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Riemannian Submersions and Lattices in 2-step

Nilpotent Lie Groups

Patrick Eberlein

We consider simply connected, 2-step nilpotent Lie groups N , all
of which are diffeomorphic to Euclidean spaces via the Lie group
exponential map exp: N → N . We show that every such N with
a suitable left invariant metric is the base space of a Riemannian
submersion and homomorphism ρ : N∗ → N , where the fibers of
ρ are flat, totally geodesic Euclidean spaces. The left invariant
metric and Lie algebra of N∗ are obtained from N by constructing
a Lie algebra G whose Killing form B is negative semidefinite. If B
is negative definite, then we show that N∗ admits a (cocompact)
lattice subgroup Γ∗. Moreover Γ = ρ(Γ∗) is a lattice in N if Γ∗ ∩
Ker(ρ) is a lattice in Ker(ρ). Conversely, if N admits a lattice Γ,
then N∗ admits a lattice Γ∗ such that Γ = ρ(Γ∗). In this case the
Riemannian submersion and homomorphism ρ : N∗ → N induces
a Riemannian submersion ρ′ : Γ∗\N∗ → Γ\N whose fibers are flat,
totally geodesic tori. The idea underlying the proof is that every 2-
step nilpotent Lie algebra is isomorphic to a standard metric 2-step
nilpotent Lie algebra, which we define and discuss.
We also use a criterion of Mal’cev to derive conditions that guar-
antee the existence of lattices in N . We apply these conditions to
prove the existence of lattices in simply connected, 2-step nilpotent
Lie groupsN that arise from Lie triple systems with compact center
in so(n,R), the Lie algebra of skew symmetric linear transforma-
tions of Rn with the standard inner product. Lie triple systems
with compact center include subspaces of so(n,R) that arise from
finite dimensional real representations of Clifford algebras or com-
pact Lie groups. The center of the Lip triple system is trivial for
representations of Clifford algebras and compact semisimple Lie
groups.

Introduction.

For finite dimensional real vector spaces U, V a linear map j : U → End(V )
is called skew symmetrizable if there exists an inner product 〈 , 〉

V
on V such

that the elements of j(U) are skew symmetric relative to 〈 , 〉
V
. If j is injec-

tive in addition, then we may define a (positive definite) inner product 〈 , 〉
U
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on U by 〈u, u∗〉 = − trace j(u)j(u∗). We obtain a unique 2-step nilpotent
Lie algebra structure [ , ] on N = V ⊕ U (orthogonal direct sum) such that
U is contained in the center of N and 〈[X, Y ], Z〉

U
= 〈j(Z)(X), Y 〉

V
for all

X, Y in V and Z in U . In section 2 we show that the isomorphism type of
{N , [, ]} depends only on the image j(U) = W in End(V ) and not on the
particular injective, skew symmetrizable linear map j : U → End(V ) or the
choice of inner product 〈 , 〉

V
.

In view of the statements above we are led to give special attention to
metric 2-step nilpotent Lie algebras N = Rn ⊕W , (orthogonal direct sum),
where Rn has a fixed inner inner product 〈 , 〉, and W is a p-dimensional
subspace of so(n,R) with the inner product 〈X, Y 〉∗ = − trace(XY ). The
subspace W is by definition in the center of N , and the 2-step nilpotent
bracket operation on Rn is defined uniquely by the condition 〈[v, w], Z〉∗ =
〈Z(v), w〉 for all v, w in Rn and all Z in W . Such a Lie algebra N = Rn⊕W
is called a standard metric 2-step nilpotent Lie algebra.

In section 2.6 we show that every 2-step nilpotent Lie algebra N is iso-
morphic as a Lie algebra to one of the standard metric 2-step nilpotent Lie
algebras N = Rn ⊕W . The isomorphism is not uniquely determined but
depends on the choice of a special basis of N .

Let W be a subspace of so(n,R) and let G be the subalgebra of so(n,R)
generated by W . Let N ∗ = Rn ⊕ G and N = Rn ⊕W be the associated
standard metric 2-step nilpotent Lie algebras. Let N ∗ and N denote the
corresponding simply connected metric 2-step nilpotent Lie groups. The
orthogonal projection π : N ∗ → N is a surjective Lie algebra homomorphism
that lifts to a surjective Lie group homomorphism ρ : N ∗ → N such that
dρ = π.

In section 3 we show that ρ : N ∗ → N is a Riemannian submer-
sion with flat, simply connected, totally geodesic fibers. Moreover, if N
admits a lattice Γ, necessarily cocompact, then N ∗ admits a lattice Γ∗

such that ρ(Γ∗) = Γ, and there is an induced Riemannian submersion
ρ′ : Γ∗\N ∗ → Γ\N whose fibers are flat, totally geodesic tori that are all iso-
metric. Moreover, Ker(ρ)∩Γ∗ is a lattice in Ker(ρ). Conversely, if Ker(ρ)∩Γ∗

is a lattice in Ker(ρ) for some lattice Γ∗ in N ∗, then Γ = ρ(Γ∗) is a lattice
in N .

Lattices in a simply connected nilpotent Lie group N are not guaranteed
to exist. In fact, lattices never exist for a “generic” simply connected 2-step
nilpotent Lie group N of dimension n whose center has dimension p ≥ 3,
provided that n is sufficiently large relative to p. See the beginning of section
4 and [E3] for more details. Mal’cev [Ma] has shown that a simply connected
nilpotent Lie group N admits a lattice⇔ the Lie algebra N has a basis with
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rational structure constants. It is of interest to differential geometers to have
criteria that guarantee the existence of lattices in the corresponding simply
connected groups N .

For finite dimensional real vector spaces U, V a linear map j : U →
End(V ) will be called rational if there exist bases BU for U and BV for
V such that j(Z)(Q − span(BV )) ⊆ Q − span(BV ) for all Z in BU . Let
j : U → End(V ) be an injective, rational and skew symmetrizable linear
map, and let {N = V ⊕ U, [ , ]} be the 2-step nilpotent Lie algebra defined
as above. If N is the simply connected 2-step nilpotent Lie group with
Lie algebra N , then the Mal’cev criterion implies that N admits a lattice
(Proposition 2.7). In the Propositions of (4.2) and (4.3) we use this result to
show that lattices in simply connected 2-step nilpotent Lie groups N always
exist in certain special situations:

1) Fix an inner product on Rn, and let G be a subalgebra of so(n,R) that
is the Lie algebra of a compact, connected subgroup of SO(n,R). We show
in Appendix 1 that there exists a basis C ′ of G with the following properties:
a) The structure constants of C ′ lie in Z, b) Any finite dimensional real G-
module U admits a basis BU such that the elements of C ′ leave invariant
Z − span(BU). This is a slight generalization of a result in [R1], where the
proof is given in the case that G is semisimple.

Now let W be a subspace of G that admits a basis in GQ = Q− span(C ′)
and let N = Rn⊕W be the corresponding standard metric 2-step nilpotent
Lie algebra. Then the simply connected Lie group N with Lie algebra N
admits a lattice Γ (Proposition 4.2).

Remark. Any semisimple subalgebra G of so(n,R) is the Lie algebra of a
compact, connected subgroup G of SO(n,R). See for example [Mo, p. 614].

If H is any subalgebra of so(n,R), then G = [H,H] is semisimple (cf.
Appendix 1). If ρ : G→ GL(Rn) is a representation of a compact semisimple
Lie group , then the Lie algebra of ρ(G) is a semisimple subalgebra of so(n,R)
for any ρ(G)-invariant inner product 〈 , 〉 on Rn.

2) Let C�(m) denote the real negative definite Clifford algebra deter-
mined by Rm with the standard inner product. Let j : C�(m) → End(Rn)
denote a representation of C�(m); that is, j(Z)2 = −|Z|2 Id for all Z in Rm.
If j : Rm → End(Rn) also denotes the restriction of the Clifford representa-
tion, then j is injective, skew symmetrizable and rational. Let W = j(Rm),
which lies in so(n,R) for a suitable inner product 〈 , 〉 on Rn. If N = Rn⊕W ,
defined as above, then N admits a lattice. See the corollary of (4.3c).

These spaces N of Heisenberg type arising from representations of Clif-
ford algebras were first studied seriously by A. Kaplan in [K1,2]. The exis-
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tence of lattices in some of these groups N is known, but the treatment in
[K1] is brief. See [CD] for a different proof of the existence of lattices in a
space N of Heisenberg type.

3) A subspace W of so(n,R) is a Lie triple system if [X, [Y, Z]] ∈ W

whenever X, Y and Z ∈W . The Lie triple systems W in so(n,R) provide a
rich class of examples whose associated 2-step nilpotent Lie groups N admit
lattices (see 4.3).

If W is a Lie triple system in so(n,R), then H = W + [W,W ] is a sub-
algebra of so(n). Moreover, H is semisimple ⇔ {0} = Z(W ) = {X ∈ W :
[X, Y ] = 0 for all Y ∈ W}. Conversely, if H is any subalgebra of so(n,R),
then H = W ⊕ [W,W ], (direct sum), for some Lie triple system W . See
Appendix 2 for more details.

If W is a Lie triple system in so(n,R), then gWg−1 is also a Lie triple
system in so(n,R) for all elements g in SO(n,R). If we regard W and
gWg−1 as equivalent for all g in SO(n,R), then one may show that there are
only finitely many equivalence classes of Lie triple systems in so(n,R) with
Z(W ) = {0}.

The Lie triple system examples of 3) actually contain the examples of 2)
and 1). Clearly, any Lie subalgebra W of so(n,R) is a Lie triple system. In
section 2.5 we show that if j : C�(m) → End(Rn) is a representation of the
Clifford algebra C�(m), then W = j(Rm) is a Lie triple system in so(n,R) for
any W -invariant inner product 〈 , 〉 on Rn. Moreover, we show in Appendix
3 that H = W ⊕ [W,W ] is isomorphic to so(m + 1,R) if m �= 3. If m = 3,
then either H = W ⊕ [W,W ] is isomorphic to so(4,R) or W = [W,W ] = H

is isomorphic to so(3,R).
The statements above from Appendices 2 and 3 are intended to motivate

the study of 2-step nilpotent Lie groups N with left invariant metrics whose
Lie algebras N are standard metric 2-step nilpotent Lie algebras. These
appendices may be found on the author’s website at (www.math.unc.edu).

The paper is organized as follows. Section 1 contains basic material
about 2-step nilpotent Lie algebras and lattices in simply connected 2-step
nilpotent Lie groups. In section 2 we prove the facts stated in the first para-
graph of the introduction, and we introduce standard metric 2-step nilpotent
Lie algebras. In section 2.6 we show that every 2-step nilpotent Lie algebra
is isomorphic to one of these. The Riemannian submersion result, stated
earlier, is proved in section 3. The existence of lattices in the two situations
mentioned above is proved in section 4.

I am indebted to D. Shapiro, who explained to me many details about
Clifford algebras, and to J. Eschenburg, J. Heber and E. Heintze, who
pointed out the importance and many of the basic properties of the Lie
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triple system examples. I am grateful to Y. Benoist, who explained to me
an important step in the proof of Proposition 4.2. I especially thank D.
Witte for acquainting me with the rationality results of [R1] and [B]. The
result from [B] stated at the end of (1.3a) is the key step needed for the
proof of the main result in (4.3c), which proves the existence of lattices in
all simply connected 2-step nilpotent Lie groups N that arise from Lie triple
systems with compact center in so(n,R).

1. Lattices in nilpotent Lie groups.

1.1. Basic information.

General references for the material in this section are [CG] and [R2] as well
as the original paper of Mal’cev ([Ma]).

(1.1a) Definition and exponential map. A Lie algebra N is nilpotent if
N k = {0} for some positive integer k, where N 0 = N and N k = [N ,N k−1]
for all k ≥ 1. The nilpotent Lie algebra N is said to be k-step if N k = {0}
but N k−1 �= {0}.

We consider only nilpotent Lie algebras over R. If N is a simply con-
nected nilpotent Lie group with Lie algebra N , then the Lie group exponen-
tial map exp : N → N is a diffeomorphism and we let log : N → N denote
its inverse.

(1.1b) Multiplication formula. For elements X and Y in N the
Campbell-Baker-Hausdorff formula says that exp(X) · exp(Y ) = exp(X +
Y + P (X, Y )(X) + Q(X, Y )(Y )), where P (X, Y ) and Q(X, Y ) are finite
polynomials in adX and adY ([V ]). If N is 2-step nilpotent, the case that
concerns us in this paper, the formula becomes

exp(X) exp(Y ) = exp(X + Y + 1
2
[X, Y ]) for all X, Y in N

log(nn∗) = log(n) + log(n∗) + 1
2
[log(n), log(n∗)] for all n, n∗ ∈ N.

For elements n, n∗ in N let [n, n∗] = nn∗n−1n∗−1. We obtain

[exp(X), exp(Y )] = exp([X, Y ]) for all X, Y in N .

1.2. The Mal’cev criterion for lattices.

(1.2a) Definition of lattice. A lattice Γ in a connected Lie group H is a
discrete subgroup such that Γ\H possesses a finite measure invariant under
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the action of H .
If N is a simply connected nilpotent Lie group, then every lattice Γ of

N is cocompact; that is, Γ\N is compact ([R2, Theorem 2.1]). Not every
simply connected nilpotent Lie group N admits a lattice Γ; see for example
[R2, Remark 2.14] or section 4.1 of this paper for the 2-step case.

(1.2b) Existence Theorem ([M], [R2], [CG]). A simply connected Lie
groupN admits a lattice Γ if and only if there exists a basis B = {ξ1, ξ2, ...ξn}
of the Lie algebra N such that [ξi, ξj] =

∑n
k=1 C

k
ijξk , where the constants

{Ck
ij} are rational numbers. In addition,
a) If B = {ξ1, ξ2, ...ξn} is a basis of N with rational structure constants

as above, and if L is a vector lattice of N contained in NQ = Q − span(B),
then the subgroup Γ of N generated by exp(L) is a lattice in N . Moreover,
Q − span(B) = Q − span(logΓ).

b) If Γ is a lattice of N , then NQ = Q− span(logΓ) is a Lie algebra over
Q, and there exists a Q-basis B = {ξ1, ξ2, ...ξn} of NQ that is also an R-basis
of N .

c) If Γ1 and Γ2 are lattices inN , then Q−span(logΓ1) = Q−span(logΓ2)
if and only if Γ1 and Γ2 are commensurable; that is, Γ1 ∩ Γ2 has finite index
in both Γ1 and Γ2.

(1.2c) Commensurability Example [CG, Theorem 5.4.2]. Let Γ be a
lattice in a simply connected, nilpotent Lie group N . Then there exist
lattices Γ1 and Γ2 in N such that

a) Γ1 is a finite index subgroup of Γ and Γ is a finite index subgroup of
Γ2.

b) Λ1 = log(Γ1) and Λ2 = log(Γ2) are vector lattices in N .

1.3. Rationality.

We first define rational structures, subalgebras and subgroups in a general
setting and then specialize to the case of nilpotent Lie algebras.

(1.3a) Rational Lie algebra structures. Let B = {ξ1, ξ2, ...ξn} be a
basis of an arbitrary real Lie algebra H such that [ξi, ξj] =

∑n
k=1 C

k
ijξk,

where the constants {Ck
ij} are rational numbers. Then HQ = Q − span(B)

is a Lie algebra over Q, and HQ ⊗Q R is isomorphic to H. One calls HQ a
rational structure on H.
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Examples of rational structures.

Example 1. Let N be a nilpotent Lie algebra . By the discussion in (1.2b)
and (1.2c) the rational structures on N correspond bijectively to the com-
mensurability classes of lattices in N , the simply connected Lie group with
Lie algebra N .

Example 2. Let V be a finite dimensional real vector space, and let B be
a basis of V . Let End(V ) be the real Lie algebra of endomorphisms of V
with Lie bracket [ , ] defined by [T, S] = TS − ST . Let EndB(V )Q = {T ∈
End(V ) : T has a matrix with entries in Q relative to the basis B}. Then
EndB(V )Q is a rational structure for End(V ).

Example 3 (Real Chevalley bases and rational structures). Let GC

denote a complex semisimple Lie algebra. If A is a Cartan subalgebra of
GC with roots Φ ⊆ A∗ and simple roots ∆ ⊆ Φ, then A defines a Chevalley
basis C = {H∗

α, yβ : α ∈ ∆, β ∈ Φ} of GC whose structure constants lie in Z

and which has the properties that i) adA(yβ) = β(A)yβ for A ∈ A, β ∈ Φ
ii) {H∗

α : α ∈ ∆} is a basis of A such that −H∗
α = H∗−α for all α ∈ ∆.

See [Hu, pp.143-146] for a definition and a more detailed discussion. The
Chevalley basis C is not unique, but there are ”natural ” Chevalley bases C
for the simple, complex Lie algebras GC in the classification An,Bn, Cn, and
Dn. See for example [He, pp. 186-191].

The complex semisimple Lie algebra GC has a real subalgebra G whose
Killing form is negative definite and whose complexification is GC . The
subalgebra G is called a compact real form of GC and is unique up to isomor-
phism. Conversely, if G is a real subalgebra whose Killing form is negative
definite, then GC is semisimple and G is a compact real form of GC.

A compact real form G of a complex semisimple Lie algebra GC may be
constructed as follows. From a Chevalley basis C = {H∗

α, yβ : α ∈ ∆, β ∈ Φ}
for GC one defines a “real” Chevalley basis CR = {iH∗

α, uβ, vβ : α ∈ ∆, β ∈
Φ} , where uβ = yβ − y−β and vβ = iyβ + iy−β for all β ∈ Φ. If G =
R− span(CR), then G is a compact real form for GC, and CR is a basis of G

with structure constants in Z. Any compact real form of GC arises in this
way for a suitable choice of Chevalley basis C. See [B] and [C]. See also [He,
pp. 181-182] for further discussion, where uβ and vβ are replaced by iuβ and
−ivβ respectively.

The rational structure GQ for G given by GQ = Q − span(CR) will be
useful later in Proposition 4.2 for constructing examples of simply connected,
2-step nilpotent Lie groups N that admit lattices.
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Chevalley bases adapted to involutions [B]. Let G be a Lie subalgebra
of so(n,R) whose Killing form is negative definite. Let θ : G → G be a Lie
algebra automorphism such that θ2 = Id. Then we can choose a Chevalley
basis C = {H∗

α, yβ : α ∈ ∆, β ∈ Φ} for the complexification GC such that
a) The real Chevalley basis CR = {iH∗

α, uβ, vβ : α ∈ ∆, β ∈ Φ} is a basis
for G.

b) G admits a basis B ⊆ Z− span(CR) such that θ(ξ) = ±ξ for all ξ ∈ B.
In particular, the +1 and −1 eigenspaces of θ are rational relative to the
rational structure GQ = Q− span(CR) on G.

Assertion b) will be proved below in lemma 2 of (4.3c). The proof of b)
follows from Proposition 3.7 and the preceding discussion in section 3 of [B].
See also Proposition 14.3 of [R2, pp. 215-220].

(1.3b) Rational subalgebras and subgroups.

Definition of rational structure.

Let H be a real Lie algebra, and let HQ be a rational structure on H. Let
H be a Lie group with Lie algebra H.

A subspace or subalgebra H∗ of H is rational with respect to HQ if HQ

contains a basis of H∗. A connected subgroup H∗ of H is rational with
respect to HQ if its Lie algebra H∗ is rational with respect to HQ.

We now specialize to nilpotent Lie algebras.

Proposition. [CG, §5.4] Let N be a nilpotent Lie algebra, and let NQ be a
rational structure on N . Let N be the simply connected nilpotent Lie group
with Lie algebra N . Let Γ be a lattice of N such that NQ = Q− span(logΓ).

A subalgebra N ∗ of N is rational with respect to NQ if and only if Γ∗ =
Γ ∩N ∗ is a lattice in N ∗ = exp(N ∗).

(1.3c) Examples of rational subalgebras ([CG, §5.2]). Let N be a
nilpotent Lie algebra, and let N be the simply connected nilpotent Lie group
with Lie algebra N . The following subalgebras are rational with respect to
the rational structure NQ = Q − span(logΓ) for any lattice Γ of N .

1) The center Z of N .
2) The subalgebras N k = [N ,N k−1], where N 0 = N (descending central

series).
3) The subalgebras Nk = {X ∈ N : [X,N ] ⊆ Nk−1}, where N 0 = {0}

(ascending central series).
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(1.3d) Remark. If Z denotes the center of a nilpotent Lie algebra N ,
and Z denotes the center of the corresponding simply connected Lie group
N , then exp : Z → Z and log : Z → Z are group isomorphisms as well
as diffeomorphisms since Z and Z are abelian. Here, addition is the group
operation on Z . In particular, if Γ∗ is a lattice in Z, then logΓ∗ is a vector
lattice in Z . Combining this fact with the proposition in (1.3b) and 1) of
(1.3c) it follows that if Γ is a lattice in N , then (logΓ)∩Z = log(Γ∩Z) is a
vector lattice in Z . Similarly, if N ∗ = exp([N ,N ]), then (logΓ) ∩ [N ,N ] =
log(Γ ∩N ∗) is a vector lattice in [N ,N ].

(1.3e) A useful rational basis of N .

Proposition. Let N be a 2-step simply connected nilpotent Lie group with
Lie algebra N . Let Γ be a lattice in N and let NQ = Q− span(logΓ). Then
there exists a basis B = {X1, X2, ...Xn, Z1, Z2, ...Zp} of N such that

1) B ⊆ logΓ.

2) {Z1, Z2, ...Zp} is a basis of Z such that Q− span{(logΓ) ∩ Z} = Q −
span{Z1, Z2, ...Zp}.

3) If q = dim([N ,N ]), then {Z1, Z2, ...Zq} is a basis of [N ,N ] such that
Q− span{(logΓ) ∩ [N ,N ]} = Q − span{Z1, Z2, ...Zq} .

4) Q− span(B) = Q − span(logΓ) = NQ.

5) The structure constants of B lie in Z.

We first prove a stronger result for the special case that Λ = logΓ is a
vector lattice in N . This lemma will also be useful later in the proof of the
main result of section 3.

Lemma. Let N and Γ be as above and suppose that Λ = logΓ is a vector
lattice in N . Then there exists a Z-basis B = {X1, X2, ...Xn, Z1, Z2, ...Zp}
of Λ such that

1) B is also an R-basis of N .

2) {Z1, Z2, ...Zp} is a basis of Z such that (logΓ) ∩ Z = Z −
span{Z1, Z2, ...Zp}.

3) If q = dim([N ,N ]), then {Z1, Z2, ...Zq} is a basis of [N ,N ] such that
(logΓ) ∩ [N ,N ] ⊆ Z − span{Z1, Z2, ...Zq} and Q − span{(logΓ) ∩
[N ,N ]} = Q− span{Z1, Z2, ...Zq}.
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4) Q− span(B) = Q− span(logΓ).

5) The structure constants of B lie in Z.

Proof of the Lemma. Since N is 2-step nilpotent it follows that Λ′ =
ad(Λ) is a finitely generated free abelian group in ad(N ) ⊆ End(N ). Let
{X ′

1, X
′
2, ..., X

′
n} be a Z-basis for Λ′, and let {X1, X2, ..., Xn} be elements of

Λ such that adXi = X ′
i for 1 ≤ i ≤ n. By (1.3d) (logΓ)∩Z is a vector lattice

in Z , and (logΓ)∩ [N ,N ] is a vector lattice in [N ,N ]. Since P = (logΓ)∩Z
and Q = (logΓ) ∩ [N ,N ] are finitely generated free Z-modules with Q ⊆ P ,
the invariant factor theorem says that there exist Z-bases {Z1, Z2, ...Zp} for
P and {Z∗

1 , Z
∗
2 , ...Z

∗
q} for Q such that Z∗

i = miZi for 1 ≤ i ≤ q, where
{m1, m2, ...mq} are positive integers such that mi divides mi+1 for all i. If
P = (logΓ) ∩ Z and A = Z-span{X1, X2, ..., Xn}, then it is easy to prove
that {X1, X2, ..., Xn} is a Z-basis for A,A∩ P = {0} and Λ = A⊕ P .

The discussion above shows that B = {X1, X2, ...Xn, Z1, Z2, ...Zp} is a
Z-basis of Λ satisfying assertions 2) and 3) of the Lemma. We prove 1)
and 4). Clearly Q − span(B) = Q − span(Λ) = Q − span(logΓ). The
elements of B are linearly independent over Q, and hence B is a Q-basis of
NQ = Q− span(logΓ). By the first remarks in (1.3) NQ is a Lie algebra over
Q and NQ ⊗Q R is isomorphic to N . It follows that the structure constants
of B lie in Q, and B is an R-basis of N . This proves 1) and 4).

It remains only to show that the structure constants of B lie in Z. In
this case (1.1b) implies that if X ∈ log Γ and Y ∈ log Γ, then [X, Y ] ∈
logΓ. Hence Z − span(B) = Λ = logΓ is closed under Lie brackets and, in
particular, [B,B] ⊆ (logΓ) ∩ Z = Z− span{Z1, Z2, ...Zp} �

Proof of the Proposition. Let Γ be a lattice of N . By (1.2c) there exists
a finite index subgroup Γ∗ of Γ such that Λ∗ = logΓ∗ is a vector lattice in
N . Let B = {X1, X2, ...Xn, Z1, Z2, ...Zp} be a Z-basis for Λ∗ satisfying the
five conditions of the lemma. By (1.2b) Q − span(B) = Q − span(logΓ∗) =
Q − span(logΓ). Assertions 4) and 5) of the Proposition now follow from
assertions 4) and 5) of the lemma while assertion 1) of the Proposition holds
since B ⊆ logΓ∗ and Γ∗ ⊆ Γ. Since (logΓ∗) ∩ Z and (logΓ) ∩ Z are vector
lattices in Z , with the first contained in the second, it follows that Q −
span{(logΓ∗) ∩ Z} = Q − span{(logΓ) ∩ Z}. Similarly Q − span{(logΓ∗) ∩
[N ,N ]} = Q−span{(logΓ)∩[N ,N ]}. Assertions 2) and 3) of the Proposition
now follow from assertions 2) and 3) of the lemma. �
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2. Standard and involutive metric 2-step nilpotent Lie
algebras.

2.1. Abelian and nonabelian factors of a 2-step nilpotent Lie
algebra.

It is useful to observe that one may always split off an abelian Lie algebra
E from a 2-step nilpotent Lie algebra N and reduce consideration to the
case that [N ,N ] = Z , the center of N . We call the ideals E and N ∗ in the
proposition below the abelian and nonabelian factors of N .

Proposition. Let N be a 2-step nilpotent Lie algebra with center Z. Then
there exist ideals N ∗ and E of N with E ⊆ Z such that

1) N = N ∗ ⊕ E and Z = [N ,N ]⊕ E.
2) N ∗ is a 2-step nilpotent Lie algebra such that [N ,N ] = [N ∗,N ∗] = Z∗,

the center of N ∗.

3) The ideals N ∗ and E are uniquely determined up to isomorphism by
1).

4) If N has a basis B with rational structure constants, then N ∗ has a
basis B∗ with integer structure constants.

From 1) of the Proposition above we obtain

Corollary. Let N be a 2-step nilpotent Lie algebra with center Z. Then N
has a trivial abelian factor ⇔ [N ,N ] = Z.

Proof of the Proposition. We begin by proving 3). Suppose that we can
write N = N ∗

1 ⊕ E1 = N ∗
2 ⊕ E2,where {N ∗

1 , E1} and {N ∗
2 , E2} satisfy the

hypotheses 1) and 2) of the Proposition. If V is a subspace of N such that
N = V ⊕ Z , then N = V ⊕ [N ,N ]⊕ Ei for i = 1, 2. Let T : N → N be a
linear isomorphism such that T = Id on V ⊕ [N ,N ] and T (E1) = E2. It is
easy to check that T is a Lie algebra isomorphism, and hence T induces a
Lie algebra isomorphism T̄ : N / E1 → N / E2. However, N / E1 ∼= N ∗

1 and
N/E2 ∼= N ∗

2 by 1). This proves that N ∗
1
∼= N ∗

2 , and E∗1 ∼= E∗2 since E∗1 and E∗2
are abelian Lie algebras of the same dimension by 1).

To prove the existence of N ∗ and E we choose E to be any subspace of Z
such that Z = [N ,N ]⊕E . Let V be a subspace of N such that N = V ⊕Z .
If N ∗ = V ⊕ [N ,N ], then N ∗ and E satisfy 1) and it follows that [N ,N ]
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= [N ∗,N ∗] ⊆ Z∗ ⊆ Z . Let Z∗ be any element of Z∗ and write Z∗ = X +Z,
where X ∈ V and Z ∈ [N ,N ] ⊆ Z∗. It follows that X ∈ V ∩ Z∗ ⊆ V ∩ Z
= {0}. We conclude that Z∗ = [N ,N ], which proves 2).

We prove 4). Let B be a basis of N with rational structure constants.
If N is the simply connected Lie group with Lie algebra N , then by (1.2b)
N admits a lattice Γ such that Q − span(B) = Q − span(logΓ). Let B′ =
{X1, X2, ...Xn, Z1, Z2, ...Zp} be a basis of N such that Q − span(B′) = Q −
span(logΓ) = Q− span(B), and B′ satisfies the conditions of the proposition
in (1.3e). Let V = R − span(X1, X2, ...Xn), E = R− span(Zq+1, ..., Zp) and
N ∗ = R − span(X1, X2, ...Xn, Z1, Z2, ...Zq), where q = dim[N ,N ] and p =
dimZ . Then N = V⊕Z , N ∗ = V⊕[N ,N ] andN = N ∗⊕E by the properties
of B′ from (1.3e). The idealsN ∗ and E satisfy 1) and 2) of the Proposition, as
we observed in the previous paragraph. If B∗ = {X1, X2, ...Xn, Z1, Z2, ...Zq},
then B∗ is a basis of N ∗ with integer structure constants by (1.3e). We have
proved 4) for a particular choice of N ∗, but N ∗ is uniquely determined up
to isomorphism by 1) �

2.2. Basic structure of metric 2-step nilpotent Lie algebras.

(2.2a) The bracket operation determines a linear map. Let N be
a 2-step nilpotent Lie algebra with center Z . Given an inner product 〈 , 〉
on N we write N = V ⊕ Z , where V = Z⊥, the orthogonal complement of
Z . For each element Z of Z we obtain a skew symmetric transformation
j(Z) : V → V defined by the equation

〈j(Z)X, Y 〉 = 〈[X, Y ], Z〉 for all X, Y in V . (∗)
If {N, 〈 , 〉} denotes the simply connected Lie group with Lie algebra N and
corresponding left invariant metric 〈 , 〉, then the geometry of {N, 〈 , 〉} can
be expressed in terms of the maps {j(Z) : Z ∈ Z} . See [E1] for further
details. This approach to studying the geometry of {N, 〈 , 〉} was introduced
by A. Kaplan in [K1] and [K2] in the case that {N, 〈 , 〉} is of Heisenberg
type (see example 2) of (2.4) below).

It is evident that j : Z → so(V) is a linear map, where so(V) denotes the
vector space of skew symmetric linear transformations of V .

(2.2b) Constructing bracket operations from linear maps. Let V
and U be finite dimensional real inner product spaces and let N = V ⊕ U
be the orthogonal direct sum. Let j : U → so(V ) be a linear map. Now
define a bracket structure [ , ] on N by (∗) to make {N , 〈 , 〉} a metric 2-step
nilpotent Lie algebra in which U is contained in the center of N .
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Let V, U and j : U → so(V ) be as above. Let c be a positive number and
let Vc, Uc denote the same vector spaces with the original inner products
multiplied by c2. Clearly j(U) ⊆ so(Vc) for every positive number c. If Nc

denotes the orthogonal direct sum Vc⊕Uc relative to the new inner products,
then it is easy to check that the corresponding bracket operation [ , ]c defined
by (∗) above is unchanged; that is [ , ]c = [ , ] for every c.

(2.2c) Abelian factors and Euclidean de Rham factors. By the
proposition in (2.1) the next result shows that the dimension of the abelian
factor ofN equals the dimension of the Euclidean de Rham factor of {N, 〈 , 〉}
for any left invariant metric 〈 , 〉 on N .

Proposition. Let N be a 2-step nilpotent Lie algebra, and let N be the
simply connected nilpotent Lie group with Lie algebra N . Let Z denote the
center of N . Then the following are equivalent :

1) [N ,N ] has codimension p ≥ 0 in Z.
2) Let 〈 , 〉 denote an inner product on N . Let V = Z⊥ and let

j : Z → so(V) be the linear map defined above by (∗). Then the kernel
of j has dimension p.

3) Let 〈 , 〉 denote an inner product on N and also the corresponding left
invariant metric on N . Then the Euclidean de Rham factor of {N, 〈 , 〉} has
dimension p, the dimension of the abelian factor of N .

Proof. The equivalence of 1) and 2) follows immediately from the fact that
j(Z) = 0⇔ Z is orthogonal to [N ,N ] for an element Z of Z . This fact is an
immediate consequence of (∗) in (2.2a). The equivalence of 2) and 3) follows
directly from Proposition 2.7 of [E1] and the proposition in (2.1) above. �

Corollary. Let N be a 2-step nilpotent Lie algebra, and let N be the simply
connected nilpotent Lie group with Lie algebra N . Then the following are
equivalent.

1) N has a trivial abelian factor.
2) There exists an inner product 〈 , 〉 on N such that the linear map

j : Z → so(V) from (∗) is injective, where V = Z⊥.
3) For every inner product 〈 , 〉 on N the linear map j : Z → so(V) from

(∗) is injective, where V = Z⊥.

Proof. The implications 3) ⇒ 2) ⇒ 1) ⇒ 3) follow immediately from the
proposition above. �
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2.3. External direct sum constructions and partial uniqueness.

We can extend the construction of (2.2b) in a way that will be useful for
examples, two of which we describe below. Let V and U be finite dimensional
real vector spaces, and let j : U → End(V ) be a linear map. The map j
will be called skew symmetrizable if there exists an inner product 〈 , 〉 on
V such that the elements of j(U) are skew symmetric relative to 〈 , 〉. If j
is skew symmetrizable, then an inner product 〈 , 〉 on N = V ⊕ U will be
said to be j-admissible if a) V and U are orthogonal relative to 〈 , 〉 and
b) The elements of j(U) are skew symmetric relative to 〈 , 〉. If 〈 , 〉 is any
j-admissible inner product on N , then we may define a 2-step nilpotent Lie
algebra structure on N as in (2.2b).

(2.3a) A partial uniqueness result.

Proposition. Let V and U be finite dimensional real vector spaces, and let
j : U → End(V ) be a skew symmetrizable linear map. Let 〈 , 〉1 and 〈 , 〉2 be
j-admissible inner products on N = V ⊕U , and let [ , ]1 and [ , ]2 denote the
corresponding 2-step nilpotent Lie algebra structures on N given by (∗) in
(2.2a) with U contained in the center of N . If 〈 , 〉1 = c2〈 , 〉2 on U for some
positive constant c, then {N , [ , ]

1
} is Lie algebra isomorphic to {N , [ , ]2}.

As an immediate consequence we obtain the following

Corollary. Let V and U be finite dimensional real vector spaces, and let
j : U → End(V ) be a skew symmetrizable linear map. Then every inner
product 〈 , 〉

U
on U determines a unique 2-step nilpotent Lie algebra structure

given by (∗) in (2.2a) on the vector space N = V ⊕ U .

Proof of the proposition. By the discussion at the end of (2.2b) it suffices
to consider the case c = 1; that is 〈 , 〉

1
= 〈 , 〉

2
on U . Let S : V → V

be the linear transformation such that 〈v, w〉2 = 〈Sv, w〉1 for all v, w in V .
Then S is positive definite and symmetric relative to both 〈 , 〉1 and 〈 , 〉2 on
V . For every Z in U the linear transformation j(Z) commutes with S since
j(Z) is skew symmetric on V with respect to both 〈 , 〉1 and 〈 , 〉2. Write
V = V1 ⊕ V2 ⊕ ...VN , where S = λ2

i Id on each Vi, and λi �= λj for i �= j.
The subspaces {Vi} are orthogonal relative to both 〈 , 〉1 and 〈 , 〉2 since S is
symmetric relative to both 〈 , 〉1 and 〈 , 〉2.

Define a linear isomorphism ϕ : N → N by ϕ =
√
S = λi Id on each Vi,

and ϕ = Id on U . We assert that ϕ : {N , [ , ]
2
} → {N , [ , ]

1
} is a Lie algebra

isomorphism.
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Lemma.
[Vi, Vj]1 = [Vi, Vj]2 = {0} if i �= j.

Proof. The skew symmetric transformations in j(U) leave each eigenspace
Vi of S invariant since the elements of j(U) commute with S. Let 〈, 〉∗
denote the restriction of 〈 , 〉1 and 〈 , 〉2 to U . For Z in U and i �= j we have
〈[Vi, Vj]1, Z〉∗ = 〈j(Z)(Vi), Vj〉1 ⊆ 〈Vi, Vj〉1 = {0}. Hence [Vi, Vj]1 = {0}, and
a similar argument shows that [Vi, Vj]2 = {0}. �

Now let v, w in V and Z in U be given. Write v =
∑N

i=1 vi

and w =
∑N

i=1wi, where vi, wi ∈ Vi for each i. Then [v, w]1 =∑N
i=1[vi, wi]1 and [v, w]2 =

∑N
i=1[vi, wi]2 by the lemma above. Hence

〈ϕ[v, w]2, Z〉∗ = 〈[v, w]2, Z〉∗ =
∑N

i=1〈[vi, wi]2, Z〉∗ =
∑N

i=1〈j(Z)vi, wi〉2 =∑N
i=1 λ

2
i 〈j(Z)vi, wi〉1 since 〈 , 〉2 = λ2

i 〈 , 〉1 on each Vi. On the other hand,
since ϕ = λi Id on each Vi, we obtain from the lemma 〈[ϕv, ϕw]1, Z〉∗ =∑N

i=1 λ
2
i 〈[vi, wi]1, Z〉∗ =

∑N
i=1 λ

2
i 〈j(Z)vi, wi〉1. We conclude that ϕ[v, w]2 =

[ϕv, ϕw]1 for all v, w ∈ V , which completes the proof since U lies in the
center of {N , [ , ], ]1} and {N , [ , ]2}. �

(2.3b) Standard external direct sum examples. By (2.2c) the linear
map j in the corollary of (2.3a) is injective ⇔ N has trivial abelian factor.
If the map j is injective, then there is a family of preferred inner products
〈 , 〉

U
on U that are unique up to scaling by positive constants. We obtain

a family of external direct sum examples N = V ⊕ U with trivial abelian
factor that we call standard.

Proposition 1. Let V and U be finite dimensional real vector spaces, and
let j : U → End(V ) be an injective skew symmetrizable linear map. Let 〈 , 〉

V
be an inner product on V such that the elements of j(U) are skew symmetric
relative to 〈 , 〉

V
. For any positive constant c let 〈 , 〉c be the inner product

on U defined by 〈u, u∗〉c = −c2 trace j(u)j(u∗) for any elements u, u∗ in U .
Let [ , ]c be the 2-step nilpotent Lie algebra structure on N = V ⊕ U defined
in (2.2b). Then N has no abelian factor, and [ , ]c is independent, up to
isomorphism, of the choice of inner product 〈 , 〉

V
on V and the positive

constant c.

Proof. For any positive number c the symmetric bilinear form 〈 , 〉c on U is
positive definite since j : U → End(V ) is injective and skew symmetrizable.
The Lie algebra structure [ , ] on N is unique up to isomorphism by the
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proposition in (2.3a). Finally, {N , [ , ]} has no abelian factor by the corollary
in (2.2c). �

Next, we sharpen the result above to show that the isomorphism type of
the 2-step nilpotent Lie algebra N = V ⊕ U in Proposition 1 depends only
on the image W = j(U) ⊆ End(V ). More precisely, we have

Proposition 2. Let V, U1 and U2 be finite dimensional real vector spaces,
and let j1 : U1 → End(V ) and j2 : U2 → End(V ) be injective skew sym-
metrizable linear maps such that j1(U1) = j2(U2) = W ⊆ End(V ). Let [ , ]

1
and [ , ]2 be any 2-step nilpotent Lie algebra structures on N1 = V ⊕ U1

and N2 = V ⊕ U2 constructed as in Proposition 1. Then {N1, [ , ]1} and
{N2, [ , ]2} are isomorphic as Lie algebras.

Proof. It suffices to prove this in the case that j1 : U1 → End(V ) is any
injective skew symmetrizable linear map, U2 = j1(U1) = W and j2 is the
inclusion map i : W → End(V ). Fix an inner product 〈 , 〉

V
on V such that

W = j1(U1) ⊆ so(V, 〈 , 〉
V
). Define inner products 〈 , 〉1 on U1 and 〈 , 〉2 on

W = U2 by 〈u, u∗〉1 = − trace j1(u)j1(u∗) for u, u∗ in U1 and 〈Z, Z∗〉2 =
− trace j2(Z)j2(Z∗) = − trace(ZZ∗) for Z, Z∗ in U2 = W . Let [ , ]1 and [ , ]2
be the corresponding 2-step nilpotent Lie algebra structures on N1 = V ⊕U1

and N2 = V ⊕ U2 = V ⊕W defined as in (2.2b).

Let ϕ : N1 → N2 be the linear isomorphism defined by ϕ = Id on
V and ϕ = j1 on U1. We assert that ϕ : {N1, [ , ]1} → {N2, [ , ]2} is a
Lie algebra isomorphism. Let elements X, Y in V and Z in W be given.
Let u1 in U1 be the unique element such that j1(u1) = Z. We com-
pute 〈ϕ[X, Y ]1, Z〉2 = 〈j1[X, Y ]1, j1(u1)〉2 = − trace(j1[X, Y ]1 j1(u1)) =
〈[X, Y ]1, u1〉1 = 〈j1(u1)(X), Y 〉

V
= 〈Z(X), Y 〉

V
= 〈j2(Z)(X), Y 〉

V
=

〈[X, Y ]
2
, Z〉

2
= 〈[ϕX, ϕY ]

2
, Z〉

2
. Hence ϕ[X, Y ]

1
= [ϕX, ϕY ]

2
since Z ∈W

was arbitrary. It follows that ϕ : {N1, [ , ]1} → {N2, [ , ]2} is a Lie algebra
isomorphism since U1 and W are contained in the centers of N1 and N2

respectively. �

2.4. Examples of skew symmetrizable linear maps.

Example 1. Subspaces of so(n,R). Let W be a nonzero subspace of
so(n,R), and let j : W → so(n,R) be the inclusion map. Then j is a skew
symmetrizable linear map.



Riemannian Submersions and Lattices in Nilpotent Lie Groups 457

Example 2. Representations of compact Lie groups. Let G be a
compact connected Lie group, and let ρ : G → GL(V ) be a representation
of G on a finite dimensional real vector space V . Let U = G, the Lie algebra
of G, and let j = dρ : G→ End(V ) be the induced representation. Let 〈 , 〉V
be any inner product on V that is invariant under ρ(G). Then the elements
of j(G) are skew symmetric relative to 〈 , 〉V . Any choice of inner product
on G determines a j-admissible inner product on N = V ⊕G.

In geometric applications it is often desirable to choose a G-invariant
inner product 〈 , 〉

G
on G; that is, adX is skew symmetric relative to 〈 , 〉

G
for all X in G. For example, let 〈X, Y 〉

G
= − trace j(X) j(Y ) for X, Y in

G if j is injective, which yields a standard external direct sum example. If
G is semisimple, then we may set 〈 , 〉

G
= −B, where B is the Killing form

on G. More generally, if G is semisimple, and G1 ⊕ G2 ⊕ ... ⊕ GN is the
decomposition of G into simple ideals, then

a) The ideals {Gi} are orthogonal relative to any G-invariant inner prod-
uct 〈 , 〉

G
on G.

b) On simple ideals Gi of G the G-invariant inner products 〈 , 〉
G

are all
positive multiples of −B.

Remark. If G is a compact, connected, semisimple Lie group and j = dρ :
G→ End(V ) is injective, then the 2-step nilpotent structures on N = V ⊕G

defined as in (2.3) by G-invariant inner products on G are all isomorphic.
The proof of this statement in full generality requires a generalization of

the proposition in (2.3a), which we omit. We consider only the case that G
and G are simple.

If G is a simple compact Lie group and the representation ρ : G→ GL(V )
is nontrivial, then j = dρ : G → End(V ) is injective, and from b) we
conclude that there exists a positive constant d such that −d2B(X, Y ) =
− trace j(X) j(Y ) for all X, Y in G. Hence, b) also implies that for every G-
invariant inner product 〈 , 〉 on G there exists a positive number c such that
〈X, Y 〉 = −c2 trace j(X) j(Y ) for all X, Y in G. By Proposition 1 in (2.3b)
the 2-step nilpotent Lie algebras on N = V ⊕G determined by G-invariant
inner products on G are all isomorphic to the standard Lie algebra where
c = 1.

Example 3. Representations of negative definite real Clifford al-
gebras. Let {N , 〈 , 〉} be a metric, 2-step nilpotent Lie algebra , and write
N = V ⊕ Z where Z is the center of N and V = Z⊥. Suppose that
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j(Z)2 = −|Z|2 Id for every Z in Z , where j(Z) : V → V is the skew symmet-
ric linear map defined by (∗) in (2.2a). The corresponding simply connected
Lie group N with left invariant metric 〈 , 〉 is called a space of Heisenberg
type. These spaces were first introduced and studied seriously by A. Kaplan
in [K1, K2]. Clearly j : Z → End(V ) is injective for spaces of Heisenberg
type.

By polarization, the identity j(Z)2 = −|Z|2 Id for every Z in Z is equiv-
alent to the identity j(Z) j(Z∗) + j(Z∗) j(Z) = −2〈Z, Z∗〉 Id on V for all
Z, Z∗ in Z . Hence

〈Z, Z∗〉 = −
( 1

dimV
)

trace j(Z) j(Z∗) for all Z, Z∗ in Z. (#)

For spaces of Heisenberg type the linear map j : Z → End(V) extends
to a representation on V of C�(Z), the negative definite real Clifford algebra
determined by {Z , 〈 , 〉}.

Conversely, let {U, 〈, 〉∗} be an n-dimensional real inner product space,
and let C�(n) denote the negative definite real Clifford algebra determined
by {U, 〈, 〉∗}. Let j : C�(n) → End(V ) be a representation of C�(n) on a
finite dimensional real vector space V . By definition j(Z)2 = −|Z|2 Id for
every Z in U . The subgroup G = Pin(n) of C�(n) generated by the unit
vectors in U is a compact subgroup of the group of units of C�(n). See for
example [FH, pp. 307-312]. By a standard averaging procedure we may
choose an inner product 〈 , 〉 on V such that j(G) is a compact subgroup of
the orthogonal groupO(V, 〈 , 〉). If Z is a unit vector in {U, 〈 , 〉}, then j(Z) is
an orthogonal transformation of {V, 〈 , 〉} such that j(Z)2 = − Id. It follows
that j(Z) is also skew symmetric on {V, 〈 , 〉} since j(Z)t = j(Z)−1 = −j(Z).
Hence j(Z) is skew symmetric for all Z in U .

The inner products 〈 , 〉 on V and 〈, 〉∗ on U determine a j-admissible
inner product onN = V ⊕U . The corresponding 2-step nilpotent Lie algebra
structure [ , ] on N is standard in the sense of (2.3b) by the proposition in
(2.3a) and the identity (#) above.

Remarks. (See Appendix 3 for details) a) The isomorphism type of the
Clifford algebra C�(n) depends only on n and not on the real inner product
space{U, 〈, 〉∗}. Moreover, C�(n) becomes a Lie algebra where the bracket
is given by [a, b] = (1/2){ab − ba}. If U∗ = U ⊕ [U, U ], then U∗ is a Lie
subalgebra of C�(n) that is isomorphic to so(n + 1,R). If j : C�(n) →
End(V ) is a representation relative to Clifford multiplication in C�(n) and
composition in End(V ), then ϕ = (1/2) j : C�(n)→ End(V ) is a Lie algebra
homomorphism.
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b) The irreducible representations j : C�(n) → End(V ) are uniquely
determined up to equivalence if n ≡/ 3 (mod 4). If n ≡ 3 (mod 4), then
C�(n) has two inequivalent irreducible representations.

2.5. Standard metric 2-step nilpotent Lie algebras.

Motivated by the statement and proof of Proposition 2 in (2.3b) we now
describe a simple family of examples of metric 2-step nilpotent Lie algebras
{N , 〈 , 〉}. In (2.6) we shall see that any 2-step nilpotent Lie algebra N is
isomorphic as a Lie algebra to one of these metric examples.

Fix a positive integer n, and let {V, 〈 , 〉V} be an n-dimensional real inner
product space. Let so(V ) denote the Lie algebra of skew symmetric linear
transformations of {V, 〈 , 〉V}, and equip so(V ) with the positive definite
inner product 〈, 〉∗ given by 〈X, Y 〉∗ = − trace(XY ) for elements X, Y of
so(V ). Note that 〈, 〉∗ is a constant multiple of the Killing form of so(V ). If
V = Rn with the standard inner product, then we let so(n,R) denote so(V ).

Let W be a p-dimensional subspace of so(V ), and let {N , 〈 , 〉} denote
the orthogonal direct sum of V and W . Let [ , ] be the 2-step nilpotent
structure on N = V ⊕ W such that W is contained in the center of N ,
and for elements X, Y of V , [X, Y ] is the unique element of W such that
〈[X, Y ], Z〉∗ = 〈Z(X), Y 〉V for every element Z of W .

Remark. The bracket operation [ , ] depends upon the choice of the sub-
space W . It is easy to see from the definition that [N ,N ] = W for any
one of these metric 2-step nilpotent Lie algebras {N , 〈 , 〉}, N = V ⊕ W .
Moreover, W = Z , the center of N , if and only if for every nonzero vector
X of V there exists a vector Z of W such that Z(X) is nonzero. We omit
the details.

Terminology. A metric 2-step nilpotent Lie algebra {N , 〈 , 〉} will be
called standard if it arises in the manner above. A metric 2-step nilpo-
tent Lie algebra {N , 〈 , 〉} will be called involutive if it is standard and the
subspace W of so(V ) is actually a subalgebra of so(V ). Let {N, 〈 , 〉} be the
simply connected 2-step nilpotent Lie group with Lie algebra N and corre-
sponding left invariant metric. We say that {N, 〈 , 〉} is a standard metric
2-step nilpotent Lie group (respectively an involutive metric 2-step nilpotent
Lie group) if {N , 〈 , 〉} has the corresponding property.
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Examples from Lie triple systems.

Let n be any positive integer, and let W be a subspace of so(n,R) such that
[X, [Y, Z]] ∈W for all elementsX, Y, Z ofW . The subspace W is called a Lie
triple system in so(n,R), and it is well known from the theory of Riemannian
symmetric spaces that X = exp(W ) is a totally geodesic submanifold of the
special orthogonal group SO(n,R) equipped with a biinvariant Riemannian
metric, where exp : so(n,R) → SO(n,R) is the matrix exponential map.
Conversely, if X is a totally geodesic submanifold of SO(n,R) that contains
the identity I , then X = exp(W ) for some Lie triple system W . Any totally
geodesic submanifold Y of SO(n,R) is isometric by a left translation to a
totally geodesic submanifold X that contains the identity.

Let W be a Lie triple system in so(n,R) and define Z(W ) = {X ∈ W :
[X, Y ] = 0 for all Y ∈W}. We call Z(W ) the center of W , and we say that
W has compact center if exp(Z(W )) is a compact subset of SO(n,R). Note
that exp(Z(W )) is a connected abelian subgroup of SO(n,R) for any Lie
triple system W .

The Lie triple systems in so(n,R) form an important class of examples
whose structure is described in more detail in Appendix 2. We now list two
important examples.

Example 1. Representations of compact Lie groups. Let G be a
compact connected Lie group, and let ρ : G→ GL(V ) be a representation of
G on a finite dimensional real vector space V . Let 〈 , 〉V be any inner product
on V that is invariant under ρ(G). If j = dρ : G → End(V ) is the induced
representation of the Lie algebra G of G, then W = j(G) is a subalgebra of
so(V ) , the skew symmetric linear transformations of {V, 〈 , 〉V}.

A subalgebra W of so(V ) is clearly a Lie triple system in so(V ). In
this case W has compact center, and if G is semisimple, then W has trivial
center; that is, Z(W ) = {0}.

More generally, any Lie subgroup G of the orthogonal group SO(V ) is
a totally geodesic submanifold of SO(V ) (possibly immersed) with respect
to any biinvariant metric on SO(V ). A subgroup G is an imbedded totally
geodesic submanifold if G is closed in SO(V ). A biinvariant metric on SO(V )
is unique up to positive multiples.

Example 2. Representations of real Clifford algebras. Let {U, 〈 , 〉}
be an n-dimensional real inner product space, and let C�(n) denote the neg-
ative definite real Clifford algebra determined by {U, 〈 , 〉}. Let j : C�(n)→
End(V ) be a representation of C�(n) on a finite dimensional real vector
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space V , where multiplication in End(V ) is composition. As in (2.3) choose
an inner product 〈 , 〉 on V such that W = j(U) ⊆ so(V ). We assert that W
is a Lie triple system with trivial center.

To see that W is a Lie triple system let {u1, u2, ...un} be an orthonormal
basis of U . By the discussion in (2.4) we obtain

j(ui)j(uk) = −j(uk)j(ui) if i �= k and j(ui)2 = − Id for all i. (∗)

Hence [W,W ] = span{[j(ui), j(uk)] : 1 ≤ i, k ≤ n} = span{j(ui)j(uk) : 1 ≤
i < k ≤ n}. If i, k, � are all distinct, then j(u�) commutes with j(ui)j(uk)
by (∗). If � = i or k, then j(ui) j(uk) j(u�) = ±j(ui) or ±j(uk). It follows
that [W, [W,W ]] = span{[j(ui) j(uk), j(u�)] : 1 ≤ i < k ≤ n, 1 ≤ � ≤ n} =
span{j(ui) : 1 ≤ i ≤ n} = W . Hence W is a Lie triple system.

We show that the Lie triple sytem W = j(U) has trivial center. Let
u ∈ U be an element such that j(u) commutes with j(u∗) for all u∗ ∈ U .
If 〈u, u∗〉 = 0, then j(u)j(u∗) = −j(u∗)j(u) by the discussion of example
3 of (2.4). Hence if 〈u, u∗〉 = 0, then j(u)j(u∗) = 0, which implies that
0 = j(u)j(u∗)j(u)j(u∗) = j(u)2j(u∗)2 = |u|2|u∗|2 Id. We conclude that
u = 0 and W has trivial center.

If n = dimU , then for n �= 3 the totally geodesic subspace X = exp(W )
of SO(V ) with a biinvariant metric is a sphere of dimension n. This follows
from the well known facts that G = W ⊕ [W,W ] is isomorphic as a Lie
algebra to so(n + 1,R) and K = [W,W ] is isomorphic to so(n,R). If n = 3,
then X could be either a 3-sphere or a 2-sphere. For details, see for example
Proposition 3 in Appendix 3 and Lemma 2 of Proposition 3.

2.6. Metrizing 2-step nilpotent Lie algebras
into standard form.

We show next that every 2-step nilpotent Lie algebra N with an appropriate
inner product 〈 , 〉 is a standard metric 2-step nilpotent Lie algebra.

Proposition. Let N be a 2-step nilpotent Lie algebra of dimension n + q

such that [N ,N ] has dimension q ≥ 1. Then
1) There exists a q-dimensional subspace W of so(n,R) such that N

is isomorphic as a Lie algebra to the standard metric 2-step nilpotent Lie
algebra N ∗ = Rn ⊕W .

2) If N admits a basis with rational structure constants, then we may
choose W to have a basis whose matrices have entries in Z relative to the
standard orthonormal basis {e1, e2, ..., en} of Rn.
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Proof. Let {Z1, Z2, ..., Zq} be a basis of [N ,N ] and extend it to a basis
B = {X1, X2, ..., Xn, Z1, Z2, ..., Zq} of N . Let [Xi, Xj] =

∑q
k=1 C

k
ijZk for

1 ≤ i, j ≤ n; 1 ≤ k ≤ q and suitable matrices {C1, C2, ...Cq} in so(n,R).
Let W = span{C1, C2, ...Cq} ⊆ so(n,R), and let N ∗ = Rn ⊕W denote the
standard metric 2-step nilpotent Lie algebra determined by W and the usual
inner product on Rn. We will show that N is isomorphic as a Lie algebra to
N ∗ = Rn ⊕W . �

Lemma. The matrices {C1, C2, ...Cq} are linearly independent in so(n,R).

Proof of the Lemma. Let {α1, α2, ...αq} be real numbers such that 0 =∑q
k=1 αkC

k . Let Z∗ =
∑q

k=1 αkZk. Define 〈 , 〉 to be the inner product on
[N ,N ] that makes {Z1, Z2, ..Zq} an orthonormal basis. Then for 1 ≤ r, s ≤ n
we have 〈[Xr, Xs], Z∗〉 =

∑q
k=1 αkC

k
rs =

(∑q
k=1 αkC

k
)
rs

= 0. Hence Z∗ is
orthogonal to [N ,N ] = span{Z1, Z2, ..Zq}. It follows that Z∗ = 0, which
implies that αk = 0 for all k. �

Proof of the Proposition. 1) Let {e1, e2, ..., en} be the standard orthonormal
basis of Rn. Let {ρ1, ρ2, ..., ρq} be the basis of W such that 〈ρα, C

β〉 = δαβ

for 1 ≤ α, β ≤ q, where 〈 , 〉 denotes the standard inner product defined
on so(n,R) in (2.5). Let T : N → N ∗ be the unique linear isomor-
phism such that T (Xi) = ei for 1 ≤ i ≤ n and T (Zα) = −ρα for all
1 ≤ α ≤ q. We show that T is a Lie algebra isomorphism. It suffices to
show that T ([Xi, Xj]) = [T (Xi), T (Xj)]∗ = [ei, ej]∗ for all 1 ≤ i, j ≤ n,
where [ , ] and [ , ]∗ denote the Lie brackets in N and N ∗ respectively.
Note that 〈[ei, ej]∗, Ck〉 = 〈Ck(ei), ej〉 = Ck

ji. Furthermore, since each Cr

is skew symmetric we have 〈T ([Xi, Xj]), Ck〉 = 〈∑q
r=1 C

r
ij T (Zr), Ck〉 =

〈∑q
r=1C

r
jiρr, C

k〉 = Ck
ji = 〈[ei, ej]∗, Ck〉 for 1 ≤ i, j ≤ n. Hence

T ([Xi, Xj]) = [ei, ej]∗ for all 1 ≤ i, j ≤ n since {C1, C2, ...Cq} is a basis
for W . This completes the proof of 1).

2) If N admits a basis with rational structure constants, then the sim-
ply connected Lie group N with Lie algebra N admits a lattice Γ by the
Mal’cev criterion. By the proposition in (1.3e) we may choose a basis
B′ = {X1, X2, ..., Xm, Z1, Z2, ..., Zp} for N such that {Z1, Z2, ..., Zp} is a
basis for Z , {Z1, Z2, ..., Zq} is a basis for [N ,N ] and [Xi, Xj] =

∑q
k=1 C

k
ijZk

for 1 ≤ i, j ≤ m; 1 ≤ k ≤ q, where the constants {Ck
ij} lie in Z. Hence the

skew symmetric matrices {C1, C2, ..., Cq} have entries in Z.
If Λ = logΓ is a vector lattice in N , then we may also choose B′ to be a
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Z-basis of Λ by the lemma in (1.3e).
If p = q, then m = n and we let B = B′. Otherwise we construct a

basis B = {X1, X2, ..., Xn, Z1, Z2, ..., Zq} from B′ by setting Xm+i = Zq+i

for 1 ≤ i ≤ p− q. Now apply the construction in the proof of 1). �

Remark. The proof shows that the isomorphism T : N ∗ → N in
the proof of 1) is not unique but depends on a choice of basis B =
{X1, X2, ..., Xn, Z1, Z2, ..., Zp} for N as above.

2.7. Lattices and rational linear maps.

Let V be a finite dimensional real vector space, and let W be a subspace of
End(V ). Call W a rational subspace of End(V ) if there exist bases BV for
V and BW for W such that Z

(
Q − span(BV )

) ⊆ Q − span(BV ) for all Z in
BW . Equivalently, the matrix of Z relative to BV has rational entries for all
Z in BW . (Compare Example 2 in section 1.3a).

For finite dimensional real vector spaces U, V a linear map j : U →
End(V ) will be called rational if there exist bases BU for U and BV for V
such that j(Z)

(
Q − span(BV )

) ⊆ Q − span(BV ) for all Z in BU .

Examples of skew symmetrizable, rational linear maps.

Example 1. Fix an inner product 〈 , 〉 on Rn. Let so(n,R) denote the Lie
algebra of skew symmetric linear transformations of Rn. Let W be a rational
subspace of so(n,R) ⊆ End(Rn). Then the inclusion map j : W → End(Rn)
is an injective, skew symmetrizable, rational linear map.

In particular, let 〈 , 〉 and BV = {e1, e2, ..., en} denote the standard inner
product and orthonormal basis of V = Rn. Let {A1, A2, ..., Ap} be arbi-
trary skew symmetric n × n matrices with rational coefficients. If W is
the subspace of so(n,R) spanned by the transformations whose matrices are
{A1, A2, ..., Ap} relative to BV , then W is a rational subspace of so(n,R).

Example 2. Let W be a rational subspace of so(n,R). Then for any g
in GL(Rn) the inclusion map j : gWg−1 → End(Rn) is an injective, skew
symmetrizable, rational linear map.

To see this, let W be a rational subspace of so(n,Rn) relative to bases
BV of V = Rn and BW of W . The matrices of gWg−1 relative to the basis
g(BV ) of Rn are skew symmetric since they are the same as the matrices ofW
relative to BV . It follows that gBWg

−1 is a basis of gWg−1 whose matrices
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relative to g(BV ) have rational entries. If 〈 , 〉g denotes the inner product on
Rn that makes g(BV ) an orthonormal basis, then gWg−1 ⊆ so(Rn, 〈 , 〉g).

Example 3. Let W be a subalgebra of End(Rn) whose Killing form B is
negative definite. Then the inclusion map j : W → End(Rn) is an injective,
skew symmetrizable, rational linear map.

To see this, note that G = exp(G) is a compact subgroup of GL(V ) by
remarks 3) and 5) following Proposition 4.2. If 〈 , 〉 is any G-invariant inner
product on V , then G ⊆ so(V, 〈 , 〉). If CR is a real Chevalley basis of G, then
by the proposition in Appendix 1 there exists a basis BV of V such that the
elements of CR leave invariant Z− span(BV ).

We introduce some terminology before stating the next result. We say
that V is irreducible relative to a subspaceW of End(V ) if no proper subspace
of V is invariant under all elements of W . We say that an inner product 〈 , 〉
on V is W -invariant if W ⊆ so(V, 〈 , 〉.
Proposition. Let j : U → End(V ) be an injective, rational and skew sym-
metrizable linear map, and let {N = V ⊕ U, [ , ]} be the 2-step nilpotent Lie
algebra defined in Proposition 1 of (2.3b). Suppose that V is irreducible rela-
tive to W = j(U). Then N admits a basis with rational structure constants.
In particular if N is the simply connected 2-step nilpotent Lie group with Lie
algebra N , then N admits a lattice.

The proof of the Proposition follows immediately from Lemmas 2 and 3
below and the Mal’cev criterion for lattices from section 1. As an immediate
consequence of the result above and the discussion preceding it we obtain
the following

Corollary. Fix an inner product 〈 , 〉 on Rn and let W be a rational subspace
of so(n,R) ⊆ End(Rn) such that Rn is irreducible relative to W . Let N =
Rn ⊕W be the corresponding standard metric 2-step nilpotent Lie algebra.
Then N admits a basis with rational structure constants. If N is the simply
connected 2-step nilpotent Lie group with Lie algebra N , then N admits a
lattice.

Remark. If W is a “natural” rational subspaces of so(n,R) as defined above
in Example 1, then the corollary contains a converse to 2) of the proposition
in (2.6).

We now begin the proof of the Proposition. We first state three lemmas
and then prove them in order.

Lemma 1. Let {V, 〈 , 〉} be a finite dimensional real inner product space, and
let {v1, v2, ..., vn} be a basis of V such that 〈vi, vj〉 ∈ Q for all 1 ≤ i, j ≤ n.
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1) Let v ∈ V be a vector such that 〈v, vi〉 ∈ Q for all 1 ≤ i ≤ n. Then
v ∈ Q− span{v1, v2, ..., vn}.

2) There exists an orthogonal basis {v∗1, v∗2, ..., v∗n} of V such that
〈v∗i , v∗j 〉 ∈ Q for all 1 ≤ i, j ≤ n and Q − span{v1, v2, ..., vr} = Q −
span{v∗1, v∗2, ..., v∗r} for all 1 ≤ r ≤ n.
Lemma 2. Let V be a finite dimensional real vector space, and let W be
a rational subspace of End(V ) with respect to bases {v1, v2, ..., vn} of V and
{ξ1, ξ2, ..., ξp} of W . Let 〈 , 〉 be an inner product on V such that W ⊆
so(V, 〈 , 〉) and 〈vi, vj〉 is a rational number for all 1 ≤ i, j ≤ n. Let N =
V ⊕ W be the standard metric 2-step nilpotent Lie algebra as defined in
Proposition 1 of (2.3b). Then {v1, v2, ..., vn, ξ1, ξ2, ..., ξp} is a basis for N
with rational structure constants.

Lemma 3. Let V be a finite dimensional real vector space, and let W be a
rational subspace of End(V ) with respect to bases {v1, v2, ..., vn} of V and
{ξ1, ξ2, ..., ξp} of W . Suppose furthermore that V is irreducible relative to
W .

Let 〈, 〉∗ be a W -invariant inner product on V ; that is W ⊆ so(V, 〈, 〉∗).
Then there exists a positive constant c such that if 〈 , 〉 = c〈, 〉∗, then 〈 , 〉 is
W -invariant and 〈vi, vj〉 is a rational number for all 1 ≤ i, j ≤ n.

Proof of Lemma 1. We omit the proof of 1). To prove 2) it suffices to find
an orthogonal basis {v∗1 , v∗2, ..., v∗n} of V such that Q − span{v1, v2, ..., vr} =
Q − span{v∗1, v∗2, ..., v∗r} for all 1 ≤ r ≤ n. Set v∗1 = v1 and proceed
by induction on r. Suppose for some integer r ≥ 1 we have found or-
thogonal vectors {v∗1, v∗2, ..., v∗r} such that Q − span{v1, v2, ..., vs} = Q −
span{v∗1, v∗2, ..., v∗s} for all 1 ≤ s ≤ r. Define v∗r+1 = vr+1 −

∑r
i=1 civ

∗
i , where

ci = 〈vr+1, v
∗
i 〉/〈v∗i , v∗i 〉 ∈ Q. �

Proof of Lemma 2. By hypothesis the matrices of {ξ1, ξ2, ..., ξp} relative
to the basis {v1, v2, ..., vn} of V have entries in Q. It follows that 〈ξi, ξj〉 =
− trace(ξiξj) ∈ Q for 1 ≤ i, j ≤ p. Moreover, 〈[vi, vj], ξk〉 = 〈ξk(vi), vj〉 ∈ Q

for 1 ≤ i, j ≤ n and 1 ≤ k ≤ p since 〈vi, vj〉 is a rational number for all
1 ≤ i, j ≤ n. Hence [vi, vj] ∈ Q − span{ξ1, ξ2, ..., ξp} for 1 ≤ i, j ≤ n by
Lemma 1. �

Proof of Lemma 3.

Sublemma 3a. If V is irreducible relative to a subspace W of so(V, 〈, 〉∗),
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then the W -invariant inner products 〈 , 〉 on V have the form cBo, where
Bo = 〈, 〉∗ and c > 0.

Proof of Sublemma 3a. By hypothesis V admits aW -invariant inner product
〈, 〉∗. Now let 〈 , 〉

1
and 〈 , 〉

2
be two W -invariant inner products on V , and

let S : V → V be the linear transformation such that 〈v, w〉2 = 〈Sv, w〉1
for all v, w ∈ V . The transformation S is symmetric with respect to both
〈 , 〉1 and 〈 , 〉2, and S commutes with all elements of W . In particular, the
elements of W leave invariant each eigenspace of S, and it follows that S is
a multiple of the identity. �

Let 〈, 〉∗ be the given W -invariant inner product on V . Let B denote the
R-vector space of symmetric, bilinear forms on V (not necessarily positive
definite). Define an action of End(V ) on B by (XB)(v, w) = B(Xv, w) +
B(v, Xw) for all B ∈ B and all v, w ∈ V . It is easy to check that X(YB)−
Y (XB) = −[X, Y ]B for all X, Y ∈ EndV and B ∈ B. We say that B ∈ B

is W -invariant if XB = 0 for all X ∈W .
Sublemma 3b. Let V be irreducible relative to a subspace W of so(V, 〈, 〉∗).
Let W be the subspace of B consisting of W -invariant bilinear forms on
V . Then dimR W = 1 and W is generated by a positive definite symmetric
bilinear form Bo.

Proof of Sublemma 3b. By the hypothesis of Lemma 2 we know that B

contains a positive definite symmetric bilinear form Bo. If dimR W =≥ 2,
then B contains a symmetric bilinear form B such that Bo +tB is R-linearly
independent from Bo for all nonzero t. However, for small nonzero t the
form Bo + tB is positive definite, which contradicts sublemma 3a. �

We are now ready to complete the proof of Lemma 3. Let {v1, v2, ..., vn}
and {ξ1, ξ2, ..., ξp} be bases of V and W as in the statement of the lemma,
where V is irreducible relative to W . Let {v∗1, v∗2, ..., v∗n} be the basis of V ∗

that is dual to {v1, v2, ..., vn}. For 1 ≤ i ≤ j ≤ n let {Bij = (1/2)(v∗i ⊗ v∗j +
v∗j ⊗ v∗i )} be the basis of B defined by Bij(vk, v�) = 1 if {k, �} = {i, j} and
Bij(vk, v�) = 0 otherwise.

The hypotheses of Lemma 3 imply

If BQ = Q − span{Bij}, then ξα(BQ) ⊆ BQ (∗)
for all 1 ≤ α ≤ p = dimW.

Define a linear map ξ : B → Bp by ξ(B) = (ξ1(B), ξ2(B), ..., ξp(B)).
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Note that ξ(BQ) ⊆ B
p

Q by (∗). Moreover, Ker(ξ) = W, the subspace of
B consisting of W -invariant forms. It suffices to find a nonzero element B
in Ker(ξ) ∩BQ. For such an element, if we write B =

∑
i≤j qijBij , where

qij ∈ Q, then B(vk, v�) = qk� ∈ Q for all 1 ≤ k ≤ � ≤ n. By sublemma
3b, B = cBo for some nonzero real number c. If c > 0, then B is positive
definite and W -invariant while if c < 0, then −B is positive definite and
W -invariant.

Let N = dimR B. The basis {Bij : i ≤ j} for B defines a basis for Bp

in a natural way, and relative to these bases the linear map ξ : B → Bp

has a pN × N matrix A whose entries lie in Q by (∗). The determinant of
any k × k submatrix of A lies in Q, and hence rankQ(A) = rankR(A) and
nullityQ(A) = nullityR(A). By sublemma 3b nullityR(A) = 1, and hence
there exists a nonzero element B in Ker(ξ) ∩BQ. The proof of Lemma 3 is
complete. �

3. Riemannian submersions.

In this section we prove the following result. See (2.5) for terminology.

Theorem. Let N be a 2-step nilpotent Lie algebra , and let N denote the
corresponding simply connected nilpotent Lie group with Lie algebra N . Then
there exists a left invariant metric 〈 , 〉 on N , an involutive metric 2-step
nilpotent Lie group {N ∗, 〈, 〉∗} and a surjective homomorphism ρ : N ∗ → N
with the following properties:

1) ρ is a Riemannian submersion whose fibers are simply connected, flat
totally geodesic submanifolds of N ∗. The fibers of ρ are the orbits of
Ker(ρ), which is a simply connected, totally geodesic subgroup of the
center Z∗ of N ∗.

2) If N admits a lattice Γ, then for a suitable choice of N ∗ there exists
a lattice Γ∗ of N ∗ such that ρ(Γ∗) = Γ and Γ∗ ∩ Ker(ρ) is a lattice in
Ker(ρ).

3) If N ∗ admits a lattice Γ∗ such that Γ∗ ∩ Ker(ρ) is a lattice in Ker(ρ),
then Γ = ρ(Γ∗) is a lattice in N .

4) If there are lattices Γ∗ in N ∗ and Γ in N such that ρ(Γ∗) = Γ, then ρ

induces a Riemannian submersion ρ′ : Γ∗\N ∗→ Γ\N whose fibers are
flat, totally geodesic tori that are isometric to each other.

Remark. As we shall see, the definition of N ∗ and N ∗ depends upon a
representation of N as a standard metric 2-step nilpotent Lie algebra. This
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representation is not unique (cf. (2.6)), and it is an interesting problem to
determine a representation that is “optimal” with respect to some reasonable
constraint. The lack of uniqueness of N ∗ accounts for the wording in 2) of
the proposition.

Proof. By the proposition in (2.6) N is isomorphic as a Lie algebra to a
standard metric 2-step nilpotent Lie algebra N ′ = Rn ⊕W , where N has
dimension n + p, [N ,N ] has dimension p, Rn is given the standard inner
product and W is a p-dimensional subspace of so(n,R). Let N be given
the inner product 〈 , 〉 that makes this isomorphism also a linear isometry.
Henceforth we regard {N , <, 〉} as the standard metric 2-step nilpotent Lie
algebra N ′ = Rn ⊕W .

Let G denote the subalgebra of so(n,R) generated by W , and let N ∗

be the involutive metric 2-step nilpotent Lie algebra Rn ⊕ G. Although N
may be regarded as a linear subspace of N ∗ note that the bracket [ , ] on N
is not the restriction of the bracket [ , ]∗ on N ∗. For elements X, Y of Rn

the bracket [X, Y ]∗ will in general have a nonzero component in W⊥, the
orthogonal complement of W in G .

Regarding N as a subspace of N ∗ we let π : N ∗ → N be the surjective
linear map such that π is the identity on Rn and π : G→W is the orthogonal
projection relative to the canonical inner product on so(n,R) (cf. (2.5)). We
show that π : N ∗ → N is a surjective Lie algebra homomorphism and that
the lifted homomorphism ρ : N ∗ → N with π = dρ satisfies the statements
of the proposition.
Proof of 1) of the theorem.

We begin the proof of 1). From the definitions a routine argument yields

Lemma 1. The map π : N ∗ → N is a surjective Lie algebra homomorphism
and π(ξ) = ξ for any vector ξ ∈ N = Ker(π)⊥.

If N ∗ is the simply connected nilpotent Lie group with Lie algebra N ∗,
then there exists a unique homomorphism ρ : N ∗ → N such that dρ = π :
N ∗ → N . The homomorphism ρ is surjective since dρ is surjective.

Lemma 2. Ker(ρ) = exp∗(Ker(π)), where exp∗ : N ∗ → N ∗ is the Lie group
exponential map of N ∗. In particular, Ker(ρ) is a simply connected subgroup
of Z∗, the center of N ∗.

Proof. Note that Ker(π) ⊆ G ⊆ Z∗, the center of N ∗, and the exponential
maps exp : N → N and exp∗ : N ∗ → N ∗ are diffeomorphisms satisfying
ρ ◦ exp∗ = exp ◦dρ. The proof is now straightforward. �
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Lemma 3. The fibers of ρ : N ∗ → N are the orbits of Ker(ρ) and are
flat, totally geodesic submanifolds of N ∗. In particular, Ker(ρ) is a totally
geodesic subgroup of N ∗.

Proof. Clearly ρ−1(ρ(n∗)) = n∗K̇er(ρ) for all n∗ ∈ N ∗. Since Ker(ρ) ⊆
Z∗ it follows from d) of (2.3) in [E1] that Ker(ρ) is a flat submanifold of
N ∗. From c) of (2.2) in [E1] and (2.10) of [E1] we see that Ker(ρ) is a
totally geodesic submanifold of N ∗. The orbits n∗K̇er(ρ) are also flat, totally
geodesic submanifolds of N ∗ since left multiplication by an element n∗ of N ∗

is an isometry.
To complete the proof of 1) of the theorem we must show that ρ : N ∗ →

N is a Riemannian submersion. Given n∗ ∈ N ∗ let X ⊆ Tn∗N ∗ be the kernel
of (dρ)n∗ : Tn∗N ∗ → TnN , where n = ρ(n∗). Since dρ◦dLn∗ = dLρ(n∗)◦dρ =
dLn ◦π, it follows that X = dLn∗(Ker(π)) and hence X⊥ = dLn∗

(
Ker(π)⊥

)
.

Given ξ ∈ X⊥ we write ξ = dLn∗(ξ′) for some ξ′ ∈ Ker(π)⊥ and note that
π(ξ′) = ξ′ by Lemma 1. Using Lemma 1 and the discussion above we obtain
|dρ(ξ)| = |dρ(dLn∗(ξ′))| = |dLn(π(ξ′))| = |dLn(ξ′)| = |ξ′| = |ξ| since Ln∗ and
Ln are isometries of N ∗ and N . This completes the proof of 1) �

Proof of 2) of the theorem.
We begin the proof of 2). As in the proof of the proposition in (1.3e) we

suppose first that Λ = logΓ is a vector lattice in N .

Case 1 Λ = log Γ is a vector lattice in N
Lemma 4. Let Λ = logΓ be a vector lattice in N . Then we may assume
that

1) N = Rn ⊕ W , a standard metric 2-step nilpotent Lie algebra such
that Rn has the standard inner product and W is a subspace of so(n,R).
Moreover, W has a basis {Z1, Z2, ..., Zp} such that [ei, ej] =

∑p
k=1 C

k
ijZk,

where {e1, e2, ..., en} is the natural basis of Rn, Ck
ij ∈ Z for every i, j, k , and

〈Zα, C
β〉 = −δαβ for all 1 ≤ α, β ≤ p.

2) Λ = logΓ = Z− span{e1, e2, ..., en, Z1, Z2, ..., Zp}.

Proof. This follows from the proof of the proposition in (2.6). �

Lemma 5. Let N = Rn ⊕W and {Z1, Z2, ..., Zp} be as in Lemma 4, and
let G be the subalgebra of so(n,R) generated by W . Then there exists an
orthogonal basis {Z∗

1 , Z
∗
2 , ..., Z

∗
p+q} of G such that

1) Q− span{Z1, Z2, ..., Zp} = Q− span{Z∗
1 , Z

∗
2 , ..., Z

∗
p}
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2) {Z∗
1 , Z

∗
2 , ..., Z

∗
p} is a basis of W

3) For 1 ≤ i ≤ p+ q each matrix Z∗
i in so(n,R) has entries in Q.

Proof. We show first that each matrix Zi, 1 ≤ i ≤ p, has entries in
Q. Let {C1, C2, ..., Cp} be the matrices in so(n,R) defined in Lemma 4.
These matrices are linearly independent since 〈Zi, C

j〉 = −δij , and hence
{C1, C2, ..., Cp} is a basis of W . The entries of Ci are integers for 1 ≤ i ≤ p,
and hence 〈Ci, Cj〉 = − trace(CiCj) ∈ Z for 1 ≤ i, j ≤ p. By Lemma 4
〈Zi, C

j〉 = −δij ∈ Q for 1 ≤ i, j ≤ p. It follows from Lemma 1 of the
proposition in (2.7) that Zi ∈ Q − span{C1, C2, ..., Cp} for 1 ≤ i ≤ p, and
therefore each Zi has entries in Q since the matrices {C1, C2, ..., Cp} have
entries in Z.

Let Bo denote the basis {Z1, Z2, ..., Zp} of W = W o, and define induc-
tively W i+1 = W i + [W i, W i]. If Bi is a basis of W i consisting of matrices
with entries in Q, then by adjoining brackets of basis elements we may extend
Bi to a basis Bi+1 of W i+1 consisting of matrices with entries in Q. Since
G = W i for some i we may extend {Z1, Z2, ..., Zp} to a basis {Z1, Z2, ..., Zp+q

of G such that each matrix Zj, 1 ≤ j ≤ p+ q, has entries in Q.
By the discussion above 〈Zi, Zj〉 = − trace(ZiZj) ∈ Q for 1 ≤ i, j ≤ p+q.

Now apply 2) of Lemma 1 in the proof of Proposition (2.7). We obtain an
orthogonal basis {Z∗

1 , Z
∗
2 , ..., Z

∗
p+q} of G such that Q−span{Z1, Z2, ..., Zr} =

Q− span{Z∗
1 , Z

∗
2 , ..., Z

∗
r} for every 1 ≤ r ≤ p+ q. Choosing r = p proves 1).

From 1) it follows that R−span{Z∗
1 , Z

∗
2 , ..., Z

∗
p} = R−span{Z1, Z2, ..., Zp} =

W , which proves 2). Finally, Z∗
i has entries in Q for 1 ≤ i ≤ p + q since

Z∗
i ∈ Q−span{Z1, Z2, ..., Zp+q} and each Zj has entries in Q for 1 ≤ j ≤ p+q.

This proves 3) of the lemma. �

Lemma 6. Let {Z1, Z2, ..., Zp} be the elements of so(n,R) defined in Lemma
4, and let {Z∗

p+1, Z
∗
p+2, ..., Z

∗
p+q} be the elements of so(nR) defined in Lemma

5. Let B∗ = {e1, e2, ..., en, Z1, Z2, ..., Zp, Z
∗
p+1, Z

∗
p+2, ..., Z

∗
p+q}. Then B∗ is a

basis with rational structure constants for the involutive metric 2-step nilpo-
tent Lie algebra N ∗ = Rn ⊕G.

Proof. Let [ , ]∗ denote the bracket operation in N ∗. Observe that 〈Z∗
k, Z

∗
j 〉 =

− trace(Z∗
kZ

∗
j ) ∈ Q for all 1 ≤ j, k ≤ p+ q by 3) of Lemma 5. Furthermore,

〈[ei, ej]∗, Z∗
k〉 = 〈Z∗

k(ei), ej〉 ∈ Q for 1 ≤ i, j ≤ n and 1 ≤ k ≤ p + q since
Z∗

k has entries in Q and 〈ei, ej〉 = δij . Now apply 1) of Lemma 1 in the
proof of Proposition (2.7) and 1) of Lemma 5. We conclude that [ei, ej]∗ ∈
Q − span{Z∗

1 , Z
∗
2 , ..., Z

∗
p+q} = Q − span{Z1, Z2, ..., Zp, Z

∗
p+1, Z

∗
p+2, ..., Z

∗
p+q}

⊆ Q − span(B∗). Hence [B∗,B∗] ⊆ Q − span(B∗). Finally, B∗ is a
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basis of N ∗ = Rn ⊕ G since {e1, e2, ..., en} is a basis of Rn and R −
span{Z1, Z2, ..., Zp, Z

∗
p+1, Z

∗
p+2, ..., Z

∗
p+q} = R − span{Z∗

1 , Z
∗
2 , ..., Z

∗
p+q} = G

by 2) of Lemma 5. �

We are now ready to complete the proof of 2) of the theorem in the case
that Λ = logΓ is a vector lattice in N . By 2) of Lemma 4, Λ = logΓ =
Z − span{e1, e2, ..., en, Z1, Z2, ..., Zp}. By Lemma 6 N ∗

Q = Q− span(B∗) is a
Lie algebra over Q such that N ∗

Q ⊗Q R is isomorphic to N ∗. Let N ∗ denote
the simply connected 2-step nilpotent Lie group with Lie algebra N ∗, and
let exp∗ : N ∗ → N ∗ denote the exponential map. If L∗ = Z−span(B∗), then
by a) of (1.2b) exp∗(L∗) generates a lattice Γ∗ in N ∗.

We assert that ρ(Γ∗) = Γ, where ρ : N ∗ → N is the surjective ho-
momorphism and Riemannian submersion whose existence was established
in assertion 1) of the theorem. This will complete the proof of assertion
2) of the theorem in the case that Λ = logΓ. We recall from the proof
of 1) that π = dρ : N ∗ → N is the orthogonal projection, where we re-
gard N = Rn ⊕W as a vector subspace of N ∗ = Rn ⊕ G. In particular,
π fixes each of the elements in the set B = {e1, e2, ..., en, Z1, Z2, ..., Zp},
whose Z− span is Λ by Lemma 4, and π annihilates the remaining elements
{Z∗

p+1, Z
∗
p+2, ..., Z

∗
p+q} of B∗, which are orthogonal to B by Lemma 5. It

follows that π(L∗) = Z − span(B) = Λ.
If exp : N → N and exp∗ : N ∗ → N ∗ are the Lie group exponential

maps, then (ρ ◦ exp∗)(L∗) = (exp◦π)(L∗) = exp(Λ) = exp(logΓ) = Γ.
Hence exp∗(L∗) ⊆ ρ−1(Γ) and it follows that Γ∗ ⊆ ρ−1Γ since exp∗(L∗)
generates Γ∗. We have proved that ρ(Γ∗) ⊆ Γ. To prove that equality holds
we note that for any element γ ∈ Γ, log γ ∈ log(Γ) = Λ ⊆ L∗. It follows
that γ∗ = exp∗(log γ) ∈ exp∗(L∗) ⊆ Γ∗. Finally ρ(γ∗) = (ρ ◦ exp∗)(log γ)
= (exp◦π)(logγ) = exp(log γ) = γ since π is the identity on logΓ ⊆ N .
This proves that ρ(Γ∗) = Γ.

Case 2 Γ is an arbitrary lattice of N
By (1.2c) there exists a lattice Γo of N such that Γ is a finite index

subgroup of Γo and log(Γo) is a vector lattice in N . By case 1 there exists
an involutive metric 2-step nilpotent Lie group {N ∗, 〈 , 〉∗}, a lattice Γ∗

o in
N ∗ and a Riemannian submersion ρ : N ∗ → N such that ρ(Γ∗

o) = Γo and ρ
satisfies 1) of the theorem. Let Γ∗ = ρ−1(Γ) ∩ Γ∗

o. Since ρ(Γ∗
o) = Γo ⊇ Γ it

follows that ρ(Γ∗) = Γ. Moreover, Γ∗ has finite index in Γ∗
o since Γ has finite

index in Γo. It follows that Γ∗ is a lattice in N ∗. �
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Proof of 3) of the theorem.
Assertion 3) of the theorem and the remaining part of assertion 2) are

consequences of the next result.

Lemma 7. Let ρ : H∗ → H be a surjective Lie homomorphism of noncom-
pact connected Lie groups. Assume that Ker(ρ) is a connected Lie subgroup
of H∗. Let Γ∗ be a cocompact lattice in H∗. Then the following are equiva-
lent:

1) Γ∗ ∩Ker(ρ) is a cocompact lattice in Ker(ρ).
2) ρ(Γ∗) is a cocompact lattice in H .
If H∗ is a simply connected nilpotent Lie group, then 1) and 2) are equiv-

alent to
3) Ker(dρ) is a rational subalgebra of H∗ relative to the rational structure

H∗
Q = Q − span(logΓ∗).

Proof. We first prove the equivalence of 1) and 3) in the case that H∗ is a
simply connected nilpotent Lie group. The Lie algebra of Ker(ρ) is Ker(dρ)
and hence exp

(
Ker(dρ)

) ⊆ Ker(ρ). Equality holds since exp
(
Ker(dρ)

)
is a

simply connected Lie group by (1.1a) and (1.1b) and Ker(ρ) is connected by
hypothesis. The equivalence of 1) and 3) now follows from (1.3b).

The proof of 1) ⇒ 2) is contained in Lemma 5.1.4 of [CG]. We prove 2)
⇒ 1). Since Γ∗ is a cocompact lattice in H∗ there exists a compact set D∗ of
H∗ such that Γ∗ ·D∗ = H∗. Let D = ρ(D∗) and Γ = ρ(Γ∗). The set Γ∩D is
finite since Γ is discrete and D is compact. Choose elements {ξ1, ξ2, ..., ξm}
in Γ∗ such that Γ∩D = {ρ(ξ1), ρ(ξ2), ..., ρ(ξm)}. Let C∗ be the union of the
sets {ξ−1

i (D∗) : 1 ≤ i ≤ m}. Then C∗ is a compact subset of H∗, and it
suffices to show that {Γ∗ ∩ Ker(ρ)} · {C∗ ∩Ker(ρ)} = Ker(ρ).

It is enough to prove that Ker(ρ) ⊆ {Γ∗ ∩Ker(ρ)} · {C∗ ∩Ker(ρ)} since
the reverse inclusion is obvious. Given α ∈ Ker(ρ) there exist elements
γ∗ ∈ Γ∗ and d∗ ∈ D∗ such that α = γ∗d∗. Then e = ρ(α) = γd, where
γ = ρ(γ∗) ∈ Γ and d = ρ(d∗) ∈ D. Hence γ−1 = d ∈ Γ ∩ D, and there
exists an element ξi, 1 ≤ i ≤ m, such that γ−1 = ρ(ξi). It follows that
β = γ∗ξi ∈ Γ∗ ∩ Ker(ρ). Therefore α = γ∗d∗ = βξ−1

i d∗ = βc∗, where
c∗ = ξ−1

i d∗ ∈ C∗. Since c∗ = β−1 α ∈ Ker(ρ) ∩ C∗, we conclude that
Ker(ρ) ⊆ {Γ∗ ∩ Ker(ρ)} · {C∗ ∩ Ker(ρ)}. This completes the proof of 2) ⇒
1). �

Proof of 4) of the theorem.
Let π∗ : N ∗ → Γ∗\N ∗ and π : N → Γ\N be the projection maps and

define ρ′ : Γ∗\N ∗→ Γ\N by ρ′(π∗n∗) = π(ρn∗) or equivalently
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a) ρ′ ◦ π∗ = π ◦ ρ
It is routine to verify that ρ′ is well defined. From a) it follows that ρ′ has
maximal rank at every point since π and π∗ are local isometries and ρ has
maximal rank at every point. Hence

b) The fibers of ρ′ are compact submanifolds of Γ∗\N ∗.
From a) we also obtain by straightforward arguments

c) (ρ′)−1(πn) = π∗
(
ρ−1(n)

)
for every n ∈ N .

From 1) of the proposition the fibers of ρ : N ∗ → N are flat, totally geodesic
submanifolds of N ∗. Since π∗ is a local isometry we obtain from b) and c)

d) (ρ′)−1(πn) is a compact, flat, totally geodesic submanifold of Γ∗\N ∗

for every n ∈ N .
We conclude the proof of 4) by showing that the fibers of ρ′ are all

isometric to the flat torus Γ′\Z ′, where Z ′ = Ker(ρ) and Γ′ = Γ∗ ∩ Z ′

is a lattice in Z ′ by Lemma 7. It follows from 1) of the proposition that
Z ′ = Ker(ρ) is a simply connected, flat, totally geodesic submanifold of
N ∗ that is contained in Z∗, the center of N ∗. Hence Z ′ is isometric to a
Euclidean space, Γ′ = Γ∗ ∩ Z ′ is a lattice of translations in Z ′ and Γ′\Z ′ is
a flat torus.

Let π′ : Z ′ → Γ′\Z ′ denote the projection. For each n ∈ N fix an
element n∗ ∈ ρ−1(n) and observe that ρ−1(n) = n∗Z ′. Define a map Tn :
(ρ′)−1(πn) = π∗

(
ρ−1(n)

) → Γ′\Z ′ by Tn

(
π∗(n∗z′)

)
= π′(z′) for every z′ ∈

Z ′. It is straightforward to verify that Tn is well defined and a bijection.
Since Tn◦π∗◦Ln∗ = π′ it follows that Tn is a local isometry since π′ and π∗ are
local isometries and Ln∗ is an isometry. Therefore Tn : (ρ′)−1(πn)→ Γ′\Z ′

is an isometry for every n ∈ N , and the proof of 4) is complete.

4. Existence and nonexistence of lattices.

4.1. Nonexistence of lattices.

Typically lattices will not exist in a simply connected 2-step nilpotent Lie
group N . A “generic” 2-step nilpotent Lie algebra with dimension n and
center of dimension p will not admit a lattice if p ≥ 3 and n is sufficiently
large relative to p. See [E3] for details. For the convenience of the reader we
outline a proof here.

It is shown in [E3] that the set of isomorphism classes of 2-step nilpotent
Lie algebras with dimension n and center of dimension p < n is an orbit space
X(p)/G, where G = GL(n,R) and X(p) is a smooth manifold of dimension
pq + pD, where q = n − p and D = (1/2)q(q − 1). The set of elements in
X(p) with rational structure constants is a countable union of G-orbits. If
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q is sufficiently large relative to p, then the dimension of X(p) will be larger
than the dimension of any of the G-orbits, and hence the union of countably
many G-orbits will be a null set in X(p).

4.2. Lattices constructed from compact subgroups of GL(V ).

Proposition. Let V be a finite dimensional real vector space and let G be
a compact, connected subgroup of GL(V ). Let 〈 , 〉 be a G-invariant inner
product on V . Let C ′ be a basis of the Lie algebra such that

a) the structure constants of C ′ lie in Q

b) any finite dimensional real G-module U admits a basis BU so that the
elements of C ′ leave invariant Q-span(BU).

Let W be a rational subspace of G relative to the rational structure GQ =
Q − span(C ′) on G. Let N = V ⊕W be the corresponding standard metric
2-step nilpotent Lie algebra defined in (2.5). If N is the simply connected
Lie group with Lie algebra N , then N admits a lattice Γ.

Remarks. 1) A basis of C ′ of G with the properties above always exists. In
fact one may replace Q by Z in the statements of a) and b). See Appendix
1.

2) It is well known that G-invariant inner products on V exist since G
is compact. The isomorphism type of N = V ⊕W is independent of the
G-invariant inner product on V by the proposition in (2.3a).

3) If G is a compact, connected subgroup of GL(V ) and G is the Lie alge-
bra of G, then G = exp(G), where exp : EndV → GL(V ) is the exponential
map.

4) If G is a compact, connected Lie group, then G has a finite covering by
G′ = T×G∗, where T is compact, connected and abelian and G∗ is compact,
connected and semisimple. For completeness we include a proof of this well
known result in the first lemma of Appendix 1. Note that the group T is a
finite index subgroup of the center of G since G∗ has finite center.

5) The Killing form of a subalgebra H of End(V ) is negative definite⇔ H

is the Lie algebra of a compact semisimple subgroup H of GL(V ). Any Lie
group H with Lie algebra H is compact. See Proposition 6.6 and Corollary
6.7 of [He, pp. 132-133]. The connected Lie subgroup H ⊆ GL(V ) with Lie
algebra H is closed in the topology of End(V ) by the semisimplicity of H.
See Corollary 2 of [Mo, p.615]. Hence H = exp(H) by 3).

In particular,
a) If G is any compact semisimple Lie group, and ρ : G → GL(V ) is a

nontrivial representation of G, then the Lie algebra G of ρ(G) has negative



Riemannian Submersions and Lattices in Nilpotent Lie Groups 475

definite Killing form.
b) If 〈 , 〉 is any inner product on V and H is any nonabelian subalgebra

of so(V ), then G = [H,H] is semisimple and has negative definite Killing
form. See Appendix 2 for further details.

6) The discussion of example 3 in (1.3a) explains how to compute a
“standard” rational structure GQ if G is the compact real form of a complex
simple Lie algebra GC in the classification An, Bn, Cn and Dn. From this
case one may readily compute GQ in the case that GC is a direct sum of
these classical complex simple Lie algebras.

Proof of Proposition 4.2. Let C ′ be a basis of G with the properties stated in
the proposition, and let GQ = Q−span(C ′). Let W be a subspace of G that is
rational relative to the rational structure GQ for G. Let B = {ξ1, ξ2, ..., ξp} ⊆
GQ be a basis of G that contains a basis BW = {ξ1, ξ2, ..., ξq} of W .

The elements of G, and in particular of W , are skew symmetric relative
to the G-invariant inner product 〈 , 〉 on V . Hence we can write V as a direct
sum V1 ⊕ V2...⊕ VN , where each Vi is W -invariant and W -irreducible. The
subspace W may be regarded as a subspace of End(Vi) for each 1 ≤ i ≤ N .
By the hypothesis of the proposition, we may choose bases Bi in Vi such
that any element of B has a matrix with rational entries relative to Bi for
1 ≤ i ≤ N . Since BW ⊆ B ⊆ GQ it follows that W is a rational subspace
of End(Vi) relative to the bases BW and Bi for each 1 ≤ i ≤ N . By Lemma
3 in the proof of Proposition (2.7) we can find W -invariant inner products
〈 , 〉i on Vi such that 〈Xi, Yi〉i ∈ Q for any two elements Xi, Yi of Bi. Let
BV = {v1, v2, ..., vn} be the union of the bases {Bi}, and let 〈 , 〉 be the W -
invariant inner product on V = V1⊕V2...VN such that 〈 , 〉 = 〈 , 〉i on Vi and
the subspaces {Vi} are orthogonal.

The sets BV and BW are bases of V and W that satisfy the hypotheses
of Lemma 2 in the proof of Proposition (2.7). By that result the basis
BV ∪BW = {v1, v2, ..., vn, ξ1, ξ2, ..., ξq} for N = V ⊕W has rational structure
constants. The proof of Proposition 4.2 is now complete by the Mal’cev
criterion in (1.2b). �

4.3. Lattices constructed from Lie triple systems.

(4.3a) Lie triple systems with compact center. Let G be a finite
dimensional Lie algebra over R whose Killing form BG is negative definite,
and let G be a compact, connected Lie group with Lie algebra G. Let
Z(W ) = {X ∈ W : [X, Y ] = 0 for all Y ∈ W}. We call Z(W ) the center
of W , and we say that W has compact center if exp(Z(W )) is a compact
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subset of G, where exp : G→ G is the Lie group exponential map.

Remarks. 1) Note that exp(Z(W )) is a connected abelian subgroup of G
for any Lie triple system W since Z(W ) is an abelian subspace of G.

2) If W is a Lie triple system in G, then the compactness of Z(W ) does
not depend on the choice of the Lie group G with Lie algebra G. Let G1 and
G2 be two Lie groups with Lie algebra G, and let G̃ be a simply connected
Lie group with Lie algebra G. Then G̃ is compact and is a finite cover of
both G1 and G2. Hence exp1(Z(W )) is compact in G1 ⇔ exp2(Z(W )) is
compact in G2.

3) We shall use the results of this section only in the case that G = so(V ),
the skew symmetric linear transformations of a finite dimensional, real inner
product space V .

(4.3b) Decomposition of Lie triple systems. We shall need the fol-
lowing result.

Proposition. Let G be a finite dimensional Lie algebra over R whose Killing
form BG is negative definite, and let 〈 , 〉 be any adG-invariant inner product
on G. Let G be a compact, connected Lie group with Lie algebra G. Let W
be a Lie triple system in G. Then

1) The subspaces [W,W ] and H = W + [W,W ] are subalgebras of G.

2) Let Z(W ) = {X ∈ W : [X, Y ] = 0 for all Y ∈ W}, and let H =
W + [W,W ]. Then Z(W ) is the center of H and H = Z(W ) ⊕ H0,
where H0 = [H,H] is a semisimple ideal of H. Moreover, the direct
sum is orthogonal relative to 〈 , 〉.

3) Let W1 denote the orthogonal complement of Z(W ) in W relative to
〈 , 〉. Then W1 is a Lie triple system in G and H0 = W1 + [W1, W1].
If W has compact center, then H = exp(H) is a compact, connected
subgroup of G, where exp : G→ G is the Lie group exponential map.

Proof. The proofs of 1) and 2) may be found in Appendix 2. We prove
only 3). Since W is the orthogonal direct sum Z(W ) ⊕W1 it follows that
[W,W ] = [W1, W1] andW1, [W1, W1]] ⊆ [W, [W,W ]]⊆W = Z(W )⊕W1. To
show that W1 is a Lie triple system it suffices to show that 〈A, [X, [Y, Z]]〉=
0 for all A ∈ Z(W ) and all X, Y, Z ∈ W1. However, 〈A, [X, [Y, Z]]〉 =
−〈adX(A), [Y,Z]〉= 0 by the definition of Z(W ) and the adG-invariance of
〈 , 〉.
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If H ∗
0 = W1 + [W1, W1], then H = W + [W,W ] = Z(W ) +W1 + [W1, W1]

= Z(W ) + H ∗
0 . Moreover, Z(W ) is orthogonal to [W1, W1] and hence to

H ∗
0 by the adG-invariance of 〈 , 〉. By the Jacobi identity Z(W ) commutes

with [W1, W1] since Z(W ) commutes with W1. Hence Z(W ) commutes with
H ∗

0 , which shows that H0 = [H,H] = [H ∗
0 ,H

∗
0 ] ⊆ H ∗

0 since W1 is a Lie triple
system and H ∗

0 is a Lie algebra by 1). By 2) and the discussion above we have
Z(W )⊕ H ∗

0 = H = Z(W )⊕ H0 ⊆ Z(W )⊕ H ∗
0 , which shows that H0 = H ∗

0 .
Suppose now that W has compact center; that is, T0 = exp(Z(W )) is

a compact, connected abelian subgroup of G. Since H0 is a semisimple
subalgebra of G it follows that H0 = exp(H0) is a compact, connected sub-
group of G; see remark 5) following the statement of Proposition 4.2. Hence
H = T0H0 = exp(Z(W )⊕ H0) = exp(H) is a compact, connected subgroup
of G with Lie algebra H. �

(4.3c) The Main Result.

Proposition. Let {V, 〈 , 〉} be a finite dimensional, real inner product space,
and let so(V ) denote the Lie algebra of skew symmetric linear transforma-
tions of {V, 〈 , 〉}. Let W be a Lie triple system in so(V ) that has compact
center. Let N = V ⊕W be the standard, 2-step nilpotent, metric Lie alge-
bra defined in (2.5), and let N be the simply connected, 2-step nilpotent Lie
group with Lie algebra N . Then N admits a lattice Γ.

Corollary. Let {N, 〈 , 〉} be a simply connected 2-step nilpotent Lie group
with a left invariant metric that is a space of Heisenberg type. Then N
admits a lattice Γ.

For another proof of the corollary, see [CD].

Proof of the Corollary. Let {N, 〈 , 〉} be a simply connected, 2-step nilpo-
tent Lie group with a left invariant metric of Heisenberg type (cf. example
3 of (2.4)). Let {N , [ , ], 〈 , 〉} be the metric Lie algebra of {N, 〈 , 〉}, and
write N = V ⊕ Z , where Z denotes the center of N and V is the orthog-
onal complement of Z in N . Let C�(Z) denote the negative definite real
Clifford algebra determined by the real inner product space {Z , 〈 , 〉}. By
the discussion of example 3 in (2.4) the linear map j : Z → so(V) extends
to an algebra homomorphism j : C�(Z) → so(V) ⊆ End(V), where multi-
plication in End(V) is composition. By the discussion of example 2 in (2.5)
the subspace W = j(Z) of so(V) is a Lie triple system with trivial center in
so(V).

Let N ∗ = V ⊕ W be the standard, metric, 2-step nilpotent Lie alge-
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bra constructed as in (2.5). By the Mal’cev criterion the Corollary will
follow from the Proposition once we show that {N ∗, [ , ]∗} and {N , [ , ]}
are isomorphic as Lie algebras. By the definition in (2.5) of a standard,
metric, 2-step nilpotent Lie algebra the inner product 〈, 〉∗ on W = j(Z)
for N ∗ satisfies 〈j(Z), j(Z∗)〉∗ = − trace j(Z)j(Z∗) for all Z, Z∗ in Z . Let
〈 , 〉′ be the inner product on Z such that 〈Z, Z∗〉′ = 〈j(Z), j(Z∗)〉∗. Let
N ′ = V ⊕ Z = N as a vector space, and let {N ′, [ , ]′} be the 2-step nilpo-
tent Lie algebra constructed from the linear map j : {Z , 〈 , 〉′} → so(V) as in
(2.2b). Let ϕ : N ′ → N ∗ be the linear map defined by ϕ(X+Z) = X+ j(Z)
for all X ∈ V , Z ∈ Z . It follows routinely from the definitions that
ϕ : {N ′, [ , ]′} → {N ∗, [ , ]∗} is a Lie algebra isomorphism. Next, note that
〈 , 〉′ = (dimV)〈 , 〉 on Z by the discussion of example 3 in (2.4). Hence
{N ′, [ , ]′} and {N , [ , ]} are isomorphic as Lie algebras by the proposition
in (2.3a). We conclude that {N ∗, [ , ]∗} and {N , [ , ]} are isomorphic as Lie
algebras. �

Proof of the Proposition. By the proposition in (4.3b) H = W + [W,W ]
is a subalgebra of G = so(V ) and H = exp(H) is a compact subgroup of
G = SO(V ), the special orthogonal group of V . By the corollary to the
proposition in Appendix 1 the Lie algebra H has a basis C ′ that satisfies the
hypotheses of Proposition 4.2. What remains is to show that if C ′ is chosen
carefully, then the Lie triple system W is a rational subspace of H with the
rational structure HQ = Q-span(C ′). One then applies Proposition 4.2 to
complete the proof of the proposition in (4.3c).

We consider first the case that W has trivial center and then the general
case that W has compact center.

Case 1 W has trivial center
To conform better to the standard notation of the literature we set P =

W and K = [W,W ] = [P,P] for the remainder of the proof.
We proceed in several steps.

Lemma 1. [K,P] ⊆ P, [P,P] = K and [K,K] ⊆ K. The Lie algebra
H = K + P is semisimple.

Proof of Lemma 1. By the proposition in (4.3b) H = K + P = W + [W,W ]
is a semisimple subalgebra of so(V ) The first two bracket relations follow
from the definition of K and the hypothesis that P is a Lie triple system in
so(V ). It remains only to prove that [K,K] ⊆ K.

Let P1, P2, P
′
1 and P ′

2 be arbitrary elements of P. To show that [K,K] ⊆ K
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it suffices to show that [[P1, P2], [P ′
1, P

′
2]] ∈ K. If X = [P ′

1, P
′
2], then

[[P1, P2], X ] = ad([P1, P2])(X) = [adP1, adP2](X) = adP1(adP2(X)) −
adP2(adP1(X)) by the Jacobi identity. Now adP2(X) ∈ [P,K] ⊆ P and
hence adP1(adP2(X)) ∈ [P,P] = K. Similarly adP2(adP1(X)) ∈ K, which
proves that [K,K] ⊆ K. �

For the notation used in the next result see the discussion of (1.3a).

Lemma 2. Let G be a Lie algebra whose Killing form is negative definite.
Suppose that G = K⊕P, direct sum, where K and P are subspaces of G such
that

[K,K] ⊆ K, [K,P] ⊆ P and [P,P]⊆ K. (∗)

Then there exists a Chevalley basis C = {H∗
α, yβ : α ∈ ∆, β ∈ Φ} of the

complexification GC such that
a) The real Chevalley basis CR = {iH∗

α, uβ, vβ : α ∈ ∆, β ∈ Φ} is a basis
for G, where uβ = yβ − y−β and vβ = iyβ + iy−β .

b) There exist bases for K and P that are contained in Z − span(CR).
In particular K and P are rational subspaces of G relative to the rational
structure GQ = Q − span(CR).

Remark. If θ : G = K⊕P → G is the linear map given by θ(K+P ) = K−P
for all K ∈ K and P ∈ P, then the bracket operations of (∗) imply that
θ is a Lie algebra automorphism of G. Conversely, if θ is a Lie algebra
automorphism of G with +1 eigenspace K and −1 eigenspace P, then the
subspaces K and P satisfy the bracket relations of (∗).

Proof of Lemma 2. If G∗ = K ⊕ P∗, where P∗ = iP, then G∗ is the
noncompact, semisimple Lie algebra dual to G (cf. [He, p.235]). The bracket
relations (∗) for K and P imply the analogous bracket relations for K and P∗.
Hence the linear map θ∗ : G∗ = K⊕P∗ → G∗ given by θ(K+P ∗) = K −P ∗

for all K ∈ K and P ∗ ∈ P∗ is a Lie algebra automorphism of G∗. By
Proposition 3.7 of [B] and its proof we may use the Cartan involution θ∗ to
construct a Chevalley basis C = {H∗

α, yβ : α ∈ ∆, β ∈ Φ} of G∗C

= GC such
that

a) The real Chevalley basis CR = {iH∗
α, uβ, vβ : α ∈ ∆, β ∈ Φ} is a basis

for the compact, semisimple Lie algebra G.
b) K has a basis in Z − span(CR).
c) P∗ = iP has a basis in i{Z− span(CR)}.

The proof of Lemma 2 now follows immediately. �
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Now, let H1 = K ∩ P. By Lemma 1 H1 is an ideal of H = K + P since
H1 is invariant under ad(K) and ad(P). We consider separately the cases a)
H1 = {0} and b) H1 �= {0}. Suppose first that H1 = {0}. The Killing form
of H is negative definite since H is semisimple and by hypothesis H is a direct
sum K⊕P. By lemmas 1 and 2, W = P is a rational subspace of H with the
rational structure HQ = Q-span(CR). By the proposition in Appendix 1 and
the remark that follows it, C ′ = CR satisfies the hypotheses of Proposition
4.2. Now apply Proposition 4.2 to conclude the proof in this case.

We consider case b) where H1 = K ∩P �= {0}. By the argument of case
a) it suffices to find a real Chevalley basis CR of H such that W is a rational
subspace of H with the rational structure HQ = Q-span(CR).

In the remainder of the proof let B denote the Killing form of H. It
follows that B is negative definite on H since H is semisimple. We fix the
inner product 〈 , 〉 = −B on H.

Recall the following basic fact about Killing forms of Lie algebras

B([X, Y ], Z]) = −B(Y, [X,Z]) for all elements X, Y, Z of H. (1)

Define H2 to be the orthogonal complement of H1 in H relative to −B.
Similarly, define K2 and P2 to be the orthogonal complements of H1 in K

and P respectively. Hence we have

H = H1 ⊕ H2, K = H1 ⊕ K2 and P = H1 ⊕P2. (2)

Remark. Since H1 is an ideal of H it follows that H2 is also an ideal of H

since B([X,H2],H1]) = −B(H2, [X,H1]) ⊆ −B(H2,H1) = {0} for all X in H

by (1). It follows that both H1 and H2 are semisimple Lie algebras since the
Killing form of an ideal A of H is the restriction of the Killing form B of H

to A. Hence BA = B is negative definite on A.

Lemma 3. The Lie algebra H2 is a direct sum H2 = K2 ⊕P2. Moreover,
[K2,P2] ⊆ P2, [P2,P2] ⊆ K2 and [K2,K2] ⊆ K2.

Lemma 4. There exists a basis C of H that satisfies the hypotheses of
Proposition 4.2. If HQ = Q-span(C), then P = W is a rational subspace of
HQ.

Proof of Proposition (4.3c). This is immediate when Proposition 4.2 and
Lemma 4 are applied to N = V ⊕W . �

We now prove Lemmas 3 and 4.
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Proof of Lemma 3. Since H1 = P∩K it follows from (2) above that P2∩K2

⊆ (P ∩ K) ∩(P ∩ K)⊥ = {0}. Hence P2 ⊕ K2 ⊆ H2 = H⊥
1 . Note that

H1 ⊕H2 = H = K + P = (H1⊕K2) + (H1⊕P2) ⊆ H1⊕K2 ⊕P2 ⊆ H1⊕H2.
Hence all inclusions are equalities, and H2 = K2 ⊕P2.

To show that [K2,P2] ⊆ P2 it suffices to show that [K,P2] ⊆ P2 since
K2 ⊆ K. By (1) and (2) we know that B([K,P2],H1) = −B(P2, [K,H1])
⊆ −B(P2,H1) = {0} since H1 is an ideal of H. By Lemma 2 and (2) we
know that [K,P2] ⊆ [K,P] ⊆ P = H1⊕P2. We conclude that [K,P2] ⊆ P2.

Next, [P2,P2] ⊆ [P,P] = K = H1 ⊕ K2, and B([P2,P2],H1) =
−B(P2, [P2,H1]) ⊆ −B(P2,H1) = {0} by (1) and (2). Hence [P2,P2] ⊆ K2.

Finally, [K2,K2] ⊆ [K,K] ⊆ K = H1 ⊕ K2, and B([K2,K2],H1) =
−B(K2, [K2,H1]) ⊆ −B(K2,H1) = {0}. This proves that [K2,K2] ⊆ K2 and
completes the proof of Lemma 3. �

Remark. The direct sum H2 = K2 ⊕ P2 is in fact an orthogonal direct
sum relative to the inner product -B on H. If K2 ∈ K2 and P2 ∈ P2 are
arbitrary elements, then by Lemma 3 (adK2 ◦adP2)(P2) ⊆ K2 and (adK2 ◦
adP2)(K2) ⊆ P2. Moreover adP2(H1) ⊆ [P2,H1] ⊆ [H2,H1] ⊆ H2∩H1 = {0}
since H1 and H2 are ideals of H. Since H = H1⊕H2 = H1⊕P2⊕K2 it follows
that B(K2, P2) = trace(adK2 ◦adP2) = 0. Hence K2 and P2 are orthogonal
relative to −B.

Proof of Lemma 4. Applying Lemma 2 to H2 = K2 ⊕ P2 we can find a
Chevalley basis C2 of HC

2 such that the subspaces K2 and P2 are rational
relative to the rational structure H2Q = Q − span(C2R) for H2. Here C2R

denotes the real Chevalley basis of H2 determined by C2 as in example 3 of
(1.3a). Choose any Chevalley basis C1 of HC

1 such that the corresponding
real Chevalley basis C1R is a basis of H1. Then C = C1 ∪ C2 is a Chevalley
basis of HC = HC

1 ⊕ HC
2 , and CR = C1R ∪ C2R is the corresponding real

Chevalley basis of H = H1 ⊕ H2. Define a rational structure HQ for H by
HQ = Q− span(CR) = Q− span(C1R)⊕Q− span(C2R). Since P2 is a rational
subspace of H2 relative to the rational structure Q − span(C2R) for H2 it
follows that P = H1 ⊕P2 is a rational subspace of H relative to HQ.

The Lie algebra H = H1⊕H2 is semisimple by Lemma 1. By the remarks
following the statement of Proposition 4.2 it follows that H = exp(H) is a
compact, connected subgroup of SO(V ), where exp : so(V )→ SO(V ) is the
exponential map. We conclude that the basis CR of H satisfies the hypotheses
of Proposition 4.2 by the proposition in Appendix 1 and the remark that
follows it. �
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We have completed the proof of Proposition 4.3 in the case that W has
trivial center.

Case 2 W has compact center
Let H = W + [W,W ] and H0 = [H,H]. Recall that H and H0 are Lie

algebras and H0 is semisimple by 1) and 2) of (4.3b). The proof of 3) in (4.3b)
shows that H = Z(W )⊕H0 andH = exp(H) = T0·H0 where T0 = exp(Z(W ))
is a compact, connected abelian subgroup of SO(V ) and H0 = exp(H0) is a
compact, connected semisimple subgroup of SO(V ). Moreover, T0 commutes
with H0 since Z(W ) commutes with H0. Hence H is a representation of
T0 ×H0 on V .

Recall from 3) of (4.3b) that W = Z(W )⊕W1 (orthogonal direct sum),
where W1 is a Lie triple system in so(V ) and H0 = W1+[W1, W1]. The center
of the Lie triple system W1 is trivial by 2) of (4.3b) since H0 is semisimple.
By Case 1 we may choose a real Chevalley basis C0

R of H0 so that W1 is a
rational subspace of H0Q = Q-span(C0

R). Choose a basis {Z1, ..., Zk} of Z(W )
so that exp(2πZi) = Id in T0 for all i. By the proposition in Appendix 1
the set C ′ = {Z1, ..., Zk} ∪ C0

R is a basis of H = Z(W ) ⊕ H0 that satisfies
the hypotheses of Proposition 4.2. Moreover, W = Z(W )⊕W1 is a rational
subspace of H with the rational structure HQ = Q-span(C ′). Now apply
Proposition 4.2. �

Appendix 1.

Standard bases for representations of compact Lie groups. Let T p

be a p-torus, a compact, connected abelian Lie group of dimension p ≥ 1,
and let Tp denote the Lie algebra of T p. A basis Cp = {Z1, ..., Zp} will be
called standard if exp(2πZi) = 1 for 1 ≤ i ≤ p, where exp : Tp → T p is the
exponential map (and also a group homomorphism). Note that exp(RZi) is
a 1-torus for each i.

Proposition. Let G = T p×G∗, where G∗ is a compact, connected semisim-
ple Lie group and p ≥ 0. Let C ′ = Cp ∪ C∗R, where Cp is a standard ba-
sis of Tp = LT p and C∗R is a real Chevalley basis of G∗ = LG∗. Then
C ′ = {X1, X2, ..., XN} has the following properties:

1) [Xi, Xj] =
N∑

i=1

Ck
ijXk, where Ck

ij ∈ Z for all i, j, k.

2) If ρ : G→ GL(U) is a representation of G on a finite dimensional real
vector space U , then there exists a basis B of U such that each element
of dρ(C ′) leaves invariant Z-span(B).
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Corollary. Let G be a compact, connected lie group with Lie algebra G.
Then there exists a basis C ′ = {X1, X2, ..., XN} of G with the following
properties :

1) [Xi, Xj] =
∑N

i=1C
k
ij Xk, where Ck

ij ∈ Z for all i, j, k.

2) If ρ : G→ GL(U) is a representation of G on a finite dimensional real
vector space U , then there exists a basis B of U such that each element
of dρ(C ′) leaves invariant Z − span(B).

Remark. If p = 0 and G is semisimple in the proposition, then C ′ = C∗R
and the result follows from [R2], with the slightly weaker conclusion that
the structure constants {Ck

ij} of 1) lie in Q. However, with some additional
work one may conclude that {Ck

ij} ⊆ Z. See [E2] for details and an alternate
(but longer) proof of the proposition above in the case that G is semisimple.

Proof of the Corollary. We prove the corollary first. The first step is the
following known result, whose proof we include for completeness.

Lemma. Let G be a compact, connected Lie group. Then G has a finite
covering π : G′ → G such that G′ = T ×G∗, where T is compact, connected
and abelian and G∗ is compact, connected and semisimple.

Proof of the lemma. It is well known that G = Z ⊕ G∗, where G and G∗

are the Lie algebras of G and G∗ and Z is the center of G. See for example
Lemma 2 of Appendix 2. The Killing form of G∗ is negative definite, and
hence any Lie group with Lie algebra G∗ must be compact. (See the remarks
following Proposition 4.2.) In particular, if G∗ is the simply connected Lie
group with Lie algebra G∗, then G∗ is compact. If G̃ = Rp × G∗, where
p = dimZ, then G̃ is a simply connected Lie group with Lie algebra G.

If π : G̃ → G is the universal covering homomorphism, then Ker(π)
is a discrete subgroup of Z(G̃) = Rp × Z(G∗). If ψ : Z(G̃) → Z(G∗) is
the projection homomorphism, then Ker(ψ) has finite index in Z(G̃) since
Z(G∗) is finite. Hence H = Ker(π) ∩Rp = Ker(π)∩Ker(ψ) has finite index
in Ker(π) ∩ Z(G̃) = Ker(π). If G′ = G̃/H = (Rp/H) × G∗, then G′ is a
finite cover of G = G̃/Ker(π), and hence G′ is also compact. The group
T = Rp/H is clearly abelian and connected, and T is compact since G′ is
compact. The group G′ is connected since both T and G∗ are connected. �

Now let G be a compact, connected Lie group, and let π′ : G′ → G be a
finite cover as in the lemma. If ρ : G → GL(U) is a representation of G on
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a finite dimensional real vector space U , then ρ′ = π′ ◦ ρ : G′ → GL(U) is a
representation of G′. The corollary now follows from the proposition since
G′ and G have the same Lie algebra G and dρ′(G) = dρ(G) in End(U). �

Proof of the proposition. Let G = T p × G∗ and let C ′ = Cp ∪ C∗R, where
Cp = {Z1, Z2, ..., Zp} is a standard basis of Tp = LT p and C∗R is a real
Chevalley basis of G∗ = LG∗. Note that Tp is the center of G = Tp ⊕ G∗

since the semisimple Lie algebra G∗ has trivial center.
It is clear that C ′ is a basis of G with structure constants in Z since the

Chevalley basis C∗R has structure constants in Z (cf. [Hu, p. 145] or [B,
section 3.2]). The basis C ′ therefore satisfies 1) of the proposition, and we
need to show that C ′ also satisfies 2). We may assume that p ≥ 1 by the
remark after the statement of the proposition.

Lemma. Let ρ : G → GL(U) be an irreducible representation of G on a
finite dimensional real vector space U . Assume that ρ(T p) fixes no nonzero
vectors of U . Let {Z1, ..., Zp} be a standard basis of Tp = LT p. Then

1) There exists a nonzero linear map α : Tp → R such that dρ(Z)2 =
−α(Z)2 Id on U for all Z in Tp.

2) There exists a linear map J : U → U such that J2 = − Id and J
commutes with ρ(G). Moreover, for 1 ≤ k ≤ p there exists an integer nk

such that dρ(Zk) = nkJ on U .
3) U has a complex structure such that ρ(G) ⊆ EndC(U) and U is a

complex GC-module.
4) There exists a basis B of U such that each element of dρ(C ′) leaves

invariant Z− span(B).

For the moment we postpone the proof of the lemma and complete the
proof of the Proposition. Let G = T p×G∗ as above, and let ρ : G→ GL(U)
be a representation of G on a finite dimensional real vector space U . Fix
a ρ(G)-invariant inner product 〈 , 〉 on U . Let U0 = {u ∈ U : ρ(t)u = u
for all t ∈ T p}. Then U0 is a G-module since ρ(T p) lies in the center of
ρ(G), and it follows that the orthogonal complement U⊥

0 is also a G-module.
By the definition of U0, ρ(T p) fixes no nonzero vector of U⊥

0 . Write U⊥
0 =

U1 ⊕ ...⊕ UN , an orthogonal direct sum of irreducible G-modules. By 4) of
the lemma we can find a basis Bk for Uk, 1 ≤ k ≤ N , such that each element
of dρ(C ′) leaves invariant Z− span(Bk). If B⊥0 =

⋃N
k=1 Bk, then B⊥0 is a basis

of U⊥
0 such that each element of dρ(C ′) leaves invariant Z − span(B⊥0 ).
Now regard U0 as a G∗-module, and consider the real Chevalley basis C∗R

of G∗. Since G∗ is semisimple we can apply [R1] to prove that there exists a
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basis B0 of U0 such that every element of C∗R leaves invariant Z−span(B0). See
the remark following the statement of the Proposition. Since dρ(Tp) = {0} in
End(U0) by the definition of U0 and since C ′ = {Z1, Z2, ..., Zp} ∪ C∗R, where
{Z1, Z2, ..., Zp} is a standard basis of Tp, it follows that every element of
dρ(C ′) leaves invariant Z − span(B0). Finally, if B = B0 ∪ B⊥0 , then B is
a basis of U = U0 ⊕ U⊥

0 such that every element of dρ(C ′) leaves invariant
Z − span(B0). This will complete the proof of the Proposition. �

Proof of the lemma . For convenience we fix a ρ(G)-invariant inner product
〈 , 〉 on U . Then each element of dρ(G) ⊆ End(U) is skew symmetric relative
to 〈 , 〉 and has eigenvalues in Ri = {ai : a ∈ R}.

1) Let V = UC, the complexification of U , and let ρ : G → GL(V )
also denote the complex representation that extends the real representation
ρ : G→ GL(U). Since ρ(T p) is compact, connected and abelian there exists
a nonzero eigenvector v = u1 +iu2 for ρ(T p), where u1, u2 ∈ U . Then v is an
eigenvector for dρ(Tp) = Lρ(T p), and there exists a linear map α : Tp → R

such that dρ(Z) = α(Z)iv for all Z ∈ Tp. If Uα = {u ∈ U : dρ(Z)2u =
−α(Z)2u for all Z ∈ Tp}, then Uα is nonempty since it contains the real and
imaginary parts u1, u2 of v. Note that ρ(G) commutes with dρ(Tp) since
G = exp(G) and Tp is the center of G. Hence ρ(G) leaves Uα invariant,
and U = Uα since U is an irreducible G-module. If α : Tp → R is zero,
then 0 = dρ(Z + Z ′)2 ⇒ dρ(Z) dρ(Z ′) = 0 for all Z, Z ′ in Tp. It follows
that dρ(Tp)(U) ⊆ Ker dρ(Tp). Hence Ker dρ(Tp) �= {0} and ρ(T p) fixes all
vectors in Ker dρ(Tp), which contradicts the hypothesis on U .

2) By 1) dρ(Tp) is a 1-dimensional subspace of End(U) since α is nonzero.
Hence if {Z1, Z2, ..., Zp} is the standard basis of Tp from the statement of
the lemma, then dρ(Zk) is nonzero in End(U) for some 1 ≤ k ≤ p.

We show that nk = α(Zk) is an integer for 1 ≤ k ≤ p. If ci is an eigenvalue
of dρ(Zk) for some 1 ≤ k ≤ p, then e2πci is an eigenvalue of exp(dρ(2πZk))
= ρ(exp(2πZk)) = Id since exp(2πZk) = 1 in T p by the hypotheses on
{Z1, Z2, ..., Zp}. Here exp denotes both exp : End(U) → GL(U) and exp :
Tp = LT p → T p. Hence 1 = e2πci, and we conclude that c ∈ Z and dρ(Zk)2

has eigenvalue −c2 = −α(Zk)2.
Now fix k with 1 ≤ k ≤ p such that dρ(Zk) is nonzero in End(U). Let

nk = α(Zk) ∈ Z. Note that nk is nonzero since dρ(Zk)2 = −α(Zk)2 Id on U .
If J = (1/nk) dρ(Zk), then clearly J2 = − Id on U , and J commutes with
ρ(G) since dρ(Tp) commutes with ρ(G). If 1 ≤ r ≤ p, where r is arbitrary,
then dρ(Zr) = crJ on U for some cr ∈ R by the definition of J and the fact
that dρ(Tk) is 1-dimensional in End(U). Hence by 1), −α(Zr)2 Id = dρ(Zr)2
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= −c2r Id on U , and we conclude that cr = ±α(Zr) ∈ Z.
3) By 2) we may define a complex structure on U by setting (a+ bi) u =

au + bJu for all a, b ∈ R and all u ∈ U . It follows that ρ(G) ⊆ EndC(U)
since ρ(G) commutes with J. With the complex structure defined by J, U
becomes a complex GC-module if we define (X + iY ) u = Xu+ JY u for all
X, Y ∈ G and all u ∈ U .

4) We shall need the following
Sublemma. Let L be a finite dimensional complex semisimple Lie algebra,
and let C = {H∗

α, yβ : α ∈ ∆, β ∈ Φ} be a Chevalley basis for L (cf. section
1.3a). Let V be a finite dimensional complex L-module. Then there exists a
C-basis BV of V such that every element of C leaves invariant Z− span(BV ).

Proof of the sublemma. If U(L) denotes the universal enveloping algebra
of L, then V is also a U(L)-module. If U(L)Z denotes the subring of U(L)
generated by {y n

β /n! : β ∈ Φ, n ∈ Z+}, then there exists a basis BV of V
such that every element of U(L)Z leaves invariant Z − span(BV ). See for
example, [Hu, p. 156]. It suffices to prove that C ⊆ U(L)Z, and this follows
since −H∗

α = [yα, y−α] for all α ∈ ∆ (cf. [B, section 3.2]). �

We now apply the sublemma above to the complex vector space U whose
complex structure is determined by the linear transformation J : U → U
from 2). Let C∗ be a Chevalley basis of (G∗)C ⊆ GC. By the sublemma
there exists a C-basis B′ = {ξ1, ..., ξm} of U such that each element of dρ(C∗)
leaves invariant Z − span(B′). Let B = {u1, ..., u2m}, where ui = ξi for
1 ≤ i ≤ m and um+i = Jξi for 1 ≤ i ≤ m. Then B is an R-basis for U
regarded as a real G-module.

From 2) above it follows immediately that
a) dρ(Zk) leaves invariant Z − span(B) for 1 ≤ k ≤ p.

By the discussion in (1.3a) the Chevalley basis C∗ = {H∗
α, yβ : α ∈ ∆, β ∈ Φ}

for (G∗)C may be chosen so that C∗R = {iH∗
α, uβ, vβ : α ∈ ∆, β ∈ Φ} is a basis

for G∗, where uβ = yβ − y−β and vβ = iyβ + iy−β for all β ∈ Φ. Note that
for all β ∈ Φ, iyβ = Jyβ leaves invariant Z − span(B) since J and yβ have
this property. We conclude

b) Every element of dρ(C∗R) leaves invariant Z− span(B).
Assertion 4) follows immediately from a) and b) since C ′ = {Z1, Z2, ..., Zp}∪
C∗R. �

Further sources.

Appendix 2 Lie triple systems
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Appendix 3 Clifford algebras and Lie triple systems
Appendices 2 and 3 can be found on the author’s website at
(www.math.unc.edu).
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