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A Calabi-Yau manifold is a Kahler manifold with trivial canonical line bun-
dle. It is proved by S.T. Yau [24] that in a Calabi-Yau manifold there
exists a unique Ricci flat metric in its Kéhler class. Therefore, we have two
special forms w and €2 in an n-dimensional Calabi-Yau manifold N, where
w is the Kéhler form of the Ricci flat metric g and 2 is a parallel holo-
morphic (n,0) form of unit length with respect to g. A real n-dimensional
submanifold L in N is called Lagrangian if the restriction of w on L van-
ishes. If in addition, the restriction of Im €2 on L also vanishes, then L
is called special Lagrangian. This is equivalent to that L is calibrated by
Re Q. A calibrated submanifold is always volume minimizing. (See [7] or
section 1 in this paper.) In particular, special Lagrangian submanifolds are
minimal submanifolds of middle dimension. This motivates our study on
special Lagrangian submanifolds or more generally on Lagrangian minimal
submanifolds ([11], [12], [20]). Another motivation comes from mirror sym-
metry. In [23], A. Stominger, S.T. Yau, and E. Zaslow proposed to construct
the mirror manifold of a Calabi-Yau manifold by the moduli space of special
Lagrangian tori together with their flat connections. For development and
modification of this conjecture, we refer to [9], [5], [17] etc., and the refer-
ence therein. The current paper is an attempt in employing the perturbation
method to study problems in this direction. In particular, we prove

Theorem 3. Suppose that L is a closed, connected, and immersed spe-
cial Lagrangian submanifold in a closed Calabi-Yau manifold N of complex
dimension 3. Assume that L has only isolated transversal self-intersection
points. Then L is the limit of a family of embedded closed special Lagrangian
submanifolds in N.

Theorem 4. Suppose that L is a closed, connected, and immersed spe-
cial Lagrangian submanifold in a closed Calabi-Yau manifold N of complex
dimension n > 3. Moreover, assume that L has only isolated transversal
self-intersection of two sheets and the two tangent planes at each intersec-
tion point satisfy the angle condition 01 +---+0, = 5 (see section 2). Then
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L is the limit of a family of embedded closed special Lagrangian submanifolds
i N.

Remark: Theorem 4 does not hold if we drop the angle condition in the
theorem. This is pointed out by N.C. Leung and is explained in section 2.

I should mention the following result by A. Butscher:

Theorem (A. Butscher [3]). Suppose L1 and Ls are two special La-
grangian submanifolds with boundary of R*™, n > 3, that intersect transver-
sally at one point p. Furthermore, suppose that the tangent planes of L1 and
Lo satisfy the angle condition (as in above Theorem 4) and let W be a scaf-
fold for L that is a codimension 2, symplectic submanifold of R*™. Define
L =Ly U Ls. Then there exists a family Lo of smooth Lagrangian minimal
submanifolds with boundary and a family of symplectic, codimension 2 sub-
manifolds W, such that the boundary of L, lies in W,. Moreover, L, and
Wy converges to L and W respectively in some suitable topology.

The techniques in this paper and in A. Butscher’s work are similar. We
both choose a Lawlor neck (see [10] or section 1) as a local model, connect it
to L outside a small ball to construct approximate submanifolds which are
Lagrangian, and then apply Hamiltonian deformation to perturb these ap-
proximate submanifolds to become special Lagrangian. The main difference
between these two works is: In Butscher’s situation, the set L\ {p} has two
connected components, and thus the first eigenvalues of the approximate
submanifolds will tend to zero as the neck size tends to zero. To resolve
this difficulty, Butscher allows the phase (see section 1) changing to have an
extra freedom to do the perturbation. Hence L, can only be Lagrangian
minimal submanifolds instead of being special Lagrangian submanifolds (of
the same phase) in his result. He also needs to allow the boundary moving
to obtain L,. These are all necessary steps for the nature of his problem. In
contrast to his situation, I have L\ {p} connected and can prove that the first
eigenvalues of the approximate submanifolds have an uniform positive lower
bound (Theorem 1). In fact, a similar proof can also give a bound for the
case that the singular set of L is of codimension 2 in L. This observation is
useful in generalizing the results to other cases. Because the first eigenvalues
have an uniform positive lower bound, I do not need to change the phase to
solve the problem and can obtain the deformation in the category of special
Lagrangian submanifolds. This paper considers submanifolds in a general
Calabi-Yau manifold instead of just in R?". Therefore, it is also necessary to
find nice coordinates balancing symplectic structure and complex structure,
such that the local model can be adapted from R?". This part becomes very
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delicate in cases that the intersection submanifolds are of higher dimension.
Besides the above difference, I also prove that the angle condition is always
satisfied when n = 2 or 3 (see section 2). This is why we have a general
theorem for dimensin 3. The 2-dimensional case needs a different treatment.
We keep some discussions for this situation in a few places, but leave the
complete proof to other paper.

It will be very interesting if one can construct new examples of special La-
grangian submanifolds by doing connected sum of two special Lagrangian
submanifolds. Construction of approximate submanifolds in this situation
is exactly the same. But as in Butscher’s case, the first eigenvalues of the
approximate submanifolds will tend to zero as the neck size tends to zero.
By computing the dimension of local deformations of a special Lagrangian
submanifold [13], it turns out that one cannot have an extra freedom to
resolve a single intersection point of two special Lagrangian submanifolds.
However, if they intersect at more than one point or consider a loop of spe-
cial Lagrangian submanifolds which intersect consecutively, the topological
obstruction will not happen. We need to analyze the perturbation in a differ-
ent way because there is no positive lower bound for the first eigenvalues of
the approximate submanifolds. This is an ongoing project with N.C. Leung.

Thank R. Schoen for bringing this interesting problem to my attention in the
summer of 1998. I found that one could use Lawlor necks as local models
immediately and began to study these problems. A. Butscher’s thesis [2]
was finished in the summer of 2000. The author thus referred most of the
common part to his work. In preparing this paper, I found a few mistakes
in A. Butscher’s thesis, which include a wrong formula for the linearized
operator (Proposition 4.28 in p.105), an incorrect argument for the sup.
norm estimate (5.48 in p.142), and the necessity of adding the angle condition
(Main Theorem 2 in p.5). A. Butscher gave a primary argument for the
sup. norm estimate later [4]. Because it does not appear in other places, a
treatment for cases considered in this paper is supplemented in the Appendix
for the reader’s reference.

I would like to thank the referee’s suggestions on revising this paper and on
making a comparison with A. Butscher’s work. I also like to thank N.C. Le-
ung, R. Schoen, C.L. Terng, and J. Wolfson for their discussions, as well
as A. Butscher for sending me his papers and correcting my English in the
first version of this paper. During the period of this research, I visited the
National Center for Theoretical Sciences in Taiwan and Tom Wan in Chi-
nese University, HongKong. I wish to express my gratitude to them for their



394 Yng-Ing Lee

hospitality and organizing stimulating mathematical activities. My research
is partially supported by National Science Council in Taiwan with projects
NSC 89-2115-M-002-018 and 90-2115-M-002-006.

The plan of this paper is as follows: In section 1, I explain Lawlor’s examples
(Lawlor necks) and give some basic definitions and properties. I prove in sec-
tion 2 that the angle criterion is always satisfied when n = 2 or 3, and give an
example to explain why Theorem 4 cannot hold in general. The construction
of approximate submanifolds and an estimate on their first eigenvalues are
given in section 3. Finally in section 4, I perturb the approximate subman-
ifolds to become special Lagrangian and prove the main Theorems. Some
additional estimates are supplemented in the Appendix. To make our pre-
sentation less messy, the constant C' in the paper may change in different
contexts. Its dependency will be specified whenever it is essential.

1. Preliminaries.

Calibrated geometry and the notion of special Lagrangian submanifold were
developed by R. Harvey and H. B. Lawson in [7]. We refer to their paper
for a detailed discussion on this subject. The followings are some basic
definitions:

Definition 1. A closed, differential p-form ¢ on a Riemannian manifold N
is called a calibration if its comass is 1. That is, p(e1, -, e,) < 1 for any
oriented, orthonormal p-frame on T'N and the equality holds at some place.

Definition 2. We call a submanifold M of N being calibrated by ¢ if ¢ is
a calibration and |y = dVay, where dVyy is the induced volume form on
M.

A nice property of being calibrated is:

Proposition 1. [7] Suppose that M is calibrated by ¢, and is compact
without boundary. Assume that M’ is in the same homology class as M.
Then one has Vol (M) < Vol (M'). The equality holds if and only if M' is
also calibrated by .

Proof. Because ¢ is a closed form, one has that |, ue = I} AP Since
olp = dVyr and (T M') < 1, the inequality thus follows and equality holds
if and only if o(TM’) =1, i.e., M’ is also calibrated by ¢.

Q.E.D.
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If M has boundary and ¢ is an exact form, one still can prove that M has
the least volume among all submanifolds with the same boundary. A p-
dimensional complex submanifold in a Kahler manifold N is calibrated by
]%wp, where w is the Kéahler form on N, and hence is volume minimizing.
R. Harvey and H. B. Lawson showed that the real part of dZ = dzi A+ - -Adzy,
which is denoted by Re dZ, is a calibration in R?". The corresponding cal-
ibrated submanifolds are called special Lagrangian. Let 6y be a constant
angle. The form Re (edeZ ) is also a calibration in R?", and its correspond-
ing calibrated submanifolds are called special Lagrangian of phase 6. These
can be generalized to a Calabi-Yau manifold. Recall that there are two
special forms w and €2 in a complex n-dimensional Calabi-Yau manifold IV,
where w is the Kahler form of the Ricci-flat metric and 2 is a parallel holo-
morphic (n,0) form of unit length. An n-dimensional submanifold L in N is
called Lagrangian if the restriction of w on L vanishes. The n-form Re () is a
calibration and a Lagrangian submanifold in N is called special Lagrangian
if it is calibrated by Re(). One can show that the restriction of Q2 on a
Lagrangian submanifold L is equal to ¢?dV;, where the value e depends
on points. Hence being special Lagrangian is equivalent to that both the
restriction of w and Im Q (the imaginary part of ) on L vanish.

G. Lawlor [10] modified an example of R. Harvey and H. B. Lawson [7] and
defined the following submanifolds, which will be called Lawlor necks in this

paper:

Assume that a1, --,a,,n > 2, are n positive real numbers and a =
(at, -+, an). Set

® ap ds
O (a, —/ for p >0,
k(a; 1) o (1+aps?)/P(s) K

where
(1+a18%) - (1 +aps?) —1
5 :

P(s) = .

Extend 0g(a, 1) to negative p by 0i(a, —p) = —60x(a, 1), and define a map
®, from R x S"! to R*™ by

(I)a(,uv Ty, 7x7’b) = (21371, o ,ann),

1 .
x%+...+xi:1 and 2z = _+M2619k(a,u)'
V ak

where
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Note that
Pa(p,x1, ,2n) = t@a(%,xl, <oy for t>0.
t

By scaling we can assume i inf ag = 1. Denote
=1,,n

Hk(a)—/ ar. ds , for k=1,--- n.
0 (1+ags?®)\/P(s)

It can be shown that 6(a) 4 - - + 0,(a) = 5. There is a bijection between
positive 01, -, 0, satisfying 61 + ---+ 60, = 5 and ay,---,a, satisfying

i ilnf ar = 1 such that §; = 6;(a) [10]. Denote the image of ®, by M,.
“iem

G. Lawlor proved that M, is embedded, calibrated by Im dZ, and asymptotic
to Py and P_g, where Py is the plane

P0 — { (tleiel(a), Ce ’tneien(a)) tj € R, ] = 17 e 7n}'

Note that M,, Py and —P_gy are special Lagrangian of phase 7, where —P_g
is the plane P_g with orientation different from the standard one. By moving
these spaces by a phase, we can always make them special Lagrangian. We
thus will not specify the phase any more. But when we talk about special
Lagrangian submanifolds in this paper, we do mean that they are calibrated
by the same form, i.e. they are of the same phase. (see [2], [6], [8], [10]).

A. Butscher [2] studies carefully the asymptotic behavior of the above Lawlor
neck. We summarize some of his results here for completeness. Note that
P(p) < p?"=2 for n > 2. Thus one can prove that |0x(a, u) — Ox(a)| < W
Moreover, there exists a positive real number Ry so that M, \ Bg,(0) can
be written as the graph of the gradient of a function

U: P\ Bg(0) =R, i=1,2.

Here we denote the two asymptotic planes of M, by P; and P», and split
R?" into P; x Pil to write the graph. The function ¥ has the properties that

C C
2y < — 3y <
VA (2)] < ps (VAU (z)] < o

v <
V) <

and |V4W(z)| < m% for x € P; with || > Ry. The constant C' depends only
on a and n. The scaled manifold

E(Ma \ BRO(O)) =eM, \ BERQ(0)7 e >0,
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is the graph of the gradient of a function
U, : P\ Bep,(0) = R, i=1,2.
The function W, (z) = eV (L) satisfies

Cen
|z[n=1

Cen

[

Cen
|zt

VU (2)] < Ve (2)] < 7 [VP0e(2)] <

and |V4, (7)| < E |n+2 for x € P; with |z| > eRy. We can assume further
that |V (z)| < |(’|Yn > when n > 3 and |, (z)| < Ce?In- | | when n = 2.

2. Local model.

Assume that p is a transversal intersection point of two locally sheets of spe-
cial Lagrangian submanifolds. We want to choose a Lawlor neck as a local
model to resolve the intersection point and construct approximate submani-
folds. The process is as follows: First find a Lawlor neck which is asymptotic
to the two tangent planes at p. Then replace the two sheets of special La-
grangian submanifolds inside a small ball of p by a scaled Lawlor neck, and
connect the Lawlor neck to the original two sheets outside the ball. There
is a condition 01 + - -+ 0, = 5 for the planes which Lawlor necks can be
asymptotic to. In this section, we will show that this condition is always
satisfied for our situation in dimension 2 and 3, but is not satisfied in gen-
eral when n > 4. Hence when n > 4, we need to add the angle condition
th+---+60, = 5 in Theorem 4. We also discuss why Theorem 4 cannot hold
in general if n > 4.

Given a pair of Lagrangian planes P; and P, in R?" passing the origin, we

claim that one can find suitable coordinates, such that Py is the zq,---, z,
plane and P, is the plane { (t;™",--- t,e™") : t; € R, j = 1,---,n},
where
T
0<fwil < lwal <o < Hwpa] < 5 and fwpa| < fwn] <7~ Jwn—a].

A Lagrangian plane in R?" passing the origin is the image of the real
x1,--+,T, plane under a linear transformation A € U(n). Thus the set
of Lagrangian planes can be identified with U(n)/SO(n) [7]. The Lie alge-
bra u(n) of U(n) can be decomposed into the direct sum of S and so(n),
where S is the set of pure imaginary symmetric matrices and so(n) is the set
of real skew symmetric matrices. The subalgebra S and so(n) corresponds
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to the —1 eigenspace and 1 eigenspace of the involution 7 : u(n) — u(n)
respectively, where 7(y) = —y'. Since one can diagonalize a real symmetric
matrix, it follows that S = Uk T k™!, where T is a pure imaginary diagonal
matrix and k is in SO(n). The symmetric space U(n)/SO(n) is exactly exp S.
Permute the coordinates to satisfy the condition on w;. We thus prove the
claim as desired. We like to thank C.L. Terng’s help on this observation.

Denote |w;| by 3;. These angles satisfy

v
0§ﬁ1§ﬁ2§"'§ﬁn—1§5 and 8,1 < By <7 — Bn1.

They are exactly the characterizing angles between P; and P» as defined in

n n
[10]. Note that one has 0 < jzlﬁj = jzl lwj| < r%r, and (3; > 0 if the pair of
planes intersect only at the origin. Suppose that P; and P» are two special
Lagrangian planes which intersect only at the origin. The special Lagrangian
condition implies that w; satisfies Z?Zl w; = 2km for some integer k. Re-
member that > 7, |w;| < % It thus follows that 37, wj =0 when n = 2
or 3. It implies that 81 = (2 in the case n = 2, and 31 + B3 = (3 in the case
n = 3. If we change the orientation on P,, which is denoted by —Ps, then
the characterizing angles between P; and —P» satisfy Z?Zl Bj = 7 in the
case n = 2 or 3. Change the coordinates such that P, = P and —P, = Py,
where 6 = (’62—1, ’%2) or (’%1, ’%2, %) We thus can find a Lawlor neck which is
asymptotic to P; and —P». The angle condition is not always satisfied when
n > 4. For example, the z1, -+, x4 plane and yi,---,ys plane in R® are
two special Lagrangian planes which intersect only at the origin. But all the
characterizing angles between them are 7. Hence the sum of the angles is 27
and there does not exist a Lawlor neck which is asymptotic to the z1, -, 24
plane and yq, - - -, y4 plane.

The geometric obstruction for finding a Lawlor neck in n > 4 comes from
the following: There is an angle criterion which says that the nonzero sum
(oriented union) P; + P; is area minimizing if and only if the characterizing
angles between them satisfy the inequality £, < (1 + -+ + Bn—1. (See [6],
[10], [16].) Suppose that P, and P» are two special Lagrangian planes. By
the property of calibration, we know that P; 4+ P, is area minimizing and
thus B, < G144+ 0n-1. lf B, < B1+- -+ Pn-1, we can find two Lagrangian
planes P{ and Pj near P; and P,, which are not special Lagrangian and whose
characterizing angles {ﬁ}}, Jj=1,---,n, still satisfy 8], < B} +---+ 0],_;.
Assume that there exists a special Lagrangian submanifold L asymptotic to
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P, and P,. Furthermore, assume that L is the union of compact hypersur-
faces in a family of Lagrangian planes. The last condition is equivalent to
being a Lawlor neck. The intersection of L and P + P} is a compact hyper-
surface in P{ + Pj. It is the boundary of a compact subset A in L, and is also
the boundary of a compact subset Ej+ FEs in P| + Pj). By special Lagrangian
condition on L and applying angle criterion to P| + P, we know that A and
FE1 4+ E5 are both volume minimizing and have the same boundary. It follows
by Proposition 1 that they are calibrated by the same form, which is a con-
tradiction because P and Pj are chosen to be not special Lagrangian. Thus
we cannot have a Lawlor neck to approximate such a pair. Is it possible to
find local models of different nature to resolve the isolated self-intersection
point in this case? The answer is still no and is explained in next paragraph.

There is a S? family of compatible complex structures in a hyperkihler
manifold. A complex Lagrangian submanifold in a hyperkéhler manifold is
a complex submanifold with respect to one of the compatible complex struc-
tures, and is special Lagrangian with respect to another compatible complex
structure. By Proposition 1, a volume minimizing submanifold in the ho-
mology class of a calibrated submanifold must be calibrated by the same
form. Thus all special Lagrangian submanifolds in the homology class of a
complex Lagrangian submanifold are complex Lagrangian. If we can resolve
the transversal intersection points of two special Lagrangian submanifolds
in general, it implies that we can do the connected sum in the complex cat-
egory in this case. However, it is known to be impossible when the complex
dimension is bigger than one. Examples of closed, connected and immersed
complex Lagrangian submanifolds with isolated transversal self-intersection
points and of complex dimension bigger than one can be constructed. When
we add a handle (= S"~! x R, n > 4) to the complex Lagrangian submani-
fold, it will increase the dimension of the first homology group by one. This
new topology cannot carry a Kéhler structure since its first homology group
is of odd dimension. Hence the theorem without further condition cannot
hold when n > 4. It is still open whether the result holds for all odd n.

3. Approximate submanifolds.

Let N be a closed Calabi-Yau manifold of dimension n > 2. Suppose that L
is an immersed special Lagrangian submanifold in N, which is closed, con-
nected, and with only isolated transversal self-intersection points. Without
loss of generality, we can assume that there is only one self-intersection point
p and locally p is the transversal intersection of two sheets of L. In a small
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neighborhood of p, the metric in NV is equivalent to the Euclidean metric
in R?". For simplicity, the distance and norm in constructing approximate
submanifolds are with respect to the Euclidean metric unless specified ex-
plicitly. We can choose coordinates x1,- -, Zpn, 1, - ,Yn and a ball By, (p)
such that p is the origin and for ¢ € B, (p):

—_

=N
. the Kéhler form satisfies w(q) = Z dx; N\ dy;,
i=1

2. the metric g = ds® in N satisfies |ds?(¢q) — ds| < C|q|?, where the
metric ds§ = >_i1 da? + dy?,

3. the complex structure J satisfies |J(q) — Jo| < Clq|?, where Jy is the
standard complex structure in R?",

4. the parallel holomorphic (n,0) form Q satisfies |Q(q) — dZ| < C|q/?,
where dZ = dz A ---Ndz, and z; = x5 +iy;, j=1,--- ,n.

To find coordinates satisfying these conditions, we can first choose normal
coordinates at p which satisfy condition 2, 3, and 4. Then apply Moser’s
techniques [15] to change the coordinates to become Darboux coordinates
(condition 1). This process does not affect the property that the coordinates
satisfy condition 2, 3, and 4. Thus we obtain coordinates that satisfy the
required conditions.

Denote the two tangent planes at p by P, and P», which are special La-
grangian with respect to the standard structures in R?". Because LN B, (p)

=n

is Lagrangian with respect to dei A dy;, there exists r; < rg such that
i=1

LN B,,(p) can be written as the graph of the gradient of a function

Yv:P,NB,(p)— R, i=12.
Moreover, we can choose 1 satisfying
()| < Kla?,  |[Vy (o) < K|z’ V()| < Klal, [VP%(2)] < K,

and |V*)(z)| < K for z € P; with |z| < r1, where K is a constant depending
on the curvature of L in B,, (p).

When P, = Py, =P, = P4, and 01 + -+ + 0, = 7, there exists a Lawlor
neck M, in R?*" asymptotic to P; and P,. From discussions in section 2, this
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condition is always satisfied when n = 2 or 3. From now on, we focus on the
situations where we can find a Lawlor neck M, asymptotic to P; and Ps.
Outside a small ball B.g,, the scaled manifold eM, can be written as the
graph of the gradient of ¥, over P; and P». To match ¢ and W, together,
one needs the following estimate:

Lemma 1. [2] When n > 3, there exist constants g and ¢ depending on L

only, such that if 0 < a < ag, r=+, and &< caH%, then

K
|V2)(x)] < a and |V?VU.(z)| <« forany z € P; with g <l|z| <.

We will choose the approximate submanifolds to be M, near p, and to
be L outside a neighborhood of p. The interpolation between eM, and L
is required to be Lagrangian. Recall that the graph of the gradient of a
function on a Lagrangian plane is always Lagrangian. Hence the following
combination of ¥ and W, is a good candidate for our purpose. Choose a
smooth function 7 on R" satisfying 0 < n(z) < 1, n(x) = 1 when |z| < §
and n(z) = 0 when |z| > 22, Moreover, we require 7(z) to satisfy

C C
V()] < —, [V2n(z)| <

C C
S V@) < S and (V@) < .

4
r
Define the interpolation to be the graph

r .
Ty = {({B,V[(l - ?7)¢+?7\I/5](x)) € b x Pilv 5 < ‘{B‘ < T}v t=1,2.
It is easy to check that

IVI(T =)y +n¥| < C?”Q, for

IN

x| <.

N3

Denote
B. =Bl xR"nBP xR"C P x Pl NP, x P},

where Bli = B, NP;, i = 1,2. We then define the approximate submanifold
to be
M, = (gMamB’%)uTluTQU(L\B;).

The approximate submanifold is Lagrangian and satisfies the following prop-

erties:
|H(g)| < Clg| for g€eM,NB:
2

|H(q)| < C for qeTh UTy )

[H(q)| =0 for g€ L\ B,
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where H is the mean curvature vector of M, in N. One also has

|[ImQar, (q)] < Clg|*>  for quMaﬂB’%

[ ImQar, (¢)] < Ca for qe THUTY
[ Im Q| (¢)] =0 for g€ L\ B,

The situation in R?" is computed in [2]. Because |[2(q) — dZ| < C|q|? and
|H(q) — Ho(q)| < Clg|, where Hy is the mean curvature vector of M, N B,
in R?" with the Euclidean metric, we thus obtain the above estimates.

The approximate submanifolds M, are embedded Lagrangian submanifolds.
Because the mean curvature is uniformly bounded, by monotonicity formula
[21] and the construction of M,, it follows that the area is uniformly bounded
from above and below. For small «, the homology classes of M, and L are
equal and consequently | a, Im 2 = 0. J. H. Michael and L. Simon [14]
proved the Sobolev inequality:

(/Mh V)5 < o )/M(\v B+ h|H|) dV

for a submanifold M™ C R!, where h is a C' nonnegative function on M with
compact support and H is the mean curvature of M in R'. By embedding
N isometrically in R!, the corresponding mean curvature H, of M, in R’
is uniformly bounded. Thus the norm of the Sobolev constant on M, is
uniformly bounded and one has the following lemma.

Lemma 5°’. Suppose that u is a positive sub-solution of the equation
Apyu > gu on a closed manifold M, guhere g is a L' function satis-
fying the estimate |g||,5 < ¢Vol(M)*"w»  for some r > n. Then

1
llullopr < Cp Vol(M) 7 ||lulr  for p > 0. The constant C, depends on
the Sobolov constant, r, ¢ and p.

This lemma is a modification of Lemma 5 together with a remark after its
proof, which is discussed in the Appendix. With Lemma 5’, we can obtain
an uniform positive lower bound for the first eigenvalue of M,.

Theorem 1. Suppose that n is greater than 2. When « is small enough, the
first eigenvalue \1(M,) for the Laplace operator on M, is bounded below

by 3A1(L).
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Proof. Suppose that f, is the first eigenfuction for the Laplace operator on
M, satisfying

fadV =0, / f2dv =1, and / (Ve fo 2 dV = A1 (M)
My Mq Mo

Because Ay, fa = —A1(My) fo, one has
Anr, [ = =20 (M) 2 + 2 [V fo2 > =201 (M) 7.

Assume that the theorem is not true. Then there exists a subsequence {«;}
which tends to zero, such that Aj(Mg;) < $A1(L). By Lemma 5’, one has

fc%jgc/ f2.dv <C.
Mo

Since A\1(Ma;) and Vol(M,,) are bounded uniformly, the constant C' is in-
dependent of j.

Let s be a nonnegative function in N satisfying p5 =1 on N\ Bs, o5 =0

on Bs, 0 < s <1on Bs\ Bs, and |V ;| < %. A direct computation
2 2

shows that

A

= Jar, (IVM5 05212+ G2V fo 2+ 205 fa, VM5 g5 - V05 fo ) dV

J

IN

2 fur,, SRV fas AV 42 [y IV sl S AV

IN

2 fMa]. ‘vMajfa]'P dv + 2 fMa].ﬂB(;\Bé ‘vMaj¢5‘2f(3j dv
2
< 2Mi(Ma,) + 53 Vol(Ma, N Bs \ Bs)

< 2)\1(Ma].) +Con2,
We use |VMip5] < [VNi;| and Vol(Ma,; N Bs) < C6™ in the above esti-

mates. The area bound of M, N Bs follows from the monotonicity formula
for submanifolds with bounded mean curvature [21]. We also have

/ (<p5fa].)2dV21—/ f2.dV > 1—=CVol(My; N Bs) > 1—C6",
Ma]. Ma].ﬂB5
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and

(/ : Psfa; dV)? = (/MaﬂBéu — ©5) fa; dV)? < CVol(M,, N Bs)* < C5*".
Recall that M, is the same as L in N\ B% for a; < %5. Therefore,

Jas, \VM%wfa.\?dv
fM (Péfa] 2dV VOl fM 906.]804] dV)

I \VL%fa] \2 av
f ((Péfa])2dv VOl fL 906.]804] dV)

> )\1(L)

On the other hand, it follows from the above estimates that

Ja, \VMafwfa]-\2dV 2>\1( o;) + CO"2
fM (s fa;) 2dV Vol(L fM @5 fa; AV)? ~ — C§2n

Choose ¢ small enough so that C6"~2 < min( A1 4L), 1). Then by combining
the two inequalities, one gets A1(Ma,) > $A1(L) when a; < A2

contradiction. Thus the theorem is proved.

, which is a

Q.E.D.

Remark: It is easy to see from the proof that the lower bound can be
improved and the estimate also works for other singularities. Because the
submanifold L is closed and connected, its first eigenvalue A1 (L) is a positive
number.

In the case n = 2, one also can construct M, but € may be chosen differently.
We need to modify the function s in this situation as follows:

0 |z < &2
10g|6x_2| 2
ps(r) = ¢ (—%) 52 <|z| <6 .
log 5
1 |z| > ¢
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A direct computation gives

/ VM a2y <
Ma ;NBs\Bg2 | log |

Recall that M, is the same as L in N \Bs2 for aj < K 52. Similar arguments
as in the case n > 2 lead to

C
w() < 218en) * g
- 1—-Cé*

Choose § small enough so that @ < %L) and C§* < i. One will get

A (My;) > i)\l(l)) when «a; < K 6%, which is a contradiction. Thus we
obtain the same result.

4. Perturbation.

There exists a constant ¢ such that the exponential map from the normal

bundle T+M, into N is an embedding in the c¢; & neighborhood of M,.

Choose a smooth function 7, such that 7,(s) = 1 when |s| < %, and

3cie

Na(s) = 0 when |s| > . Moreover, it also satisfies

C C C
0<ma(s) <1, [Vna(s)| < = [VPna(s) < 50 and [Vina(s)| <

for every s. Given a C*# function u on M,, 0 < < 1, we can extend it into
a C%P function U on N by defining U(exp(z,v)) = no(|v])u(z) for x € M,
and v € TjMa. We then solve the Hamiltonian flow:

dp(t, q)
ot

= —JVNU(p(t,q)) and ¢(0,q)=q for g€ N.

There exists a unique C# solution for small . Note that if oy (t,q) is a
solution defined by U, then ¢ (st, q) is a solution defined by sU. Denote

ou(®) = ou(1,z) for =€ M,.

The map ¢, can be defined for u in a neighborhood of the zero function.
In particular, it is defined when |[(VY)2U|lo.n < 1. Because py(1,q) is a
symplectic map, the image ¢, (M,) is Lagrangian. Moreover, the family of
maps ¢, 0 <t < 1, is a homotopy between ¢,, and the identity map ¢g.
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Define a C%? function on M, by F(u)(x) = —* ¢} (ImQ)(z), where * is
the Hodge star operator with respect to the induced metric on M. If we can
find a function u such that ¢, is an embedding and satisfies F,(u) = 0, then
ou(M,) will be an embedded special Lagrangian submanifold. Therefore,
the goal is to find the zero set of F,. The differential of F, at the zero
function is

DFo(0)(u) = xpy(d i ygng Im Q)(z),

where ¢y is the interior derivative in JVNU direction. Because M, is
Lagrangian, there exists a function 6(z) (mod 27) on M,, such that

i60(x)

Qy, = wr A Awp,

where w; - - -wy, is a local orthonormal basis on the cotangent bundle 7% M,
[19]. Note that

@3(iJvNU]m Q)

= Im Zgzl £i0(x) [’L (JVNU)n—i—,@wl A---A ‘Y’,@ C A wp,
+(JVNU)Puy /\"'/\X’,@ A wp ]

= cos f(z) * du,

where X)ﬁ means that wg does not appear and the last equality follows from
the fact that U is constant along normal lines near M,,. Because H = JVM«f
[19], we thus have

DFo(0)(u) = cos 0(z)Ap,u — sinf(z) < H, JVMey >

It will be denoted by Lu for simplicity. Because |sinf| = |p§(Im Q)| < C a,
it follows that |f(x)| < C' a. One then can show

Proposition 2. When « is small, the operator L is an elliptic operator and
its kernel consists of the constant functions. Moreover, the first eigenvalue
A1 (M, L) for the operator L on M, has a uniform positive lower bound.

Proof. By choosing a small enough, we can assume that cosf(x) > %
Hence L is an elliptic operator. Constants are clearly in the kernel of L.
Suppose that Lu = 0. Multiply v on both sides, and integrate over M,. We
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then get
0= fMa uludV = fMa ud(cosf(x) x du) dV
=— fMa du A cosf(x) x du
= — [ug,, cosb|dul>dV

<-1 o, cosOldul*av.

It implies that |du| is identically zero. Thus the kernel of £ consists of only
constant solutions.

We now estimate A1 (M, £). Suppose that f, is the first eigenfuction of L,
which satisfies

fadV =0, / f2av =1, and Lfy, = - (Mg, L) fa.
My Mq

Jfa
cos 0(x)

Multiply both sides of the equation by —
We have

and integrate over M,.

~ Jor faBDaty fo AV + [y fotan(z) < H, JVMe fo > dV

- Al(Ma,E)/ a4y

M, cosf(x)
A direct computation shows that

‘fMa fatand(z) < H, JVMe f, > dV|

< Cmax(tanf(a)) (o, |fol® V)3 ([, VY= fal? V)2

< Crrj\l/?x(tané?(x))(fMa\VMafanV)%.
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Plugging this into the above equality, we will get

2)\1(M047 E)

2
Z )\1(Mom E) fMa COSf% av

AV

St IV fal? AV = Cmax (tan6(2)) ([, [V fal2dV)?2

> 5 Ju, VM fal?aV
> (M),
when « is sufficiently small. This completes the proof of the proposition.
Q.E.D.

5. The theorem.

We first set some notation which will be used in the rest of this paper.
Assume that u is a function on M,. We denote

|ullo,r1,, = sup |ul,

[e3

[u],@,Ma: sup M

, 0<pB<1,
careM, dist(z,a’)? B

and

lulle = ( / WP V).

We can embed N isometrically into R' and set

Mark _ (VM) u(@) — (VM) ru(a’))|
VI o, = s dist(z, )P ,

where k is a positive integer.

When « tends to zero, the neck on M, will shrink to p. Thus we need to
introduce a weighted norm to do the estimates. Roughly speaking, we want
to choose the weight function p(x) on M, such that p(z) is less than the
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radius of a normal ball at x € M,. More precisely, we can choose that p(x)
is of the form [2]:

ce fOI' T € Ma N BET’Q
p(z) = ¢ interpolation for x € My N By, \ Bey,
Ry for e M\ By,

for some constants 5 and Rs. In addition, we can also require p(x) to satisfy
the following properties:

L [[VMepllon, < C,
2. ca<p(x)<Ca for z €T UTy,

3. [p~ e <C for p<n.

Definition 3. Let u be a C*P function on M,, where k is an integer and
0 < B < 1. The p-weighted (k, ) norm of u is defined as the
sum:

el s ar

lclloaze + oIV el oz, + -+ 16" (VM) ul llo,ar, + [P (VM) ul g ar,.

Proposition 3. The operator L is a bounded operator between the Banach

space C*#(M,) with norm |- 2 and the Banach space C%% (M) with
P

P (Ma)

norm (|72 o .-

Proof. Note that
2
172Lull o,
2 2 Ma
< p COSHAMau”Cgﬂ(Ma) + ||p*sin® < H, JVMey > ”cgﬂ(Ma)-
A direct computation gives

”p2 COS HAMau”Cg’ﬁ(Ma)

IN

102 Ant ullo,psat [02 TP Ans, 1) g 0 + (008 0] g g, |07 0,00 |02 A nra el 0,01,

IN

C”u”ciﬂ(Ma)'
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We also have

lp?sing < H, JVMay > ”CS’B(MQ)

< lpsind [H| [loar.llp [VMoul (o, + o sin€ |H| o0, [0 TPV Meu] g 0,

+[psin6H]g ar, HPﬁHO,Ma 1o |V Moy 0,04

Using the fact that the mean curvature is zero outside a small ball B,(p)’
and the properties of p and sin 6, it follows that

Ip?sing < H, JVM*u > |lo a1, < Co?[|p |VMul [Jo,a,-

Moreover, all the sup. norm involved are taken over B, (p)’ when we estimate

lp?sinf < H, JVMey > ”cgﬂ(Ma)- When dist(z,x’) > «, one has that

|psinfH (x) — psinfH (z')]

< Ca? b
dist(x,z')P =ta

When dist(z,z') < «, one has

|psinOH (z) — psin0H (2')]
dist(x,z')P

< Caa'™P =Ca?Pb.

Here we use [|[(VMe)2sin 6o, < Ca~! to get estimates involved H. The
upshot is

2 Ma 2—
lp?sinf < H, JV*¥ou > ”Cg’ﬁ(Ma) <Ca ’6”“’”0},*5(Ma)
and hence
2
o Eu”cgﬂ(Ma) < C”u”cﬁﬂ(Ma)'
Q.E.D.

By elliptic Schauder estimates [2] for p-weighted (k, 3) norms, one can prove
that

fullgzs gy < C= 10 Bas,ullgas g + o)
We show in Appendix that ||ullg.a, < Ce™”|p?An,
ing [y, udV = 0. We thus have

u”Cg’ﬁ(Ma) for u satisfy-

—(B+v 2
lull 20 g,y < O™ P10 Aty ull s g, -

In next Lemma, we bound HpQAMauHCg,g(Ma) by HpQEuHCg,g(Ma) and prove
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Lemma 2. For any given positive number v, there exists o such that the
following estimate holds. Suppose that oo < o and u is a C*P function on
M,,, which satisfies fMa udV = 0. Then

lull 28 rgy < Ce™ NP> Lull 05 1,
where the constant C depends on v, but is independent of .
Proof. Note that
Hp2£u|]02,g(Ma) > || p? cos HAMau”Cgﬁ(Ma) —|p?sinf < H, JVMey, >H02,5(Ma),
and

2+

| p? cos HAMau”Cgﬁ(Ma) = ||p? cos A pr, ullo.nr, + (2P cos OA N, v,

When « is small, we have

1
Hﬁwwm%wwhszAmmmm

and

1
~[p*"P Ansulgar, — Callp* Ang,ullo,n,-

2+ [
2

[p=T cos OA Ul g v, >

Hence

1
1p? cos 02N ullcos (pr,) 2 gHP Antaullcos z,):-
On the other hand, we have
|p?sing < H, JVMay > ”Coﬁ(M y < Ca2_ﬂ|]u|]0;,g(Ma)
< Ca? P 5_(ﬂ+”)|]p2AMauHCo,g(M )
P [e3

Putting all these estimates together, we get

197 Cul s g,y > 71 Bavul

pPrEulleos ag) = 1P AMa 28 (a1,

and the proposition is therefore proved.

Q.E.D.
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Denote the Banach space of C?# functions on M, which satisfies I} a, wdV o=

0 with norm || - by B and the Banach space of C%? functions on

”Cgﬁ(Ma)
M, which satisfies [,, udV = 0 with norm [|p*- ”Cg’ﬁ(Ma)
1} M., Im 2 = 0 and the family of maps ¢y, 0 <t < 1, is a homotopy between
©y and ¢, it follows that fMa Fao(u)dV = 0. Thus we can restrict F, as a
map from B into Bs. A direct computation shows that the operator L is
self-adjoint. By Proposition 2, we consequently have:

by By. Because

Proposition 4. The operator L from By into By is injective and surjective.

We will apply the following version of inverse function theorem to F,.

Theorem 2. [1] Let F : B — B’ be a C! map between Banach spaces and
suppose that the differential DF (0) of F at 0 is an isomorphism. Moreover,
suppose that F satisfies the estimates:

1. |DF(0)z||g > CL||x||p for any z € B,

2. |DF(0)y— DF(z)yllp < Cn||x|8llylls for all x sufficiently near 0 and
for any y € B,

where C, and Cy are constants independent of x and y. Then there exist
neighborhoods U of 0 and V of F(0) so that F : U — V is a C! diffeomor-

phism and V contains the ball B, (F(0)), where r < 2%5\] . Furthermore,
2

the image of the ball B,(0) under F contains the ball Bc, (F(0)).
2

We already get an estimate on Cf, in Lemma 2 and still need an estimate on
Cn to apply Theorem 2.

Lemma 3. Assume that v € By and is sufficiently close to 0. Then the
differential of F,, at v satisfies the following estimate:

1p*(DFa(v)(u) — DFa(0)(u)) < Ce?|v

”Cg’ﬁ(Ma) ”Cﬁ’ﬁ(Ma)”u”Cﬁ’ﬁ(Ma)

for all u € Bj.

Proof. Suppose that g is the Ricci flat metric on N. For a given constant
s > 0, we can define a conformal metric g, = s~2g. Let w be a C*? function
on N and define wy, = s~2w. Then the Hamiltonian flow ¢,, determined by
w in the metric g is the same as the Hamiltonian flow ¢;, determined by
ws in the metric gs. The form Qg = s7" Q2 is a holomorphic (n,0) form of
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unit length in the metric g;. Define G, (ws) = s (©5,, )" (Im €)s), where *; is
the Hodge star operator with respect to the metric on M, induced from g,.

Since
x5 (05, ) (ImQg) =% (95, ) (s7"Im Q)

= *s s_n(p;ku(Im Q)

= *¢,,(ImQ)

thus G5 (ws) = Fa(w). Assume that K; > I is an upper bound of

IVMaplloar,. Choose z € M, and let s = p(z). Then the function p

satisfies § < p < % in the ball B () and the induced metric are bounded
1

uniformly in this ball. Fix this s and denote g5 by ¢’ from now on. Denote

the norm with respect to the metric g’ by || - ||¢'. We have
llp 2(@\ M‘ )|
= dt t=0 O,Bﬁ(ac)
2
< A IDFa(v)(u) - DF&(O)(’UJ)”O,B%(@
1
2 /
- Q%HDGZ('US)(US) _DGZ(O)(US)”aB L (@)
KT
<

’ /
Cs®uslz s | @pllvslEzs | (@)
2K 2Ky

where in the last inequality we use the fact that M, with the metric induced
from (N, ¢’) has uniformly bounded geometry in B L (). Because
2Ky

g/
luslicas @
K7
_ ! r_ ! 12 _ !
= s 2“”3734(@ Vs 2u”ng;(ﬂf) (Ve )28 2u”ng;(ﬂf)
K7 K7 K7

2”“”03 = (ac l”vu”OB (@) +”V2UHOB = (@)

IN

03_2”74”03(1\4&)7

it follows that

lp*(DFa(v)(u) - DFa(0)(w)llo.5_s_(x) = Cs?|[vll oz ary lull c2(0a)-
1
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We also need to estimate the following quantity (A):

P> 0(DFa(v)(w) — DFa(0)(w))(x) — p*P(DFa(v)(u) — DFa(0)(w)) (@)
dist(x,z')P '

When dist(z,2') < 77c;» We have

|p*F (x) — p* P (a))

\
FP) [DF) (4) — DFa(0)@) 5o
1
2 ! !
< Cs ”us”%z’ﬂ(B;(ﬂf))”vs”%g’ﬁ(B;(x))'
K7 K7
Since

9/ < -2
”uS”C@,ﬁ(BQ}{l () =9 (HUJHO,Bﬂs{1 (a,-)‘1't‘>’”V7UJ”0,BQ;<1 (z)
+82V2ullop_, @) + 5P Vulgp . @)
K] K]
and

s2H8|V2u(z) — V2u(z')|
dist(x,z')P

20 (2)VPu(x) — p*P () V2u(a)]
dist(x,z")8

0 (@) Pu(x) — p* (W Pu(a’) + p* P (VP u(a’) — P (VP u ')

P
<
== dist(x,z')P

SC([PQ+’6V2u],@,B%(a;) + 32”V2u”0,3%(x))7
1 1

one concludes that

’
—2
”us”%gﬂ(B | (x)) S CS ”u”C’Q)ﬂ(Ma).
2

K1

That is when dist(z,z’) < 77c;» we have

A< Cs_QHvHCg,ﬁ(Ma)”u”cgﬂ(Ma)‘



Embedded Special Lagrangian Submanifolds 415

When dist(x, 2") > 7, we also have

(A4) <O P usllags , @plloslicas, @)
TR K

1

< Os72||vllez(ara) lull ez ar)-
Putting all estimates together, we therefore get
1p* 7 (DFa(v)(u) = DFa(0)(w))llg 0, < Ce™l0
That is,
1p*(DFa(v)(w) = DFa(0)(u))

”Cﬁ’ﬁ(Ma)”u”Cﬁ’ﬁ(Ma)'

< 05_2HvHCg,ﬂ(Ma)”u”cgﬂ(Ma)'

Q.E.D.

legs

We can choose v = § in Lemma 6. Then choose Cf, = %52/3 by Lemma 2

and Cy = Ce~2 by Lemma 3. Applying Theorem 2, we therefore conclude

that the image of the ball B, (0) under F, contains the ball Bc, (Fa(0)),
2

2423
&=
where 7 < =5=—.

Lemma 4. When n > 3, the zero function lies in the ball Bey, ;. 44(Fa(0)).
2

Proof. Denote E = — x ¢i(ImQ) = F,(0). Recall that |E(x)| < Ca and
E(x) =0 for x € M, \ B%. This together with the properties of p implies

lp*Ello.a, < Ca.
Moreover, we have
|[VMeB| = |cos VMg < |H| < C.
When dist(z,z') < a, it follows that
P> TPE(x) — p* P E(2)]

< Ca*thal=h.
dist(x,x')P =t
When dist(z,z') > «, it follows that
2+ 2+
B~ B _ e

dist(x,z')P
Since ¢ = o™+ and n > 3, we thus have
C
2 3 o YL 2433
1B o oy, < Ca® < e

when (8 and ¢ are small enough.
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Q.E.D.

The extension function U satisfies
IVY¥Ullo.n < Ce™H([[ullo.mn + el VHullo.nr,) < Ce™ ullen(ara)s

(V) ?Ullo.n < Ce™2|lullcz(ar)-
When [|(VV)2U||on < 3, or ”u”C%(Ma) < %, the map ¢, is defined. When
2
HVNUHOJV < cig, or HuHC})(Ma) < “5-, the image ¢, (M,) is embedded in

a c1e neighborhood of M,. Choose r = 238 < % in Theorem 2. Then
there exists a function u € B; with ”u”cﬁﬂ(Ma) < 2730 such that F, (u) = 0.
It follows that ¢, (M, ) is an embedded special Lagrangian submanifold. We
hence prove the main theorem of the paper:

Theorem 3. Suppose that L is a closed, connected, and immersed spe-
cial Lagrangian submanifold in a closed Calabi-Yau manifold N of complex
dimension 3. Assume that L has only isolated transversal self-intersection
points. Then L is the limit of a family of embedded closed special Lagrangian
submanifolds in N.

Theorem 4. Suppose that L is a closed, connected, and immersed spe-
cial Lagrangian submanifold in a closed Calabi-Yau manifold N of complex
dimension n > 3. Moreover, assume that L has only isolated transversal self-
intersection of two sheets and the two tangent planes at each intersection
point satisfy the angle condition 0y + - - -+ 0, = § (see section 2). Then L
is the limit of a family of embedded closed special Lagrangian submanifolds
in N.

Appendix : Sup. Norm Estimate.

The De Giorgi-Nash estimates in this Appendix are based on [4], [18] and
[22]. We modify the arguments to fit in the situation discussed in this paper
and present the material here just for the reader’s reference and complete-
ness.

For a submanifold M™ c R', J. H. Michael and L. Simon [14] proved the
Sobolev inequality:

(/Mh V)5 < o )/M(\v h| -+ h|H|) 4V,
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where h is a C'! nonnegative function on M with compact support and H is
the mean curvature of M in R'. When n > 2, the inequality can be converted
easily into

(/ Wz dV)*5E < C(n /\VMh\QdV—i—/ R H?dV).
M

Or write in a scaling invariant form

n—2 Mp 2 0 _% 2
(/Mh vy <C()(/MW B2 dV + Vol(M) /th) (1)

M

The constant C(n) also depends on sup|H |? Vol(M )% But because both H
and Vol(M) are uniformly bounded in our cases, we omit this dependency.
When n = 2, the Sobolev inequality implies

(/ Wz V)T < O(k) VOZ(M)“TQ(/ |VMh2av + VOZ(M)—l/ h%dV)
M M M

(2)
for any k > 2. From inequality (1) and (2), we have the following estimate:

Lemma 5. Suppose u is a positive sub-solution of the equation Ay u > gu
on a closed manifold M, where g is a L' function satisfying the estimate

lgll, 5 < ¢ Vol(M M)*=% forsomer >n. Then llullo,pr < Cp Vol(M)_%HuHLp
for p > 0. The constant C,, depends on n, r, ¢ and p.

Proof.  Multiply both sides of Ayu > gu by u?~!, ¢ > 2, and integrate

over M. One gets
/ WP AyudV > / guldV,
M M

—(q—l)/ uq—2\vMu\2dvz/ gul dv.
M M

Rewriting the left hand side and using Holder inequality, it leads to

4(g —1) 1
3 / IVMuz?av < g 51w
q M

or

I _.
Lr—2

This together with the Sobolev inequality gives the following inequality in

the case n > 2:
2

([ uf @2 dV)" = < Cn) (fy [VMud|2dV + Vol(M)™% [y, u?dV)

< C(n) (cqllgll 5

(M) [t )

< Cq Vol(M)%__
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The constant C' depends on n and ¢. For n = 2, we can choose xk = ‘5 and

similarly get

(/Muude) < Cq Vol(M)E2 |

The constant C' depends on k and ¢. Denote nn = n for n > 2 and n = k for
n = 2. Then

2_2.1
Pl

(/ wits dV) '@ < (Cq Vol(M)
M

If we denote ([}, uf‘dV)% by ¥(z), the inequality can be written as

2
T

W(qk) < (Cq Vol(M)F~#)7 W(gs),

__n _ ; o —k
where k=25 and s= ;5. Because r is greater than n, the number =
is greater than one and

\I/(fyx)g(C Vol(M)r~

for any x > 2s. Choose x =™ !p for p > 2s. One then has

2
T

T(py™) < (C L Vol(M)7F~7)mm=T U(pym=Y)

m—1 1

< (2 Vol(M)F )5 EH0 3T 4R S g )

Let m go to infinity and notice that

=1 k 1 1 2 2
Z—z:k_ and — -4+ -==—-.
= s s noor
It follows that
lulloar < C Vol(M) 7 |lullps  for p> 2s (3)

The constant C' depends on 7, r and ¢. For general p, we first recall that

2_ 1
S

* (fyy utsdv)

?

([y;u dV)E < Cq Vol(M

1
s

— Cq Vol(M)x~% (f,, u? dV)*.
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Therefore,

Vol(M)™% ([, ut® dV)%a

< (Cq)a[Vol(M)~5 (f,; ut1=9N V)X Vol(M) 7 (f,, utss dV) 7|5

for 1 > &> 0 and % + ;% = 1. If we choose A satisfying ¢s(1 — )\ = ¢k, it
follows that

Vol(M) % ( / Wk 4V T < (Cq)t Vol (M) 7 ( / uh9sE qV Vi

M M
That is,
Vol (M) 74 ( / Wk dV) R < (Cq)a Vol( M) s ( / Wh9E JV )
M M

Let ¢ =2 and p = 2seu = kfﬁfse, then

Vol(M) ™2 ( /

W2k VY3 < (20)% Vol(M) ™5 ( / AV (4)
M

M

By varying e, we can choose p to be any positive number. Combining in-
equalities (3) and (4) gives

1
lullo,mr < Cp Vol(M)"? ||lul| e, for p>0.

Q.E.D.

Remark: The constant on the right hand side of the inequality (1) or
(2) is called the Sobolev constant on M. The quantity can be defined in a
general Riemannian manifold. Since we only use (1) and (2) to derive the
estimate, the lemma holds in general and the constant C), depends on the
Sobolev constant on M, r, ¢ and p.

From Lemma 5, We can get the following sup. norm estimate:

Theorem 5. Suppose that u is a W12 weak solution for Ayu = f on a
closed Riemannian manifold M, where f satisfies ||f|,5 < oo, for some
r > n. Then

_1 2_2
[ullo.ar < C (Vol(M) ™2 [ul[2 + Vol(M)»"+[|f]l 5),

where C' depends only on r and the Sobolev constant on M.
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Proof. Define § = Vol(M)%_%HfHL% and & = %[(%)2 +1]. It is easy to
see that £ is a weak solution for

fu ful
Apye>l U _TU-,
M55 Gpe"
Denoteg—%%é Because ‘ﬁif‘ < 2, one can prove

Rl
MM

2
loll 5 < 51715 < 2Vol(h)
It follows from Lemma 5 that

& < CVol(M)7Y€] 1.

Hence " 1
51* < CVol(M) 7[5 11(5) s + Vol (M)

Therefore,

[ul < OB\ /14 Vol (M)~ ()2

< Cv/B?% + Vol(M)~Hu?|| 11
< C(B + Vol(M)~5||ul| 12)

2 2 1
= C(Vol(M)»—7|[fl| 5 + Vol(M)™=|[ul| 2).
Again, the constant C' may change slightly in different places.

Q.E.D.

Suppose that M, and p are as defined in section 3 and section 4. We need
the following estimate in weighted norm to prove the main theorem.

Lemma 6. [3] For any given positive number v, there exists ag such that
the following estimate holds. Suppose that a < ag and u is a C*# function
on M, which satisfies fMa udV = 0. Then

lullos, < Ce™[1p*Ansyull 0.9 4y,

where the constant C depends on v, but is independent of c.
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Proof.  Assume that the Lemma does not hold. Then there exists a se-
quence a; — 0, its corresponding ¢;, p;, and u; € CQvﬁ(Ma].) which satisfies
f v ujdV =0 and

aj

C )2
”uj|’07Ma]- Z J Ej V”pj AMa]-uj”CS}ﬁ(Maj)'

We can normalize u; such that ||u;||o, M., = 1. It follows that

2
”pj AMa]-ujucg}ﬁ(Maj) <
On the other hand, by Theorem 5 we have
1 2_2
lujllona, < CIVol(Ma;)™ 7 [lull 12 + Vol(May;) ™™ 7 [| Anga, w5l 5 ]-

Because u; satisfies f

. u; dV =0, it implies
aj

Al(Maj) /Ma' ’U,j2 dv < —/M < AMajuj,uj> dV < HAMajujHLL

¥

Remember that the Sobolev constant on M, is bounded uniformly, the
volume Vol(M,;) is bounded uniformly from above and below, and A1(M,;)
is bounded below by $A;(L). Choose r satisfying —r + % > —n, and one
obtains

L= lujllosa, < Cr(llAns,wsller + 11 AN, usll 5)

2
T

< Colfag,, 57 (P Do, uy)® dV]

5o

< Cr[fMa], p;r (% Ejy‘)g dv]

_+ﬁ 2
<C(fy, p; T aAv)r
J

< G
—_— j .

The constant C, may change in different places. Because the constant C.. is
independent of j, the above inequality leads to a contradiction. Therefore,
the lemma must hold.

Q.E.D.
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