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for PL-manifolds of Non-positive Curvature
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0. Introduction.

In this paper, we derive a new curvature integral formula for 3-dimensional
piecewise linear manifolds with singularities. Among other things, we also
present a sharp isoperimetric inequality for 3-dimensional PL-manifolds of
non-positive curvature by using this new curvature integral formula.

Let Ω be a smooth compact domain in a smooth Riemannian manifold,
and GK∂Ω represent the Gauss-Kronecker curvature (i.e., the determinant
of the second fundamental form) of the boundary of Ω, ∂Ω. A well-known
Theorem of Chern-Lashof [CL] states that for any compact convex smooth
domain Ω in Rn, the total Gauss-Kronecker curvature of its boundary satis-
fies ∫

∂Ω
GK∂ΩdA = vol n−1(Sn−1)

where Sn−1 is the unit (n − 1)-dimensional sphere in the n-dimensional
Euclidean space. It has been conjectured by various authors that for any
compact convex smooth domain Ω in a Cartan-Hadamard manifold Mn, the
total Gauss-Kronecker curvature of its boundary satisfies∫

∂Ω
GK∂ΩdA ≥ voln−1(Sn−1). (0.1)

In fact, for a compact surface Σ in a 3-dimensional smooth Cartan-Hadamard
manifold M3, the classical Gauss Theorem states

KΣ −KM3|Σ = GKΣ, (0.2)

where KΣ (resp. KM3) is the sectional curvature of Σ (resp. M3). It
follows from the equation (0.2) and the Gauss-Bonnet formula that if ∂Ω is
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an embedded smooth sphere in a 3-dimensional smooth Cartan-Hadamard
manifold M3 then ∫

∂Ω
GK∂ΩdA ≥ 4π, (0.3)

see [K].
In this paper, we consider non-smooth 3-dimensional manifolds allowing

the possibility of singularities. Through out this paper Xn stands for an
n-dimensional simply connected piecewise linear manifold with non-positive
curvature. The curvature we consider here is the one defined by using com-
parison triangles. In our case these manifolds are part of the family of
CAT (0) spaces (see [BH]). In fact, if the sum of interior angles of any geod-
esic triangles in Xn is less than or equal to π, then Xn has non-positive
curvature. For any piecewise smooth convex domain Ω in Rn, Federer [Fe1],
introduced curvature measures associated to Ω by using the coefficients of the
so-called Steiner polynomial of Ω. We introduce the outer Gauss-Kronecker
curvature measure GK∂Ω for convex domains Ω in a PL-manifold Xn in a
similar way, see (2.1) below and prove a new curvature integral formula for
some domains in a piecewise linear manifold with non–positive curvature.

Main Theorem. Let X3 be a 3-dimensional simply connected piecewise
linear manifold with non-positive curvature. If Ω is a compact convex domain
with non–empty interior, then its total Gauss-Kronecker curvature measure
is given by the following formula:

∫
∂Ω
d(GK∂Ω) = 4π+∑

p∈(∂Ω)

∑
σ1⊂St(p)

∑
v∈Link (p,σ1)

[|Link (σ1, X3)| − 2π] sin[θ∗p(v,Ω)].
(0.4)

where θ∗p(v,Ω) = min{θp(v,Ω), π
2 }, θp(v,Ω) is the angle between the vector

v and the tangent cone Tp(Ω) of Ω at the point p ∈ ∂Ω, and Link (σ1, X3)
denotes the set of unit vectors orthogonal to the simplex σ1.

It is known that if X3 has non-positive curvature the length of
Link (σ1, X3) is greater or equal to 2π. Hence, the last summation term
in formula (0.4) is always non-negative. Ballmann and Buyalo [BB] proved
a Gauss-Bonnet type formula for piecewise smooth metrics on 2-polyhedra
with a local group action. Our result applies to 3-dimensional domain which
do not necessarily admit co-compact group actions.

The main point of this paper is to understand how singularities are re-
lated to the total integral of the Gauss-Kronecker curvature. In order to
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do that we first show that Sing(Xn) is a closed, piecewise linear subset of
codimension 2 in Xn. In fact, we prove that Sing(Xn) =

⋃
i σ

n−2
i . where

σn−2
i is an (n− 2)-dimensional simplex.

To prove the above formula we first estimate the total outer Gauss-
Kronecker curvature of a convex piecewise linear domain and then show
that the outer Gauss-Kronecker curvature measure of a sequence of convex
domains converging to a convex domains in the Hausdorff topology is upper
semi-continuous.

One of the main ingredients in the proof of the Main Theorem is the
detailed analysis on the equidistance hypersurface ∂Ωs where Ωs = {x ∈
Xn|d(x,Ω) < s}. We show that [∂Ωs − Sing(Xn)] is a C1,1 hypersurface,
whenever Ω is convex and s > 0. When n = 3, ∂Ωs is a surface with possible
singularities. A version of Gauss-Bonnet formula is applicable to the surface
∂Ωs, which yields formula (0.4) for Ωs and letting s → 0, we derive the
curvature integral formula (0.4) for Ω.

The main application of our integral formula is the derivation of a sharp
isoperimetric inequality in 3-dimensional PL-manifolds of non-positive cur-
vature.

Main Corollary. Let X3 be a 3-dimensional simply connected piecewise
linear manifold with non-positive curvature. If Ω is a compact piecewise
smooth domain, then

vol(Ω) ≤ 1
6
√
π

[Area(∂Ω)]
3
2 . (0.5)

Equality holds if and only if Ω is isometric to the ball in the Euclidean space
R3.

The last inequality, was proved by Kleiner [K] in the context of 3-
dimensional simply connected smooth Riemannian manifolds with non-
positive sectional curvature. Similar results were obtained in the 2 and 4
dimensional cases by Weil [W] and Croke [Cr1] respectively.

The authors would like to thank the referee for many helpful comments
and questions that made this final version a more readable one.

1. Preliminary results.

Throughout this paper, all k-simplexes are always assumed to be open, each
k-simplex is isometric to an open set in Rk.

In this section we recall some preliminary results of piecewise smooth
manifolds with curvature bounded above. There results are needed for later
sections.
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1.a. The orthogonal join and a volume comparison theorem.

In our paper, we need to study the tangent cone Tp(Xn) of a piecewise linear
manifold Xn at any given point p ∈ Xn. The unit tangent cone is the subset
of all unit vector in Tp(Xn), which is denoted by Link (p, Xn). The local
geometry of Xn is related to Link (p, Xn). If X1 and X2 are two piecewise
linear manifolds, then we would like to recall some elementary facts about
the relations among Link (p1, X1),Link(p2, X2) and Link ((p1, p2), X1×X2).

For this purpose, we first recall the definition the orthogonal join L1 ∗L2

of two piecewise spherical polyhedra L1 and L2. It is a piecewise spherical
polyhedron of dimensional equal to dimL1 + dimL2 + 1.

Definition 1.0. Suppose that σi ⊂ L1 is a spherical i–cell and that σj ⊂ L2

is a spherical j–cell. Locally, we identify σi and σj with subsets in the unit
spheres Si and Sj. Furthermore, we identify Si and Sj with the unit spheres
in subspaces of Ri+j+2 which are orthogonal complements. Then σi ∗σj, the
orthogonal join of σi and σj, is the (i+ j + 1)–cell in Si+j+1 defined as the
convex hull of σi and σj in Si+j+1 (i.e., σi ∗ σj is the union of all geodesic
segments in Si+j+1 which begin in σi and end in σj). More precisely,

σi ∗ σj =
{

(cos θ)v + (sin θ)w | 0 ≤ θ ≤ π

2
, v ∈ σi, w ∈ σj

}
.

In an obvious fashion, we can glue all these {σi ∗ σj} together to obtain
L1 ∗ L2.

In particular, if L1 is the round sphere Sk−1, then Sk−1 ∗L2 is called the
k–fold suspension of L2.

It is straightforward to see that if X1 and X2 be two piecewise linear
manifolds, then Link ((p1, p2), X1 × X2) = [Link (p1, X1)] ∗ [Link (p2, X2)].
Using this fact and an induction method on dimensions, we will prove a
volume comparison theorem for piecewise spherical manifolds.

By the well-known comparison theorem of Aleksandrov and Topogonov,
the statement that sectional curvature of a smooth Riemannian manifold
M is bounded above by a real number c is equivalent to a statement con-
cerning small geodesic triangles in M . One such statement, the so-called
“CAT (c)” inequality, compares distances between points in a triangle with
the corresponding distances in a comparison triangle in the complete, sim-
ply connected, 2-manifold of constant curvature c (for a precise definition see
[ChD] p932 or [BH]). Here we say that a geodesically complete space L has
curvature ≤ 1 if the CAT (1)-inequality holds for small geodesic triangles in
L; and we say that the space L satisfies the CAT (1) inequality (or L is called
a CAT (1) space) if the CAT (1) inequality holds for all geodesic triangles.
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The following result of [ChD] will be used frequently in this paper.

Lemma 1.1. [ChD, p1002], Let Lm be a piecewise spherical manifold sat-
isfying CAT (1) inequality, vi ∈ Sk, wi ∈ Lm and 0 ≤ ti ≤ π

2 for i = 1, 2.
Suppose that ξi = [(cos ti)vi + (sin ti)wi] ∈ [Sk ∗ L] for i = 1, 2. Then
dSk∗L(ξ1, ξ2) ≤ π. If dSk∗L(ξ1, ξ2) = π then one of the following holds:

(1) t1 = t2 = 0 and v1 = −v2 ∈ Sk;

(2) t1 = t2 = π
2 and dL(w1, w2) ≥ π;

(3) 0 < t1 = t2 <
π
2 , v1 = −v2 ∈ Sk and dL(w1, w2) ≥ π.

We will prove a volume comparison theorem for spherical singular
CAT (1) spaces. This is a particular case of our main estimate in this paper.
More precisely we show the following theorem.

Theorem 1.2. Let Ln−1 be a piecewise spherical manifold of dimension
(n− 1) satisfying the CAT(1) inequality. Then

vol n−1(Ln−1) ≥ vol n−1(Sn−1(1)).

Equality holds if and only if Ln−1 is isometric to Sn−1(1).

If Xn is a piecewise Euclidean PL–manifold of non–positive curvature
then for every x ∈ Xn, the unit tangent cone Link (x,Xn) of X at x is a
piecewise spherical manifold satisfying the CAT (1) inequality. Therefore we
obtain

voln−1[Link (x,Xn)] ≥ voln−1(Sn−1(1)). (1.1)

Furthermore, equality holds if and only if Link (x,Xn) is isometric to
Sn−1(1).

In order to prove the above theorem we first need some new notations.

Definition 1.3. Let Y be a polyhedron of piecewise constant curvature. A
path σ : [a, b]→ Y is a broken geodesic path if there exist numbers t0, . . . , tk
with a = t0 < t1 < · · · < tk = b so that for each i, 0 ≤ i < k, σ|[ti,ti+1] is a
geodesic path with image lying entirely in some closed cell of Y . By a broken
geodesic we shall mean the image of broken geodesic path together with an
orientation. If a broken geodesic is the image of a geodesic path (that is, a
path locally isometric to an interval) then it is called a local geodesic.

Suppose that y0, y1 are two points in some closed m–simplex σm of Y
and ϕ is a geodesic segment in σm from y0 to y1. Then ϕ determines a
unit tangent vector in Ty0(σ

m) and hence, a point in Link (y0, Y ) called the
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outgoing tangent vector of ϕ in y0 and denoted by ϕ′
out(y0). Similarly, ϕ

determines an incoming tangent vector ϕ′
in(y) ∈ Link (y, Y ).

Suppose that for 1 ≤ i ≤ k, ϕi is a geodesic segment in some cell σm of
Y from yi−1 to yi. The ϕi’s can be glued together to give a broken geodesic
ϕ from y0 to yk. We shall use the notation ϕ = (ϕ1, . . . , ϕk). The incoming
and outgoing vectors of the broken geodesic ϕ make an “angle” θi at each
point yi, defined by,

θi = d((ϕi)′in(yi), (ϕi+1)′out(yi)),

where d denotes distance in Link (yi, Y ).
The local characterization of a geodesic can be expressed in terms of

angles {θi}mi=1. The following lemma is well known.

Lemma 1.4. With notation as above, the broken geodesic ϕ = (ϕ1, . . . , ϕm)
is a local geodesic if and only if θi ≥ π for 1 ≤ i ≤ m.

To prove the Theorem 1.2 we first extend the classical Bishop Comparison
Theorem for Riemannian manifolds to spherical singular spaces.

Theorem 1.5. Suppose that Ln−1 is a piecewise spherical manifold which
satisfies the CAT(1) inequality. For any point p ∈ L and 0 < r < π, let
Br(p) = {q ∈ Ln−1 | dL(p, q) ≤ r}. Then

vol n−1(Br(p)) ≥ vol n−1(B̂r(p̂)), (1.2)

where B̂r(p̂) = {q̂ ∈ Sn−1(1) | d(q̂, p̂) ≤ r}.
The proof of Theorem 1.5 uses a variant of Toponogov’s comparison

theorem. In fact, the following Proposition 1.6 and its counterpart provide
an equivalent definition of CAT (1) space, (see [ABN]). The following two
results are well known, (e.g., cf. [BH, p161-162]).
Proposition 1.6. Let L be as in Theorem 1.5. Suppose that {v1, v2, v3}
are three points in L. Let ∆ be a geodesic triangle of perimeter ≤ 2π in L
with vertices {v1, v2, v3} and αi the interior angle at vi, i = 1, 2, 3. If ∆̂ is
a comparison triangle of the same edge length in S2(1), α̂i, i = 1, 2, 3 are
corresponding interior angles of ∆̂, then αi ≤ α̂i, as long as dL{vi, vj} < π,
i, j = 1, 2, 3.

Proposition 1.7. Let L be a piecewise spherical manifold satisfying the
CAT(1) inequality. Assume that (ϕ1, ϕ2, α) is a geodesic hinge of perimeter
≤ 2π in L, where ϕ1 and ϕ2 are length–minimizing geodesic segments of
length < π with ϕ1(�1) = ϕ2(0). If (ϕ̂1, ϕ̂2, α) is a corresponding geodesic
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hinge in S2(1) such that �i = �(ϕ̂i) = �(ϕi), for i = 1, 2, and 0 < α < π ,
then

�3 = dL(ϕ2(�2), ϕ1(0)) ≥ dS2(1)(ϕ̂2(�2), ϕ̂1(0)) = �̂3.

Proof of Theorem 1.5. We first assume that p is a regular point, i.e., Tp(Ln−1)
is isometric to Rn−1. Because L satisfies the CAT(1) inequality, any pair of
points in L of distance < π can be connected by a unique length–minimizing
geodesic (cf. [ChD, p.933]). Therefore, for 0 < r < π and q ∈ ∂Br(p), there
is a unique geodesic ϕpq : [0, r]→ L from p to q. Let {(t, θ)} be the geodesic
polar normal coordinate system of Sn−1(1) around the point p̂. We define a
Lipschitz map

F : Br(p) −→ B̂r(p̂)
ϕpq(t) −→ (t, ϕ′

pq(0)).

It follows from Proposition 1.7 that the Lipschitz constant of F is ≤
1. Thus F is a distance non–increasing map. To verify that F is onto
observe that given two points in L with distance less than π there is a unique
minimizing geodesic joining them. This is because L satisfies the CAT(1)
inequality. Hence any length minimizing geodesic with length strictly less
than π can be extended to a longer length minimizing geodesic. Thus, we
conclude that F is onto and hence

voln−1(Br(p)) ≥ vol n−1(B̂r(p̂)).

For general case, we observe that the set of regular points is a dense subset
of Ln−1. Taking the limit in above inequality, one completes the proof.

Theorem 1.5 can be strengthened as follows:

Theorem 1.8. Let Ln−1 be a piecewise spherical manifold of dimension
(n − 1) satisfying CAT(1) inequality, p ∈ Ln−1 and Ln−2

p = Link (p, Ln−1).
Suppose that L̂p = S0 ∗ Ln−2

p is the two point suspension of Ln−2
p , p̂ ∈ S0

and that B̂r(p̂) = {q ∈ L̂p | d(p̂, q) < r}. Then

(1) L̂p satisfies the CAT(1) inequality,

(2) vol n−1(B̂r(p̂)) = vol n−2(Ln−2
p )

∫ r

0
(sin t)n−2dt,

(3) vol n−1(Br(p)) ≥ vol n−1(B̂r(p̂)), where Br(p) = {q ∈ Ln−1 | d(p, q) <
r} and 0 < r < π.
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Proof. (1) Let Xn−1 = C(Ln−2
p ) be the cone over Ln−2

p . Observe that Ln−2
p

satisfies the CAT(1) inequality because Xn−1 satisfies the CAT(0) inequality
(cf. [Bri]). Let Y n = R ×Xn−1. Clearly, Y satisfies the CAT(0) inequality.
It follows that L̂p = S0 ∗ Link (0, Xn−1) = Link (0, Y ) satisfies the CAT(1)
inequality.

(2) Let dw2 be the piecewise spherical metric on Ln−2
p . Then the metric

ds2 of L̂p has a wrapped product structure

ds2 = dt2 + (sin t)2dw2.

Therefore, using the wrapped product structure, we have

vol n−1(B̂r(p̂)) =
∫ r

0

∫
w∈Ln−2

p

(sin t)n−2dwdt

= vol n−2(Ln−2
p )

∫ r

0
(sin t)n−2dt.

(3) We proceed as in the proof of Theorem 1.5 and omit the details here.

Proof of Theorem 1.2. Letting r→ π in Theorem 1.5, we have

voln−1(Ln−1) ≥ vol n−1(Sn−1(1)). (1.3)

In what follows, we are going to show that if Ln−1 is a piecewise spher-
ical manifold of dimension (n − 1) satisfying the CAT(1) inequality and if
vol n−1(Ln−1) = voln−1(Sn−1(1)) then Ln−1 is isometric to the unit sphere
Sn−1(1). The proof of this assertion will use an induction method on the
dimension of Ln−1 and k–fold suspension of piecewise spherical spaces. We
will first show that Ln−1 has no singularities when the equality holds. The
definition of singularity is given by Definition 1.10 below.

When n−1 = 2 if Area(L2) = 4π, we claim that L2 is isometric to S2(1).
Suppose that L2 is not isometric to S2(1). Then there exists a singular point
p ∈ L2 such that |Link (p, L2)| > 2π. Let L̂p = S0 ∗ Link (p, L2). Using
Theorem 1.8, we have

Area (L2) ≥ Area (L̂p) = |Link (p, L2)|
∫ π

0
sin tdt = 2|Link (p, L2)| > 4π

which contradicts to Area (L2) = 4π.
Let us now suppose that Theorem 1.2 is true for dimension (n − 2).

The inequality (1.3) follows from the first part of Theorem 1.2. When
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vol n−1(Ln−1) = voln−1(Sn−1(1)) we claim that Ln−1 must be isometric
to Sn−1(1). Otherwise, there is a singular point p ∈ Ln−1 such that
Ln−2

p = Link (p, Ln−1) is not isometric to Sn−2(1). Since Ln−1 satisfies
the CAT(1) inequality so does Ln−2

p (cf. [ChD]). By induction, we know that

vol n−2(Ln−2
p ) > voln−2(Sn−2(1)). (1.4)

Let us now consider L̂p = S0 ∗ Ln−2
p . It follows from Theorem 1.8 that

vol n−1(L) ≥ vol n−1(Bπ(p)) ≥ vol n−1(B∗
π(p∗)) = vol n−1(L̂p)

= vol n−2(Ln−2
p )

∫ π

0

(sin t)n−2dt. (1.5)

Using (1.4)–(1.5), we get vol n−1(L) > vol n−1(Sn−1(1)) which is a contradic-
tion. Hence there is no singular points on L, and L is a smooth Riemannian
manifold of constant sectional curvature 1. Thus, L is a quotient space of
Sn−1(1) with the induced metric. Therefore voln−1(L) ≤ vol n−1(Sn−1(1)),
equality holds if and only if L is isometric to Sn−1(1).

1.b. The singular set of PL-manifolds with non-positive
curvature.

In this sub-section we first discuss some properties of the singular set of the
manifold Xn.

Definition 1.9. Given linear simplexes σk ⊂ σn, at any point q ∈ σk,
the normal cone C⊥(σk, σn) is the set consisting of all rays through q which
are orthogonal to σk and point into σn. The associated spherical simplex,
Link (σk, σn) is called the link of σk in σn.

Using the definition above we give a description of a singular simplex in
a PL-manifold.
Definition 1.10. Let τ be a triangulation of Xn.

(1) If σk
0 is a k–simplex of Xn, then

Link (σk
0 , X

n) =
⋃

σn⊃σk
0

Link (σk
0 , σ

n)

where Link (σk, σn) is given by Definition 1.9.

(2) A vertex σ0 ∈ Xn is said to be singular if Link (σ0, Xn) is not iso-
metric to the unit (n− 1)–sphere Sn−1(1). Equivalently, x ∈ Xn is singular
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if Tx(Xn) is not isometric to Rn. A k–dimensional simplex σk ⊂ Xn is said
to be singular if Link (σk, Xn) is not isometric to the unit sphere Sn−k−1(1).

(3) Suppose that L is a subset of Link(x,Xn). Then the dual link L∗

given by all unit vectors in Link(x,Xn) making an angle ≥ π
2 with every

vector of L, where by the angle �(v, w) we mean the distance between two
unit vector v and w in Link(x,Xn).

For a PL-manifold we have the following basic observation about the
singular set.

Proposition 1.11. The set Sing(Xn) is closed and dim[Sing(Xn)] ≤ n− 2.

Proof. If σn−1 is a (n − 1)–simplex of Xn, then dim[Link (σn−1, Xn)] =
0. Because Xn is a PL–manifold without boundary, each σn−1 must be a
common face of exactly two n–simplexes. Since the n–simplexes are glued
along totally geodesic boundaries, each open σn−1 is regular; it follows that
dim[Sing(Xn)] ≤ n − 2. It is easy to check that for any PL-manifold, the
singular set is closed.

In the next proposition we use Theorem 1.2 to show the non–existence
of isolated singularities in a PL-manifold Xn of non–positive curvature and
dimension greater or equal to three.

Proposition 1.12. The manifold Xn of non-positive curvature has no iso-
lated singularities when n ≥ 3.

Proof. Let x ∈ Xn be an isolated singularity. Then Link (x,Xn) is a smooth
manifold of constant curvature 1. Moreover Ln−1 = Link (x,Xn) is a space
form. When n − 1 ≥ 2, any smooth space form Ln−1 of constant curvature
1 is covered by the unit sphere Sn−1(1). Therefore

voln−1(Link (x,Xn)) ≤ vol n−1(Sn−1(1))

when n− 1 ≥ 2. By Theorem 1.2, inequality (1.1) holds and then

voln−1(Link (x,Xn)) = vol n−1(Sn−1(1))

and Link (x,Xn) is isometric to Sn−1(1), which is a contradiction to the
assumption that x is a singularity.

We remark that Proposition 1.12 is not true without the assumption of
non–positive curvature. For example, let Y n be a cone over Sn−1 in Rn+1

with a base point y0. Such a space Y n has positive curvature at the isolated
singular point y0.
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In the next proposition we identify the structure of the singular set of
the space Xn.

Proposition 1.13. Suppose that σk ⊂ Sing(Xn) is a k–dimensional sim-
plex contained in Sing(Xn) with k < n − 2. Then there exists an (n − 2)–
dimensional simplex σn−2 ⊂ Sing(Xn) such that σk ⊂ ∂σn−2. Hence the
singular set is a union of simplices of dimension (n− 2).

Proof. Because Proposition 1.12 we can assume that k ≥ 1. For each
q ∈ Int(σk), there is a neighborhood of q in the form of

Uk × Cε(Link (σk, Xn)),

where q ∈ Uk ⊂ σk and Cε(Link (σk, Xn)) is the set of points in the nor-
mal cone at q ∈ σk having distance to the vertex q less than ε, (cf[̇CMS]).
By the assumption we have dim(Link (σk, Xn)) = n − k − 1 ≥ 2. Since
σk ⊂ Sing(Xn), Link (σk, Xn) is not isometric to Sn−k−1(1). Because Xn

satisfies the CAT(0) inequality, Link (σk, Xn) satisfies the CAT(1) inequal-
ity. Theorem 1.12 implies that

vol n−k−1(Link (σk, Xn)) > vol n−k−1(Sn−k−1(1)).

Therefore Link (σk, Xn) cannot be a smooth Riemannian manifold of
constant sectional curvature 1. Otherwise, Link (σk, Xn) would be covered
by Sn−k−1(1) and vol n−k−1Link (σk, Xn) ≤ vol n−k−1(Sn−k−1(1)). Hence,
there must be a vector vk+1 ∈ Link (σk, Xn) such that Tvk+1

(Link (σk, Xn))
is not isometric to Rn−k−1. Therefore, Link (vk+1,Link (σk, Xn)) is not
isometric to Sn−k−2. Let us choose small positive number δ and set
qk+1 = Expq(δvk+1). Using the above decomposition, we see that there
is a (k + 1)–simplex σk+1 containing both σk and qk+1 and σk ⊂ ∂σk+1.
It is easy to see that Link (σk+1, Xn) is isometric to Link (vk+1, L(σk, Xn)).
Thus Link (σk+1, Xn) is not isometric to Sn−k−2 which implies that σk+1 ⊂
Sing(Xn). Repeating the argument above until k+1 = n−2, one completes
the proof.

2. Gauss-Kronecker curvature and the deformation of convex
domains.

In this section, we discuss the deformation of convex domains and changes
of Gauss-Kronecker curvature under the deformation. We also show that if
Ω is a compact convex PL-domain Ω in a PL-manifold Xn of non-positive
curvature then the Gauss-Kronecker curvature measure of ∂Ω is supported
by its vertices.
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We first discuss properties of convex subsets inXn as Federer did in [Fe1]
for the Euclidean case.

Lemma 2.1. Let Ω0 ⊂ Xn be compact and convex. Then the set Ωs =
{x ∈ Xn | d(x,Ω0) ≤ s} is convex. Furthermore, for any s ≥ 0, t ≥ 0,
Ωs+t = (Ωs)t.

Proof. The first assertion follows from the fact that the function fΩ(x) =
d(x,Ω) is a convex function, as long asXn is a generalized Cartan-Hadamard
space and Ω is convex.

The triangle inequality implies that (Ωs)t ⊆ Ωs+t. To prove Ωs+t ⊆
(Ωs)t, it is sufficient to show that d(y,Ωs) = t for every y ∈ ∂Ωs+t. This
assertion is a direct consequence of the following fact. Let ϕΩ,y be a length-
minimizing geodesic segment of unit speed from Ω to y for y /∈ Ω. When Ω is
convex and Xn is a generalized Cartan-Hardamard space, one can verify that
d(Ω, ϕΩ,y(t)) = t, for t ≥ 0, (cf[̇BH]). This completes the proof of Lemma
2.1.

In the next Proposition we study the regularity properties of Ωs for a
convex subset Ω0 ⊂ Xn.

Proposition 2.2. Let Ω0 be a compact, convex and nonempty subset of Xn,
For s > 0, [∂Ωs−Sing(Xn)] is locally a C1,1 sub-manifold of [Xn−Sing(Xn)]
and its principle curvatures are locally bounded at twice differentiable points.

Proof. When Xn = Rn, Proposition 2.2 was proved by Federer, (cf[̇Fe1]). It
is sufficient to show that for each y ∈ [∂Ωs − Sing(Xn)], the hypersurface
∂Ωs is C1,1 in a neighborhood of y. For this purpose, we use Lemma 2.1 and
an earlier result of Federer.

Let πs1 : Xn → Ωs1 be the nearest point projection. Choose s1 < s suf-
ficiently close to s. Suppose ϕy,πs1(y) is the geodesic segment of unit speed
from y to πs1(y) in Xn. By Lemma 2.1, we know that Ωs1 is convex. Re-
placing Ω0 by Ωs1 if needed, we may assume that ϕy,πs1(y) does not intersect
with Sing(Xn). Since the sets ϕy,π(y) and Sing(Xn) are closed subsets of Xn

we let ε0 = d(ϕy,π(y), Sing(Xn)) > 0 and Uε = {x ∈ Xn | d(x, ϕy,π(y)) < ε}
for some 0 < ε < ε0

2 . Clearly, Uε ∩ Sing(Xn) = ϕ. Smoothness is a local
issue, thus we only have to verify that ∂Ωs ∩ Uε is C1,1. For this, we realize
that Uε is isometric to a solid cylinder Bn−1(ε) × [0, s] attached with two
half balls of radius ε. Therefore, we can isometrically embed Uε into the
n–dimensional Euclidean space Rn. Note that d(Uε ∩ ∂Ωs, Uε ∩ Ω0) = s. A
result of Federer [Fe1, Theorem 4.8] and its proof imply that Uε ∩ ∂Ωs is a
locally C1,1 submanifold. Furthermore, the principle curvatures of ∂Ωs ∩Uε

are bounded by 4
ε at twice differentiable points. This finishes our proof.
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The classical Rademacher Theorem asserts that if [∂Ωs − Sing(Xn)] is
C1,1 then it is twice differentiable almost everywhere. Proposition 1.11 im-
plies that Sing(Xn) ∩ ∂Ωs is a subset of zero (n − 1)–dimensional measure
in ∂Ωs. Thus the Gauss–Kronecker curvature G̃K∂Ωs(p) of ∂Ωs (with re-
spect to the outward unit normal vector field) is well defined for almost all
p ∈ ∂Ωs.

For any Borel set V ⊂ Xn, we consider the following function

fΩ,V (s) =
def

∫
V ∩[∂Ωs−Sing(Xn)]

G̃K∂ΩsdA,

for s > 0 where Ω0 is a convex subset of Xn.
The following proposition gives us a monotonicity property that will be

useful in the definition of an outer measure for non-smooth convex domains.

Proposition 2.3. Let Ω0 ⊂ Xn be a compact, convex domain. Then for
0 < s1 < s2 and Borel set V ⊂ Xn, we have∫

V ∩[∂Ωs1−Sing(Xn)]
G̃K∂Ωs1

dA ≤
∫

π−1(V )∩[∂Ωs2−Sing(Xn)]
G̃K∂Ωs2

dA.

where π : Xn→ Ωs1 is the nearest point projection.

Proof. Since Xn has non–positive curvature and Ωs1 is convex, π is a
distance decreasing map. Since the set Σ = π[Sing(Xn) ∩ (Ωs2 − Ωs1)] ⊂
π(Sing(Xn))∩∂Ωs1 has zero (n−1)–dimensional measure in ∂Ωs1, it follows
that ∫

V ∩[∂Ωs1−Sing(Xn)]
G̃K∂Ωs1

dA =
∫

V ∩[∂Ωs1−Σ]
G̃K∂Ωs1

dA.

For any point p ∈ [∂Ωs2−π−1(Σ)], the geodesic segment ϕp,π(p) from p to
π(p) never hits the singular set Sing(Xn). Moreover, the set U = ∂Ωs1−Σ is
a relative open in ∂Ωs1 , because Σ is a closed subset. A direct computation
shows that∫

V ∩[∂Ωs1−Sing(Xn)]
G̃K∂Ωs1

dA =
∫

V ∩U
G̃K∂Ωs1

dA

=
∫

π−1(V ∩U )∩∂Ωs2

G̃K∂Ωs2
dA ≤

∫
π−1(V )∩[∂Ωs2−Sing(Xn)

G̃K∂Ωs2
dA.

This completes the proof.

From Proposition 2.3 follows that
∫

π−1(V )∩[∂Ωs−Sing(Xn)]
G̃K∂ΩsdA is a

monotone function of s > 0.
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For any convex domain Ω (possibly with singularity) and a Borel set V ,
we define an outer measure by∫

V ∩∂Ω
d(GK∂Ω) = lim

s→0+

∫
π−1(V )∩[∂Ωs−Sing(Xn)]

G̃K∂ΩsdA (2.1)

where π : X → Ω is the nearest point projection.
In what follows, the notion of G̃K will be used for the classical

Gauss-Kronecker curvature of C1,1 hypersurfaces in the regular part of
[Xn − Sing(Xn)]. The notation of the measure GK∂Ω in

∫
V ∩∂Ω d(GK∂Ω)

is for subsets V ∩ ∂Ω, that possibly intersect the singular set Sing(Xn). In
general the measure GK∂Ω is not absolutely continuous with respect to the
(n − 1)-dimensional Hausdorff measure. Therefore dGK∂Ω|x �= f(x)dA for
any bounded measurable function f around corner points or singular points
of ∂Ω.

In the rest of this section, we discuss the upper semi-continuity of the
outer measure GK defined by equality (2.1). In the n–dimensional Euclidean
space, Federer obtained a convergence result for curvature measures (see
[Fe1]), which we now describe.

Suppose that Ω is a subset of Rn. The reach of a subset Ω is the
largest ε (possibly ∞) such that if x ∈ Rn and the distance d(x,Ω) is
smaller than ε, then Ω contains a unique point, πΩ(x), nearest to x. As-
suming that reach (Ω) > 0, Federer established the Steiner’s type for-
mula related to various curvature measures. For each bounded Borel sub-
set Q ⊂ Rn and for 0 ≤ γ < reach(Ω), the n-dimensional measure of
{x ∈ Rn | d(x,Ω) ≤ γ and πΩ(x) ∈ Q}, is given by a polynomial of degree
at most n in γ, say,

∑n
i=0 γ

n−iα(n − i)Φi(Ω, Q), where α(j) = vol j(Bj(1))
is the j–dimensional measure of the unit j–sphere Sj(1) ↪→ Rj+1. The co-
efficients Φj(Ω, Q) are countably additive with respect to Q, defining the
curvature measures Φ0(Ω, ·),Φ1(Ω, ·), . . . ,Φn(Ω, ·) (see [Fe1]). Federer’s cur-

vature measure Φ0(Ω, Q) is equal to our
∫

∂Ω∩Q
d(GK∂Ω) up to a constant

independent of Ω and Q ⊂ Rn.
Recall that the Hausdorff metric between two sets Ω and Ω′ is defined as

dH(Ω′,Ω) = sup{d(x′,Ω), d(Ω′, x) | x′ ∈ Ω′, x ∈ Ω}.

Federer’s Convergence Theorem [Fe1, p419] says the following.

Theorem 2.4. If a sequence of sets {Ωj} in Rn, all with reach at least
ε > 0, is convergent relative to the Hausdorff metric, then the associated
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sequences of curvature measures converge weakly to the curvature measure
of the limit set Ω, whose reach is also at least ε.

In particular, if U ∩ ∂Ωj and U ∩ ∂Ω are locally C1,1 hypersurfaces for
some open set U of Rn, then

lim
j→∞

∫
V ∩∂Ωj

G̃K∂ΩjdA =
∫

V ∩∂Ω
G̃K∂ΩdA,

where V is a Borel subset of U ⊂ Rn.

If we replace Rn by a PL–manifold Xn of non–positive curvature, the
conclusion of Theorem 2.4 is not true for the outer measure GK defined by
equality (2.1). Therefore, we need to impose appropriate conditions on the
sequence {Ωj} in a PL–manifold Xn in order to derive a weak convergence
result. The following observation will be used to obtain our convergence
result.
Lemma 2.5. Let Ω′ ⊂ Ω be convex subsets in Xn. Suppose that dH(Ω′,Ω) ≤
ε. Then dH(Ω′

s,Ωs) ≤ ε for any s ≥ 0.

Proof. It is easy to see that Ω′
s ⊂ Ωs because Ω′ ⊂ Ω. By the assumption

that dH(Ω,Ω′) ≤ ε, we see that Ω ⊂ Ω′
ε. Using Lemma 2.1 we have Ωs ⊂

(Ω′
ε)s = Ω′

ε+s = (Ω′
s)ε. It follows that dH(Ωs,Ω′

s) ≤ ε.
The following definition will be used in several sections of this paper.

Definition 2.6. (1) Let τ be a triangulation of Xn, x ∈ Xn. The open star
of x is the union of the interiors of cells containing x, denoted by st(x). The
closed star of x is the union of all k–simplexes σk such that x ∈ σk. The
closed star of x is denote by St(x). Both St(x) and st(x) have the induced
simplicial structure from Xn. If Ω ⊂ Xn, we let

St(Ω) =
⋃
x∈Ω

St(x), and st(Ω) =
⋃
x∈Ω

st(x).

(2) For u ∈ Tx(Xn), we let σu : t → Expx(tu) be the unique geodesic
with σu(0) = x and σ′u(0) = u for 0 ≤ t|u| < d(x, ∂[St(x)]). Let A ⊂ Xn be
a set and a ∈ A, the tangent cone of A at a is defined to be

Ta(A) =
{
u | u ∈ Ta(Xn), lim inf

t→0+

d(A,Expa(tu))
t

= 0
}
.

(3) Let σk ⊂ Xn be a k–dimensional simplex, with k ≥ 1, and q ∈ σk

be a relative interior point of σk. Suppose that Ω is a convex domain with
non–empty interior in Xn, q ∈ σk ∩ ∂Ω. Then we say ∂Ω is transversal to
σk at q if there is non–zero vector v ∈ Tq(σk) such that ±v /∈ Tq(∂Ω).
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Lemma 2.7. Let Ω0 be a compact, convex subset in Xn. Let τ be a tri-
angulation of Xn and N0 > 0. Then for all but finitely many s ∈ [0, N0],
the boundary ∂Ωs of the convex set Ωs is transversal to X (n−1), the (n− 1)–
skeleton of Xn.

Proof. Let X (0) be the set of vertices of Xn, a discrete set. For almost all
s, ∂Ωs ∩X (0) = ϕ. For k ≥ 1, we proceed as follows. Let f(x) = d(x,Ω0)
and π : Xn → Ω0 be the nearest point projection. If q ∈ ∂Ωs ∩ Int(σk) for
some s > 0 and k–simplex with 1 ≤ k ≤ n − 1, we consider the geodesic
segment ϕq : [0, s] → Xn from q to π(q) and vq = (ϕq)′out(q) the tangent
vector of ϕq at q. If ∂Ωs is not transversal to σk at q, then the vector vq

must be orthogonal to σk. It follows that q is a critical point of the function
hσk (y) = f

∣∣
σk (y) for y ∈ Int(σk). Observe that f(x) is a convex function.

There is at most one critical value for hσk , when σk is given. Consequently,
for a given σk if ∂Ωsi is not transversal to qi ∈ σk, i = 1, 2, then s1 = s2
must hold. This is because both s1 and s2 are critical values of hσk(y) for
y ∈ σk. Therefore, the cardinality of s such that ∂Ωs is not transversal to
X (n−1) is less than or equal to the number of simplexes in St(Ωs+N0). There
are only finitely many simplexes intersecting with St(Ωs+N0), because Ωs+N0

is a compact set.

Let s1(Ω) be the first non-zero critical value of the function d(x,Ω) when
it is restricted to each simplex σk in St(Ω) for k ≥ 1, i.e.,

s1(Ω) = sup{s|∂Ωt is transversal to σk, σk ∩ ∂Ωt �= ∅, for all t ∈ (0, s)}.
For vertices of Xn, we let

s0(Ω) = d(Ω, X (0) ∩ [Xn −Ω]),

where X (0) is the set of vertices of Xn.
For convex domains Ωs with 0 < s < min{s0(Ω), s1(Ω)}, we shall study

the support of the outer measure GK∂Ωs.
We emphasize that if ∂Ω has a corner point p, the Gauss-Kronecker mea-

sure GK∂Ω may be positive at p ∈ ∂Ω, (see Theorem 2.12 below). Therefore,
we first consider Ωs with Ωs ∩X (0) = ∅ instead.

Proposition 2.8. Let τ be a triangulation of X3, X (k) the k-th skeleton of
X3 and let Ω be a compact convex domain. Let s0(Ω) and s1(Ω) be as above.
Then for any 0 < s < ŝ = min{s0(Ω), s1(Ω)}, the following is true:

(1) Sing(X3) ∩ ∂Ωs = {q1, ..., qm}, where qi ∈ σ1
i ⊂ Sing(X3).

(2) There exists ε̂ > 0 such that for all 0 < ε < ε̂, the equation∫
π−1(qi)∩[∂Ωs+ε−Sing(X3)]

G̃K∂Ωs+εdA = 0
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holds. Hence,
∫
qi
d(GK∂Ωs) = 0 for each i = 1, ..., m.

(3) Consequently, for any Borel set V in X3, the equation∫
V ∩∂Ωs

d(GK∂Ωs) =
∫

V ∩[∂Ωs−Sing(X3)]
G̃K∂ΩsdA

holds, where G̃K∂Ωs is the classical Gauss-Kronecker curvature of the locally
C1,1 surface [∂Ωs − Sing(X3)].

Proof. (1) By our choice of s, the hypersurface ∂Ωs is transversal to each 1-
simplex σ1

j . Because ∂Ωs is compact and Sing(X3) ⊂ X (1), the intersection
Sing(X3) ∩ ∂Ωs is a compact discrete set. If Sing(X3) ∩ [Ωŝ − Ω] = ∅,
Proposition 2.8 holds trivially. We may assume that Sing(X3)∩[Ωŝ−Ω] �= ∅.
By our definition of ŝ, the cardinality of the discrete set Λs = ∂Ωs∩Sing(X3)
is independent of s ∈ (0, ŝ) and hence Sing(X3) ∩ ∂Ωs = {q1, ..., qm}, where
qi ∈ σ1

i ⊂ Sing(X3).
(2) Let δ = 1

4 min{d(qi, qj)|qi �= qj}. For each σ1
i above, we let �i(ε)

be the length of σ1
i ∩ [Ωs+ε − Ωs]. Because of the transversal property, the

function �i(ε) is a continuous function of ε. Therefore, there exists 0 < ε̂ < δ

such that max{�i(ε̂)|1 ≤ i ≤ m} < δ. In this case, for any pair σ1
i �= σ1

j ,
the subset Σi = π−1

s (qi) ∩ [Ωs+ε̂ −Ωs] does not meet σ1
j . In other words, for

any pi ∈ π−1
s (qi) ∩ ∂Ωs+ε̂, the geodesic segment from pi to qi does not meet

Sing(X3) except for the endpoint qi.
For 0 < ε < ε̂, we consider the subset γi,ε = π−1

s (qi) ∩ ∂Ωs+ε. As we
pointed out above,γi,ε ⊂ X3 − Sing(X3). Our goal is to show that γi,ε is a
smooth spherical arc of finite length for each i. To see this, for any p ∈ γi,ε

we let ηp : [0, s + ε] → X3 be a geodesic segment from π0(qi) to p. By
the definition of γi,ε, our geodesic segment ηp passes through the singular
point qi at time t = s. By Lemma 1.4, the geodesic ηp satisfies the property
∠((ηp)′in(qi), (ηp)′out(qi)) ≥ π.

Let ξi = (ηp)′in(qi). Note that ξi is also equal to the initial vector of
the geodesic from qi to π0(qi) ∈ Ω. Thus, ξi is independent of the choice
of p ∈ γi,ε. Because each ηp((s, s + ε]) ∩ Sing(X3) = ∅, the subset γi,ε is
isometric to the set

Γi = {w ∈ Link(qi, X3)|dL(w, ξi) ≥ π}

up to a constant factor ε.
Recall that qi ∈ σ1

i ⊂ Sing(X3). Thus, Link(qi, X3) = S0 ∗
Link(σ1

i , X
3). Let vi be the unit tangent vector of σ1

i at qi which points
into Ωs, and let αi = dL(vi, ξi). It follows from Lemma 1.1 that Γi is
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a spherical arc of length equal to sin(αi)[|Link(σ1
i , X

3)| − 2π]. There-
fore, γi,ε = π−1

s (qi) ∩ ∂Ωs+ε is a smooth spherical arc of length equal to
ε sin(αi)[|Link(σ1

i , X
3)| − 2π]. This finishes the proof of (2).

The last assertion (3) is a direct consequence of (1)-(2).

In the next theorem we give conditions on a sequence of domains in order
to assert that their total Gauss-Kronecker curvature converges.

Theorem 2.9. Let τ be a triangulation of X3, X (k) the k–skeleton of X3.
Suppose that Ω ⊂ X3 is a compact, convex domain, ŝΩ is given by Proposi-
tion 2.8, 0 < s < ŝΩ, and that {Ω(i)}+∞

i=1 is a sequence of convex domains in
X3 satisfying

(1) lim
i→+∞

Ω(i) = Ωs in the Hausdorff metric;

(2) ∂[Ω(i)]− Sing(X3) is a C1,1 hypersurface;

(3)
∫

V ∩∂[Ω(i)]

d(GK∂[Ω(i)]) =
∫

V ∩∂[Ω(i)]−Sing(X3)

G̃K∂[Ω(i)]dA for any

Borel set V in X3, where G̃K stands for the classical Gauss-Kronecker cur-
vature for a C1,1 surface.

Then

lim
i→+∞

∫
V ∩∂Ω(i)

d(GK∂[Ω(i)]) =
∫

V ∩∂Ωs

d(GK∂Ωs).

for any Borel set V in X3.

Proof. Notice that if we choose V ⊂ Sing(X3), the assumption (3) implies
that

∫
Sing(X3)∩∂[Ω(i)] d(GK∂[Ω(i)]) = 0. Thus, we can choose the support of

the outer measure GK∂[Ω(i)] within X3 − Sing(X3), the regular part of X3.
Since the outer measure GK is additive, we first prove Theorem 2.9 for

a special case when d(V̄ , Sing(X3)) ≥ 4δ > 0. Because ∂Ωs is compact, for
sufficiently large i, we may assume that dH(∂Ωs, ∂[Ω(i)])≤ δ

4 . Let W be the
δ-neighborhood of ∂Ωs. For large i, the support of the measure GK∂[Ω(i)]

lies within W , we may assume that V̄ is compact.
Write V as V = ∪m

j=1Vj where Vj are Borel sets that satisfy
(a) {Vj}mj=1 are pairwise disjoint and
(b) the diameter of each Vj is less than δ

4 , i.e., diam(Vj) < δ
4 .

Thus, we can isometrically embedded each Uj into R3 via a map Fj :
Uj → R3, where Uj is an open set of diameter less than δ

4 and Vj ⊂ Uj.
Let πi : X3 → Ω(i) be the nearest point project. In this case, for 0 <

s < δ
4 , we let W (i, j, s) = {π−1

i (∂[Ω(i)])}∩ {∂[Ω(i)]s} ∩ Vj) and Ŵ (i, j, s) =
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Fj(W (i, j, s)). By Theorem 2.4 (Federer’s Theorem) we have

lim
i→+∞

∫
Vj∩∂[Ω(i)]

d(GK∂[Ω(i)]) = lim
i→+∞

∫
Vj∩∂[Ω(i)]−Sing(X3)

G̃K∂[Ω(i)]dA

=
∫

Vj∩∂Ωs−Sing(X3)
G̃K∂ΩsdA =

∫
Vj∩∂Ωs

d(GK∂Ωs).

This completes the proof of Theorem 2.9 for the case of d(V̄ , Sing(X3)) ≥
4δ > 0 with some δ > 0.

For the general case of V ⊂ [X3 − Sing(X3)] and any given ε > 0, we
choose an open open set U ⊃ Sing(X3) such that

∫
U∩∂Ωs

d(GK∂Ωs) < ε. The
later is possible because

∫
Sing(X3)∩∂Ωs

d(GK∂Ωs) = 0.
Let 4δ = d(V −U, Sing(X3)). By the discussion above of the special case,

we have

lim
i→+∞

∫
[V −U ]∩∂[Ω(i)]

G̃K∂[Ω(i)]dA =
∫

[V −U ]∩∂Ωs

G̃K∂ΩsdA

Therefore, we have

lim inf
i→+∞

∫
V ∩∂[Ω(i)]

d(GK∂[Ω(i)])

≥ lim inf
i→+∞

∫
[V −U ]∩∂[Ω(i)]

G̃K∂[Ω(i)]dA

= lim
i→+∞

∫
[V −U ]∩∂[Ω(i)]

G̃K∂[Ω(i)]dA

=
∫

[V −U ]∩∂Ωs

G̃K∂ΩsdA

≥
∫

V ∩∂Ωs

d(GK∂Ωs)− ε

for any ε > 0. Thus, the inequality

lim inf
i→+∞

∫
V ∩∂[Ω(i)]

d(GK∂[Ω(i)]) ≥
∫

V ∩∂Ωs

G̃K∂ΩsdA

holds.
Similarly we have

lim sup
i→+∞

∫
[V −U ]∩∂[Ω(i)]

d(GK∂[Ω(i)]) ≤
∫

V ∩∂Ωs

G̃K∂ΩsdA,
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for any open set U ⊃ Sing(X3). Thus,

lim sup
i→+∞

∫
[V −Sing(X3)]∩∂[Ω(i)]

d(GK∂[Ω(i)]) ≤
∫

V ∩∂Ωs

G̃K∂ΩsdA.

Recall that GK∂[Ω(i)] and GK∂Ωs are supported in X3 − Sing(X3) by our
assumption. This completes the proof of Theorem 2.9.

In what follows we show that the total Gauss-Kronecker curvature is
lower semi-continuous.

Theorem 2.10. Suppose that there is a sequence of convex domains
{Ω(i)}+∞

i=1 in X3 satisfying

(1) lim
i→+∞

Ω(i) = Ω0 in the Hausdorff metric, where Ω0 is a compact and

convex domain in Xn;

(2) For each i, Ω(i) ⊃ Ω0 or Ω(i) ⊂ Ω0 holds;

(3)

lim
i→+∞

∫
∂[Ω(i)]

d(GK∂[Ω(i)]) ≥ c.

Then ∫
∂Ω0

d(GK∂Ω0) ≥ c.

Proof. By Lemma 2.7, except for countably many {sj}∞j=1, we have that
X (0) ∩ ∂[Ω(i)]s = ∅ and ∂[Ω(i)]s is transversal to Sing(X3) for all Ω(i). For
such s, the proof of Proposition 2.8 implies that the equation∫

V ∩∂[Ω(i)]s

d(GK∂[Ω(i)]s) =
∫

V ∩∂[Ω(i)]s−Sing(X3)

G̃K∂[Ω(i)]sdA

holds for any Borel set of V in X3.
Let ŝ be given in Proposition 2.8, then for 0 < s < ŝΩ, we also have∫

V ∩∂Ωs

d(GK∂Ωs) =
∫

V ∩∂Ωs−Sing(X3)
G̃K∂ΩsdA

By Lemma 2.5, the sequence {[Ω(i)]s} converges to Ωs in Hausdorff topology.
Therefore, for s /∈ {sj}∞j=1 and 0 < s < ŝ, Theorem 2.9 yields∫

∂Ωs

d(GK∂Ωs) = lim
i→+∞

∫
∂[Ω(i)]s

d(GK∂[Ω(i)]s).
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By our assumption (3) and Proposition 2.3, for each ε > 0, we have∫
∂[Ω(i)]s

d(GK∂[Ω(i)]s) ≥
∫

∂[Ω(i)]
d(GK∂[Ω(i)]) ≥ c− ε

for sufficiently large i. Hence, we conclude that∫
∂Ωs

d(GK∂Ωs) = lim
i→+∞

∫
∂[Ω(i)]s

d(GK∂[Ω(i)]s) ≥ c− ε.

where s /∈ {sj}∞j=1 and 0 < s < ŝ. We now choose a sequence {sα} such that
sα → 0+ but sα /∈ {sj}∞j=1. Because of Proposition 2.3, letting s = sα → 0+

in the inequality above, we derive∫
∂Ω
d(GK∂Ω) ≥ c− ε.

Letting ε→ 0+ we complete the proof.

To state our next theorem we need the following definition.

Definition 2.11. A domain Ω ⊂ Xn is called piecewise linear or briefly
PL if there is a triangulation τ of Xn such that τ |Ω becomes a simplicial
sub-complex.

In the next theorem we show that for any convex piecewise linear domain
in a piecewise Euclidean manifold, the outer Gauss–Kronecker curvature
measure is supported in the set of vertices of the domain.

Theorem 2.12. Let Ω ⊂ Xn be a compact convex PL domain. Then∫
∂Ω
d(GK∂Ω) =

∑
p∈(∂Ω)(0)

vol n−1{[Link (p,Ω)]∗}, (2.3)

where Y (0) denotes the 0–th skeleton of the simplicial domain Y and A∗ is
the dual cone of A, A∗ = {v ∈ Link (p, Xn)|dL(v, A) ≥ π

2 }.
Proof. We first show that∫

[∂Ω]−(∂Ω)(0)
d(GK∂Ω) = 0. (2.4)

For each q ∈ [∂Ω]−(∂Ω)(0), we may assume that there is a k-dimensional sim-
plex σk of dimension k ≥ 1 such that q ∈ Int(σk) ⊂ [∂Ω]. When q ∈ Int(σk),
there is a neighborhood of q in the form of Wq = Uk × Cε(Link (σk, Xn)),
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where q ∈ Uk ⊂ σk, Cε(Link (σk, Xn)) is the set of points in the normal cone
at q ∈ σk having distance to the vertex q less than ε and ε = εq > 0 is a
sufficiently small number depending on q, (cf. [CMS]). Let π : Xn → Ω be
the nearest point projection. For each s with 0 < s < εq, one can see that
[∂Ωs] ∩ π−1(Uk) is isometric to the product space Uk × V n−1−k for some
(n− 1− k) dimensional space V n−1−k. It follows that∫

[∂Ωs]∩π−1(Uk)
d(GK∂Ωs) = 0

which implies the equality (2.4). Using it, one can easily verify that∫
∂Ω
d(GK∂Ω) =

∫
(∂Ω)(0)

d(GK∂Ω) =
∑

p∈(∂Ω)(0)

vol n−1{[Link (p,Ω)]∗}.

3. The geometry of ∂Ωs for convex PL-domains Ω.

In this section we study the equidistance hypersurfaces ∂Ωs for a compact
convex PL-domain Ω in X3. For s > 0 small, we show that [∂Ωs−Sing(X3)]
is a surface of piecewise constant curvature. We further show that the sur-
face ∂Ωs can be decomposed into at most four parts: spherical, cylindrical,
conical and planar. When X3 = R3 and Ω ⊂ R3 is a convex PL-domain
the conical part never occurs in the decomposition of ∂Ωs. The conical
part of ∂Ωs might occur in the decomposition of ∂Ωs, if ∂Ωs intersects with
Sing(X3) with an angle θ and 0 < θ < π

2 . The geometry of the hypersurface
∂Ωs is closely related to the nearest point projection map πΩ : Xn → Ω.
For any x ∈ ∂Ωs, we let ϕπΩ(x),x be the geodesic segment from πΩ(x) to x.
Clearly, the initial direction ϕ′

πΩ(x),x(0) makes an angle with Ω at least π
2 .

In this section we assume that all geodesic have unit speed.

Definition 3.1. We say that a geodesic ϕ : [0, �)→ Xn is at least normal
to Ω, if x0 = ϕ(0) ∈ Ω and dL(ϕ′

out(x0), Link(x0,Ω)) ≥ π
2 , where dL denotes

the distance function of L = Link(x0, X
3).

Since X3 has non-positive curvature and Ω is convex any geodesic ray ϕ,
which is at least normal to Ω, must satisfy d(ϕ(s),Ω) = s for s ≥ 0. Hence,
ϕ intersects with ∂Ωs at ϕ(s). Therefore, we have

∂Ωs = {ϕ(s)|ϕ is a ray at least normal to Ω}.

This observation leads us to consider the moduli space of geodesic rays
that are at least normal to Ω. If X3 has non-empty singular set and if a
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geodesic ray ϕ might pass through Sing(X3) at ϕ(s0), then ϕ might bifurcate
at ϕ(s0) in the following sense.

Definition 3.2. A geodesic segment ϕ : [a, b] → Xn of unit speed is said
to bifurcate at x0 = ϕ(s0) with a < s0 < b, if there exist an ε > 0 and two
geodesic segments ψi : [s0 − ε, s0 + ε] such that ψi|[s0−ε,s0] = ϕ|[s0−ε,s0] for
i = 1, 2; but (ϕ1)′out(x0) �= (ϕ2)′out(x0).

We let Geocan
Ω,[0,s] be the set of geodesic segments ϕ : [0, s]→ Xn such that

ϕ is at least normal to Ω and ϕ does not bifurcate at any ϕ(t) with t ∈ (0, s).
Similarly, we let Geobif

Ω,[0,s] be the set of geodesic segments ϕ : [0, s] → Xn

such that ϕ is at least normal to Ω and ϕ bifurcates at ϕ(t) for some t ∈ (0, s).
We decompose the annular set [Ωs−Ω] = [Ωs−Ω]can∪ [Ωs−Ω]bif , where

[Ωs −Ω]can = {ϕ(t)|0 < t ≤ s, ϕ ∈ Geocan
Ω,[0,s]}

and
[Ωs − Ω]bif = {ϕ(t)|0 < t ≤ s, ϕ ∈ Geobif

Ω,[0,s]
}.

Similarly, ∂Ωs has a natural decomposition ∂Ωs = (∂Ωs)can∪(∂Ωs)bif , where

(∂Ωs)can = [Ωs −Ω]can ∩ ∂Ωs = {ϕ(s)|ϕ ∈ Geocan
Ω,[0,s]}

and
(∂Ωs)bif = [Ωs − Ω]bif ∩ ∂Ωs = {ϕ(s)|ϕ ∈ Geobif

Ω,[0,s]
}.

If 0 < s < d(p, ∂[St(p)]), we let sLink (p, X3) = {x ∈ X3|d(x, p) = s}. If
A ⊂ Link (p, X3), we let sA = {sϕ′(0) ∈ sLink (p, X3)|ϕ(0) = p, ϕ′

out(p) ∈
A, ϕ : [0, �] → X3 is a geodesic}. Similarly, if A ⊂ [Link(σ1,Ω)] and p0 ∈
σ1, we let sA = {sϕ′

out(p0)|ϕ′
out(p0) ∈ A, ϕ(0) = p0, whereϕ : [0, �] →

X3 is a geodesic }. Clearly, the isometry type of the set sA is independent
of the choice of p0 ∈ σ1. Furthermore, sA is isometric to A up to a constant
scaling factor 1

s .
Let ∂Ω = Ω ∩ [Xn− Ω] and τ be a triangulation of X3. When Ω is a

convex, simplicial domain in X3, we have ∂Ωs = ∪σk⊂∂Ω[π−1
Ω (σk) ∩ ∂Ωs].

Therefore, for each simplex σk ⊂ ∂Ω, we study the sets π−1
Ω (σk)∩∂Ωs in the

next Proposition.

Proposition 3.3. Let Ω be a simplicial domain with respect to a triangu-
lation τ , δ∗Ω = d(Ω, ∂[St(Ω)]), Ps = Sing(X3) ∩ [Ωs − Ω] and π = πΩ be as
above. Suppose that τ ′ is a refinement of τ such that πΩ(Ps) ⊂ (∂Ω)(1), where
(∂Ω)(1) is the 1-skeleton of ∂Ω with respect to τ ′. Then for any 0 < s < δ∗Ω
and any k-simplex σk ⊂ ∂Ω (with respect to τ ′), the following assertions are
true.
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(1) If k = 0 and q = σ0 is a vertex, then ∂Ωs ∩ π−1(q) is isometric to a
set in s[Link (q,Ω)]∗ where [Link (q,Ω)]∗ is the dual of Link (q,Ω) in
Link (q, X3).

(2) If k = 1, then π−1(σ1) ∩ (∂Ωs)can is isometric to a set in
s[Link(σ1,Ω)]∗ × [0, �] of the cylinder s[Link(σ1, X3)] × [0, �], where
� is the length of σ1.

(3) If k = 2, then π−1(σ2)∩ [Ωs−Ω] is isometric to σ2× (0, s]. Therefore,
π−1(σ2) ∩ ∂Ωs is isometric to σ2, and hence it is planar.

Proof. To show assertion (1) observe that if x ∈ ∂Ωs ∩ π−1(q) and ϕq,x be
a geodesic segment from q to x, then ϕq,x must be at least normal to Ω.
Thus, ϕ′(0) ∈ [Link(q,Ω)]∗. Conversely, if ϕq,x is least normal to Ω at q,
then by CAT(0) condition we obtain d(ϕq,x(s),Ω) = d(ϕq,x(s), q). Therefore,
x = ϕq,x(s) ∈ ∂Ωs ∩ π−1(q). This shows that ∂Ωs ∩ π−1(q) is isometric to
the set s[Link(q,Ω)]∗. Therefore, Assertion (1) is true.

In order to prove statement (2) observe that π−1(σ1) ∩ (∂Ωs)can =
{ϕ(s)|ϕ(0) ∈ σ1, ϕ ∈ Geocan

Ω,[0,s]}. Because each ϕ ∈ Geocan
Ω,[0,s] does not inter-

cept the singular set Ps, the set π−1(σ1) ∩ ∂Ωs can be identified with the
set Σ = {sϕ′(0)|ϕ(0) ∈ σ1, ϕ ∈ Geocan

Ω,[0,s]}. Since Sing(X3) is a closed subset
in X3, for each ϕ(s) /∈ Ps, there exists ε > 0 such that Bε(ϕ(s)) ∩ Ps = ∅,
where Bε(ϕ(s)) = {p ∈ X3|d(p, ϕ(s))< ε}. It follows that the subset Σ is a
relatively open subset in s[Link(σ1,Ω)]∗× [0, �], where � = |σ1| is the length
of σ1. Thus, the hypersurface π−1(σ1) ∩ (∂Ωs)can is isometric to a subset Σ
of the cylinder s[Link(σ1,Ω)]× [0, �]. The second assertion is verified.

To verify assertion (3) note that since π(Ps) = πΩ{Sing(X3)∩[Ωs−Ω]} ⊂
(∂Ω)(1) we have that π−1(σ2)∩Ps = ∅. Consequently, any geodesic segment
ϕ : [0, s] → X3 normal to Ω with ϕ(0) ∈ σ2 does not pass through the
singular set Ps. It follows that π−1(σ2) ∩ [Ωs −Ω] is isometric to σ2× (0, s].
Moreover, the projection map: πΩ|π−1(σ2)∩∂Ωs

: π−1(σ2) ∩ ∂Ωs → σ2 is an
one-to-one and onto map and πΩ|π−1(σ2)∩∂Ωs

is an isometry from π−1(σ2) ∩
∂Ωs to σ2.

Let us now restate Proposition 3.3 in the following way.

Corollary 3.4. Let Ω be a simplicial domain with respect to a triangulation
τ and δ∗Ω = d(Ω, ∂[St(Ω)]). Then, for 0 < s < δ∗Ω, the canonical portion
(∂Ωs)can of ∂Ωs consists of at most three parts: spherical, cylindrical and
planar.

Proof. Let τ ′ be a refinement of τ as in Proposition 3.3. Then we have
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[Ωs − Ω]can = ∪2
k=0 ∪σk⊂∂Ω {π−1

Ω (σk) ∩ [Ωs − Ω]can}. Corollary 3.4 now
follows from Proposition 3.3.

In order to study the set (∂Ωs)bif we need the following definition.

Definition 3.5. (1) Let Ω ⊂ Xn be a simplicial domain with respect to a
triangulation τ . We define

δ̂σk = d(σk, ∂[St(σk)]) = min{d(σm, σk)|σk ∩ σm = ∅}
and δ̂Ω = min{δσk |σk ⊂ [St(Ω)− Ω], 0 ≤ k ≤ n}, where A denotes the
closure of the subset A in Xn.

(2) Let S(Ω) = [St(Ω)−Ω]∩Sing(X3) �= ∅ and ΘΩ = min{θ∗(σ1,Ω)|σ1 ⊂
S(Ω), σ1 ∩ Ω �= ∅} where θ∗(σ1,Ω) = min{π

2 , θ(σ
1,Ω)} and θ(σ1,Ω) is the

angle between σ1 and Ω. We define

δΩ =
1
3

min{1, tanΘΩ}δ̂Ω

(3) If σ1
i is a singular line in S(Ω) such that σ1

i has an endpoint in ∂Ω, we
define σ1

i,s = σ1
i ∩ [Ωs − Ω].

The following proposition is a basic observation about a subset of S(Ω).

Proposition 3.6. Let Ω be a convex simplicial domain with respect to a
triangulation τ , 0 < s < δΩ and Ps = [Ωs−Ω]∩Sing(X3) = ∪m

i=1σ
1
i,s be as in

Definition 3.5. Suppose that ∂Ω∩σ1
i,s �= ∂Ω∩σ1

j,s. Then πΩ(σ1
i,s)∩πΩ(σ1

j,s) =
∅.
Proof. Let qi = σ1

i,s ∩ ∂Ω for i = 1, ...m. By our assumption, qi and qj
are vertices of X3 with respect to the given triangulation τ . It follows from
Definition 3.5 that d(qi, qj) ≥ δ̂Ω and θ∗(σ1

i,s,Ω) ≤ ΘΩ. The length of the
projection πΩ(σ1

i,s) is bounded by �i,s = s cot[θ∗(σ1
i,s,Ω)] ≤ s cot[ΘΩ] ≤ 1

3 δ̂Ω
for each i. If it were true that two projections overlap, then we would have
d(qi, qj) ≤ �i,s + �j,s ≤ 21

3 δ̂Ω, which contradicts to our assumption that
d(qi, qj) ≥ δ̂Ω. Proposition 3.6 has been verified.

To further decompose [Ωs − Ω]bif , for ϕ ∈ Geobif
Ω,[0,s]

, we let tϕ =

max{t|ϕ(t) ∈ Ps}, and Geobif

σ1
i,s

= {ϕ ∈ Geobif
Ω,[0,s]|ϕ(tϕ) ∈ σ1

i,s}. The

subset Geobif
σ1

i,s
is non-empty if and only if 0 < θ(σ1

i ,Ω) < π
2 . Clearly,

Geobif
Ω,[0,s]

= ∪m
i=1Geobif

σ1
i,s

. We consider the following subset of [Ωs − Ω]bif :

D3
i,s = {ϕ(u)|tϕ ≤ u ≤ s, ϕ ∈ Geobif

σ1
i,s
}
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and the corresponding hypersurface

Cσ1
i,s

= D3
i,s ∩ ∂Ωs = {ϕ(s)|ϕ ∈ Geobif

σ1
i,s
}.

By definition, we have [∂Ωs]bif = ∪m
i=1Cσ1

i,s
.

In order to study the sets Cσ1
i,s

and D3
i,s we need the following definition.

Definition 3.7. (1) A subset Σ ⊂ X3 is said to be totally geodesic if Σ is
a convex subset of X3.

(2) If � is a 2-dimensional totally geodesic subset in X3 and if there is
an isometric embedding Ψ : � → R2, then we define the boundary of � to
be ∂2� = Ψ−1[∂(Ψ(�))].

(3) If � is a 2-dimensional totally geodesic subset in X3 and if ∂2� is a
geodesic triangle in X3, then we call � a 2-dimensional triangular surface
(or briefly a 2-dimensional triangle) in X3.

To describe the 2-dimensional triangles in D3
i,s for each i = 1, 2, ...,m we

let qi = σ1
i,s ∩ ∂Ω, Oi,s = σ1

i,s ∩ ∂Ωs, and Ôi,s = πΩ(Oi,s). We assume that
θi = θ(σ1

i ,Ω) satisfies 0 < θi <
π
2 for all i = 1, 2, ...,m.

In what follows we first show that the three points {qi, Oi,s, Ôi,s} span a
2-dimensional totally geodesic triangle �̂i,s in X3. Then we show that there
exists an family of 2-dimensional triangles {�qi,Oi,s,pu}u∈Γi in D3

i,s such that
each {�qi,Oi,s,pu} intercepts �̂i,s at a common edge σ1

i,s with an angle at
least π.

For this purpose, we derive an elementary criterion to assert when two
triangles intercepts in a common edge with an angle at least π.

Lemma 3.8. Let σ3
1 and σ3

2 be 3-simplexes in X3 with respect to a trian-
gulation of τ , and let �i ⊂ σ3

i be a 2-dimensional triangles for i = 1, 2.
Suppose that �1 ∩ �2 = σ1 ⊂ Sing(X3). Then the angle between �1 and
�2 at σ1 is greater than or equal to π if and only if there exists a geodesic
ϕ : (0, �)→ X3 such that ϕ((0, �)) ⊂ �1 ∪ �2 and ϕ is transversal to σ1 at
ϕ(s0), 0 < s0 < l.

Proof. The Lemma follows by a straightforward application of Lemma 1.4
and Lemma 1.1. items (2) and (3).

An immediately application of Lemma 3.8 is the following corollary.

Corollary 3.9. Let {�1, ...,�m′} be a set of 2-dimensional triangles with
a common vertex q, σ3

j be a 3-dimensional simplex and �j ⊂ σ3
j for j =

1, ...m′. Suppose that �j and �j+1 have a common edge σ1
j for j = 1, ..., m′
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with each σ1
j different and

∑m′
j=1 |Link(q,�j)| < π. Then the following

statements are equivalent:

(1) Ψ = ∪1≤j≤m′Link (q,�j) is a spherical geodesic in Link (q, X3);

(2) There is a geodesic segment ϕ : [0, �]→ X3 such that ϕ passes through
each σj at ϕ(sj) transversally for j = 1, ...m′;

(3) �j and �j+1 meet at σ1
j with an angle ≥ π for j = 1, ...m′.

In the next Proposition we show that each D3
i,s is a 3-dimensional conical

domain isometric to

D̃3
s,θ0,η={(r cosu sin θ, r sinu sin θ, r cos θ)|0 ≤ θ ≤ θ0, 0 ≤ r ≤ rθ, 0 ≤ u ≤ η},

where rθ = s(cot θ0)
cos(θ0−θ)

and each Cσ1
i,s

is a conical hypersurface isometric to

C̃s,θ0,η = {(r cosu sin θ0, r sinu sin θ0, r cos θ0)|0 ≤ r ≤ s cot θ0, 0 ≤ u ≤ η}.

Proposition 3.10. Let Ω be a simplicial convex domain in X3 with respect
to a triangulation. Suppose that 0 < s < δΩ and 0 < θi <

π
2 . Then there

is an isometric immersion Fi : D3
i,s → D̃3

s,θi,ηi
such that Fi(Cσ1

i,s
) ⊂ C̃s,θi,ηi

where ηi = |Link(σ1
i , X

3)| − 2π and θi is the angle between σ1
i and ∂Ω.

Moreover, ςi = C̃s,θi,ηi − Fi(Cσ1
i,s

) is either empty or a union of finitely
many straight line segments.

Proof. The singular line σ1
i,s has two endpoints qi ∈ ∂Ω and Oi ∈ ∂Ωs. Let

Ôi = πΩ(Oi). By Corollary 3.9, the three points {qi, Oi, Ôi} span a totally
geodesic, 2-dimensional, rectangular triangle �̂. Because ∠qi(Oi, Ôi) = θi,
it follows that the length of σ1

i,s is equal to �̃i = s
sin θi

. Let σ̃1
i,s be the

geodesic segment from Oi to qi. Observe that the two sets σ̃1
i,s and σ1

i,s are
equal as subsets, but they are viewed to have opposite orientations. Define
vi = (σ̃1

i,s)
′
out(Oi) ∈ L = Link (Oi, X

3). Clearly, Link (vi, L) is isometric to
Link (σ1

i , X
3). If ϕOi,Ôi

: [0, s] → X3 is a geodesic segment from Oi to Ôi,

then we let wi = (ϕOi,Ôi
)′out(Oi). Because �̂ is a totally geodesic rectangular

triangle, using Lemma 1.1 we obtain that dL(vi, wi) = π
2 − θi.

Consider all spherical geodesics ψvi
wi,h

: [0, π
2 ] → L from wi to h with

unit speed such that ψvi
wi,h

(0) = wi, ψ
vi
wi,h

(π
2 − θi) = vi and ψvi

wi,h
(π

2 ) = h.
Let ζin = (ψvi

wi,h
)′in(vi) and ζh = (ψvi

wi,h
)′out(vi). It follows from Lemma

1.4 that ∠(ζin, ζh) ≥ π. Let Γi = {ζ ∈ Link (vi, L)|∠(ζin, ζ) ≥ π} and
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Γ′
i = {ψvi

wi,h
(π

2 )}. By definition, Γ′
i is an arc in ∂Bθi(vi) = {h ∈ L|d(h, vi) =

θi}. There is an one-to-one and onto map g : Γ′
i → Γi given by g(h) =

(ψvi
wi,h

)′out(vi). Observe that |Γi| = ηi = |Link(σ1
i , X

3)| − 2π and |Γ′
i| =

(sin θi)ηi. Let ζ : [0, ηi] → Γi be an arc-length parameterization of Γi.
Consequently, there is a parameterization h : [0, ηi] → Γ′

i given by h(u) =
g−1(ζ(u)).

Let ξu : [0,∞] → X3 be a geodesic ray with ξu(0) = Oi and
(ξu)′out(Oi) = h(u) ∈ Γ′

i ⊂ Link (Oi, X
3) for u ∈ [0, ηi] and set maxu =

sup{t|ξu|(0,t) is not bifurcating}, tu = min{s cotθi, maxu} and pu = ξu(tu).
We assert the following is true.

Claim A (1) There exists ε∗ > 0 such that, for all h(u) ∈ Γ′
i, tu ≥ ε∗.

(2) The three points {Oi, qi, pu} span a totally geodesic 2-simplex �Oi,qi,pu

in X3 with respect to a refinement of τ ;
(3) D3

i,s = ∪u∈Γi�Oi,qi,pu.
(4) For all (except for possible finitely many) u ∈ Γi, the triangle �Oi,qi,pu

is a rectangular triangle with edge lengths {s, s cotθi, s
sin θi
}.

Assuming that Claim A holds for a moment, we construct the isometric
immersion Fi : D3

i,s → R3 as follows: We first define F (Oi) = (0, 0, 0),
Fi(qi) = (0, 0, �̃i) Fi(σ̃1

i,s(r)) = (0, 0, r) for r ∈ [0, �̃i] where �̃i = s
sin θi

. Our
next step is to define Fi : Γ′

i → S2, where S2 is the unit sphere in R3. Define

Fi(h(u)) = (sin θi cos u, sinθi sinu, cosθi)

for u ∈ [0, ηi], where h : [0, ηi] → Γ′
i is a parameterization of Γ′

i of constant
speed sin θi as above. Define Fi(pu) = tuFi(h(u)) and Fi(ξu(t)) = tFi(h(u))
for all t ∈ [0, tu] and u ∈ [0, ηi].

By Claim A(2), we know that �Oi,qi,pu is a 2-simplex in X3 with respect
to some triangulation τu of X3. We already defined Fi on the three vertices
of �Oi,qi,pu. Therefore, we can linearly extend the map Fi to the whole
triangle �Oi,qi,pu. Furthermore, the map Fi isometrically takes the triangle
�Oi,qi,pu into

�u = {(r sin θ cosu, r sin θ sinu, r cos θi)|0 ≤ r ≤ rθ, 0 ≤ θ ≤ θi},

where rθ = s(cot θi)
cos(θi−θ) for θ ∈ [0, θi]. Theorem 3.10 now follows from Claim A.

It remains to verify Claim A. Claim A(1) is a direct consequence of
the fact that the exponential map ExpOi : B∗

ε∗ → Xn where B∗
r = {w ∈

TO(Xn)||w| ≤ r} is an isometric embedding provided that ε∗ is small (see
[BH]).
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To prove Claim A(2) consider the map Gi : [X3−{Oi}]→ Link(Oi, X
3)

given byGi(p) = (ϕOi,p)
′
out(Oi), where ϕOi,p is a geodesic segment inX3 from

Oi and p. Consider a subset A = {ψvi

wi,h(u)(θ)|u ∈ [0, ηi], π
2 − θi ≤ θ ≤ π

2}.
If θ = θv = d(v, vi), we let tv = min{maxv ,

s(cot θi)
cos(θ−θi)

}. Observe that, for
any θ ∈ (π

2 − θi, π
2 ] and v = ψvi

wi,h(u)
(θ), we have ξv((0, tv)) ∩ Sing(X3) = ∅.

Define pv = ξ(tv). There are two cases for any given u ∈ [0, ηi].
Case 2a. For every v = ψvi

wi,h(u)(θ) with θ ∈ (π
2 − θi, π

2 ], maxv ≥ s(cot θi)
cos(θ−θi)

.
In this case, we have �Oi,qi,pu = {ξv(t)|0 ≤ t ≤ tv , v = ψvi

wi,h(u)
(θ)}.

Therefore, the three points {Oi, qi, pu} span a totally geodesic 2-simplex
�Oi,qi,pu in X3 with respect to a refinement of τ and hence Claim A(2)
follows.
Case 2b. There exists some v = ψvi

wi,h(u)(θ) with θ ∈ (π
2 − θi, π

2 ] such that

maxv <
s(cot θi)

cos(θ−θi)
holds.

Using the spherical geodesic ψvi

wi,h(u)
and Proposition 3.8, one can show

that, for sufficiently small t, the four points {ξv(t), qi, Oi, Ôi} span a totally
geodesic 2-dimensional subset Σξv(t) in X3. Because θ = ∠Oi(ξv(t), Ôi) ≤ π

2 ,
one can also show that dΣξv(t)

(ξv(t), πΩ(σ1
i,s)) ≤ s. Because Σξv(t) is totally

geodesic, we have that dX3(ξv(t),Ω) ≤ s and πΩ(ξv(t)) ∈ πΩ(σ1
i,s), for all t ≤

s(cot θi)
cos(θ−θi)

. If ξv(tv) ∈ Sing(X3), then there exists σ1
j,s such that ξv(tv) ∈ σ1

j,s.
By Proposition 3.6, σ1

j,s and σ1
i,s must have a common endpoint point qi. It

follows that Gi(σ1
j,s) ⊂ ψvi

wi,h(u)
. Thus, σ1

j,s becomes an edge of the triangle
�Oi,qi,pu . Furthermore, the set {Oi, qi, pu} span a totally geodesic 2-simplex
�Oi,qi,pu in X3 with respect to a refinement of τ . Claim A(2) follows for
Case 2b as well.

To show Claim A(3), we use the proof of Claim A(2). The argument
above shows that ∪u∈Γi�Oi,qi,pu ⊂ D3

i,s. Conversely, if p ∈ D3
i,s, then we

let p̂ = πΩ(p) ∈ σ̂1
i,s. It follows from Corollary 3.9 that the set {qi, p, p̂}

span a totally geodesic 2-dimensional set �qi,p,p̂. By definition of D3
i,s, the

three points {qi, p, Oi} span a a totally geodesic 2-simplex �Oi,qi,p in X3

with respect to a refinement of τ . The subset Σp = �Oi,Ôi,qi
∪�Oi,qi,p form

a totally geodesic 2-dimensional subset in X3. Let ξOi,p be the geodesic
segment from Oi to p, and let v = ξ′Oi,p

(0). Because d(Oi, Ôi) = s ≥
dX3(p,Ω) = dΣp(p, p̂) and X3 satisfies the CAT (0) inequality, we obtain
θ = ∠Oi(p, Ôi) = dL(v, wi) ≤ π

2 , where wi = ϕ′
Oi,Ôi

(0). Clearly, by definition

of D3
i,s, one has θ ≥ π

2 − θi and t = d(p, Oi) ≤ tv. Hence, p = ξv(t) for some
v ∈ ψvi

wi,h(u), h(u) ∈ Γ′
i and t ≤ tv . It follows that D3

i,s ⊂ ∪u∈Γi�Oi,qi,pu and
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hence D3
i,s = ∪u∈Γi�Oi,qi,pu. This completes the proof of Claim A (3).

For the last assertion of Claim A, observe that there are at most
finitely many singular lines σ1

j,s in Ps with θj ∈ (0, π
2 ). Therefore, there

are only finitely many geodesics ξu that intercepts the singularities {σ1
j,s}.

Thus, for all (except for possible finitely many) u ∈ Γi, we have that
tu = s cot θi and the triangle �Oi,qi,pu is a rectangular triangle with edge
lengths {s, s cotθi, s

sin θi
}. Claim A(4) follows and so does Proposition 3.10.

We conclude this section by summarizing our main results above.

Theorem 3.11. Let Ω be a simplicial convex domain in X3 with respect
to a triangulation τ , δΩ be as in Definition 3.5 and 0 < s < δΩ. Then the
hypersurface ∂Ωs can be decomposed into two portions ∂Ωs = (∂Ωs)can ∪
(∂Ωs)bif such that

(1) The portion (∂Ωs)can consists at most three parts: spherical, cylindrical
and planar.

(2) If there exists a singular 1-simplex σ1
i ⊂ [St(Ω)− Ω] which intercepts

Ω with angle θi ∈ (0, π
2 ), then (∂Ωs)bif is a non-empty subset;

(3) The portion (∂Ωs)bif is a union of conic surfaces;

(4) If σ1
i ⊂ [St(Ω) − Ω] ∩ Sing(X3) and Oi = σ1

i ∩ ∂Ωs, then
|Link(Oi, ∂Ωs)| = 2π + (sin θ∗i )[|Link(σ1

i , X
3)| − 2π], where θ∗i =

min{θi, π
2}.

(5) If p ∈ [(∂Ωs)− Sing(X3)], then |Link(p, ∂Ωs)| = 2π.

Proof. Assertions (1)-(3) are direct consequence of Corollary 3.4 and Propo-
sition 3.10. For the remaining two assertions (3) and (4), we proceed as
follows. For any p ∈ ∂Ωs, we let p̂ = πΩ(p), ϕp,p̂ : [0, s]→ X3 be the unique
geodesic segment from p to p̂ and wp = (ϕp,p̂)′out(0). Because Ω is convex and
X3 satisfies the CAT(0) inequality, Corollary 3.4 and Proposition 3.10 imply
that Link(p, ∂Ωs) = {u ∈ L|dL(u, wp) = π

2}, where L = Link(p, X3). When
p /∈ Sing(X3), one knows that Link(p, X3) isometric to the unit sphere S2

in R3. In this case, the subset {u ∈ Link(p, X3)|dL(u, wp) = π
2} is isometric

to a great circle of length 2π in S2. It follows that |Link(p, ∂Ωs)| = 2π for
p ∈ [(∂Ωs)− Sing(X3)]. When p = Oi = σ1

i ∩ ∂Ωs for some σ1
i ⊂ Sing(X3),

we let wi = wp and we keep the same notation as in the proof of Propo-
sition 3.10. Let σ̃1

i,s : [0, �̃i] → X3 be the geodesic segment from Oi to
qi, and let vi = (σ̃1

i,s)
′
out(Oi). We already showed in the proof of Propo-

sition 3.10 that dL(vi, wi) = π
2 − θ∗i , where θ∗i = min{θi, π

2 }. Recall
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that L = S0 ∗ Link(σ1
i , X

3), where S0 = {vi,−vi}. If θi ≥ π
2 , then

the proof of Proposition 3.3 (1) shows that vi = wi. Therefore, we have
{u ∈ L|dL(u, wi) = π

2} = {u ∈ Link(Oi, X
3)|dL(u, vi) = π

2}. Such a sub-
set is isometric to Link(σ1

i , X
3). Hence, |Link(Oi, ∂Ωs)| = |Link(σ1

i , X
3)|

for the case θi ≥ π
2 . When 0 < θi <

π
2 , we let −vi ∈ Link (Oi, σ

1
i ) such

that −vi is the opposite direction of vi. It follows that d(vi,−vi) = π
and d(wi,−vi) ≥ π − [π

2 − θ∗i ] > π
2 . Let consider all spherical geodesics

ϕwi,u : [0, π
2 ] → L of length π

2 with the same initial point wi. If ϕwi,u

does not pass through vi then ϕwi,u does not bifurcate. Clearly, the subset
Λi = {u ∈ Link(Oi, X

3)|dL(u, vi) = π
2 , ϕwi,u does not bifurcate} has length

2π. Let Γ′
i = {u ∈ Link(Oi, X

3)|dL(u, vi) = π
2 , ϕwi,u passes through vi}.

The proof of Proposition 3.10 shows that the length |Γ′
i| of Γ′

i is equal to
(sin θi)[|Link(σ1

i , X
3)| − 2π]. Therefore, we conclude that

|Link(Oi, ∂Ωs)| = |Λi|+ |Γ′
i| = 2π + (sin θi)[|Link(σ1

i , X
3)| − 2π]

for the case 0 < θi <
π
2 . The proof of Theorem 3.11 has been completed.

4. A formula for the outer Gauss–Kronecker curvature in
dimension 3, Proof of Main Theorem.

Let Xn be an n–dimensional PL manifold satisfying the CAT(0) condition
and Ω ⊂ Xn be a bounded convex domain. In this section we calculate the
total outer Gauss–Kronecker curvature of ∂Ω when n = 3. Observe that
in the 2–dimensional case the Gauss–Kronecker curvature is the geodesic
curvature.

Theorem 4.1. Suppose that Ω ⊂ X2 is a compact, convex piecewise linear
domain with boundary ∂Ω. Then the total outer geodesic curvature of ∂Ω is
given by ∫

∂Ω

d(GK∂Ω) = 2π +
∑

qi∈Ω∩Sing(X2)

[|Link (qi, X2)| − 2π].

Proof. It is proved in Theorem 2.12 that if 0 < s < s0 = d(Ω, ∂[St(Ω)]) then∫
∂Ω
d(GK∂Ω) =

∫
∂Ωs

G̃K∂Ωsd�,

for 0 < s < s0. Let Dε(qi) be the metric disk of radius ε centered at qi,
where {q1, q2, . . . , qm} = Sing(X2)∩Ω, 0 < ε < δ

4 , and δ = min{s0, d(qi, qj) |
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qi ∈ Sing(X2) ∩ Ω, qi �= qj}. The domain Ω̂ = Ωs −
∐m

i=1 Dε(qi) has no
singularities. Using the Gauss–Bonnet formula we obtain

2π(1−m) =
∫

∂Ω̂
G̃K∂Ω̂d� =

∫
∂Ωs

G̃K∂Ωsd�−
m∑

i=1

|Link (qi, X2)|.

It follows that∫
∂Ω
d(GK∂Ω) =

∫
∂Ωs

G̃K∂Ωsd� = 2π +
m∑

i=1

[|Link (qi, X2)| − 2π].

In the following proposition we compute the total Gauss-Kronecker cur-
vature of ∂B3

s (p).

Proposition 4.2. Let τ be a triangulation of X3, and p ∈ X3. Suppose
that ε0 = d(p, ∂[St(p)]). Then∫

∂Bs(p)
d(GK∂Bs(p)) = Area (Link (p, X3))

= 4π +
∑

σ1∈St(p)

[|Link (σ1, X3)| − 2π] (4.1)

where Bs = Bs(p) = {x ∈ X3 | d(x, p)≤ s} and 0 < s < ε0.

Proof. Let L = Link (p, X3). L is a piecewise spherical two–dimensional
manifold. Thus the singularities of L are isolated, say v1, . . . , vm ∈ Sing(L).
We choose a sufficiently small δ > 0, δ < 1

4 min{dL(vi, vj) | vi �= vj, vi, vj ∈
Sing(L)}. Let Dδ(vi) = {w ∈ L | dL(w, vi) < δ} be a metric disk centered
at vi of radius δ in L. Then the surface Σδ = L −⋃m

i=1 Dδ(vi) is a smooth
Riemannian surface of constant curvature K ≡ 1 and Σδ has its boundary
∂Σδ =

⋃m
i=1 ∂Dδ(vi). Applying the Gauss–Bonnet theorem to Σδ, we have

Area (Σδ) =
∫

Σδ

KΣδ
dA = 2π(2−m) + (cos δ)

m∑
i=1

|Link (vi, L)|.

We now denote the 1–simplex ϕvi(t) = Expp(tvi) by σ1
i for t ∈ [0, εi]. The

last formula can be rewritten as

Area (Σδ) = 2π(2−m) + cos δ
m∑

i=1

|Link (σ1
i , X

3)|.

Letting δ → 0, we conclude

Area (L) = lim
δ→0

Area (Σδ) = 4π +
m∑

i=1

[|Link (σ1
i , X

3)| − 2π]
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and hence our Proposition.

In order to state the next theorem we need the following definition.

Definition 4.3. Suppose that Ω is a compact domain with boundary and
positive reach. Let p ∈ ∂Ω and v ∈ {Link (p, Xn) − Link (p,Ω)}, the angle
θp(v,Ω) between v and Ω is given by

θp(v,Ω) =
def

�p(v,Ω) =
def
dL(v,Link (p,Ω))

where dL stands for the distance function on Link (p, Xn). When dimX3 =
3, p ∈ ∂Ω and v ∈ {Link (p, X3)− Link (p,Ω)}, we define

θ∗p(v,Ω) = min
{π

2
, θp(v,Ω)

}
.

The following theorem is a special case of our Main Theorem stated in
the introduction.

Theorem 4.4. Let Ω ⊂ X3 be a convex PL domain. Then∫
∂Ω
d(GK∂Ω) = 4π

+
∑

p∈(∂Ω)(0)

∑
σ1⊂St(p)

∑
v∈Link (p,σ1)

[|Link (σ1, X3)| − 2π] sin[θ∗p(v,Ω)]. (4.2)

Proof. Assume that ∂Ωs meets σ1
j ⊂ Sing(X3) at pj for j = 1, ..., N ′ and

0 < s < δΩ. After re-indexing if needed, we may assume that

(1) For 1 ≤ j ≤ m1, the singular 1-simplex σ1
j meets ∂Ω at a vertex vj

with angle less than π
2 .

(2) For m1 < j ≤ m2, the singular 1-simplex σ1
j meets ∂Ω at a vertex vj

with angle exactly π
2 .

(3) For m2 < j ≤ N ′, the singular 1-simplex σ1
j meets ∂Ω at a vertex vj

with angle greater than π
2 .

If σ1
j meets ∂Ωs at a vertex vj with angle π

2 , then by Corollary 3.7, pj is
contained in the intersection of the spherical region and the planar region of
∂Ωs. This intersection is along two spherical geodesics of length rj in ∂Ωs

with the same starting point pj. Moreover the surface is C1,1 around an
intersection point.

Let us consider the metric disk Dε(pj) = {p ∈ ∂Ωs|d∂Ωs(p, pj) < ε}. We
choose ε < π

2s sufficiently small so that the disks {Dε(pj)}1≤j≤N ′ are disjoint
and the following extra conditions hold:
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(1) For 1 ≤ j ≤ m1, the disk Dε(pj) is contained entirely in the flat part
of ∂Ωs;

(2) For m1 < j ≤ m2, 0 < ε < rj;

(3) For m2 ≤ j ≤ N ′, the disk Dε(pj) is contained entirely in the spherical
part of ∂Ωs;

(4) Each closed disk Dε(pj) is Lipschitz homeomorphic to D̂ε(pj) = {w ∈
Tpj(∂Ωs)||w| ≤ ε}.

In order to apply the Gauss-Bonnet formula to the surface

M2
ε = [∂Ωs − ∪1≤j≤N ′{Dε(pj)],

we need to estimate the total geodesic curvature of each ∂Dε(pj) in ∂Ωs.
Let κ∂Dε(pj)(u) denote the geodesic curvature of ∂Dε(pj) with respect to the
unit normal vector field pointing into M2

ε (i.e., with respect to the outward
unit normal vector of Dε(pj) along ∂Dε(pj)).

When 1 ≤ j ≤ m1, the disk Dε(pj) is contained in the flat part of ∂Ωs.
Hence, the total geodesic curvature of ∂Dε(pj) is given by∫

∂Dε(pj)
κ∂Dε(pj)(u)d� =

∫
u∈Link(pj ,∂Ωs)

1
ε
εdu = |Link(pj, ∂Ωs)|. (4.3)

When m2 ≤ j ≤ N , the disk Dε(pj) is contained in the spherical part of
∂Ωs. Hence, the total geodesic curvature of ∂Dε(pj) is given by∫

∂Dε(pj)
κ∂Dε(pj)d�

=
∫

u∈Link(pj ,∂Ωs)
(cot

ε

s
) sin

ε

s
du

=(cos
ε

s
)|Link(pj, ∂Ωs)|. (4.4)

When m1 ≤ j ≤ m2, by Corollary 3.7 and the discussion above, the
disk Dε(pj) is divided into two parts by the two spherical geodesics in ∂Ωs

starting at the same point pj. Let Σj,0,ε be the flat part of Dε(pj) and let
Σj,1,ε be the spherical part of Dε(pj). Suppose that αj,0 = |Link(pj,Σj,0,ε)|
and αj,1 = |Link(pj,Σj,1,ε)|. Clearly, we have

αj,0 + αj,1 = |Link(pj, ∂Ωs)|. (4.5)
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A computation shows that∫
Σj,0,ε∩∂Dε(pj)

κ∂Dε(pj)(u)d� = αj,0 (4.6)

and ∫
Σj,1,ε∩∂Dε(pj)

κ∂Dε(pj)(u)d� = αj,1 cos
ε

s
. (4.7)

It follows from (4.3)-(4.7) that

|Link(pj, ∂Ωs)| cos
ε

s
≤
∫

∂Dε(pj)
κ∂Dε(pj)(u)d� ≤ |Link(pj, ∂Ωs)| (4.8)

holds for all 1 ≤ j ≤ N ′.
Corollary 3.7 implies that the surface M2

ε ⊂ [∂Ωs − Sing(X3)] is C1,1.
Thus we can apply the Gauss-Bonnet Theorem to M2

ε ⊂ ∂Ωs. The Euler
number of M2

ε is 2−N ′. By Corollary 3.7, the intrinsic Gauss curvature of
M2

ε is either 1
s2 or 0. Therefore, we conclude that∫

M2
ε

G̃K∂Ωs = 2π(2−N ′) +
∑

1≤j≤N ′

∫
∂Dε(pj)

κ∂Dε(pj)(u)d�. (4.9)

It follows from inequalities (4.8) and (4.9) that

2π(2−N ′) +
∑

1≤j≤N ′
|Link(pj, ∂Ωs)| cos

ε

s

≤
∫

M2
ε

G̃K∂ΩsdA

≤2π(2−N ′) +
∑

1≤j≤N ′
|Link(pj, ∂Ωs)|. (4.10)

Letting ε→ 0 in (4.10) and using Corollary 3.7, we arrive at∫
∂Ωs−Sing(X3)

G̃K∂ΩsdA

=2π(2−N ′) +
∑

1≤j≤N ′
|Link(pj, ∂Ωs)|

=4π +
∑

1≤j≤N ′
ηj sin θ∗pj

(σ1
j , ∂Ωs), (4.11)
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where ηj = |Link(σ1
i , X

3)| − 2π. Letting s→ 0 in (4.11), one completes the
proof of Theorem 4.4.

The proof of the Main Theorem can be reduced to our previous theorem.

Proof of Main Theorem. For each 0 < s < ŝ be as in Proposition 2.8. Assume
that there exists a sequence of compact convex PL-domains {W (i, s)} with
non-empty interior such that W (i, s) ⊂ Ωs and limi→∞W (i, s) = Ωs in the
Hausdorff metric. The existence of these sets will be discuss later. Theorem
4.4 and its proof imply that∫

∂W (i,s)
d(GK∂W (i,s)) = 4π+∑

p∈∂W (i,s)

∑
σ1⊂St(p)

∑
v∈Link (p,σ1)

[|Link (σ1, X3)| − 2π] sin[θ∗p(v,W (i, s))].

(4.12)

For sufficiently large i, we may assume that Ωs/2 ⊂W (i, s) ⊂ Ωs.
For each given (i, s), by the proofs of Theorem 3.11 and Theorem 4.4,

there exists a δi,s such that as long as 0 < εi < δi,s, we have∫
∂[W (i,s)]εi

d(GK∂[W (i,s)]εi
) = 4π

+
∑

p∈∂[W (i,s)]εi

∑
σ1⊂St(p)

∑
v∈Link (p,σ1)

[|Link (σ1, X3)| − 2π] sin[θ∗p(v, [W (i, s)]εi)].

(4.13)

Let us fix a sufficiently small s. By Lemma 2.7, except for countably
many {δα}, we have ∂[W (i, s)]εi ∩X (0) = ∅ and ∂[W (i, s)]εi is transversal to
Sing(X3) for all for i = 1, 2, .....

Choose a sequence {εi} such that εi → 0+ and εi /∈ {δα}. By Lemma
2.5, we have

0 ≤ lim
i→∞

dH([W (i, s)]εi,Ωs+εi) ≤ lim
i→∞

dH(W (i, s),Ωs) = 0.

Thus, limi→∞[W (i, s)]εi = Ωs. Using Theorem 2.9 and letting i → ∞ in
(4.13), we get∫

∂Ωs

d(GK∂Ωs) = 4π

+
∑

p∈(∂Ωs)

∑
σ1⊂St(p)

∑
v∈Link (p,σ1)

[|Link (σ1, X3)| − 2π] sin[θ∗p(v,Ωs)] (4.14)
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Letting s → 0 in (4.14), we complete the proof of Main Theorem under the
assumption that the desired family {W (i, s)} exist.

It remains to construct the subsets {W (i, s)}. Let τ0 be a triangulation
of X3. Let ŝ as in Proposition 2.8, so that ∂Ωs is transversal to each σk for
k = 0, 1, 2. The convexity of ∂Ωs implies that σ1

j ∩ ∂Ωs is a discrete subset
of at most two points. If σ1

j ∩∂Ωs �= ∅. we let σ1
j ∩∂Ωs = {p1,j,h}m1,j

h=1 , where
1 ≤ m1,j ≤ 2. Re-triangulate σ̄1

j so that {p1,j,h}m1,j

h=1 become vertices and the
mesh size of this new division of σ̄1

j is less than 1
i . The convexity of ∂Ωs

implies that σ2
j ∩∂Ωs is a union of at most three connected arcs. Thus, we let

σ2
j ∩ ∂Ωs = {γ2,j,h}m2,j

h=1 , where 1 ≤ m1,j ≤ 3 when σ2
j ∩ ∂Ωs �= ∅. Notice that

the endpoints of each connected arc γ2,j,h are contained in ∪j{p1,j,h}m1,j

h=1 .
Divide each connected arc γ̄2,j,h into finitely pieces by adding new points
{p2,j,h}m2,j

h=1 such that the distance between consecutive points is less than
1
i . Re-triangulate σ̄2

j so that {p2,j,h}m2,j

h=1 ∪ {(σ̄2
j ) ∩ [∪n{p1,n,h}m1,n

h=1 ]} become
vertices and the mesh size of this new triangulation of σ̄2

j is less than 1
i . The

convexity of ∂Ωs implies that σ3
j ∩ ∂Ωs is a union of at most four connected

topological disks. If σ3
j ∩ ∂Ωs �= ∅ we let σ3

j ∩ ∂Ωs = {D3,j,h}m3,j

h=1 , where
1 ≤ m1,j ≤ 4. Notice that the boundary of each topological disk D3,j,h are
contained in ∪n{γ2,n,h}m2,n

h=1 , which were described above. For topological
disk D3,j,h, we add more points {p3,j,h}m3,j

h=1 such that {p3,j,h}m3,j

h=1 ∪ {(σ̄3
j ) ∩

[∪2
k=1 ∪n {pk,n,h}mk,n

h=1 ]} become a maximum 1
4i -separated subset of σ̄3

j . Re-
triangulate σ̄3

j with these new vertices such that the mesh size of this new
triangulation of σ̄3

j is less than 1
i .

We now choose a refinement τi of the initial triangulation τ0 so that the
discrete subset ∪3

k=1 ∪j {pk,j,h}mk,j

h=1 become vertices with respect to τi. Let
W (i, s) be the convex hull of ∪3

k=1∪j {pk,j,h}mk,j

h=1 . Then ∂W (i, s) is simplicial
with respect to τi. Hence, W (i, s) is a convex PL-domain with the property
dH(W (i, s),Ωs) ≤ 1

i and this finishes our proof.

5. Gauss-Kronecker curvature measures on the convex part
of a compact domain.

In order to prove the isoperimetric inequality stated in the introduction as
our Main Corollary we need to consider the inner Gauss-Kronecker curva-
ture, and we shall derive the inequalities (5.2) below and (6.7) of Section 6.
The inequality (6.7) of the next section and standard arguments then imply
the isoperimetric inequality.

Definition 5.1. Let Ω ⊂ X3 be a compact domain with non–empty interior.
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The total inner Gauss–Kronecker curvature measure of ∂Ω is defined by∫
∂Ω
GKI

∂ΩdA = lim sup
ε→0

∫
∂Ω−ε∩∂Ω∗

−ε

d(GK∂Ω∗
−ε

), (5.1)

where Ω−ε = {x ∈ Ω | d(x, ∂Ω)≥ ε} and Ω∗−ε is the convex hull of Ω−ε.

Let us make two elementary observations about ∂W ∩ (∂W ∗) for any
compact set W ⊂ Xn, where ∂W = W ∩ [Xn−W ].

Firstly we note that ∂W ∩ (∂W ∗) �= ∅ provided that W �= ∅. In fact
if x0 ∈ Xn and R = max{d(x, x0)|x ∈ W} > 0, then there exists p ∈
(∂W ) ∩ ∂BR(x0). Since W ⊂ BR(x0) and BR(x0) is a convex set of Xn we
conclude that W ∗ ⊂ BR(x0). Thus p ∈ ∂W ∗ and hence p ∈ ∂W ∩ (∂W ∗).

Secondly, we observe that if Ω compact set with non–empty interior then
Ω∗−ε �= Ω. To see this apply the previous discussion to the set Ω−ε to conclude
that there exists p ∈ ∂Ω−ε ∩ ∂Ω∗−ε. Since d(p, ∂Ω) ≥ d(∂Ω−ε, ∂Ω) ≥ ε > 0
we find that ∂Ω∗−ε �= ∂Ω and hence Ω∗−ε �= Ω, for any small ε > 0.

Therefore the sets Ω∗−ε have the properties that are convex sets with
Ω∗−ε ⊂ Ω and Ω∗−ε �= Ω which are fundamental for the arguments in Section
6.

We remark here that the right hand side of (5.1) is a finite number for a
given compact convex domain, since we have the following observation.

Proposition 5.2. Let τ be a triangulation of X3. Suppose that Ω is a
convex and compact domain in X3 and m0 is the number of n–simplexes in
St(Ω). Then ∫

∂Ω
d(GK∂Ω) ≤ 4πm0.

Proof. Let N0 = d(Ω, ∂[St(Ω)]). By Lemma 2.7 we know that for s small,
∂Ωs is transversal to X (2). Moreover∫

∂Ωs

d(GK∂Ωs) =
def

∫
∂Ωs−Sing(X3)

d(GK∂Ωs) ≤
∑

σ3⊂St(Ω)

∫
σ3∩∂Ωs

d(GK∂Ωs).

We can isometrically embed Ωs ∩ σ3 ⊂ σ3 into the Euclidean space R3 in
order to estimate each of the integrals on the right hand side of the last
inequality. Note that if Ωs is convex, then Ωs ∩ σ3 is also convex. Since
(∂Ωs) ∩ σ3 ⊂ ∂(Ωs ∩ σ3) we get that∫

σ3∩∂Ωs

d(GK∂Ωs) ≤
∫

∂[Ωs∩σ3]
d(GK∂[Ωs∩σ3]).
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Furthermore, we find that∫
∂[Ωs∩σ3]

d(GK∂[Ωs∩σ3]) = 4π.

Using the inequalities above, we conclude that∫
∂Ωs

d(GK∂Ωs) ≤ 4πm0

where m0 is the number of n–simplexes in St(Ω).

In the rest of this subsection we will establish the inequality∫
∂Ω∩∂Ω∗

d(GK∂Ω∗) ≥ 4π, (5.2)

where Ω∗ is the convex hull of Ω and Ω is compact domain. Observe that
we cannot directly derive (5.2) from the Main Theorem, because it might
happen that ∫

∂Ω∗−∂Ω
d(GK∂Ω∗) > 0. (5.3)

For example, let X2 be a cone of angle 4π which can be constructed by
taking four copies of Euclidean upper half planes R2

+, say (R2
+)i = σ2

i for
i = 1, 2, 3, 4 and gluing the half lines [0,+∞) of ∂(R2

+)1 to the half lines
(−∞, 0] of ∂(R2

+)2, and so on. The resulting PL–surface X2 satisfies the
CAT(0) inequality. Let {(r, θ)|r ≥ 0, 0 ≤ θ ≤ 4π} be the polar coordinate
system of X2. If Ω = {(r, θ)|1 ≤ r ≤ 2, 0 ≤ θ ≤ π}, then the origin
O ∈ [∂Ω∗ − ∂Ω] and the inequality (5.3) is satisfied.

To overcome this difficulty, we decompose the total curvature on ∂Ω∗

into two parts:∫
∂Ω∗

d(GK∂Ω∗) =
∫

∂Ω∗∩∂Ω

d(GK∂Ω∗) +
∫

∂Ω∗−∂Ω

d(GK∂Ω∗);

Similarly, we decompose the non-negative error term as well:

e3(Ω∗) = e3(Ω∗) | Ω∗∩Ω +e3(Ω∗) |Ω∗−Ω

where for any p ∈ [∂Ω] ∩ Sing(X3)

e3(Ω∗) |p=
∑

σ1⊂St(p)

∑
v∈Link (p,σ1)

[|Link (σ1, X3)| − 2π] sin[θ∗p(v,Ω
∗)]
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and for any subset Q ⊂ ∂Ω∗

e3(Ω) |Q=
∑

p∈Q∩Sing(X3)

e3(Ω) |p .

The Main Theorem tells us that∫
∂Ω∗

d(GK∂Ω∗) = 4π + e3(Ω∗) = 4π + e3(Ω∗) | Ω∗∩Ω +e3(Ω∗) |Ω∗−Ω

and e3(Ω∗) |p is a non-negative function of p. If we can show that∫
∂Ω∗−∂Ω

d(GK∂Ω∗) ≤ e3(Ω∗) |Ω∗−Ω (5.4)

then ∫
∂Ω∗∩∂Ω

d(GK∂Ω∗) ≥ 4π + e3(Ω∗) | Ω∗∩Ω≥ 4π

and (5.2) follows immediately.
We remark that for any compact set Ω ⊂ Rn, Almgren observed that any

point p ∈ [∂Ω∗
s−∂Ωs], there exists a straight line segment σp passing through

p such that σp ⊂ ∂Ω∗
s. Thus, GK∂Ω∗

s
(p) = 0. Thus

∫
∂Ω∗−∂ΩGK∂Ω∗dA = 0,

and the inequality (5.4) holds trivially (cf. [Al2], page 455, line 1-4). There-
fore inequality (5.4) can be viewed as an extension of Almgren’s observation
to PL manifolds.

In order to prove inequality (5.4) we need the following observation.

Proposition 5.3. Let Ω ⊂ Xn be a compact domain, Xn be a simply-
connected PL-manifold of non-positive curvature and p ∈ [∂Ω∗ − ∂Ω].
Then there exists a geodesic line segment σ : (−ε, ε) → Xn such that
σ(0) = p and σ ⊂ Ω∗, where Ω∗ is the convex hull of Ω. Consequently,
Diam[Link (p,Ω∗)] ≥ π.

Proof. The existence of σ follows from the definition of [∂Ω∗ − ∂Ω]. If σ
is a geodesic segment, then ∠(σ′in(p), σ′out(p)) ≥ π by Lemma 1.4. Thus,
Diam[Link (p,Ω∗)] ≥ π holds.

To verify inequality (5.4), it is sufficient to prove that for every p ∈
[∂Ω∗ − ∂Ω]

GK∂Ω∗ |p≤ e3(Ω∗) |p . (5.5)

Clearly, if p ∈ [∂Ω∗−∂Ω] and if p /∈ Sing(X3), by Almgren’s observation
we still have GK∂Ω∗(p) = 0. Hence, (5.5) holds trivially in this case.

If p ∈ Sing(X3) ∩ [∂Ω∗ − ∂Ω] then we estimate both sides of (5.5) as
follows.



Curvature Integral Formula for PL-manifolds 529

Proposition 5.4. Let Ω ⊂ X3 be a compact domain, X3 be a simply-
connected PL-manifold of non-positive curvature and p ∈ [∂Ω∗ − ∂Ω].
Suppose that A = Link (p,Ω∗) with Diam(A) ≥ π and A∗ = {v ∈
Link (p, X3)|d(v, A)≥ π

2 }. In addition, suppose that

Area(A∗) ≤
∑

v∈Sing(L)

[|Link(v, L)| − 2π] sin[θ∗A(v)]. (5.6)

where θ∗A(v) = min{dL(v, A), π
2}. Then the inequalities (5.4)-(5.5) hold.

Proof. Observe that GK∂Ω∗ |p= Area(A∗). By Main Theorem, we know
that

e3(Ω∗) |p=
∑

v∈Sing(L)

[|Link(v, L)| − 2π] sin[θ∗A(v)].

Thus, inequality (5.6) implies inequality (5.5) and inequality (5.4) as well.

Definition 5.5. Let L be a piecewise spherical manifold satisfying the
CAT(1) inequality.

(1) A closed subset Ω′ ⊂ L is said to be convex if for any pair of
{v, w} ⊂ Ω′ with dL(v, w) < π, the length minimizing spherical geodesic
ψv,w is contained in Ω′.

(2) A closed curve γ is said to be convex to a domain V if there is an
ε such that for all x, y ∈ γ, with d(x, y) < ε, the minimizing geodesic σx,y

from x to y satisfies σx,y ⊂ V .

A family of convex subsets in Link (p, Xn) is given in the following propo-
sition.

Proposition 5.6. Suppose that Ω is a domain with piecewise linear bound-
ary and positive reach in Xn. Then, for any p ∈ ∂Ω, A = Link (p,Ω) is
a convex subset. Moreover, the convex subset A has positive reach ≥ π

2 in
Link (p, Xn).

Proof. This is a direct consequence of Proposition 1.6 and Proposition 1.7.

The following is a direct consequence of Proposition 4.2 and Propositions
5.3-5.4.

Corollary 5.7. Let Ω ⊂ X3 be a compact domain, X3 be a simply-connected
PL-manifold of non-positive curvature and A ⊂ Link(p, X3) be a convex
subset with Diam(A) ≥ π. Suppose that Aπ

2
= {v ∈ Link (p, X3)|d(v, A) <

π
2 } has the area

Area(Aπ
2
) ≥ 4π +

∑
v∈Sing(L)

[|Link(v, L)| − 2π]{1− sin[θ∗A(v)]}. (5.7)
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where θ∗A(v) = min{dL(v, A), π
2}. Then the inequalities (5.4)-(5.5) hold.

The rest of this section is devoted to establish inequality (5.7) under the
assumption Diam(A) ≥ π. Our proof of inequality (5.7) use the Gauss-
Bonnet formula and a new isoperimetric inequality (cf. Theorem 5.9 and
Theorem 5.11 below) to estimate Area(Aπ

2
), where A ⊂ L = Link (p, X3) is

a convex subset.

Definition 5.8. (1) A domain A in L = Link(p, X3) is said to be piecewise
spherical if its boundary ∂A is a union of broken spherical geodesics.

(2) If A ⊂ L is a convex domain, we define the length of its boundary
to be �(∂A) = lims→0 |∂As|, where As = {w ∈ L|dL(w,A) < s} and |∂As| is
the length of ∂As.

Recall that if A ⊂ L is convex, [∂As−Sing(L)] is a C1,1 curve, and hence
its length |∂As| is well-defined.

Note that any spherical geodesic σ in L gives rise to a convex subset (σ)
of L. Since (σ)s = {v ∈ L|d(v, σ) < s} it is easy to check that �(∂(σ)) =
lims→0 |∂(σ)s| is equal to twice the length of σ.

Throughout the rest of this section we use ∂A = A∩[L− A] as a definition
of ∂A, even if dimA ≤ 1.

Theorem 5.9. Let A ⊂ L = Link(p, X3) be a simply-connected, compact,
convex piecewise spherical domain. Then

Area(Aπ
2
) = �(∂A)+2π+

∑
v∈Sing(L)

[|Link(v, L)|−2π]{1− sin[θ∗A(v)]}. (5.8)

where θ∗A(v) = min{dL(v, A), π
2}.

Proof. Let us consider the set Aπ
2
−ε. Clearly, limε→0 Area[Aπ

2
−ε] =

Area(Aπ
2
). We use the Gauss-Bonnet formula to compute Area[Aπ

2
−ε].

In order to do that we let S ′ = [Aπ
2
− A] ∩ Sing(L) = {v1, ..., vm},

S” = A ∩ Sing(L) = {vm+1, ..., vN} and let ρA = max1≤j≤m{dL(vj, A)}
and εA = min1≤j≤m{dL(vj, A)}. Let ε sufficiently small so that 0 <
ε < 1

3 min{π
2 − ρA, εA} and the disks {Dε(vi)}1≤i≤N are disjoint. Let

M2
ε = Aπ

2
−ε − [∪1≤i≤NDε(vi)]. Clearly, M2

ε is a smooth surface with a C1,1

boundary. As before, we would like to compute the total geodesic curvature
of ∂M2

ε . Let κ∂M2
ε

and κ∂[Aπ
2 −ε ]

be the geodesic curvature with respect to
the inward unit normal vector.

A simple computation shows that∫
∪1≤i≤N ∂Dε(vi)

κ∂M2
ε
d� =

∑
1≤i≤N

|Link(vi, L)|. (5.9)
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To calculate
∫
∂Aπ

2 −ε
κ∂M2

ε
d�. We consider two sets in ∂Aπ

2
−ε. Fix t = tε =

π
2 − ε, clearly we have ρA < t < π

2 . Thus, the closed curve ∂At is a piecewise
smooth curve. Furthermore, it is a C1,1 curve. Since A is a convex, A has
positive reach ≥ π

2 by Proposition 5.6. Thus, there exists a nearest point
projection πA : Aπ

2
→ A. For any p ∈ ∂At there is a unique length-minizing

geodesic σp,πA(p) in L from πA(p) to p. We consider the following subsets of
∂At:

Ψt = {p ∈ ∂At|σp,πA(p) ∩ [At −A] ∩ Sing(L) = ∅}
and Φt = [∂At]−Ψt.

By our assumption, ∂A is a broken spherical geodesic. We assume that
there is a spherical triangulation τ of L such that ∂A becomes a spherical
simplicial 1-dimensional complex, where each 1-simplex of τ is a geodesic
segment of length < π in L.

If vj ∈ (∂A)(0) is a vertex of ∂A, we let αj = |[Link(vj, A)]∗| be the
length of [Link(vj, A)]∗, where [Link(vj, A)]∗ is the dual link of Link(vj, A)
in Link(vj, L). Using the polar coordinate system around the center vj, one
can show that ∫

π−1(vj)∩Ψtε

κ∂M2
ε
d� = −αj cos tε. (5.10)

If σ1
i ⊂ ∂A is an open 1-simplex of length �i, using the Fermi coordinate

system along the geodesic segment σ1
i one can derive∫

π−1(σ1
i )∩Ψtε

κ∂M2
ε
d� = [sin tε] lim

s→0
|π−1(σ1

i ) ∩ ∂As| (5.11)

Finally we consider the remaining
∫
π−1(Φtε) κ∂M2

ε
d�. For any 0 < s < π

2 ,
one can show that As has positive reach ≥ π

2 − s for 0 ≤ s < π
2 . We let

πAs : Aπ
2
→ As be the nearest point projection from Aπ

2
to As. Using the

polar coordinate system around each singularity vj ∈ [Aπ
2
− A] and using

the same reason as in the proof of (5.10), one can show that∫
π−1(Φtε )

κ∂M2
ε
d� = −

∑
1≤j≤m

[|Link(vj, L)| − 2π]][cos(tε − θA(vj))]. (5.12)

It follows from inequalities (5.9) to (5.12) that∫
∂M2

ε

κ∂M2
ε

=
∑

1≤i≤N

|Link(vi, L)|+
∑

σ1
i ⊂∂A

(sin tε) lim
s→0
|π−1(σ1

i ) ∩ ∂As|

−
∑

vi∈∂A)(0)

αi cos tε −
∑

1≤j≤m

[cos(tε − θA(vj))][|Link(vj, L)| − 2π], (5.13)
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where tε = π
2 −ε. By the Gauss-Bonnet Theorem and letting ε→ 0 in (4.13),

we have that tε = [π
2 − ε]→ π

2 and that

Area(Aπ
2
) = lim

ε→0
Area[M2

ε ] = lim
ε→0

∫
M2

ε

KLdA

=2π(1−N ) +
∑

1≤i≤N

|Link(vi, L)|

+ �(∂A) +
∑

1≤j≤m

[cos(
π

2
− θA(vj))][|Link(vj, L)| − 2π]

=�(∂A) + 2π +
∑

v∈Sing(L)

[|Link(v, L)| − 2π]{1− sin[θ∗A(v)]}, (5.14)

where KL = 1 is the intrinsic curvature of [L− Sing(L)].

Using Lemma 2.5, we can extend the result of Theorem 5.9 to any com-
pact convex domain.

Corollary 5.10. Let A ⊂ L = Link(p, X3) be a simply-connected, compact,
convex domain. Then

Area(Aπ
2
) = �(∂A)+2π+

∑
v∈Sing(L)

[|Link(v, L)|−2π]{1− sin[θ∗A(v)]}. (5.8)

where θ∗A(v) = min{dL(v, A), π
2}.

Proof. For any given compact convex domain A, by taking a collection of of
i points on the boundary of A and joining then by the minimizing geodesic
one can construct a sequence of piecewise spherical convex domains {A(i)}
such that A(i) ⊂ A and limi→∞ dH(A(i), A) = 0, limi→∞Area([A(i)]π

2
) =

Area(Aπ
2
), limi→∞ �[∂A(i)] = �(∂A), and limi→∞ sin[θ∗A(i)(v)] = sin[θ∗A(v)]

for any v ∈ L. Because (5.8) holds for each A(i), by taking the limit, we
conclude that (5.8) holds for any compact convex domain A ⊂ L.

In the next theorem we derive a new isoperimetric inequality for compact
convex domains A in L = Link (p, X3).

Theorem 5.11. Let A ⊂ L = Link(p, X3) be a compact convex domain.
Suppose that L satisfies the CAT (1) equality. Then

�(∂A) ≥ 2 min{π,Diam(A)}, (5.15)

where Diam(A) denotes the diameter of A.

Our proof of Theorem 5.11 also show that for any compact convex domain
A ⊂M2, where M2 is a smooth Riemannian surface of curvature 0 ≤ KM2 ≤
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1, the isoperimetric inequality (5.15) holds. However the inequality (5.15)
fails to hold if we replace 2 min{π,Diam(A)} by 2Diam(A). For example,
let M2 = {(x, y, z) ∈ R3|x2 + y2 + z2

100 = 1} and A = {(x, y, z) ∈ M2|z ≥
0}. Then �(∂A) < 2Diam(A). Similarly, one can construct an example of
A ⊂ L = Link(p, X3) such that L satisfies the CAT (1) equality and A is
convex, but �(∂A) < 2Diam(A). In order to do that let Y = {(x1, x2, x3) ∈
R3|max{|x1|, |x2|, |x3|} = π

4}. Thus, Y has six faces {Fj}1≤j≤6. Each face Fj

is a square. The length of each side is π
2 and |∂Fj| = 2π. Replace each face

Fj by a unit upper hemi-sphere Σj = {(x, y, z) ∈ R3|x2 +y2 + z2 = 1, z ≥ 0}
to get a new surface L. Clearly, |∂Σj| = |∂Fj| = 2π. The new resulting
surface L = ∪1≤j≤6Σj is a piecewise spherical surface satisfying the CAT (1)
equality. Let A = L = ∪1≤j≤5Σj. Then A is a convex subset of L and
Diam(A) > π. The boundary ∂A = ∂Σ6 is a closed geodesic of length
2π. In this example, we have �(∂A) < 2Diam(A), however inequality (5.15)
holds for A.

In order to prove Theorem 5.11 we need to recall some results.
When L satisfies the CAT (1) equality, a result of [ChD] implies that,

Inj(L), the injectivity of L is greater than or equal to π. The proof of
Theorem 5.11 uses the so-called Birkhoff curve shortening process, which
we briefly call it B.C.S.P, see [CC, p533-534] and [Cr2, p4]. This process
depends on an integer N > 2, where N is chosen so large that �(γ)/N is
small than π. For a Lipschitz closed curve γ, the B.C.S.P. associates a new
curve βN (γ) as well as a homotopy {γs}0≤s≤1 from γ = γ0 to βN(γ) = γ1.
The homotopy {γs}0≤s≤1 will be defined in such a way that �(γs1) ≥ �(γs2)
whenever s2 ≥ s1.

Assume that γ : [0, 1]→ L is a closed curve parameterized proportional
to arc-length; if not, the first part of the homotopy reparametrizes γ so that
it is. We then define γ 1

2
to be the unique piecewise geodesic closed curve

such that γ 1
2

= γ( i
N ) for all integers i = 1, 2, ..., N. For s ∈ [0, 1

2 ], γs will be
given by

γs(
i

N
+ t) =

{
τ s
i (t), 0 ≤ t ≤ 2s

N ,

γ( i
N + t), 2s

N ≤ t ≤ 1
N ,

where τ s
i is the minimizing geodesic from γ( i

N ) to γ( i
N + 2s

N ) parameterized
on the interval [0, 2s

N ] proportional to arc-length. Finally, γ1 is defined as
the unique closed geodesic with the shifted vertices: {γ1( i

N + 1
2N ) = γ 1

2
( i

N +
1

2N )}0≤i≤N−1, which is parameterized proportional to arc-length on each
interval [ i

N + 1
2N ,

i+1
N + 1

2N ]. We then define γs for s ∈ [ 12 , 1] to be the
homotopy between γ 1

2
and γ1 in the same way that γs, s ∈ [0, 1

2 ], homotopies
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from γ0 to γ 1
2
.

Lemma 5.12. ([Cr2]) Let A ⊂ L = Link(p, X3) be a compact convex
domain and let γ be a parametrization of ∂A. Suppose that L satisfies the
CAT (1) equality and �(γ) = �. Then if we apply B.C.S.P. with N breaks to
γ the resulting curve must satisfy the following:

(1) γt ⊂ A;

(2) γt is convex to Wt = [A− {x ∈ γs|0 ≤ s ≤ t}] ∪ γt.

Proof. The proof is the same as that of Lemma 2.2 of [Cr2, page 7] with
minor modifications. In [Cr2], the starting convex set W0 was assumed to
be a 2-dimensional open set. In our case, we use the compact convex sets
Wt above instead. However, the assumption, that the set W0 is open, was
not used for the proof of Lemma 2.2 of [Cr2]. Thus, the argument of [Cr2]
remains to be valid for the proof of our Lemma 5.12.

Lemma 5.13. ([CC, p534]) Let A ⊂ L = Link(p, X3) be a compact convex
domain and let γ be a parametrization of ∂A. Suppose that L satisfies the
CAT (1) equality and �(γ) = �. Then either A contains a non-trivial closed
geodesic σ of length �(σ) ≤ �, or there exists a new homotopy ϕs, s ∈ [0, 1],
which satisfies the following conditions:

(1) ϕ1 = γ, ϕ0 = v0 is a point curve, �(ϕs) ≤ � for all s; �(ϕs1) ≤ �(ϕs2)
whenever s1 ≤ s2;

(2) ϕs is convex to the domain Vs = {x ∈ ϕt|0 ≤ t ≤ s};
(3) {ϕs}0≤s≤1 gives rise in a natural way to a map Fϕ from the two-disk

D2 into A such that F (∂D2) = γ and F (0) = v0.

Proof. To prove Lemma 5.13 follow the argument in the proof of Corollary
1.3 of Part II of [CC] and use Lemma 5.12 instead of Lemma 1.2 of [Cr2].

In view of Lemma 5.13, we now prove Theorem 5.11.

Proof of Theorem 5.11. Let γ : [0, 1] → ∂A be a parameterization of ∂A
with γ(0) = γ(1). Because L satisfies the CAT (1) equality, by Lemma 1.2
of [ChD, p933], one knows that any non-trivial closed geodesic σ has length
�(σ) ≥ 2π. By Lemma 5.13 above, either A contains a non-trivial closed
geodesic σ and hence

�(∂A) = �(γ) = � ≥ �(σ) ≥ 2π, (5.16)
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or there exists a length non-decreasing family of closed curves {ϕs}0≤s≤1

described as in Lemma 5.13 (1)-(3) above. Clearly, by our construction of
ϕs and Vs, we know that the function h(s) = Diam(Vs) is a non-decreasing
continuous function of s. Since V0 = {v0} is a point, h(0) = 0. By the
intermediate value theorem, for each tε = min{Diam(A), π}− ε, there exists
a domain s(ε) ∈ [0, 1] such that Diam(Vs(ε)) = tε. Recall that, by [ChD], the
injectivity radius of L is at least π. Since 0 < tε < π ≤ Inj(L), any geodesic
segment σ of length �(σ) < π can be extended to a longer length minimizing
geodesic segment σ̃ of length �(σ̃) = �(σ) + ε1, as long as 0 < ε1 < π − �(σ).
Therefore, the Diam(Vs(ε)) must be achieved by a pair of boundary points
in Vs(ε). Thus, there exists a geodesic segment Ψε : [0, 1]→ Vs(ε) of L with
endpoints in ∂Vs(ε) and the length �(Ψε) = Diam(Vs(ε)). The endpoints of
Ψε intersects with the boundary curve ϕs(ε) at two points, say ϕs(ε)(0) =
ϕs(ε)(1) and ϕs(ε)(aε) after reparametrization. Clearly, both path ϕs(ε)|[0,aε]

and path ϕs(ε)|[aε,1] have the length ≥ tε. Hence, we have �(ϕs(ε)) ≥ 2�(Ψε) =
2Diam(Vs(ε)) = 2tε = 2[min{Diam(A), π}− ε]. This together with Lemma
5.13 (1) implies that

�(∂A) = �(ϕ1) ≥ �(ϕs(ε)) ≥ 2[min{Diam(A), π}− ε]. (5.17)

Letting ε → 0, we get �(∂A) ≥ 2 min{Diam(A), π} for this case. Thus, we
showed either �(∂A) ≥ 2π or �(∂A) ≥ 2 min{Diam(A), π} holds.

The inequalities (5.3)-(5.7) now follow from Theorem 5.9 and Theorem
5.11.

6. Applications to a sharp isoperimetric inequality.

In this section, we will prove the Main Corollary stated in Section §0. Our
proof is similar to that of Kleiner in [K] for smooth manifolds. Additional
efforts are needed, because our ambient PL-manifolds have singularities.

We first introduce the isoperimetric profile function. This function has
been studied by several authors [BBG], [GLP] and [K].
Definition 6.1. The isoperimetric profile function of a manifold M , IM , is
defined by

IM (v) = inf{Area (∂Ω) | Ω ⊂M is a compact domain with
rectifiable boundary ∂Ω, vol (Ω) = v}.

for any v ∈ [0, vol (M)).
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Observe that the isoperimetric inequality (0.5) is equivalent to the in-
equality

IX3(v) ≥ IR3(v). (6.1)

for all v ∈ (0,∞). One difficulty in proving the inequality (6.1) is that the
space X3 is not compact and therefore there is no guarantee that IX3(v)
is achieved by some compact domain Ω(v). For this reason we consider an
alternative isoperimetric profile function. For x0 ∈ X3, we let Br(x0) denote
the closed metric ball centered at x0 of radius r. Because X3 =

⋃∞
r>0 Br(x0);

it is sufficient to show that

IBr(x0)(v) ≥ IR3(v) (6.2)

for every v ∈ [0, vol 3(Br(x0))) and every r > 0. Let X3
1 = Br(x0) for some

r > 0.

6.a. The existence of optimal domains.

Let Xn
1 ⊂ Xn be a compact, convex and simplicial domain. In this sub-

section we show the existence of minimizing domain for the isoperimetric
profile function of Xn

1 . We are not aware of a proof of the existence of
those domains in spaces with singularities. Since the space Xn can have
singularities, we clarify this using some results from Geometric Measure
Theory and other related fields, which are applicable to our PL–manifolds
considered in our paper.

There are two main ingredients in our argument presented below. First,
we observe that for each compact simplicial complex Xn

1 , there is a simplicial
embedding F : Xn

1 → Rm for sufficiently large m. Secondly, because F is
simplicial, F and its inverse F−1 must be Lipschitz maps between Xn

1 and
F (Xn

1 ). If a sequence of domains {Ωj}+∞
j=1 in Xn

1 satisfies

(1) Area (∂Ωj) → IXn
1
(v) where IXn

1
(v) = inf{Area (∂Ω) | Ω ⊂ Xn

1 ,
vol (Ω) = v, ∂Ω is rectifiable};

(2) vol (Ωj) ≡ v;
(3) Ωj has piecewise smooth and rectifiable boundary;

then by a theorem of Federer-Fleming that {F (Ωj)}+∞
j=1 has a convergent

subsequence which converges to a subset Yv ⊂ F (Xn
1 ) ⊂ Rm. Therefore,

{Ωj}+∞
j=1 has a convergent subsequence which converges to an optimal domain

F−1(Yv). We now give the details of proof of the existence theorem.
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Since Xn has non–positive curvature, the distance function is convex.
Thus, the space Xn is combable in the sense of Epstein, Thurston, et al., cf.
[ET].

Proposition 6.2. Let Xn
1 ⊂ Xn be as above. Then there exists a constant

number bn > 0 such that for any cellular n–chain c in Xn
1

vol n(c) ≤ bndiam(∂c)Area(∂c).

Proof. This is a direct consequence of Theorem 10.2.1 of [ET].

It is known that every compact simplicial complex Xn
1 of dimension n

can be simplicially embedded into the Euclidean space Rm of sufficiently
higher dimension m� n (after subdivision of Xn

1 if needed), see [Mun] p.13.

Definition 6.3. Let U be an open set of Rm and consider the set of n–forms
supported in U , Dn(U) =

{∑
i1<...<in

ai1,...,indx
i1 ∧ · · · ∧ dxin | ai1···in ∈

C∞
0 (U)

}
. An n–dimensional current (briefly called an n–current) in U is a

continuous linear functional on Dn(U). The set of such n–currents will be
denoted Dn(U), see [Fed 2], [Sim]. If w ∈ Dn(U), we denote the support of
w by Spt(w).

If T is a current and W is an open set W ⊂ U , then we define

MassW (T ) = sup
|w|≤1, w∈Dn(U ), Spt(w)⊂W

T (w),

and the n–dimensional mass of a current T is defined as

Massn(T ) = sup
W⊂Rm

MassW (T ).

In this section, we are interested in integer multiplicity currents, see
Definition 6.5 below.

Theorem 6.4. Let Xn
1 ↪→ Rm be as above. Suppose T is a Lipschitz (n−1)–

cycle in Xn
1 . Then T = Q + ∂R, where R is a Lipschitz n–chain, Q is a

simplicial (n− 1)–cycle in Xn
1 . Moreover,{

Massn−1(Q) ≤ b∗massn−1(T )
Massn(R) ≤ b∗massn−1(T ),

where Q and R are contained in the smallest subcomplex of Xn
1 containing

T and b∗ > 0, depends only on Xn
1 and its triangulation.

Proof. This is a variant of a theorem of D. B. Epstein (cf. ([ET], Theorem
10.3.3, p.223–229). His proof is applicable to the PL–manifold Xn

1 .
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Recall that any n–current T can be viewed as a functional on the space
of n–forms. By Tj ⇀ T in U , we mean that {Tj} converges weakly to T in
the usual sense of distributions:

Tj ⇀ T in U ⇔ lim
j→+∞

Tj(w) = T (w), ∀ w ∈ Dn(U).

Let Hn be n–dimensional Hausdorff measure on Rm. Federer and Fleming
[FF] introduced rectifiable and integer multiplicity currents.

Definition 6.5. If T ∈ Dn(U) we say that T is an integer multiplicity recti-
fiable n–current (briefly an integer multiplicity current) if it can be expressed

T (ω) =
∫

S
〈ω(x), ξ(x)〉θ(x)dHn(x), ω ∈ Dn(U),

where S is an Hn–measurable countably n–rectifiable subset of U , θ is a
locally Hn–measure function such that for Hn — a.e. point x ∈ S, ξ(x) can
be expressed in the form τ1 ∧ · · ·∧ τn, where τ1, . . . , τn form an orthonormal
basis for the approximate tangent space TxS (see [Sim, p.146]). Thus, ξ
orients the approximate tangent spaces of S in an Hn–measurable way. The
function θ is called multiplicity and ξ is called the orientation for T . We
write T = τ(S, ξ, θ).

An important theorem of Federer and Fleming [FF] tells us the following.

Theorem 6.6. If {Tj} ⊂ Dn(U) is a sequence of integer multiplicity cur-
rents with

sup
j≥1

[MassW (Tj) + MassW (∂Tj)] <∞, ∀ W ⊂⊂ U

then there is an integer multiplicity rectifiable n–current T ∈ Dn(U) and a
subsequence {Tj′} such that

Tj′ ⇀ T in U.

Moreover, T is contained in the smallest subsimplex of U containing {Tj}.
Using Theorem 6.4, one can show that the subsequence {Tj′} converges

to T with respect to the flat metric topology. To describe the flat metric
topology we let U be an arbitrary open subset of Rn+k = Rm. Let I be
the subset Dn(U) such that MassW (∂T ) < +∞ for all W ⊂⊂ U . On I we
define a family of pseudo-metrics {dW}W⊂⊂U by

dW (T1, T2) = inf{MassW (S) + MassW (R) | T1 − T2 = ∂R+ S

where R ∈ Dn+1(U), S ∈ Dn(U) have integer multiplicity}.
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The following compactness theorem is essential to prove existence of minimal
submanifolds.

Theorem 6.7. Let T , {Tj} ⊂ Dn(U) be integer multiplicity rectifiable cur-
rents with sup

j≥1
{MassW (Tj)+MassW (∂Tj)} <∞, ∀ W ⊂⊂ U . Then Tj ⇀ T

in U (in the sense of Theorem 6.6) if and only if dW (Tj, T ) → 0 for each
W ⊂⊂ U .

Proof. This is an analog of Theorem 31.2 of [Sim], p.180. The proof uses the
deformation theorem (Theorem 6.4) and its direct consequences. We omit
the details here.

We also need the following statement about the rectifiability of the limit
currents.

Theorem 6.8. Suppose {Tj} ⊂ Dn(U), suppose Tj, ∂Tj are integer multi-
plicity for each j,

sup
j≥1
{MassW (Tj) + MassW (∂Tj)} <∞, ∀ W ⊂⊂ U,

and suppose Tj ⇀ T ∈ Dn(U). Then T is an integer multiplicity current
and T is rectifiable.

Proof. See [Sim, §25–27, §29–32].

The existence theorem of optimal domains is the following:

Theorem 6.9. Let Xn
1 be a convex, simplicial and compact subdomain of

Xn. Then for each v ∈ (0, vol (Xn
1 )) there exists a domain Ω(v) ⊂ Xn

1 with
rectifiable boundary and

Area (∂Ω(v)) = inf{Area (∂Ω) | Ω ⊂ Xn
1 ,Ω is rectifiable and vol (Ω) = v}.

Proof. Let F : Xn
1 → Rm be a simplicial embedding from Xn

1 into a higher
dimensional Euclidean space Rm. Then F is a bi–Lipschitz homeomorphism
between Xn

1 and its image F (Xn
1 ), since Xn is compact.

Choose a sequence of domains {Ωj}+∞
j=1 in Xn

1 such that (i) Area (∂Ωj)→
IXn

1
(v) where IXn

1
(v) = inf{Area (∂Ω) | Ω ⊂ Xn

1 , vol (Ω) = v, ∂Ω is recti-
fiable}; (ii) vol (Ωj) ≡ v; and (iii) Ωj has piecewise smooth and rectifiable
boundary.

Let Tj = F (Ωj). Because F is a bi–Lipschitz homeomorphism (simplicial
map), both Tj and ∂Tj are integer currents in Rm. Let U be a large ball
containing F (Xn) in Rm. Then by the properties of {Ωj}, we know

sup
j
{MassW (∂Tj) + MassW (Tj)} < c < +∞
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for some constant c > 0 which is independent of j and W ⊂⊂ U . It follows
from Theorems 5.9-5.11 that there exists an integer current T with multi-
plicity 1 and subsequence {Tji}+∞

i=1 such that Tji → T with respect to the
flat metric topology. By Theorem 6.6, the limiting current T is contained in
the subsimplex F (Xn

1 ) of U . Because F is a bi–Lipschitz map from Xn
1 to

F (Xn
1 ), we conclude that

Ωji → F−1(T ) = Ω(v)

and Area (∂Ω(v)) = lim
i→+∞

Area (Ωji) = IXn
1
(v). Further, we have vol (Ω(v)) =

v and Area(∂Ω) = IXn(v). The domain Ω(v) is the desired optimal domain.

6.b. Mean curvature and regularity of boundary for optimal
domains.

In this section, we assume that X3
1 ⊂ X3 is a compact, convex and piecewise

linear domain with non–empty interior, Int(X3
1 ) �= ∅, and Ω(v) is an optimal

domain of volume vol 3(Ω(v)) = v and Area (∂Ω(v)) = IX3
1
(v). In the above

sub-section, we already discussed the existence of minimal domains with
least boundary area and a given volume in a compact subcomplex X3

1 ⊂ X3.
The purpose of this sub-section is to study mean curvature and regularity

of boundary for optimal domains in PL-manifolds. Among other things, we
show that the boundary of an optimal domain does not have any corner
points (see Definition 6.11 below). Moreover, we shall show that if X3

1 is
a large geodesic ball, then the boundary of the optimal domain meets ∂X3

1

tangentially at their intersection points, (cf. Corollary 6.16).

Proposition 6.10. Let Ω(v) ⊂ X3
1 ⊂ X3 be as above and x, y, and z be

points where ∂Ω(v) is twice differentiable. Assume that x, y ∈ [Int(X3
1) −

Sing(X3)] and z ∈ [∂X3
1 − Sing(X3)]. Then

H(z) ≤ H(x) = H(y),

where H denotes the mean curvature of ∂Ω(v) with respect to the outward
normal vector.

Proof. The proof is similar to that of Lemma 2.1 of [O] p1186-1187. Hence,
we omit it here.

To study the regularity properties of optimal domains we need the defi-
nition of a corner point.

Definition 6.11. Let v0 ∈ Link (p, X3), and let U3
+(p, v0) = C[B(v0, π

2 )] be
the cone over B(v0, π

2 ) = {v ∈ Link (p, X3) | dL(v, v0) ≤ π
2 } . Then U3

+(p, v0)
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is called a half space in Tp(X3) in the direction v0. Suppose that Ω ⊂ X3

is a compact domain with piecewise smooth boundary ∂Ω. A point p ∈ ∂Ω
is said to be a corner point if Tp(Ω) is contained in the interior of some half
space U3

+.

We have the following observation.

Proposition 6.12. Let Ω ⊂ Xn be as above with n = 3. If there exists a
corner point p ∈ ∂Ω then Ω cannot be an optimal domain.

Proof. The proof of Proposition 6.12 for the smooth case is along the line
of that of Proposition 6.10, which is well-known. Such a proof can apply to
our case as well.

If Ω(v) is an optimal domain for the isoperimetric profile function IX3
1

then Proposition 6.12 tells us that for p ∈ ∂Ω(v) cannot be a corner point;
actually the tangent cone Tp(Ω(v)) is area–minimizing.

Definition 6.13. A tangent cone Tp(∂Ω) is said to be area–minimizing
in Tp(X3) if, for any compact (2)–domain Σ ⊂ Tp(∂Ω), Σ has the least
(2)–dimensional measure among hypersurfaces Σ′ in Tp(X3) with the same
boundary ∂Σ′ = ∂Σ, i.e.,

Area (Σ′) ≥ Area (Σ)

for any Σ′ ⊂ Tp(X3) with ∂Σ′ = ∂Σ and Σ ⊂ Tp(∂Ω).

The following fact is well-known and can be proved in the same way as
in that of Proposition 6.10.

Corollary 6.14. Let Ω(v) ⊂ X3
1 be an optimal domain with vol 3(Ω(v)) = v

and Area (∂Ω(v)) = IX3
1
(v). Then the tangent cone Tp(∂Ω(v)) is an area–

minimizing cone in Tp(X3) for any p ∈ ∂Ω(v).

The following result is an improvement of Proposition 6.12.

Theorem 6.15. Let Ω ⊂ X3 be a convex domain containing a point p.
Suppose that Tp(∂Ω) is an area–minimizing hypersurface in Tp(X3) and there
exists v0 ∈ Link (p,Ω) such that �(v0, w) ≤ π

2 for all w ∈ Link (p,Ω). Then
�(v0, w) ≡ π

2 for all w ∈ Link (p, ∂Ω).

Proof. By Corollary 6.14, we know that Tp(∂Ω) is an area–minimizing hyper-
surface in Tp(X3). Suppose contrary, Theorem 6.15 were not true, we would
obtain a contradiction as follows. There would be a w0 ∈ Link (p, ∂Ω) with
�(v0, w0) < π

2 . Let us now consider the hypersurface Tp(∂Ω) around the
line in the direction w0, say �w0 . Because �(v0, w0) < π

2 , using the proofs of
Theorems 5.4.8-5.4.9 of Federer [Fe2, p629-630], one can show that Tp(∂Ω)
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can not be area minimizing along �w0 in Tp(X3). This completes the proof
of Theorem 6.15.

The following is a direct consequence of Theorem 6.15

Corollary 6.16. Let Ω(v) be an optimal domain for the isoperimetric profile
IX3

1
where X3

1 = Br(x0) = {x ∈ X3|d(x, x0) ≤ r}, The boundary of the
optimal domain Ω(v), ∂Ω(v) meets ∂X3

1 tangentially.

Proof. For each p ∈ ∂Br(x0) we observe that there is a geodesic ϕpx0 from p
to x0. Since X3 has non–positive curvature, the law of cosine holds. Thus,
for any w ∈ Tp(Br(x0)) we have

�(w, (ϕpx0)
′
out(p)) ≤

π

2
.

Using Theorem 6.15 we obtain that

�(w, (ϕpx0)
′
out(p)) ≡

π

2

for every w ∈ Tp(∂Ω(v0)). Hence, the boundary ∂Ω(v) meets ∂X3
1 = ∂Br(x0)

tangentially at points in [∂Ω(v) ∩ ∂M3
1 ].

6.c. The proof of sharp isoperimetric comparison inequality.

The isoperimetric profile function IX3
1
(v) of X3

1 is a C0,α–Hölder continuous
function with exponent α = 2

3 . For that reason we consider the derivative

of the function IX3
1
(v) in the weak sense. We say

d−I
X3

1
dt

∣∣∣
t=v
≥ c if there

exists a C1 function g defined on [v− ε, v] with g′(v) = c, g(v) = IX3
1
(v) and

g(t) ≥ IX3
1
(t) for t ∈ [v − ε, v].

The mean curvature of ∂Ωv, where Ω(v) is an optimal domain, is related
to the left derivative of IX3

1
at v as follows.

Proposition 6.17. Let X3
1 ⊂ X3, IX3

1
and Ωv be as above. Suppose that

there is an open set U ⊂ X3 − Sing(X3) such that U ∩ ∂Ωv �= ∅ is a C2

hypersurface and U ∩ ∂Ωv has the constant mean curvature H with respect
to the outward normal vector field. Then

D−IX3
1

dt

∣∣∣
t=v
≥ H.

We now prove the first part of our Main Corollary.
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Proof of Main Corollary for the inequality part. Let d = diam(Ω), x ∈ Ω
and X3

1 = B4d(x) be the closed metric ball centered at x of radius 4d.
In order to prove inequality (0.5) is enough to show that

IX3
1
(v) ≥ I

R3(v), (6.1)

because if vol 3(Ω) = v, then we have that

Area(∂Ω) ≥ IX3
1
(v) ≥ I

R3(v) = c3v
2
3 = c3[vol 3(Ω)]

2
3

and hence our theorem.
To prove the inequality (6.1) is enough to show that I

3
2

X3
1
(v) ≥ I

3
2

R3(v).

Since IX3
1
(0) = I

R3(0) and the function IX3
1

is Hölder continuous with ex-
ponent 3

2 , it is sufficient to verify that

[
IX3

1
(v)

]1
2
d−IX3

1

dt

∣∣∣
t=v
≥ [

I
R3(v)

]1
2
dIR3

dt

∣∣∣
t=v

,

or equivalently,(1
2

d−IX3
1

dt

∣∣∣
t=v

)2
IX3

1
(v) ≥

(1
2
dIR3

dt

∣∣∣
t=v

)2
IR3(v),

where d−f
dt denotes the left weak derivative of f .

It is a classical result that the balls are the optimal domains in R3, then
IR3(v) = c3v

2
3 . Thus it suffices to show that(1

2

d−IX3
1

dt

∣∣∣
t=v

)2
IX3

1
(v) ≥ 4π. (6.2)

Let Ω(v) ⊂ X3
1 be such that vol (Ω(v)) = v and Area (∂Ω(v)) = IX3

1
(v).

The existence of Ω(v) is discussed in §6.a. If v ≤ v0 < vol (X3
1 ), then

[Int(X3
1 ) − Ω(v)] �= ∅ and ∂Ω(v) ∩ Int(X3) �= ∅. Because [X3

1 − Sing(X3)]
is open and dense in Int(X3

1), the set ∂Ω(v) ∩ [X3
1 −Sing(X3)] is non–empty.

The set of regular points of ∂Ω(v) in [Int(X3
1 )− Sing(X3)] has positive mea-

sure. Let

Σ1 = {x ∈ ∂Ω(v) | x ∈ [Int(X3
1)− Sing(X3

1 )], ∂Ω(v) is regular at x}.
Proposition 6.10 implies that Σ1 has constant mean curvature HΣ1 . Propo-
sition 6.17 says that

d−IX3
1

dt

∣∣∣
t=v
≥ HΣ1 .
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Thus in order to verify the inequality (6.2) it is enough to show that[1
2
HΣ1

]2
Area (∂Ω(v)) ≥ 4π. (6.3)

Proposition 6.10 says that for an optimal domain Ω(v)

H∂Ω(v)∩∂X3
1
(q) ≤ HΣ1 (6.4)

where q is a regular point of [∂Ω(v)− Sing(X3)]∩ ∂X3
1 , that is, ∂Ω(v) is C1,1

at q. Let us consider

Σ2 = {x ∈ ∂Ω(v) | x /∈ Sing(X3), ∂Ω(v) is regular at x}.

Using the last inequality, we get∫
Σ2

[1
2
HΣ1

]2
dA ≥

∫
Σ2

[1
2
H∂Ω(v)

]2
dA.

Therefore, the inequality (6.3) holds provided that∫
Σ2

[1
2
H∂Ω(v)

]2
dA ≥ 4π.

The convexity of ∂X3
1 and inequality (6.4) imply that H∂Ω(v)

> 0. If p ∈
∂Ω∗

v∩Σ2 then the principal curvatures of ∂Ω(v) at p are non–negative, hence[1
2
H∂Ω(v)

(p)
]2 ≥ G̃K∂Ω(v)

(p). (6.5)

Thus, it is sufficient to show∫
Σ2∩∂Ω∗

(v)

G̃K∂Ω(v)
(p)dA ≥ 4π. (6.6)

There are two major ingredients in the proof of (6.6). We first show∫
[∂Ω∗

(v)
∩∂Ω(v)]−Sing(X3)

d(GK∂Ω(v)
) ≥ 4π. (6.7)

Secondly, we prove in Claim 1 below that ∂Ω∗
(v) ∩ Σ2 = [∂Ω∗

(v) ∩ ∂Ω(v)] −
Sing(X3). The inequality (6.6) is a direct consequence of (6.7) and Claim 1
below.
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To show (6.7), we keep the notation as in Section 5. Recall that if
p ∈ [∂Ω∗

(v)] ∩ Sing(X3),

e3(Ω∗
(v)) |p=

∑
σ1⊂St(p)

∑
v∈Link (p,σ1)

[|Link (σ1, X3)| − 2π] sin[θ∗p(v,Ω
∗
(v))]

and for any subset Q ⊂ ∂Ω∗
(v)

e3(Ω∗
(v)) |Q=

∑
p∈Q∩Sing(X3)

e3(Ω) |p .

By the results of Section 4, if ∂Ω∗
(v) = V ∪W and if V ∩W = ∅, then∫

V
d(GK∂Ω∗

(v)
) +

∫
W
d(GK∂Ω∗

(v)
)

=
∫

[∂Ω∗
(v)

]
d(GK∂Ω∗

(v)
)

= 4π + e3(Ω∗
(v))|∂Ω∗

(v)

= 4π + e3(Ω∗
(v))|V + e3(Ω∗

(v))|W

It follows that∫
V

d(GK∂Ω∗
(v)

)

= 4π + e3(Ω∗
(v))|V + [e3(Ω∗

(v))|W −
∫

W
d(GK∂Ω(v)

)]
(6.7.a)

We now choose W = [∂Ω∗
(v) − ∂Ω(v) − Sing(X3)] ∪ [Sing(X3) ∩

∂Ω∗
(v) ∩ ∂Ω(v)]. Since Ω(v) is optimal, we showed in previous sub-section

that ∂Ω(v) does not have corner points, nor does ∂Ω∗
(v). In particular,

Diam[Link (p,Ω∗)] ≥ π for all p ∈ ∂Ω∗. For each p ∈ [∂Ω∗
(v) − ∂Ω(v) −

Sing(X3)], by Almgren’s observation, we have∫
∂Ω∗

(v)
−∂Ω(v)−Sing(X3)

G̃K∂Ω∗
(v)
dA = 0 = e3(Ω∗

(v))|∂Ω∗
(v)

−∂Ω(v)−Sing(X3).

(6.7.b)
For p ∈ [Sing(X3)∩∂Ω∗

(v)∩∂Ω(v)], we let A = Link(p,Ω∗
(v)). By Proposi-

tion 4.2, Theorem 5.9 and Theorem 5.11, because of diam(A) ≥ π mentioned
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above, we have∫
p
d(GK∂Ω∗

(v)
)

= Area(Link(p, X3)− Area(Aπ
2
)

≤
∑

σ1⊂St(p)

∑
v∈Link (p,σ1)

[|Link (σ1, X3)| − 2π] sin[θ∗p(v,Ω
∗
(v))]

= e3(Ω∗
(v))|p.

(6.7.c)

It follows from (6.7.b) and (6.7.c) that∫
W
d(GK∂Ω(v)

) ≤ e3(Ω∗
(v))|W . (6.7.d)

For V = ∂Ω∗
(v)−W = [∂Ω∗

(v) ∩ ∂Ω(v)]− Sing(X3), by (6.7.a) and (6.7.d), we
finally conclude that∫

[∂Ω∗
(v)

∩∂Ω(v)]−Sing(X3)
d(GK∂Ω∗

(v)
) =

∫
V
d(GK∂Ω(v)

)

= 4π + e3(Ω∗
(v))|V + [e3(Ω∗

(v))|W −
∫

[∂Ω∗
(v)

]∩W
d(GK∂Ω(v)

)]

≥ 4π + e3(Ω∗
(v))|V ≥ 4π.

This finishes the proof of (6.7).
It remains to show

Claim 1: ∂Ω∗
(v) ∩Σ2 = [∂Ω∗

(v) ∩ ∂Ω(v)]− Sing(X3).
It is clear that ∂Ω∗

v ∩ Σ2 ⊂ {[∂Ω∗
v ∩ ∂Ω(v)] − Sing(X3)}. In order to

prove that ∂Ω∗
v ∩Σ2 ⊃ {[∂Ω∗

v ∩ ∂Ω(v)]− Sing(X3)}, we write [∂Ω∗
v ∩ ∂Ω(v)−

Sing(X3)] = I ∪B where the set I = {[∂Ω∗
v ∩ ∂Ω(v) − Sing(X3)] ∩ Int(X3

1 )}
and the set B is defined as B = {[∂Ω∗

v ∩ ∂Ω(v) − Sing(X3)] ∩ ∂X3
1}.

On the one hand we assert that I is regular. Let p ∈ I . It is clear
that Tp(X3) = R3 and S = Tp(Ω(v)) is a convex domain in R3. By Corol-
lary 6.14 we see that ∂S = Tp(∂Ω(v)) is an area-minimizing hypersurface in
R3. A result of Bombieri and Giusti says that if ∂S is an area-minimizing
(2)-dimensional current contained in a half space of R3, then ∂S must be a
hyperplane R2 in R3, see [BG, p42]. This shows that ∂Ω(v) must be differ-
entiable at p. The regularity theory of minimal surfaces implies that ∂Ω(v)

is smooth and real analytic around p; hence I is regular.
Furthermore, we assert that B is regular. Let p ∈ B. Recall that X3

1 =
B4d(x) is convex because the space X3 has non–positive curvature . For each
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p ∈ ∂X3
1 , we let ϕp,x be the geodesic from p to x and vq = (ϕpx)′out(p). Then

�(w, vq) ≤ π
2 for all w ∈ Link (p, X3

1). If ∂Ω(v) makes an angle with ∂X3
1 less

than π at p, then p is a corner point of ∂Ω(v) and Theorem 6.15 says that Ω is
not an optimal domain. Therefore, ∂Ω(v) touches ∂X3

1 tangentially at points
p ∈ ∂Ω(v)∩∂X3

1 . This shows that ∂Ω is C1,1 at p ∈ [∂Ω(v)−Sing(X3)]∩∂X3
1 .

Thus B is regular and this completes the proof of Claim 1.
We now observe that, since Σ2 is regular,

GK∂Ω∗
(v)
|p= G̃K∂Ω(v)

|p (6.8)

for all p ∈ Σ2. The inequality (6.6) now follows from (6.7)-(6.8) and Claim
1. This completes the proof of the inequality (0.5), i.e., the inequality part
of Main Corollary.

It is natural to ask for which domains Ω the equality holds in the in-
equality (0.5). The answer to this question is given in our Main Corollary.

Proof of Main Corollary for the equality case. Suppose now there exists a
compact domain Ω(v) in X3 such that

Area(∂Ω(v)) = c3[vol 3(Ω(v))]
2
3 .

Then the inequalities in (6.5) and (6.6) become equalities. In this case, Ω(v)

has the following extra properties:
(i) Ω(v) is a convex domain and ∂Ω(v) is regular at p ∈ ∂Ω(v)−Sing(X3).
(ii) Almost all points of ∂Ω(v) are umbilical points with respect to inner

unit normal vector; (this is because 1
2 [H∂Ω(v)

(p)]2 = G̃K∂Ω(v)
(p) holds almost

everywhere);

(iii) If r0 =
[Area(∂Ω(v))

4π

] 1
2 , then the equalities∫

∂Ω∗
(v)

d(GK∂Ω(v)
) =

∫
Σ2∩∂Ω∗

(v)

G̃K∂Ω(v)
(p)dA

=
∫

Σ2∩∂Ω∗
(v)

[
1
2
H∂Ω(v)

(p)]2dA = 4π

imply that Σ2 has full measure in ∂Ω∗
(v). Furthermore, almost all points

in ∂Ω(v) have the same inner principal curvature − 1
r0

with respect to the
inward unit normal vector.

It is well–known that an umbilical hypersurface Σ2 with principal curva-
tures equal to ± 1

r0
in the Euclidean space R3 must be isometric to a piece of

the Euclidean round sphere of radius r0. For each Euclidean n–simplex σ3
j
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with Int(σ3
j )∩∂Ω(v) �= ∅, we know that Σj = σ3

j ∩∂Ω(v) is a hypersurface of
almost all umbilical points. The regularity theory for elliptic equations imply
that Σj is a smooth hypersurface. Therefore, ∂Ω(v) =

⋃
j

Σj is a piecewise

spherical hypersurface of curvature K = 1
r2
0
, with only possible singulari-

ties when it meets Sing(X3). Furthermore, by the minimizing property of
∂Ω(v) = ∂Ω∗

(v), the discussion in §6.b implies that Diam[Link (p,Ω(v))] ≥ π

and the total length of Link (p, ∂Ω(v)) satisfies |Link (p, ∂Ω(v))| ≥ 2π. A
theorem of Gromov says that if ∂Ω(v) is a piecewise spherical space of con-
stant curvature K = 1

r2
0

and if Link (p, ∂Ω(v)) satisfies the CAT(1) for each

p ∈ ∂Ω(v), then ∂Ω(v) satisfies the CAT( 1
r2
0
) inequality, see [ChD]. Theorem

1.2 and its proof imply that

Area(∂Ω(v)) ≥ Area(S2(r0)) (6.9)

where S2(r0) denotes the round sphere of radius r0 in R3 and equality holds
in (6.9) if and only if ∂Ω(v) is isometric to S2(r0).

On the other hand, equalities in (0.5) and its proof tell us that

4π =
∫

∂Ω(v)

GKIdA =
∫

∂Ω(v)−Sing(X3)

1
r20
dA

= Area(∂Ω(v))
1
r20
.

Thus Area(∂Ω(v)) = Area(S2(r0)) and ∂Ω(v) is isometric to S2(r0).
In order to show that Ω(v) is isometric to an Euclidean ball Br0(0) of

radius r0, we glue Ω(v) into [R3 − Br0(0)] along ∂Ω(v)
∼= S2(r0) = ∂Br0(0),

getting a new CAT(0)–space X̂3.
We shall show that Ω(v) has no interior singularities. We also observe

that ∂(Ω(v))s ⊂ R3 −Br0(0) ⊂ X̂3 is isometric to S2(r0 + s) = ∂Br0+s(0) in
R3. By Theorem 1.2, it is sufficient to show that Area(Link (x, X̂3)) ≤ 4π,
for x ∈ Ω(v). Since ∂(Ω(v))s is isometric to S2(r0 + s) in R3 − Br0(0), we
have ∫

∂(Ω(v))s

GK∂(Ω(v))s
dA = 4π

For any given x0 ∈ Ω(v), we define a map F : ∂(Ω(v))s → Link (x0, X̂
3)

by F (q) = (ϕq)′out(x0) where ϕq : [0,+∞)→ X̂3 is a geodesic ray asymptotic
to the geodesic ray ψq : [0,+∞) → [R3 − Br0(0)] ↪→ X̂3 given by ψq(t) =
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q + tN (q), where N (q) is the outward unit normal vector of ∂(Ω(v))s =
∂Br0+s(0).

If p, q ∈ ∂(Ω(v))s = ∂Br0+s(0) with d(p, q) < ε
2 , the geodesic segment ηp,q

from p to q lies entirely in X̂3 −Ω(v) = R3 − Br0(0). Let P
q
p be the parallel

translation from p to q along ηp,q in R3−Br0 (0) and define �(N (p), N (q)) =
def

�(N (q), Pq
pN (p)). It is easy to check that �(F (p), F (q)) ≤ �(N (p), N (q)),

as long as d(p, q) < s
2 , p, q ∈ ∂Br0+s(0) = ∂(Ω(v))s. It follows from the last

inequality that

Area(Link (x0, X̂)) ≤
∫

∂(Ω(v))s

GK∂(Ω(v))s
dA = 4π.

This together with Theorem 1.2 imply that Link (x0, X̂) is isometric to S2(1).
Thus X̂ is smooth at all x0 ∈ Ω(v) and Ω(v) has no singularities. Finally, we
apply Theorem 7 of [SZ] to X̂3 and conclude that X̂3 is isometric to R3 and
Ω(v) is isometric to the round Euclidean ball Br0(0) of radius r0.
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