂̄ |f(z)|2
|P�(z)|2

· ωm+1

σ∗ωm+1

⎞⎠σ∗ωm

B =
1
V

∫
ΓX

log

⎛⎝ωm ∧ ∂∂̄ |f(z)|2
|P�(z)|2

ωm+1

⎞⎠ (−
√−1
2π

∂∂̄Φσ)
m−1∑
i=0

ωi ∧ σ∗ωm−1−i

(6.6)

The same argument as that used in §5 again gives

A =
1
V

∫
ΓX

{
log

(
σ∗ωm

ωm

)
− (m+ 2− d)Φσ

}
· σ∗ωm (6.7)
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In order to evaluate B, we integrate (6.6) by parts:

B =
1
V

∫
ΓX

Φσ ·
(
Ric(ω) − (m+2−d)ω − [Ys]

)
·
m−1∑
i=0

ωi∧σ∗ωm−1−i (6.8)

Assembling (6.6), (6.7) and (6.8) and making use of

m(m+ 2− d) =
1
V

∫
ΓX

m(Ric(ω)− [Ys])ωm−1 = µ(Z)−m deg(Ys)

we obtain (6.4).

Remarks on [Ys]

1. The fact that [Ys] is supported on Ys follows from (5.8).

2. It’s not difficult to see that [Ys] is given by integration over the smooth
points of the variety Ys.

3. The current [Ys] is also defined by the equation of currents:
∂∂̄ log |∇F |2 = [Ys], where ∇F is the gradient of the holomorphic function
which locally defines Z. To see this, we let ξ be the function

ξ(z) =
ωm ∧ ∂∂̄ |f(z)|2

|P�(z)|2
ωm+1

Then ξ is a smooth function on Gr. Let y0 ∈ ΓX , and choose a coordinate
system of (w0, ..., wm) of a neighborhood of p2(y0) ∈ Gr. Then

ξ(y) = (ξ ◦ p2)(y) =
m∑

i=0

∣∣∣∣ ∂F∂wi

∣∣∣∣2 (p2(y)
)

=
m∑

i=0

|fi(y)|2

in some coordinate neighborhood of y0 ∈ ΓX , where F is an analytic function
whose divisor is Z and the fi(y) are analytic functions whose set of common
zeros is precisely Ys.

Lemma 6.2 Assume that X ⊆ PN is generic. Then

νωZ
(Φσ) = νωFS

(ϕσ) (6.9)

Proof. As in the proof of Theorem 5, we differentiate both sides of (6.9)
with respect to t and show that the two sides are equal. Thus let c be an
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arbitrary (N + 1) × (N + 1) traceless matrix, and let σ(t) = exp(ct)σ0 for
some fixed σ0 ∈ G.

Recall that νωZ
(Φσ) is given by (6.1). Let ψσ = log

(
σ∗ωm

Z
ωm

Z

)
, and note that

(σ∗ω)m · d
dt
ψσ = (σ∗ω)m ·m(σ∗ω)m−1

√−1
2π ∂∂̄Φ̇σ

(σ∗ω)m· = m(σ∗ω)m−1

√−1
2π

∂∂̄Φ̇σ

so ∫
ΓX

(σ∗ω)m · d
dt
ψσ = 0

Writing ωσ = σ∗ω, we obtain, since ψσ is smooth outside of Yss and Yss has
codimension ≥ 2

d

dt

∫
ΓX

ψσ(σ∗ω)m =
∫

ΓX

ψσm(σ∗ω)m−1

√−1
2π

∂∂̄Φ̇σ

= −
∫

ΓX

mΦ̇σ(Ric(ωσ)− Ric(ω))ωm−1
σ

(6.10)

On the other hand,

d

dt

∫
ΓX

m∑
i=1

Φσ(σ∗ω)m−iωi−1Ric(ω) =
∫

ΓX

m∑
i=1

Φ̇σ(ωσ)m−iωi−1Ric(ω) +

∫
ΓX

m−1∑
i=1

Φ̇σ(m− i)
(
(ωσ)m−iωi−1 − (ωσ)m−i−1ωi

)
Ric(ω)

The second term on the right hand side can be rewritten as∫
ΓX

Φ̇σ

(m−1∑
i=1

(m− i)(ωσ)m−iωi−1 −
m∑

i=2

(m− i+ 1)(ωσ)m−iωi−1
)
Ric(ω)

and hence the whole right hand side reduces to∫
ΓX

mΦ̇σω
m−1
σ Ric(ω) (6.11)

Finally, Theorem 5 applies to the variety ΓX and gives

d

dt

µ(Z)
m+ 1

·
∫

ΓX

Φσ

m∑
i=0

ωiωm−i
σ =

∫
ΓX

Φ̇σµ(Z)ωm
σ (6.12)
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Combining (6.10), (6.11), and (6.12) we obtain

d

dt
νωZ

(Φσ) = − 1
V
·
∫

ΓZ

Φ̇σ(mRic(ωσ)− µ(Z)ωσ)ωm−1
σ (6.13)

This is the derivative of the Mabuchi energy on Z. In order to establish
Lemma 6.2 we must show it is also the derivative of the Mabuchi energy on
X : Replacing X and Z by σ0(X) and σ0(Z), we see that we may assume
that σ0 is the identity matrix. We shall do that from now on, and we shall
write Φ̇σ0(c) = Φ̇(c) and ϕ̇σ0(c) = ϕ̇(c).

Thus, we let

MZ = Ric(ωm
Gr) −

µ(Z)
m

ωGr

and
MX = Ric(ωn) − µ(X)

n
ω

We claim that:

1
vol(X)

∫
X
MX ϕ̇(c) nωn−1 =

1
vol(Z)

∫
Z
MZ Φ̇(c) mωm−1

Gr (6.14)

Theorem 1 then will follow from (6.13) and (6.14).

Let pi = πi|ΓX
. Then p1 : ΓX → X and p2 : ΓX → Z, and we have the

following double fibration

ΓX
p1 ↙ ↘ p2

X Z
(6.15)

Currents on X and Z can then be compared by pull-backs and push-forths
through this fibration. Note that p2 is a birational map, that is, there is a
Zariski open subset Z0 ⊆ Z such that p2 : p−1

2 (Z0)→ Z0 is bijective. Thus,
in terms of pull-backs and push forths∫

Z
MZ Φ̇(c) mωm−1

Gr =
∫

ΓX

p∗2MZ · p∗2
(
Φ̇(c) mωm−1

Gr

)
=

∫
ΓX

p∗1MX · p∗2
(
Φ̇(c) mωm−1

Gr

)
+

∫
ΓX

(p∗2MZ − p∗1MX) · p∗2
(
Φ̇(c) mωm−1

Gr

)
But according to (4.6),

p1∗p
∗
2(mΦ̇(c)σ∗ωm−1

Gr ) = nϕ̇(c)ωn−1
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and so we get∫
ΓX

p∗1MX · p∗2
(
Φ̇(c) mωm−1

Gr

)
=

∫
X

MX ϕ̇(c) nωn−1

Thus (6.14) will follow from:∫
ΓX

M(X,Z) · p∗2
(
Φ̇(c) mωm−1

Gr

)
=
∫

X
p1∗

[
M(X,Z) · p∗2

(
Φ̇(c) mωm−1

Gr

)]
= 0

(6.16)
where

M(X,Z) = (p∗2MZ − p∗1MX)

Now M(X,Z) can be made explicit as follows: Define a function AX : ΓX →
C by the formula

p∗2ω
m
Gr = AX · p∗2ωm−n

Gr p∗1ω
n

Then M(X,Z) = R(hX)− µ(Z)
m p∗2ωGr + µ(X)

n p∗1ω where hX is the curvature
of the metric on the relative canonical bundle LX = KΓX

⊗ p∗1(KX)−1 given
by the formula

hX = AX · p∗2ωm−n
Gr

We provide now a proof of the key equation (6.16). The main idea is that, by
making use of a first jet extension (see the map ιX(x) = (x, ζ) defined below),
the double fibration (6.15) can be imbedded in another double fibration,
which is independent of X and is more symmetric. More precisely, we shall
define manifolds Σ and Γ′, a fibration P ′ : Σ→ Γ′, a metric h on the relative
canonical bundle L = KΣ ⊗ (P ′)∗(KΓ′)−1 and embeddings ι : ΓX ↪→ Σ,
ιX : X ↪→ Γ′ which will have the following properties: The projection p1 :
ΓX → X is the restriction of P1, the metric hX is the restriction of the
metric h to LX ,

ΓX → Σ
↓ ↓
X → Γ′

(6.17)

The reason for doing this is that Σ and Γ′ will have a lot of symmetries,
which will help us compute the fiber integral of M .

Here are the definitions:

Gr = Gr(N − n− 1,PN)
Gr′ = Gr(n,PN)
Σ = {(x, ζ, z) : x ∈ PN , ζ ∈ Gr′, z ∈ Gr , x ∈ ζ ∩ z}
Γ = {(x, z) : x ∈ PN , z ∈ Gr, x ∈ z}
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Γ′ = {(x, ζ) : x ∈ PN , ζ ∈ Gr′, x ∈ ζ}
P ′(x, ζ, z) = (x, ζ)
P (x, ζ, z) = (x, z)
ΓX = {(x, z) : x ∈ X, z ∈ Gr, x ∈ z}
ιX(x) = (x, ζ) where ζ is the unique hyperplane of dimension n tangent to
X at x.

Note that G = SL(N + 1) and U = U(N + 1) act on Σ,Γ,Γ′, Gr, Gr′,
that U leaves the metrics ω, ωGr, ω

′
Gr invariant, and that the original double

fibration (6.15) has now been extended to the following double fibration

Σ
P ′ ↙ ↘ P

Γ′ Γ
(6.18)

Define a function A : Σ→ C as follows:

A(x, ζ, z) =
ωm

Gr(X1, ..., Xn, Y1, ..., Ym−n)
ωn(X1, ..., Xn)ωm−n

Gr (Y1, ..., Ym−n)

where a = (x, ζ, z), Y1, ..., Ym−n is a basis for the tangent space to the fiber
of P ′ above P ′(a), and X1, ..., Xn are tangent vectors in Ta(Σ) whose projec-
tions to PN form a basis of Tx(ζ). This function is clearly invariant under
the action of U .

Define a metric h on L by the formula:

h = A · P ∗
2 ω

m−n
Gr

where P2 : Σ(x, ζ, z)→ z ∈ Gr is the projection map. Let P1 : Σ(x, ζ, z)→
x ∈ CPN , and set

M = R(h)− µ(Z)
m

P ∗
2ωGr +

µ(X)
n

P ∗
1ω

Then AX and M(X,Z) are respectively the restrictions of A and M , and
(6.16) is equivalent to∫

X
ι∗XP1∗

[
M · P ∗

2

(
Φ̇(c) mωm−1

Gr

)]
= 0 (6.19)

In fact, we shall prove that

ι∗XP1∗
[
M · P ∗

2

(
Φ̇(c) mωm−1

Gr

)]
= 0 (6.20)
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Let T (Γ′) be the tangent bundle of Γ′ and let S ⊆ T (Γ′) be the subbundle
defined by

S = Ker(T (Γ′)(x, ζ)→ ζ ∈ T (Gr′))

Thus S is a smooth vector bundle on Γ′ of rank n and for (x, ζ) ∈ Γ′, the
fiber S(x,ζ) is the tangent space of ζ at the point x. Since ιX(Tx(X)) = S(x,ζ),
the relation (6.20) then follows from the following:

P1∗
[
M · P ∗

2

(
Φ̇(c) mωm−1

Gr

)] ∣∣∣
S

= 0 (6.21)

Thus we must show, for every (x, ζ) ∈ Γ′, the (n, n) form
P1∗

[
M · P ∗

2

(
Φ̇(c) mωm−1

Gr

)]
evaluated at a generator of ΛnTx(ζ)⊗ΛnT ′

x(ζ),
is zero (here T is the holomorphic tangent space and T ′ the anti-holomorphic
tangent space).

Thus we fix (x, ζ) ∈ Γ′. Recall that x ∈ PN , that is, x ⊆ CN+1. Also,
we have x ∈ ζ where ζ is a plane in PN of dimension n, that is ζ ⊆ CN+1

is a vector space of dimension n + 1. The tangent space of ζ at the point
x is canonically isomorphic to x⊥ ∩ ζ = ζ ′ ⊆ CN+1. Let ζ1, ..., ζn be an
orthonormal basis of ζ ′. Let

B(c, x; ζ1, ..., ζn) = P1∗
[
M · P ∗

2

(
Φ̇(c) mωm−1

Gr

)] ∣∣∣(ζ1 ∧ ζ̄1, ..., ζn∧ ζ̄n)

We want to show that B(c, x; ζ1, ..., ζn) = 0.

Recall that
Φ̇(c) = tr((c+ c∗)ZZ∗)

where, abusing notation, Z is an (N + 1)× (N − n) matrix whose columns
form an orthonormal basis of the vector space Z ⊆ CN+1.

Define an (N + 1)× (N + 1) matrix

B(x, ζ) = B(x; ζ1, ..., ζn) = P1∗
[
M · P ∗

2

(
ZZ∗ mωm−1

Gr

)] ∣∣∣(ζ1∧ζ̄1, ..., ζn∧ζ̄n)
(6.22)

Then B(c, x; ζ1, ..., ζn) = tr
(
(c + c∗)B(x, ζ)

)
so it suffices to show that

B(x, ζ) = 0 for all (x, ζ) ∈ Γ′.

Note that B has the following properties:

B(u(x, ζ)) = uB(x, ζ)u∗, B(x, ζu1) = B(x, ζ)

for all u ∈ U(N + 1) and all u1 ∈ U(n). This implies that

B(x, ζ) = k · ζζ∗
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for some constant k. We claim that k = 0. To see this, we take the trace
of (6.22) and use the fact that tr(ζζ∗) = tr(ζ∗ζ) = (n + 1) since ζζ∗ is the
identity matrix, and that likewise, tr(ZZ∗) = tr(Z∗Z) = (N − n):

k · (n+ 1)π∗ωn
FS(ζ1 ∧ ζ̄1, ..., ζn∧ ζ̄n)

= P1∗
[
M · P ∗

2

(
(N − n) mωm−1

Gr

)] ∣∣∣(ζ1 ∧ ζ̄1, ..., ζn ∧ ζ̄n) (6.23)

where π : Γ′ → PN is the projection map. Applying ι∗X to both sides and
integrating over X we get

k · (n+ 1) ·
∫

X
ωn

FS = (N − n)
∫

ΓX

(p∗2MZ − p∗1MX)p∗2ω
m−1
Gr

But ∫
ΓX

p∗2MZ · p∗2ωm−1
Gr =

∫
Z
MZ · ωm−1

Gr = 0

Also, making use of (4.7) we have∫
ΓX

p∗1MX · p∗2ωm−1
Gr =

∫
X
MX · p1∗p

∗
2ω

m−1
Gr = D1n

∫
X
MX · ωn−1

FS = 0

Thus k · (n+ 1) = 0− 0 so k = 0. Thus B(x, ζ) = 0 and the proof of Lemma
6.2, and hence of Theorem 1 is complete. Q.E.D.

Remark. Although we do not require it in the preceding proof, it may be
useful to note that the key function A(x, ζ, z) introduced can be described by
a simple explicit formula. Let x⊥ ⊆ CN+1 be the orthogonal complement of
x, and let πx : CN+1 → x⊥ be the orthogonal projection. Then πx(ζ) ⊆ x⊥

has dimension n and πx(z) ⊆ x⊥ has dimension N −n−1. These two spaces
will generically span a subspace πx(ζ + z) of codimension 1 inside x⊥. Then
A(x, ζ, z) is the length of the Plücker vector of πx(ζ + z) with respect to a
basis which is the union of an orthonormal basis for πx(z) and πx(ζ)

A(x, ζ, z) =
|Pl(πx(ζ + z))|

|Pl(πx(ζ))| · |Pl(πx(z))| (6.24)

Another way of writing this is as follows. Fix x and let H = x⊥. View A as
a function on Gr(n,H)×Gr(N − n− 1, H). Let

θ : Gr(n,H)×Gr(N − n − 1, H)→ Gr(N − 1, H)
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be the map which sends (ζ0, z0) to the space spanned by ζ0 and z0. Then

−
√−1
2π

∂∂̄ logA = θ∗ωN−1 − ωn − ωN−n−1

where the ωk are just Fubini-Study metrics. In other words, R(h) =
θ∗ωN−1 − ωn.

Remark. Generalized Mabuchi energies for singular varieties emerge natu-
rally from the above proof, and may be worth investigating in their own
right. Related extensions for the Futaki invariant were studied in Ding and
Tian [DT].

Remark. There are many ways of expressing the current [Ys]. It is intriguing
that the term it produces can be formally viewed as an F 0 functional for Ys.

Remark. The genericity assumption on X is not really restrictive. It should
suffice for the study of asymptotic stability, when the variety X is imbedded
into projective space by the bases of the antipluricanonical bundle K−p

X for
p large.

Remark. The seminorm || · ||# is degenerate. Its main property is that for
any norm || · ||B on H0(Gr, O(d)) with ||f || > 0 for f �= 0, there exists a
constant C > 0 so that

||f ||# ≤ C||f ||B (6.25)

for all f ∈ H0(Gr, O(d)). This follows from the continuity of || · ||#, which
requires a somewhat technical argument. For our purposes, it suffices to
observe that the second term in the expression (1.1) for || · ||# is continuous,
since the only possible divergences of the integrand is logarithmic. As for
the first term, we can estimate it as follows∫

Z
log

(
ωm

Gr ∧ ∂∂̄
( |f(z)|2
|P�(z)|2d

))
∧ ωm

Gr ≤ C supGrlog |∇f |2
∫

Z
ωm

Gr (6.26)

Since the logarithmic is an increasing function and supGr log |∇f |2 =
log supGr |∇f |2, the right hand side is bounded on the unit ball with respect
to || · ||B in H0(Gr, O(d)), and our claim follows.

Remark. As mentioned in §5, the Deligne Pairing is related to the concept
of CM stability, as defined by Tian [T2]:

Let G = SL(N + 1,C). Let π : X → B be a G equivariant holomorphic
fibration between smooth varieties, equivariantly embedded in B×PN . Tian



594 D. H. Phong and J. Sturm

constructs a G equivariant line bundle LB over B and a metric || · ||Q on LB

with the following property: Let b ∈ B and let X = π−1(b).

νω(ϕσ)− ψ(σ) = C · log
||σ · b||2Q
||b||2Q

(6.27)

for some positive constant C, where ψ is a certain explicitly defined function
which is bounded above.

Now we let K be the relative canonical bundle of X over B and let L be the
O(1) bundle on X . For r and s integers, let

M = < K,L,L, ...,L>r (X/B)⊗ < L,L,L, ...,L>s (X/B)

where the first factor is the Deligne pairing of the bundle K and n copies
of the bundle L and the second is the Deligne pairing of n + 1 copies of
the bundle L. Then M is a G equivariant line bundle over B and comes
equipped with the Deligne metric || · ||D. Let b ∈ B and let X = π−1(b).
Then, for suitably chosen r and s, we can show that

νω(ϕσ) = C · log
||σ · b||2D
||b||2D

(6.28)

It is natural to compare (6.27) and (6.28) and investigate their relationship.
Also, the role of the pairing < K,K, ...,K,L,L, ...,L> (X/B) (p copies of K
and q copies of L with p+ q = n+ 1) needs to be clarified. These questions
will be addressed in an upcoming paper.
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