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Embedded Special Lagrangian Submanifolds in

Calabi-Yau Manifolds

Yng-Ing Lee

A Calabi-Yau manifold is a Kähler manifold with trivial canonical line bun-
dle. It is proved by S.T. Yau [24] that in a Calabi-Yau manifold there
exists a unique Ricci flat metric in its Kähler class. Therefore, we have two
special forms ω and Ω in an n-dimensional Calabi-Yau manifold N , where
ω is the Kähler form of the Ricci flat metric g and Ω is a parallel holo-
morphic (n, 0) form of unit length with respect to g. A real n-dimensional
submanifold L in N is called Lagrangian if the restriction of ω on L van-
ishes. If in addition, the restriction of Im Ω on L also vanishes, then L

is called special Lagrangian. This is equivalent to that L is calibrated by
Re Ω. A calibrated submanifold is always volume minimizing. (See [7] or
section 1 in this paper.) In particular, special Lagrangian submanifolds are
minimal submanifolds of middle dimension. This motivates our study on
special Lagrangian submanifolds or more generally on Lagrangian minimal
submanifolds ([11], [12], [20]). Another motivation comes from mirror sym-
metry. In [23], A. Stominger, S.T. Yau, and E. Zaslow proposed to construct
the mirror manifold of a Calabi-Yau manifold by the moduli space of special
Lagrangian tori together with their flat connections. For development and
modification of this conjecture, we refer to [9], [5], [17] etc., and the refer-
ence therein. The current paper is an attempt in employing the perturbation
method to study problems in this direction. In particular, we prove

Theorem 3. Suppose that L is a closed, connected, and immersed spe-
cial Lagrangian submanifold in a closed Calabi-Yau manifold N of complex
dimension 3. Assume that L has only isolated transversal self-intersection
points. Then L is the limit of a family of embedded closed special Lagrangian
submanifolds in N .

Theorem 4. Suppose that L is a closed, connected, and immersed spe-
cial Lagrangian submanifold in a closed Calabi-Yau manifold N of complex
dimension n > 3. Moreover, assume that L has only isolated transversal
self-intersection of two sheets and the two tangent planes at each intersec-
tion point satisfy the angle condition θ1 + · · ·+ θn = π

2 (see section 2). Then
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L is the limit of a family of embedded closed special Lagrangian submanifolds
in N .

Remark: Theorem 4 does not hold if we drop the angle condition in the
theorem. This is pointed out by N.C. Leung and is explained in section 2.

I should mention the following result by A. Butscher:
Theorem (A. Butscher [3]). Suppose L1 and L2 are two special La-
grangian submanifolds with boundary of R2n, n ≥ 3, that intersect transver-
sally at one point p. Furthermore, suppose that the tangent planes of L1 and
L2 satisfy the angle condition (as in above Theorem 4) and let W be a scaf-
fold for L that is a codimension 2, symplectic submanifold of R2n. Define
L = L1 ∪ L2. Then there exists a family Lα of smooth Lagrangian minimal
submanifolds with boundary and a family of symplectic, codimension 2 sub-
manifolds Wα such that the boundary of Lα lies in Wα. Moreover, Lα and
Wα converges to L and W respectively in some suitable topology.

The techniques in this paper and in A. Butscher’s work are similar. We
both choose a Lawlor neck (see [10] or section 1) as a local model, connect it
to L outside a small ball to construct approximate submanifolds which are
Lagrangian, and then apply Hamiltonian deformation to perturb these ap-
proximate submanifolds to become special Lagrangian. The main difference
between these two works is: In Butscher’s situation, the set L \ {p} has two
connected components, and thus the first eigenvalues of the approximate
submanifolds will tend to zero as the neck size tends to zero. To resolve
this difficulty, Butscher allows the phase (see section 1) changing to have an
extra freedom to do the perturbation. Hence Lα can only be Lagrangian
minimal submanifolds instead of being special Lagrangian submanifolds (of
the same phase) in his result. He also needs to allow the boundary moving
to obtain Lα. These are all necessary steps for the nature of his problem. In
contrast to his situation, I have L\{p} connected and can prove that the first
eigenvalues of the approximate submanifolds have an uniform positive lower
bound (Theorem 1). In fact, a similar proof can also give a bound for the
case that the singular set of L is of codimension 2 in L. This observation is
useful in generalizing the results to other cases. Because the first eigenvalues
have an uniform positive lower bound, I do not need to change the phase to
solve the problem and can obtain the deformation in the category of special
Lagrangian submanifolds. This paper considers submanifolds in a general
Calabi-Yau manifold instead of just in R2n. Therefore, it is also necessary to
find nice coordinates balancing symplectic structure and complex structure,
such that the local model can be adapted from R2n. This part becomes very
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delicate in cases that the intersection submanifolds are of higher dimension.
Besides the above difference, I also prove that the angle condition is always
satisfied when n = 2 or 3 (see section 2). This is why we have a general
theorem for dimensin 3. The 2-dimensional case needs a different treatment.
We keep some discussions for this situation in a few places, but leave the
complete proof to other paper.

It will be very interesting if one can construct new examples of special La-
grangian submanifolds by doing connected sum of two special Lagrangian
submanifolds. Construction of approximate submanifolds in this situation
is exactly the same. But as in Butscher’s case, the first eigenvalues of the
approximate submanifolds will tend to zero as the neck size tends to zero.
By computing the dimension of local deformations of a special Lagrangian
submanifold [13], it turns out that one cannot have an extra freedom to
resolve a single intersection point of two special Lagrangian submanifolds.
However, if they intersect at more than one point or consider a loop of spe-
cial Lagrangian submanifolds which intersect consecutively, the topological
obstruction will not happen. We need to analyze the perturbation in a differ-
ent way because there is no positive lower bound for the first eigenvalues of
the approximate submanifolds. This is an ongoing project with N.C. Leung.

Thank R. Schoen for bringing this interesting problem to my attention in the
summer of 1998. I found that one could use Lawlor necks as local models
immediately and began to study these problems. A. Butscher’s thesis [2]
was finished in the summer of 2000. The author thus referred most of the
common part to his work. In preparing this paper, I found a few mistakes
in A. Butscher’s thesis, which include a wrong formula for the linearized
operator (Proposition 4.28 in p.105), an incorrect argument for the sup.
norm estimate (5.48 in p.142), and the necessity of adding the angle condition
(Main Theorem 2 in p.5). A. Butscher gave a primary argument for the
sup. norm estimate later [4]. Because it does not appear in other places, a
treatment for cases considered in this paper is supplemented in the Appendix
for the reader’s reference.

I would like to thank the referee’s suggestions on revising this paper and on
making a comparison with A. Butscher’s work. I also like to thank N.C. Le-
ung, R. Schoen, C.L. Terng, and J. Wolfson for their discussions, as well
as A. Butscher for sending me his papers and correcting my English in the
first version of this paper. During the period of this research, I visited the
National Center for Theoretical Sciences in Taiwan and Tom Wan in Chi-
nese University, HongKong. I wish to express my gratitude to them for their
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hospitality and organizing stimulating mathematical activities. My research
is partially supported by National Science Council in Taiwan with projects
NSC 89-2115-M-002-018 and 90-2115-M-002-006.

The plan of this paper is as follows: In section 1, I explain Lawlor’s examples
(Lawlor necks) and give some basic definitions and properties. I prove in sec-
tion 2 that the angle criterion is always satisfied when n = 2 or 3, and give an
example to explain why Theorem 4 cannot hold in general. The construction
of approximate submanifolds and an estimate on their first eigenvalues are
given in section 3. Finally in section 4, I perturb the approximate subman-
ifolds to become special Lagrangian and prove the main Theorems. Some
additional estimates are supplemented in the Appendix. To make our pre-
sentation less messy, the constant C in the paper may change in different
contexts. Its dependency will be specified whenever it is essential.

1. Preliminaries.

Calibrated geometry and the notion of special Lagrangian submanifold were
developed by R. Harvey and H. B. Lawson in [7]. We refer to their paper
for a detailed discussion on this subject. The followings are some basic
definitions:

Definition 1. A closed, differential p-form ϕ on a Riemannian manifold N
is called a calibration if its comass is 1. That is, ϕ(e1, · · · , ep) ≤ 1 for any

oriented, orthonormal p-frame on TN and the equality holds at some place.

Definition 2. We call a submanifold M of N being calibrated by ϕ if ϕ is
a calibration and ϕ|M = dVM , where dVM is the induced volume form on

M .

A nice property of being calibrated is:

Proposition 1. [7] Suppose that M is calibrated by ϕ, and is compact

without boundary. Assume that M ′ is in the same homology class as M .
Then one has Vol (M) ≤ Vol (M ′). The equality holds if and only if M ′ is

also calibrated by ϕ.

Proof. Because ϕ is a closed form, one has that
∫
M ϕ =

∫
M ′ ϕ. Since

ϕ|M = dVM and ϕ(TM ′) ≤ 1, the inequality thus follows and equality holds
if and only if ϕ(TM ′) = 1, i.e., M ′ is also calibrated by ϕ.

Q.E.D.
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If M has boundary and ϕ is an exact form, one still can prove that M has
the least volume among all submanifolds with the same boundary. A p-
dimensional complex submanifold in a Kähler manifold N is calibrated by
1
p! ω

p, where ω is the Kähler form on N , and hence is volume minimizing.
R. Harvey and H. B. Lawson showed that the real part of dZ = dz1∧· · ·∧dzn,
which is denoted by Re dZ, is a calibration in R2n. The corresponding cal-
ibrated submanifolds are called special Lagrangian. Let θ0 be a constant
angle. The form Re (eiθ0dZ) is also a calibration in R2n, and its correspond-
ing calibrated submanifolds are called special Lagrangian of phase θ0. These
can be generalized to a Calabi-Yau manifold. Recall that there are two
special forms ω and Ω in a complex n-dimensional Calabi-Yau manifold N ,
where ω is the Kähler form of the Ricci-flat metric and Ω is a parallel holo-
morphic (n, 0) form of unit length. An n-dimensional submanifold L in N is
called Lagrangian if the restriction of ω on L vanishes. The n-form Re Ω is a
calibration and a Lagrangian submanifold in N is called special Lagrangian
if it is calibrated by Re Ω. One can show that the restriction of Ω on a
Lagrangian submanifold L is equal to eiθdVL, where the value eiθ depends
on points. Hence being special Lagrangian is equivalent to that both the
restriction of ω and Im Ω (the imaginary part of Ω) on L vanish.

G. Lawlor [10] modified an example of R. Harvey and H. B. Lawson [7] and
defined the following submanifolds, which will be called Lawlor necks in this
paper:

Assume that a1, · · · , an, n ≥ 2, are n positive real numbers and a =
(a1, · · · , an). Set

θk(a, µ) =
∫ µ

0

ak ds

(1 + aks2)
√
P (s)

for µ ≥ 0,

where

P (s) =
(1 + a1s

2) · · · (1 + ans
2)− 1

s2
.

Extend θk(a, µ) to negative µ by θk(a,−µ) = −θk(a, µ), and define a map
Φa from R× Sn−1 to R2n by

Φa(µ, x1, · · · , xn) = (z1x1, · · · , znxn),

where

x2
1 + · · ·+ x2

n = 1 and zk =
√

1
ak

+ µ2 eiθk(a,µ).
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Note that

Φ a
t2

(µ, x1, · · · , xn) = tΦa(
µ

t
, x1, · · · , xn) for t > 0.

By scaling we can assume inf
k=1,··· ,n

ak = 1. Denote

θk(a) =
∫ ∞

0

ak ds

(1 + aks2)
√
P (s)

, for k = 1, · · · , n.

It can be shown that θ1(a) + · · ·+ θn(a) = π
2 . There is a bijection between

positive θ1, · · · , θn satisfying θ1 + · · · + θn = π
2 and a1, · · · , an satisfying

inf
k=1,··· ,n

ak = 1 such that θi = θi(a) [10]. Denote the image of Φa by Ma.

G. Lawlor proved thatMa is embedded, calibrated by Im dZ, and asymptotic
to Pθ and P−θ, where Pθ is the plane

Pθ = { (t1eiθ1(a), · · · , tneiθn(a)) : tj ∈ R, j = 1, · · · , n }.
Note that Ma, Pθ and −P−θ are special Lagrangian of phase π

2 , where −P−θ

is the plane P−θ with orientation different from the standard one. By moving
these spaces by a phase, we can always make them special Lagrangian. We
thus will not specify the phase any more. But when we talk about special
Lagrangian submanifolds in this paper, we do mean that they are calibrated
by the same form, i.e. they are of the same phase. (see [2], [6], [8], [10]).

A. Butscher [2] studies carefully the asymptotic behavior of the above Lawlor
neck. We summarize some of his results here for completeness. Note that
P (µ) ≤ µ2n−2 for n ≥ 2. Thus one can prove that |θk(a, µ)− θk(a)| ≤ 1

n|µ|n .
Moreover, there exists a positive real number R0 so that Ma \ BR0(0) can
be written as the graph of the gradient of a function

Ψ : Pi \BR0(0)→ R, i = 1, 2.

Here we denote the two asymptotic planes of Ma by P1 and P2, and split
R2n into Pi×P⊥

i to write the graph. The function Ψ has the properties that

|∇Ψ(x)| ≤ C

|x|n−1
, |∇2Ψ(x)| ≤ C

|x|n , |∇
3Ψ(x)| ≤ C

|x|n+1

and |∇4Ψ(x)| ≤ C
|x|n+2 for x∈Pi with |x|≥R0. The constant C depends only

on a and n. The scaled manifold

ε(Ma \BR0(0)) = εMa \BεR0(0), ε > 0,
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is the graph of the gradient of a function

Ψε : Pi \BεR0(0)→ R, i = 1, 2.

The function Ψε(x) = ε2Ψ(x
ε ) satisfies

|∇Ψε(x)| ≤ Cεn

|x|n−1
, |∇2Ψε(x)| ≤ Cεn

|x|n , |∇
3Ψε(x)| ≤ Cεn

|x|n+1
,

and |∇4Ψε(x)| ≤ Cεn

|x|n+2 for x ∈ Pi with |x| ≥ εR0. We can assume further

that |Ψε(x)| ≤ Cεn

|x|n−2 when n ≥ 3 and |Ψε(x)| ≤ Cε2 ln |x|
εR0

when n = 2.

2. Local model.

Assume that p is a transversal intersection point of two locally sheets of spe-
cial Lagrangian submanifolds. We want to choose a Lawlor neck as a local
model to resolve the intersection point and construct approximate submani-
folds. The process is as follows: First find a Lawlor neck which is asymptotic
to the two tangent planes at p. Then replace the two sheets of special La-
grangian submanifolds inside a small ball of p by a scaled Lawlor neck, and
connect the Lawlor neck to the original two sheets outside the ball. There
is a condition θ1 + · · ·+ θn = π

2 for the planes which Lawlor necks can be
asymptotic to. In this section, we will show that this condition is always
satisfied for our situation in dimension 2 and 3, but is not satisfied in gen-
eral when n ≥ 4. Hence when n ≥ 4, we need to add the angle condition
θ1 + · · ·+θn = π

2 in Theorem 4. We also discuss why Theorem 4 cannot hold
in general if n ≥ 4.

Given a pair of Lagrangian planes P1 and P2 in R2n passing the origin, we
claim that one can find suitable coordinates, such that P1 is the x1, · · · , xn

plane and P2 is the plane { (t1eiω1, · · · , tneiωn) : tj ∈ R, j = 1, · · · , n },
where

0 ≤ |ω1| ≤ |ω2| ≤ · · · ≤ |ωn−1| ≤ π

2
and |ωn−1| ≤ |ωn| ≤ π − |ωn−1|.

A Lagrangian plane in R2n passing the origin is the image of the real
x1, · · · , xn plane under a linear transformation A ∈ U(n). Thus the set
of Lagrangian planes can be identified with U(n)/SO(n) [7]. The Lie alge-
bra u(n) of U(n) can be decomposed into the direct sum of S and so(n),
where S is the set of pure imaginary symmetric matrices and so(n) is the set
of real skew symmetric matrices. The subalgebra S and so(n) corresponds
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to the −1 eigenspace and 1 eigenspace of the involution τ : u(n) → u(n)
respectively, where τ(y) = −yt. Since one can diagonalize a real symmetric
matrix, it follows that S = ∪ k T k−1, where T is a pure imaginary diagonal
matrix and k is in SO(n).The symmetric space U(n)/SO(n) is exactly expS.
Permute the coordinates to satisfy the condition on ωj. We thus prove the
claim as desired. We like to thank C.L. Terng’s help on this observation.

Denote |ωj| by βj. These angles satisfy

0 ≤ β1 ≤ β2 ≤ · · · ≤ βn−1 ≤ π

2
and βn−1 ≤ βn ≤ π − βn−1.

They are exactly the characterizing angles between P1 and P2 as defined in

[10]. Note that one has 0 ≤
n∑

j=1

βj =
n∑

j=1

|ωj| ≤ nπ

2
, and βj > 0 if the pair of

planes intersect only at the origin. Suppose that P1 and P2 are two special
Lagrangian planes which intersect only at the origin. The special Lagrangian
condition implies that ωj satisfies

∑n
j=1 ωj = 2kπ for some integer k. Re-

member that
∑n

j=1 |ωj | ≤ nπ
2 . It thus follows that

∑n
j=1 ωj = 0 when n = 2

or 3. It implies that β1 = β2 in the case n = 2, and β1 + β2 = β3 in the case
n = 3. If we change the orientation on P2, which is denoted by −P2, then
the characterizing angles between P1 and −P2 satisfy

∑n
j=1 β̄j = π in the

case n = 2 or 3. Change the coordinates such that P1 = Pθ and −P2 = P−θ,
where θ = ( β̄1

2 ,
β̄2
2 ) or ( β̄1

2 ,
β̄2
2 ,

β̄3
2 ). We thus can find a Lawlor neck which is

asymptotic to P1 and −P2. The angle condition is not always satisfied when
n ≥ 4. For example, the x1, · · · , x4 plane and y1, · · · , y4 plane in R8 are
two special Lagrangian planes which intersect only at the origin. But all the
characterizing angles between them are π

2 . Hence the sum of the angles is 2π
and there does not exist a Lawlor neck which is asymptotic to the x1, · · · , x4

plane and y1, · · · , y4 plane.

The geometric obstruction for finding a Lawlor neck in n ≥ 4 comes from
the following: There is an angle criterion which says that the nonzero sum
(oriented union) P1 +P2 is area minimizing if and only if the characterizing
angles between them satisfy the inequality βn ≤ β1 + · · ·+ βn−1. (See [6],
[10], [16].) Suppose that P1 and P2 are two special Lagrangian planes. By
the property of calibration, we know that P1 + P2 is area minimizing and
thus βn ≤ β1+· · ·+βn−1. If βn < β1+· · ·+βn−1, we can find two Lagrangian
planes P ′

1 and P ′
2 near P1 and P2, which are not special Lagrangian and whose

characterizing angles {β′j}, j = 1, · · · , n, still satisfy β′n < β′1 + · · ·+ β′n−1.
Assume that there exists a special Lagrangian submanifold L asymptotic to
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P1 and P2. Furthermore, assume that L is the union of compact hypersur-
faces in a family of Lagrangian planes. The last condition is equivalent to
being a Lawlor neck. The intersection of L and P ′

1 +P ′
2 is a compact hyper-

surface in P ′
1 +P ′

2. It is the boundary of a compact subset A in L, and is also
the boundary of a compact subset E1+E2 in P ′

1+P ′
2. By special Lagrangian

condition on L and applying angle criterion to P ′
1 +P ′

2, we know that A and
E1+E2 are both volume minimizing and have the same boundary. It follows
by Proposition 1 that they are calibrated by the same form, which is a con-
tradiction because P ′

1 and P ′
2 are chosen to be not special Lagrangian. Thus

we cannot have a Lawlor neck to approximate such a pair. Is it possible to
find local models of different nature to resolve the isolated self-intersection
point in this case? The answer is still no and is explained in next paragraph.

There is a S2 family of compatible complex structures in a hyperkähler
manifold. A complex Lagrangian submanifold in a hyperkähler manifold is
a complex submanifold with respect to one of the compatible complex struc-
tures, and is special Lagrangian with respect to another compatible complex
structure. By Proposition 1, a volume minimizing submanifold in the ho-
mology class of a calibrated submanifold must be calibrated by the same
form. Thus all special Lagrangian submanifolds in the homology class of a
complex Lagrangian submanifold are complex Lagrangian. If we can resolve
the transversal intersection points of two special Lagrangian submanifolds
in general, it implies that we can do the connected sum in the complex cat-
egory in this case. However, it is known to be impossible when the complex
dimension is bigger than one. Examples of closed, connected and immersed
complex Lagrangian submanifolds with isolated transversal self-intersection
points and of complex dimension bigger than one can be constructed. When
we add a handle (∼= Sn−1 ×R, n ≥ 4) to the complex Lagrangian submani-
fold, it will increase the dimension of the first homology group by one. This
new topology cannot carry a Kähler structure since its first homology group
is of odd dimension. Hence the theorem without further condition cannot
hold when n ≥ 4. It is still open whether the result holds for all odd n.

3. Approximate submanifolds.

Let N be a closed Calabi-Yau manifold of dimension n ≥ 2. Suppose that L
is an immersed special Lagrangian submanifold in N , which is closed, con-
nected, and with only isolated transversal self-intersection points. Without
loss of generality, we can assume that there is only one self-intersection point
p and locally p is the transversal intersection of two sheets of L. In a small



400 Yng-Ing Lee

neighborhood of p, the metric in N is equivalent to the Euclidean metric
in R2n. For simplicity, the distance and norm in constructing approximate
submanifolds are with respect to the Euclidean metric unless specified ex-
plicitly. We can choose coordinates x1, · · · , xn, y1, · · · , yn and a ball Br0(p)
such that p is the origin and for q ∈ Br0(p):

1. the Kähler form satisfies ω(q) =
i=n∑
i=1

dxi ∧ dyi,

2. the metric g = ds2 in N satisfies |ds2(q) − ds20| ≤ C|q|2, where the
metric ds20 =

∑i=n
i=1 dx

2
i + dy2

i ,

3. the complex structure J satisfies |J(q) − J0| ≤ C|q|2, where J0 is the
standard complex structure in R2n,

4. the parallel holomorphic (n, 0) form Ω satisfies |Ω(q) − dZ| ≤ C|q|2,
where dZ = dz1 ∧ · · · ∧ dzn and zj = xj + iyj , j = 1, · · · , n.

To find coordinates satisfying these conditions, we can first choose normal
coordinates at p which satisfy condition 2, 3, and 4. Then apply Moser’s
techniques [15] to change the coordinates to become Darboux coordinates
(condition 1). This process does not affect the property that the coordinates
satisfy condition 2, 3, and 4. Thus we obtain coordinates that satisfy the
required conditions.

Denote the two tangent planes at p by P1 and P2, which are special La-
grangian with respect to the standard structures in R2n. Because L∩Br0(p)

is Lagrangian with respect to
i=n∑
i=1

dxi ∧ dyi, there exists r1 < r0 such that

L ∩ Br1(p) can be written as the graph of the gradient of a function

ψ : Pi ∩ Br1(p)→ R, i = 1, 2.

Moreover, we can choose ψ satisfying

|ψ(x)| ≤ K|x|3, |∇ψ(x)| ≤ K|x|2, |∇2ψ(x)| ≤ K|x|, |∇3ψ(x)| ≤ K,

and |∇4ψ(x)| ≤ K for x ∈ Pi with |x| ≤ r1, whereK is a constant depending
on the curvature of L in Br1(p).

When P1 = Pθ, −P2 = P−θ, and θ1 + · · ·+ θn = π
2 , there exists a Lawlor

neck Ma in R2n asymptotic to P1 and P2. From discussions in section 2, this
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condition is always satisfied when n = 2 or 3. From now on, we focus on the
situations where we can find a Lawlor neck Ma asymptotic to P1 and P2.
Outside a small ball BεR0 , the scaled manifold εMa can be written as the
graph of the gradient of Ψε over P1 and P2. To match ψ and Ψε together,
one needs the following estimate:

Lemma 1. [2] When n ≥ 3, there exist constants α0 and c depending on L

only, such that if 0 < α < α0, r = α
K , and ε < c α1+ 1

n , then

|∇2ψ(x)| ≤ α and |∇2Ψε(x)| ≤ α for any x ∈ Pi with
r

2
≤ |x| ≤ r.

We will choose the approximate submanifolds to be εMa near p, and to
be L outside a neighborhood of p. The interpolation between εMa and L
is required to be Lagrangian. Recall that the graph of the gradient of a
function on a Lagrangian plane is always Lagrangian. Hence the following
combination of ψ and Ψε is a good candidate for our purpose. Choose a
smooth function η on Rn satisfying 0 ≤ η(x) ≤ 1, η(x) ≡ 1 when |x| ≤ r

2
and η(x) ≡ 0 when |x| ≥ 3r

4 . Moreover, we require η(x) to satisfy

|∇η(x)| ≤ C

r
, |∇2η(x)| ≤ C

r2
, |∇3η(x)| ≤ C

r3
, and |∇4η(x)| ≤ C

r4
.

Define the interpolation to be the graph

Ti = {(x,∇[(1− η)ψ+ ηΨε](x)) ∈ Pi × P⊥
i ,

r

2
≤ |x| ≤ r}, i = 1, 2.

It is easy to check that

|∇[(1− η)ψ+ ηΨε]| < Cr2, for
r

2
≤ |x| ≤ r.

Denote
B′

r = BP1
r ×Rn ∩BP2

r ×Rn ⊂ P1 × P⊥
1 ∩ P2 × P⊥

2 ,

where BPi
r = Br ∩Pi, i = 1, 2. We then define the approximate submanifold

to be
Mα = (εMa ∩ B′

r
2
) ∪ T1 ∪ T2 ∪ (L \B′

r).

The approximate submanifold is Lagrangian and satisfies the following prop-
erties: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

|H(q)| ≤ C |q| for q ∈ εMa ∩B′
r
2

|H(q)| ≤ C for q ∈ T1 ∪ T2

|H(q)| = 0 for q ∈ L \B′
r

,
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where H is the mean curvature vector of Mα in N . One also has⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|Im Ω|Mα(q)| ≤ C |q|2 for q ∈ εMa ∩ B′

r
2

|Im Ω|Mα(q)| ≤ C α for q ∈ T1 ∪ T2

|Im Ω|Mα(q)| = 0 for q ∈ L \B′
r

.

The situation in R2n is computed in [2]. Because |Ω(q)− dZ| ≤ C|q|2 and
|H(q)− H0(q)| ≤ C|q|, where H0 is the mean curvature vector of Mα ∩ B′

r

in R2n with the Euclidean metric, we thus obtain the above estimates.

The approximate submanifolds Mα are embedded Lagrangian submanifolds.
Because the mean curvature is uniformly bounded, by monotonicity formula
[21] and the construction ofMα, it follows that the area is uniformly bounded
from above and below. For small α, the homology classes of Mα and L are
equal and consequently

∫
Mα

Im Ω = 0. J. H. Michael and L. Simon [14]
proved the Sobolev inequality:

(
∫

M

h
n

n−1 dV )
n−1

n ≤ C(n)
∫

M

(|∇Mh|+ h|H̄|) dV

for a submanifoldMn ⊂ Rl, where h is a C1 nonnegative function onM with
compact support and H̄ is the mean curvature of M in Rl. By embedding
N isometrically in Rl, the corresponding mean curvature H̄α of Mα in Rl

is uniformly bounded. Thus the norm of the Sobolev constant on Mα is
uniformly bounded and one has the following lemma.

Lemma 5’. Suppose that u is a positive sub-solution of the equation
∆M u ≥ gu on a closed manifold M , where g is a L1 function satis-
fying the estimate ‖g‖

L
r
2
≤ c̄Vol(M)

2
r
− 2

n for some r > n. Then

‖u‖0,M ≤ Cp Vol(M)−
1
p ‖u‖Lp for p > 0. The constant Cp depends on

the Sobolov constant, r, c̄ and p.

This lemma is a modification of Lemma 5 together with a remark after its
proof, which is discussed in the Appendix. With Lemma 5’, we can obtain
an uniform positive lower bound for the first eigenvalue of Mα.

Theorem 1. Suppose that n is greater than 2. When α is small enough, the
first eigenvalue λ1(Mα) for the Laplace operator on Mα is bounded below

by 1
4λ1(L).
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Proof. Suppose that fα is the first eigenfuction for the Laplace operator on
Mα satisfying∫

Mα

fα dV = 0,
∫

Mα

f2
α dV = 1, and

∫
Mα

|∇Mαfα|2 dV = λ1(Mα).

Because ∆Mαfα = −λ1(Mα)fα, one has

∆Mαf
2
α = −2λ1(Mα)f2

α + 2 |∇Mαfα|2 ≥ −2λ1(Mα)f2
α.

Assume that the theorem is not true. Then there exists a subsequence {αj}
which tends to zero, such that λ1(Mαj) <

1
4λ1(L). By Lemma 5’, one has

f2
αj
≤ C

∫
Mα

f2
αj
dV ≤ C.

Since λ1(Mαj) and Vol(Mαj ) are bounded uniformly, the constant C is in-
dependent of j.

Let ϕδ be a nonnegative function in N satisfying ϕδ ≡ 1 on N \Bδ , ϕδ ≡ 0
on B δ

2
, 0 ≤ ϕδ ≤ 1 on Bδ \ B δ

2
, and |∇Nϕδ| ≤ 3

δ . A direct computation
shows that∫

Mαj
|∇Mαjϕδfαj |2 dV

=
∫
Mαj

(|∇Mαjϕδ|2f2
αj

+ ϕ2
δ |∇Mαj fαj |2 + 2ϕδfαj∇Mαjϕδ · ∇Mαj fαj) dV

≤ 2
∫
Mαj

ϕ2
δ|∇Mαj fαj |2 dV + 2

∫
Mαj
|∇Mαjϕδ|2f2

αj
dV

≤ 2
∫
Mαj
|∇Mαj fαj |2 dV + 2

∫
Mαj∩Bδ\B δ

2

|∇Mαjϕδ|2f2
αj
dV

≤ 2λ1(Mαj) + C
δ2 Vol(Mαj ∩ Bδ \B δ

2
)

≤ 2λ1(Mαj) +Cδn−2 .

We use |∇Mαjϕδ| ≤ |∇Nϕδ| and Vol(Mαj ∩ Bδ) ≤ Cδn in the above esti-
mates. The area bound of Mαj ∩ Bδ follows from the monotonicity formula
for submanifolds with bounded mean curvature [21]. We also have∫

Mαj

(ϕδfαj)
2 dV ≥ 1−

∫
Mαj∩Bδ

f2
αj
dV ≥ 1− CVol(Mαj ∩ Bδ) ≥ 1− Cδn,
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and

(
∫

Mαj

ϕδfαj dV )2 = (
∫

Mαj∩Bδ

(1− ϕδ)fαj dV )2 ≤ CVol (Mαj ∩Bδ)2 ≤ Cδ2n.

Recall that Mαj is the same as L in N \B δ
2

for αj ≤ Kδ
2 . Therefore,

∫
Mαj
|∇Mαjϕδfαj |2 dV∫

Mαj
(ϕδfαj)2 dV −Vol(L)−1(

∫
Mαj

ϕδfαj dV )2

=

∫
L |∇Lϕδfαj |2 dV∫

L(ϕδfαj)2 dV −Vol(L)−1(
∫
L ϕδfαj dV )2

≥ λ1(L).

On the other hand, it follows from the above estimates that∫
Mαj
|∇Mαjϕδfαj |2 dV∫

Mαj
(ϕδfαj)2 dV −Vol(L)−1(

∫
Mαj

ϕδfαj dV )2
≤ 2λ1(Mαj) +Cδn−2

1− Cδ2n
.

Choose δ small enough so that Cδn−2 < min(λ1(L)
4 , 1

4). Then by combining
the two inequalities, one gets λ1(Mαj) >

1
4λ1(L) when αj ≤ Kδ

2 , which is a
contradiction. Thus the theorem is proved.

Q.E.D.

Remark: It is easy to see from the proof that the lower bound can be
improved and the estimate also works for other singularities. Because the
submanifold L is closed and connected, its first eigenvalue λ1(L) is a positive
number.

In the case n = 2, one also can construct Mα, but εmay be chosen differently.
We need to modify the function ϕδ in this situation as follows:

ϕδ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 |x| < δ2

(
log |x|

δ2

log 1
δ

) δ2 ≤ |x| ≤ δ

1 |x| > δ

.
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A direct computation gives∫
Mαj∩Bδ\Bδ2

|∇Mαjϕδ|2 dV ≤ C

| log δ| .

Recall that Mαj is the same as L inN \Bδ2 for αj ≤ Kδ2. Similar arguments
as in the case n > 2 lead to

λ1(L) ≤
2λ1(Mαj) + C

| log δ|
1−Cδ4 .

Choose δ small enough so that C
| log δ| <

λ1(L)
4 and Cδ4 ≤ 1

4 . One will get
λ1(Mαj) > 1

4λ1(L) when αj ≤ Kδ2, which is a contradiction. Thus we
obtain the same result.

4. Perturbation.

There exists a constant c1 such that the exponential map from the normal
bundle T⊥Mα into N is an embedding in the c1 ε neighborhood of Mα.
Choose a smooth function ηα such that ηα(s) ≡ 1 when |s| ≤ c1 ε

2
, and

ηα(s) ≡ 0 when |s| ≥ 3c1 ε
4

. Moreover, it also satisfies

0 ≤ ηα(s) ≤ 1, |∇ηα(s)| ≤ C

ε
, |∇2ηα(s)| ≤ C

ε2
, and |∇3ηα(s)| ≤ C

ε3

for every s. Given a C2,β function u on Mα, 0 ≤ β ≤ 1, we can extend it into
a C2,β function U on N by defining U(exp(x, v)) = ηα(|v|)u(x) for x ∈ Mα

and v ∈ T⊥
x Mα. We then solve the Hamiltonian flow:

∂ϕ(t, q)
∂t

= −J∇NU(ϕ(t, q)) and ϕ(0, q) = q for q ∈ N.

There exists a unique C1,β solution for small t. Note that if ϕU (t, q) is a
solution defined by U , then ϕU (st, q) is a solution defined by sU . Denote

ϕu(x) = ϕU(1, x) for x ∈Mα.

The map ϕu can be defined for u in a neighborhood of the zero function.
In particular, it is defined when ‖(∇N)2U‖0,N < 1. Because ϕU(1, q) is a
symplectic map, the image ϕu(Mα) is Lagrangian. Moreover, the family of
maps ϕtu, 0 ≤ t ≤ 1, is a homotopy between ϕu and the identity map ϕ0.



406 Yng-Ing Lee

Define a C0,β function on Mα by Fα(u)(x) = − � ϕ∗
u(Im Ω)(x), where � is

the Hodge star operator with respect to the induced metric onMα. If we can
find a function u such that ϕu is an embedding and satisfies Fα(u) = 0, then
ϕu(Mα) will be an embedded special Lagrangian submanifold. Therefore,
the goal is to find the zero set of Fα. The differential of Fα at the zero
function is

DFα(0)(u) = � ϕ∗
0(d ιJ∇N U Im Ω)(x),

where ιJ∇N U is the interior derivative in J∇NU direction. Because Mα is
Lagrangian, there exists a function θ(x) (mod 2π) on Mα, such that

Ω|Mα = eiθ(x) ω1 ∧ · · · ∧ ωn,

where ω1 · · ·ωn is a local orthonormal basis on the cotangent bundle T ∗Mα

[19]. Note that

ϕ∗
0(iJ∇N UIm Ω)

= Im
∑n

β=1 e
iθ(x) [ i (J∇NU)n+βω1 ∧ · · ·∧ ∨

ωβ · · · ∧ ωn

+(J∇NU)βω1 ∧ · · ·∧ ∨
ωβ · · · ∧ ωn ]

= cos θ(x) � du,

where
∨
ωβ means that ωβ does not appear and the last equality follows from

the fact that U is constant along normal lines nearMα. BecauseH = J∇Mαθ
[19], we thus have

DFα(0)(u) = cos θ(x)∆Mαu− sin θ(x) < H, J∇Mαu > .

It will be denoted by Lu for simplicity. Because | sin θ| = |ϕ∗
0(Im Ω)| ≤ C α,

it follows that |θ(x)| ≤ C α. One then can show

Proposition 2. When α is small, the operator L is an elliptic operator and
its kernel consists of the constant functions. Moreover, the first eigenvalue

λ1(Mα,L) for the operator L on Mα has a uniform positive lower bound.

Proof. By choosing α small enough, we can assume that cos θ(x) > 1
2 .

Hence L is an elliptic operator. Constants are clearly in the kernel of L.
Suppose that Lu = 0. Multiply u on both sides, and integrate over Mα. We



Embedded Special Lagrangian Submanifolds 407

then get

0 =
∫
Mα

uLu dV =
∫
Mα

u d(cosθ(x) � du) dV

= − ∫Mα
du∧ cos θ(x) � du

= − ∫Mα
cos θ|du|2 dV

≤ −1
2

∫
Mα

cos θ|du|2 dV.

It implies that |du| is identically zero. Thus the kernel of L consists of only
constant solutions.

We now estimate λ1(Mα,L). Suppose that fα is the first eigenfuction of L,
which satisfies

∫
Mα

fα dV = 0,
∫

Mα

f2
α dV = 1, and Lfα = −λ1(Mα,L)fα.

Multiply both sides of the equation by − fα

cos θ(x)
and integrate over Mα.

We have

− ∫Mα
fα∆Mαfα dV +

∫
Mα
fα tan θ(x)<H, J∇Mαfα> dV

= λ1(Mα,L)
∫

Mα

f2
α

cos θ(x)
dV.

A direct computation shows that

| ∫Mα
fα tan θ(x)<H, J∇Mαfα> dV |

≤ C max
Mα

(tan θ(x))(
∫
Mα
|fα|2 dV )

1
2 (
∫
Mα
|∇Mαfα|2 dV )

1
2

≤ C max
Mα

(tan θ(x))(
∫
Mα
|∇Mαfα|2 dV )

1
2 .
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Plugging this into the above equality, we will get

2λ1(Mα,L)

≥ λ1(Mα,L)
∫
Mα

f2
α

cos θ(x) dV

≥ ∫
Mα
|∇Mαfα|2 dV −Cmax

Mα

(tan θ(x))(
∫
Mα
|∇Mαfα|2 dV )

1
2

≥ 1
2

∫
Mα
|∇Mαfα|2 dV

≥ 1
2λ1(Mα),

when α is sufficiently small. This completes the proof of the proposition.

Q.E.D.

5. The theorem.

We first set some notation which will be used in the rest of this paper.
Assume that u is a function on Mα. We denote

‖u‖0,Mα = sup
Mα

|u|,

[u]β,Mα = sup
x,x′∈Mα

|u(x)− u(x′)|
dist(x, x′)β

, 0 < β < 1,

and

‖u‖Lp = (
∫

Mα

up dV )
1
p .

We can embed N isometrically into Rl and set

[(∇Mα)ku]β,Mα = sup
x,x′∈Mα

|(∇Mα)ku(x)− (∇Mα)ku(x′)|
dist(x, x′)β

,

where k is a positive integer.

When α tends to zero, the neck on Mα will shrink to p. Thus we need to
introduce a weighted norm to do the estimates. Roughly speaking, we want
to choose the weight function ρ(x) on Mα such that ρ(x) is less than the
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radius of a normal ball at x ∈Mα. More precisely, we can choose that ρ(x)
is of the form [2]:

ρ(x) =

⎧⎨⎩
c ε for x ∈Mα ∩ Bεr2

interpolation for x ∈Mα ∩ Br2 \Bεr2

R2 for x ∈Mα \Br2

for some constants r2 and R2. In addition, we can also require ρ(x) to satisfy
the following properties:

1. ‖∇Mαρ‖0,Mα ≤ C,

2. c α ≤ ρ(x) ≤ C α for x ∈ T1 ∪ T2,

3. ‖ρ−1‖Lp ≤ C for p < n.

Definition 3. Let u be a Ck,β function on Mα, where k is an integer and
0 < β < 1. The ρ-weighted (k, β) norm ‖u‖

Ck,β
ρ (Mα)

of u is defined as the
sum:

‖u‖0,Mα +‖ρ|∇Mαu| ‖0,Mα + · · ·+‖ρk|(∇Mα)ku| ‖0,Mα +[ρk+β(∇Mα)ku]β,Mα.

Proposition 3. The operator L is a bounded operator between the Banach

space C2,β(Mα) with norm ‖·‖
C2,β

ρ (Mα)
and the Banach space C0,β(Mα) with

norm ‖ρ2 · ‖
C0,β

ρ (Mα)
.

Proof. Note that

‖ρ2Lu‖
C0,β

ρ (Mα)

≤ ‖ρ2 cos θ∆Mαu‖C0,β
ρ (Mα)

+ ‖ρ2 sin θ < H, J∇Mαu > ‖
C0,β

ρ (Mα)
.

A direct computation gives

‖ρ2 cos θ∆Mαu‖C0,β
ρ (Mα)

≤ ‖ρ2∆Mαu‖0,Mα+[ρ2+β∆Mαu]β,Mα+[cos θ]β,Mα‖ρβ‖0,Mα‖ρ2∆Mαu‖0,Mα

≤ C‖u‖
C

2,β
ρ (Mα)

.
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We also have

‖ρ2 sin θ < H, J∇Mαu > ‖
C

0,β
ρ (Mα)

≤ ‖ρ sinθ |H | ‖0,Mα‖ρ |∇Mαu| ‖0,Mα + ‖ρ sin θ |H | ‖0,Mα[ρ1+β∇Mαu]β,Mα

+[ρ sinθH ]β,Mα‖ρβ‖0,Mα‖ρ |∇Mαu| ‖0,Mα.

Using the fact that the mean curvature is zero outside a small ball Br(p)′

and the properties of ρ and sin θ, it follows that

‖ρ2 sin θ < H, J∇Mαu > ‖0,Mα ≤ C α2‖ρ |∇Mαu| ‖0,Mα.

Moreover, all the sup. norm involved are taken over Br(p)′ when we estimate
‖ρ2 sin θ < H, J∇Mαu > ‖

C
0,β
ρ (Mα)

. When dist(x, x′) ≥ α, one has that

|ρ sinθH(x)− ρ sinθH(x′)|
dist(x, x′)β

≤ C α2−β .

When dist(x, x′) ≤ α, one has

|ρ sin θH(x)− ρ sin θH(x′)|
dist(x, x′)β

≤ C αα1−β = C α2−β .

Here we use ‖(∇Mα)2 sin θ‖0,Mα ≤ C α−1 to get estimates involved H . The
upshot is

‖ρ2 sin θ < H, J∇Mαu > ‖
C0,β

ρ (Mα)
≤ C α2−β‖u‖

C1,β
ρ (Mα)

and hence
‖ρ2Lu‖

C0,β
ρ (Mα)

≤ C‖u‖
C2,β

ρ (Mα)
.

Q.E.D.

By elliptic Schauder estimates [2] for ρ-weighted (k, β) norms, one can prove
that

‖u‖
C

2,β
ρ (Mα)

≤ Cε−β(‖ρ2∆Mαu‖C0,β
ρ (Mα)

+ ‖u‖0,Mα).

We show in Appendix that ‖u‖0,Mα ≤ Cε−ν‖ρ2∆Mαu‖C0,β
ρ (Mα)

for u satisfy-
ing

∫
Mα

u dV = 0. We thus have

‖u‖
C2,β

ρ (Mα)
≤ Cε−(β+ν)‖ρ2∆Mαu‖C0,β

ρ (Mα)
.

In next Lemma, we bound ‖ρ2∆Mαu‖C0,β
ρ (Mα)

by ‖ρ2Lu‖
C

0,β
ρ (Mα)

and prove
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Lemma 2. For any given positive number ν, there exists α0 such that the

following estimate holds. Suppose that α < α0 and u is a C2,β function on

Mα, which satisfies
∫
Mα

u dV = 0. Then

‖u‖
C2,β

ρ (Mα)
≤ Cε−(β+ν)‖ρ2Lu‖

C0,β
ρ (Mα)

,

where the constant C depends on ν, but is independent of α.

Proof. Note that

‖ρ2Lu‖
C0,β

ρ (Mα)
≥‖ρ2 cos θ∆Mαu‖C0,β

ρ (Mα)
−‖ρ2 sin θ<H, J∇Mαu>‖

C0,β
ρ (Mα)

,

and

‖ρ2 cos θ∆Mαu‖C0,β
ρ (Mα)

= ‖ρ2 cos θ∆Mαu‖0,Mα + [ρ2+β cos θ∆Mαu]β,Mα.

When α is small, we have

‖ρ2 cos θ∆Mαu‖0,Mα ≥
1
2
‖ρ2∆Mαu‖0,Mα

and

[ρ2+β cos θ∆Mαu]β,Mα ≥
1
2
[ρ2+β∆Mαu]β,Mα −Cα‖ρ2∆Mαu‖0,Mα.

Hence
‖ρ2 cos θ∆Mαu‖C0,β

ρ (Mα)
≥ 1

3
‖ρ2∆Mαu‖C0,β

ρ (Mα)
.

On the other hand, we have

‖ρ2 sin θ < H, J∇Mαu > ‖
C

0,β
ρ (Mα)

≤ C α2−β‖u‖
C

1,β
ρ (Mα)

≤ C α2−β ε−(β+ν)‖ρ2∆Mαu‖C0,β
ρ (Mα)

.

Putting all these estimates together, we get

‖ρ2Lu‖
C0,β

ρ (Mα)
≥ 1

4
‖ρ2∆Mαu‖C0,β

ρ (Mα)

and the proposition is therefore proved.

Q.E.D.
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Denote the Banach space of C2,β functions on Mα which satisfies
∫
Mα

u dV =
0 with norm ‖ · ‖

C2,β
ρ (Mα)

by B1 and the Banach space of C0,β functions on

Mα which satisfies
∫
Mα

u dV = 0 with norm ‖ρ2 · ‖
C0,β

ρ (Mα)
by B2. Because∫

Mα
Im Ω = 0 and the family of maps ϕtu, 0 ≤ t ≤ 1, is a homotopy between

ϕu and ϕ0, it follows that
∫
Mα
Fα(u) dV = 0. Thus we can restrict Fα as a

map from B1 into B2. A direct computation shows that the operator L is
self-adjoint. By Proposition 2, we consequently have:

Proposition 4. The operator L from B1 into B2 is injective and surjective.

We will apply the following version of inverse function theorem to Fα.

Theorem 2. [1] Let F : B → B′ be a C1 map between Banach spaces and

suppose that the differential DF (0) of F at 0 is an isomorphism. Moreover,
suppose that F satisfies the estimates:

1. ‖DF (0)x‖B′ ≥ CL‖x‖B for any x ∈ B,

2. ‖DF (0)y−DF (x)y‖B′ ≤ CN‖x‖B‖y‖B for all x sufficiently near 0 and
for any y ∈ B,

where CL and CN are constants independent of x and y. Then there exist

neighborhoods U of 0 and V of F (0) so that F : U → V is a C1 diffeomor-
phism and V contains the ball BCL

2
r
(F (0)), where r ≤ CL

2CN
. Furthermore,

the image of the ball Br(0) under F contains the ball BCL
2

r
(F (0)).

We already get an estimate on CL in Lemma 2 and still need an estimate on
CN to apply Theorem 2.

Lemma 3. Assume that v ∈ B1 and is sufficiently close to 0. Then the

differential of Fα at v satisfies the following estimate:

‖ρ2(DFα(v)(u)−DFα(0)(u))‖
C0,β

ρ (Mα)
≤ Cε−2‖v‖

C2,β
ρ (Mα)

‖u‖
C2,β

ρ (Mα)

for all u ∈ B1.

Proof. Suppose that g is the Ricci flat metric on N . For a given constant
s > 0, we can define a conformal metric gs = s−2g. Let w be a C2,β function
on N and define ws = s−2w. Then the Hamiltonian flow ϕw determined by
w in the metric g is the same as the Hamiltonian flow ϕs

ws
determined by

ws in the metric gs. The form Ωs = s−n Ω is a holomorphic (n, 0) form of
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unit length in the metric gs. Define Gs
α(ws) = �s (ϕs

ws
)∗(Im Ωs), where �s is

the Hodge star operator with respect to the metric on Mα induced from gs.
Since

�s (ϕs
ws

)∗(Im Ωs) = �s (ϕs
ws

)∗(s−nIm Ω)

= �s s
−nϕ∗

w(Im Ω)

= � ϕ∗
w(Im Ω),

thus Gs
α(ws) = Fα(w). Assume that K1 ≥ 1

2 is an upper bound of
‖∇Mαρ‖0,Mα. Choose x ∈ Mα and let s = ρ(x). Then the function ρ

satisfies s
2 ≤ ρ ≤ 3s

2 in the ball B s
2K1

(x) and the induced metric are bounded
uniformly in this ball. Fix this s and denote gs by g′ from now on. Denote
the norm with respect to the metric g′ by ‖ · ‖g′ . We have

‖ρ2(
dFα(v + tu)

dt
|t=0 − dFα(tu)

dt
|t=0)‖0,B s

2K1
(x)

≤ 9s2

4 ‖DFα(v)(u)−DFα(0)(u)‖0,B s
2K1

(x)

= 9s2

4 ‖DGs
α(vs)(us)−DGs

α(0)(us)‖g
′

0,B 1
2K1

(x)

≤ Cs2‖us‖g
′

C2(B 1
2K1

(x))
‖vs‖g

′
C2(B 1

2K1

(x))
,

where in the last inequality we use the fact that Mα with the metric induced
from (N, g′) has uniformly bounded geometry in B 1

2K1

(x). Because

‖us‖g
′

C2(B 1
2K1

(x))

= ‖s−2u‖g′
0,B 1

2K1

(x)
+ ‖∇g′s−2u‖g′

0,B 1
2K1

(x)
+ ‖(∇g′)2s−2u‖g′

0,B 1
2K1

(x)

= s−2‖u‖0,B s
2K1

(x) + s−1‖∇u‖0,B s
2K1

(x) + ‖∇2u‖0,B s
2K1

(x)

≤ Cs−2‖u‖C2
ρ(Mα),

it follows that

‖ρ2(DFα(v)(u)−DFα(0)(u))‖0,B s
2K1

(x) ≤ Cs−2‖v‖C2
ρ(Mα)‖u‖C2

ρ(Mα).



414 Yng-Ing Lee

We also need to estimate the following quantity (A):

|ρ2+β(DFα(v)(u)−DFα(0)(u))(x)− ρ2+β(DFα(v)(u)−DFα(0)(u))(x′)|
dist(x, x′)β

.

When dist(x, x′) ≤ s
2K1

, we have

(A) ≤ |ρ2+β(x)− ρ2+β(x′)|
dist(x, x′)β

‖DFα(v)(u)−DFα(0)(u)‖0,B s
2K1

(x)

+ρ2+β(x′) ‖DFα(v)(u)−DFα(0)(u)‖β,B s
2K1

(x)

≤ Cs2‖us‖g
′

C2,β (B 1
2K1

(x))
‖vs‖g

′
C2,β (B 1

2K1

(x))
.

Since

‖us‖g
′

C2,β (B 1
2K1

(x))
≤ s−2(‖u‖0,B s

2K1
(x) + s‖∇u‖0,B s

2K1
(x)

+s2‖∇2u‖0,B s
2K1

(x) + s2+β [∇2u]β,B s
2K1

(x))

and

s2+β |∇2u(x)−∇2u(x′)|
dist(x, x′)β

≤C |ρ
2+β(x)∇2u(x)− ρ2+β(x)∇2u(x′)|

dist(x, x′)β

≤C |ρ
2+β(x)∇2u(x)−ρ2+β(x′)∇2u(x′)+ρ2+β(x′)∇2u(x′)−ρ2+β(x)∇2u(x′)|

dist(x, x′)β

≤C([ρ2+β∇2u]β,B s
2K1

(x) + s2‖∇2u‖0,B s
2K1

(x)),

one concludes that

‖us‖g
′

C2,β (B 1
2K1

(x))
≤ Cs−2‖u‖

C2,β
ρ (Mα)

.

That is when dist(x, x′) ≤ s
2K1

, we have

A ≤ Cs−2‖v‖
C

2,β
ρ (Mα)

‖u‖
C

2,β
ρ (Mα)

.
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When dist(x, x′) ≥ s
2K1

, we also have

(A) ≤ Cs−β s2+β‖us‖g
′

C2(B 1
2K1

(x))
‖vs‖g

′
C2(B 1

2K1

(x))

≤ Cs−2‖v‖C2
ρ(Mα)‖u‖C2

ρ(Mα).

Putting all estimates together, we therefore get

‖ρ2+β(DFα(v)(u)−DFα(0)(u))‖β,Mα ≤ Cε−2‖v‖
C2,β

ρ (Mα)
‖u‖

C2,β
ρ (Mα)

.

That is,

‖ρ2(DFα(v)(u)−DFα(0)(u))‖
C0,β

ρ (Mα)
≤ Cε−2‖v‖

C2,β
ρ (Mα)

‖u‖
C2,β

ρ (Mα)
.

Q.E.D.

We can choose ν = β in Lemma 6. Then choose CL = 1
C ε

2β by Lemma 2
and CN = Cε−2 by Lemma 3. Applying Theorem 2, we therefore conclude
that the image of the ball Br(0) under Fα contains the ball BCL

2
r
(Fα(0)),

where r ≤ ε2+2β

2C2 .

Lemma 4. When n ≥ 3, the zero function lies in the ball BCL
2

ε2+3β (Fα(0)).

Proof. Denote E = − � ϕ∗
0(Im Ω) = Fα(0). Recall that |E(x)| ≤ Cα and

E(x) = 0 for x ∈Mα \B α
K
. This together with the properties of ρ implies

‖ρ2E‖0,Mα ≤ Cα3.

Moreover, we have

|∇MαE| = | cos θ∇Mαθ| ≤ |H | ≤ C.
When dist(x, x′) ≤ α, it follows that

|ρ2+βE(x)− ρ2+βE(x′)|
dist(x, x′)β

≤ Cα2+βα1−β .

When dist(x, x′) ≥ α, it follows that

|ρ2+βE(x)− ρ2+βE(x′)|
dist(x, x′)β

≤ Cα3+βα−β .

Since ε = α
n+1

n and n ≥ 3, we thus have

‖ρ2E‖
C

0,β
ρ (Mα)

≤ Cα3 ≤ CL

2
ε2+3β

when β and ε are small enough.
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Q.E.D.

The extension function U satisfies

‖∇NU‖0,N ≤ Cε−1(‖u‖0,Mα + ε‖∇Mαu‖0,Mα) ≤ Cε−1‖u‖C1
ρ(Mα),

‖(∇N)2U‖0,N ≤ Cε−2‖u‖C2
ρ(Mα).

When ‖(∇N)2U‖0,N ≤ 1
2 , or ‖u‖C2

ρ(Mα) ≤ ε2

2C , the map ϕu is defined. When

‖∇NU‖0,N ≤ c1ε, or ‖u‖C1
ρ(Mα) ≤ c1ε2

C , the image ϕu(Mα) is embedded in

a c1ε neighborhood of Mα. Choose r = ε2+3β ≤ ε2+2β

2C2 in Theorem 2. Then
there exists a function u ∈ B1 with ‖u‖

C2,β
ρ (Mα)

≤ ε2+3β such that Fα(u) = 0.
It follows that ϕu(Mα) is an embedded special Lagrangian submanifold. We
hence prove the main theorem of the paper:

Theorem 3. Suppose that L is a closed, connected, and immersed spe-
cial Lagrangian submanifold in a closed Calabi-Yau manifold N of complex

dimension 3. Assume that L has only isolated transversal self-intersection
points. Then L is the limit of a family of embedded closed special Lagrangian

submanifolds in N .

Theorem 4. Suppose that L is a closed, connected, and immersed spe-

cial Lagrangian submanifold in a closed Calabi-Yau manifold N of complex
dimension n > 3. Moreover, assume that L has only isolated transversal self-

intersection of two sheets and the two tangent planes at each intersection
point satisfy the angle condition θ1 + · · ·+ θn = π

2 (see section 2). Then L

is the limit of a family of embedded closed special Lagrangian submanifolds
in N .

Appendix : Sup. Norm Estimate.

The De Giorgi-Nash estimates in this Appendix are based on [4], [18] and
[22]. We modify the arguments to fit in the situation discussed in this paper
and present the material here just for the reader’s reference and complete-
ness.

For a submanifold Mn ⊂ Rl, J. H. Michael and L. Simon [14] proved the
Sobolev inequality:

(
∫

M
h

n
n−1 dV )

n−1
n ≤ C(n)

∫
M

(|∇Mh|+ h|H̄ |) dV,
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where h is a C1 nonnegative function on M with compact support and H̄ is
the mean curvature ofM in Rl. When n > 2, the inequality can be converted
easily into

(
∫

M

h
2n

n−2 dV )
n−2

n ≤ C(n) (
∫

M

|∇Mh|2 dV +
∫

M

h2|H̄|2 dV ).

Or write in a scaling invariant form

(
∫

M
h

2n
n−2 dV )

n−2
n ≤ C(n) (

∫
M
|∇Mh|2 dV + Vol(M)−

2
n

∫
M
h2 dV ) (1)

The constant C(n) also depends on sup|H |2Vol(M)
2
n . But because both H̄

and Vol(M) are uniformly bounded in our cases, we omit this dependency.
When n = 2, the Sobolev inequality implies

(
∫

M
h

2κ
κ−2 dV )

κ−2
κ ≤ C(κ) Vol(M)

κ−2
κ (

∫
M
|∇Mh|2 dV + Vol(M)−1

∫
M
h2 dV )

(2)
for any κ > 2. From inequality (1) and (2), we have the following estimate:

Lemma 5. Suppose u is a positive sub-solution of the equation ∆M u ≥ gu
on a closed manifold M , where g is a L1 function satisfying the estimate

‖g‖
L

r
2
≤ c̄Vol(M)

2
r
− 2

n for some r > n. Then ‖u‖0,M ≤ Cp Vol(M)−
1
p ‖u‖Lp

for p > 0. The constant Cp depends on n, r, c̄ and p.

Proof. Multiply both sides of ∆Mu ≥ gu by uq−1, q ≥ 2, and integrate
over M . One gets ∫

M
uq−1∆Mu dV ≥

∫
M
guq dV,

or
−(q − 1)

∫
M
uq−2|∇Mu|2 dV ≥

∫
M
guq dV.

Rewriting the left hand side and using Hölder inequality, it leads to

4(q − 1)
q2

∫
M
|∇Mu

q
2 |2 dV ≤ ‖g‖

L
r
2
‖uq‖

L
r

r−2
.

This together with the Sobolev inequality gives the following inequality in
the case n > 2:

(
∫
M u

q
2
· 2n
n−2 dV )

n−2
n ≤ C(n) (

∫
M |∇Mu

q
2 |2 dV + Vol(M)−

2
n

∫
M uq dV )

≤ C(n) (cq‖g‖
L

r
2
‖uq‖

L
r

r−2
+ Vol(M)

2
r
− 2

n ‖uq‖
L

r
r−2

)

≤ CqVol(M)
2
r
− 2

n ‖uq‖
L

r
r−2

.
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The constant C depends on n and c̄. For n = 2, we can choose κ = r+2
2 and

similarly get

(
∫

M
u

q
2
· 2κ
κ−2 dV )

κ−2
κ ≤ CqVol(M)

2
r
− 2

κ ‖uq‖
L

r
r−2

.

The constant C depends on κ and c̄. Denote n̂ = n for n > 2 and n̂ = κ for
n = 2. Then

(
∫

M
u

qn̂
n̂−2 dV )

n̂−2
qn̂ ≤ (CqVol(M)

2
r
− 2

n̂ )
1
q ‖u‖

L
qr

r−2
.

If we denote (
∫
M uxdV )

1
x by Ψ(x), the inequality can be written as

Ψ(qk) ≤ (CqVol(M)
2
r
− 2

n̂ )
1
q Ψ(qs),

where k= n̂
n̂−2 and s= r

r−2 . Because r is greater than n̂, the number γ= k
s

is greater than one and

Ψ(γx) ≤ (C
x

s
Vol(M)

2
r
− 2

n̂ )
s
x Ψ(x),

for any x ≥ 2s. Choose x = γm−1p for p ≥ 2s. One then has

Ψ(pγm) ≤ (C pγm−1

s Vol(M)
2
r
− 2

n̂ )
s

pγm−1 Ψ(pγm−1)

≤ (Cp
s Vol(M)

2
r
− 2

n̂ )
s
p

∑m−1
i=0

1
γi γ

s
p

∑m−1
i=0

i
γi Ψ(p).

Let m go to infinity and notice that

∞∑
i=0

1
γi

=
k

k − s and − 1
k

+
1
s

=
2
n̂
− 2
r
.

It follows that

‖u‖0,M ≤ C Vol(M)−
1
p ‖u‖Lp for p ≥ 2s (3)

The constant C depends on n̂, r and c̄. For general p, we first recall that

(
∫
M uqk dV )

1
k ≤ CqVol(M)

2
r
− 2

n̂ (
∫
M uqs dV )

1
s

= CqVol(M)
1
k
− 1

s (
∫
M uqs dV )

1
s .
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Therefore,

Vol(M)−
1
kq (

∫
M uqk dV )

1
kq

≤ (Cq)
1
q [Vol(M)−

1
λ (
∫
M uqs(1−ε)λ dV )

1
λ Vol(M)−

1
µ (
∫
M uqsεµ dV )

1
µ ]

1
sq

for 1 > ε > 0 and 1
λ + 1

µ = 1. If we choose λ satisfying qs(1 − ε)λ = qk, it
follows that

Vol(M)−
ε

kq (
∫

M
ukq dV )

ε
kq ≤ (Cq)

1
q Vol(M)−

1
µqs (

∫
M
uµqsε dV )

1
µqs .

That is,

Vol(M)−
1

kq (
∫

M
ukq dV )

1
kq ≤ (Cq)

1
qε Vol(M)−

1
µqsε (

∫
M
uµqsε dV )

1
µqsε .

Let q = 2 and p = 2sεµ = 2ksε
k−s+sε , then

Vol(M)−
1
2k (

∫
M
u2k dV )

1
2k ≤ (2C)

1
2ε Vol(M)−

1
p (
∫

M
up dV )

1
p (4)

By varying ε, we can choose p to be any positive number. Combining in-
equalities (3) and (4) gives

‖u‖0,M ≤ Cp Vol(M)−
1
p ‖u‖Lp, for p > 0.

Q.E.D.

Remark: The constant on the right hand side of the inequality (1) or
(2) is called the Sobolev constant on M . The quantity can be defined in a
general Riemannian manifold. Since we only use (1) and (2) to derive the
estimate, the lemma holds in general and the constant Cp depends on the
Sobolev constant on M , r, c̄ and p.

From Lemma 5, We can get the following sup. norm estimate:

Theorem 5. Suppose that u is a W 1, 2 weak solution for ∆Mu = f on a

closed Riemannian manifold M , where f satisfies ‖f‖
L

r
2
< ∞, for some

r > n. Then

‖u‖0,M ≤ C (Vol(M)−
1
2‖u‖L2 + Vol(M)

2
n
− 2

r ‖f‖
L

r
2
),

where C depends only on r and the Sobolev constant on M .
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Proof. Define β = Vol(M)
2
n
− 2

r ‖f‖
L

r
2

and ξ = 1
2 [( u

β )2 + 1]. It is easy to
see that ξ is a weak solution for

∆Mξ ≥ f

β

u

β
=
f

β

u

β

1
ξ
ξ.

Denote g =
f

β

u

β

1
ξ
. Because | u

β ξ
| < 2, one can prove

‖g‖
L

r
2
≤ 2
β
‖f‖

L
r
2
≤ 2Vol(M)

2
r
− 2

n .

It follows from Lemma 5 that

ξ ≤ CVol (M)−1‖ξ‖L1.

Hence
|u
β
|2 ≤ CVol(M)−1[

1
2
‖(u
β

)2‖L1 + Vol(M)].

Therefore,

|u| ≤ Cβ
√

1 + Vol(M)−1‖( u
β )2‖L1

≤ C
√
β2 + Vol(M)−1‖u2‖L1

≤ C(β + Vol(M)−
1
2‖u‖L2)

= C(Vol(M)
2
n
− 2

r ‖f‖
L

r
2

+ Vol(M)−
1
2‖u‖L2).

Again, the constant C may change slightly in different places.

Q.E.D.

Suppose that Mα and ρ are as defined in section 3 and section 4. We need
the following estimate in weighted norm to prove the main theorem.

Lemma 6. [3] For any given positive number ν, there exists α0 such that

the following estimate holds. Suppose that α < α0 and u is a C2,β function

on Mα, which satisfies
∫
Mα

u dV = 0. Then

‖u‖0,Mα ≤ Cε−ν‖ρ2∆Mαu‖C0,β
ρ (Mα)

,

where the constant C depends on ν, but is independent of α.
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Proof. Assume that the Lemma does not hold. Then there exists a se-
quence αj → 0, its corresponding εj, ρj, and uj ∈ C2,β(Mαj) which satisfies∫
Mαj

uj dV = 0 and

‖uj‖0,Mαj
≥ j ε−ν

j ‖ρ2
j ∆Mαj

uj‖C0,β
ρj

(Mαj )
.

We can normalize uj such that ‖uj‖0,Mαj
= 1. It follows that

‖ρ2
j ∆Mαj

uj‖C0,β
ρj

(Mαj )
≤ 1
j
ενj .

On the other hand, by Theorem 5 we have

‖uj‖0,Mαj
≤ C [Vol(Mαj )

− 1
2 ‖uj ‖L2 + Vol(Mαj )

2
n
− 2

r ‖∆Mαj
uj ‖L r

2
].

Because uj satisfies
∫
Mαj

uj dV = 0, it implies

λ1(Mαj)
∫

Mαj

u2
j dV ≤ −

∫
Mαj

< ∆Mαj
uj, uj> dV ≤ ‖∆Mαj

uj‖L1.

Remember that the Sobolev constant on Mαj is bounded uniformly, the
volume Vol(Mαj) is bounded uniformly from above and below, and λ1(Mαj)
is bounded below by 1

4λ1(L). Choose r satisfying −r + νr
2 ≥ −n, and one

obtains

1 = ‖uj‖0,Mαj
≤ Cr(‖∆Mαj

uj‖L1 + ‖∆Mαj
uj‖L r

2
)

≤ Cr [
∫
Mαj

ρ−r
j (ρ2

j ∆Mαj
uj)

r
2 dV ]

2
r

≤ Cr [
∫
Mαj

ρ−r
j ( 1

j ε
ν
j )

r
2 dV ]

2
r

≤ Cr
j (
∫
Mαj

ρ
−r+νr

2
j dV )

2
r

≤ Cr
j .

The constant Cr may change in different places. Because the constant Cr is
independent of j, the above inequality leads to a contradiction. Therefore,
the lemma must hold.

Q.E.D.
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