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1. Introduction.

Let K be a knot in the 3-sphere S3 and γ a slope (the isotopy class of an
essential simple closed curve) on the boundary of the exterior ofK. Then the
manifold obtained from S3 by γ-Dehn surgery onK is denoted by (K; γ). As
usual, using the preferred meridian-longitude pair ofK ⊂ S3, we parametrize
slopes, and hence surgeries on K by r ∈ Q ∪ {∞}; we also write (K; r) for
(K; γ). Suppose that K is hyperbolic, i.e., the complement S3 −K admits
a complete hyperbolic metric of finite volume. Then the set of exceptional
surgeries EK = {r | (K; r) is not hyperbolic} is a finite set [50], [51], and EK
can be expressed as RK ∪ TK ∪ SK ∪ CK , where
RK = {r | (K; r) is reducible},
TK = {r | (K; r) is toroidal},
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SK = {r | (K; r) is Seifert fibered} and
CK = {r | (K; r) is a counter example to the geometrization conjecture}.

By definition SK contains a trivial surgery ∞. The geometrization con-
jecture [51] and the cabling conjecture [19] state that CK = ∅ and RK = ∅,
respectively. Therefore it is expected that EK = TK ∪SK for any hyperbolic
knot K. The simplest knot satisfying TK �= ∅ and SK �= {∞} is the figure-
eight knot, for which we have TK = {0, ±4} and SK = {∞, ±1, ±2, ±3}
[50]. In this example, TK ∩ SK = ∅. Recently Gordon and Luecke [25],
Eudave-Muñoz [15, Proposition 4.5(1) and (3)] discovered an infinite family
of hyperbolic knots K with TK ∩ SK �= ∅.

For any hyperbolic knot K it is known that |TK ∩ SK | ≤ 7, which is a
consequence of the estimate of |TK| by Gordon [21], and that if TK ∩ SK is
not empty, then it consists of only integers by Boyer and Zhang [6]. See also
[22], [30] for surveys on Dehn surgery on knots.

Denote by Diff(S3, K) the group of pairwise diffeomorphisms of (S3, K)
(i.e., diffeomorphisms of S3 which leave K invariant). An element in
Diff(S3, K) having a finite order is called a symmetry of K. We regard
two symmetries to be the same if they are conjugate by a diffeomorphism
of (S3, K) isotopic to the identity map. We denote by Diff∗(S3, K) the sub-
group of Diff(S3, K) consisting of elements which preserve an orientation
of S3. Then Sym∗(K) is defined as the group of pairwise isotopy classes
of elements in Diff∗(S3, K). For any hyperbolic knot K, it is known that
Sym∗(K) is a finite group by Mostow-Prasad rigidity theorem [41], [43].

Each knot K in [25], [15] is strongly invertible, hence Sym∗(K) contains
a nontrivial element represented by the strong inversion. All the known
examples suggest that if SK �= {∞}, then |Sym∗(K)| ≥ 2.

A relationship between symmetries of knots and Seifert fibered surgeries
have been studied in [53], [35] and [36]. In the present paper we will consider
these relations and put some further restriction on obtaining Seifert fiber
spaces by surgeries on knots with symmetries.

Theorem 1.1 (Toroidal Seifert fibered surgeries). Let K be a hyper-
bolic knot with |Sym∗(K)| > 2. Then (K; r) cannot be a toroidal Seifert

fiber space for any r, and hence TK ∩ SK = ∅.

Remark. (1) It should be emphasized that the condition |Sym∗(K)| > 2 does
not imply either TK = ∅ or SK = {∞}. In fact, the figure-eight knot has
the property: |Sym∗(K)| > 2, TK �= ∅ and SK �= {∞}.

(2) For satellite knots K, in general |Sym∗(K)| = ∞ ([45]) and we will
handle this case in Theorem 1.5.
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As a special case of Theorem 1.1 we have:

Corollary 1.2. Let K be a hyperbolic knot with two strong inversions.
Then K has no toroidal Seifert fibered surgeries, hence TK ∩ SK = ∅.

For homological reason, the base surface of a Seifert fiber surgery (K; r)
(i.e., the quotient space of (K; r) by identifying each fiber to a point) is the
2-sphere S2 or the projective plane RP 2. The following theorem deals with
the latter case.

Theorem 1.3 (Projective Seifert fibered surgeries). Let K be a hy-
perbolic knot with a symmetry which is not a strong inversion. Then K has

no surgery yielding a Seifert fiber space over RP 2.

Remark. (1) There are many examples of such surgeries on hyperbolic knots
with strong inversions. See [2], [6] for the case that the surgery manifold
has a finite fundamental group, and [25], [15] for the case that the resulting
manifold has an infinite fundamental group. Theorem 1.3 shows that these
knots have no symmetries other than strong inversions.

(2) Dehn surgeries producing Seifert fiber spaces over RP 2 are completely
determined for torus knots ([40], [20]) and satellite knots [34].

Theorems 1.1, 1.3 can be combined with the work of Wang and Zhou
[53] to deduce:

Corollary 1.4. Suppose that (K; r) (r �= ∞) is a Seifert fiber space for a
hyperbolic knot K with |Sym∗(K)| > 2. Then the base surface must be S2

and (K; r) has exactly three exceptional fibers.

Now let us turn to toroidal Seifert fibered surgeries on non-hyperbolic
knots. As shown in [33], there are infinitely many satellite knots (with
positive Gromov volume) with TK ∩ SK �= ∅. One can check that they are
strongly invertible.

Theorem 1.5. Let K be a non-hyperbolic knot with a symmetry which is
not a strong inversion. If (K; r) is a toroidal Seifert fiber space, then K is a

trefoil knot (r = 0), Tp,q�Tp,q (r = 2pq) or Tp,q�T−p,q (r = 0).

We then apply our results to surgeries on 2-bridge knots. In [8] Brit-
tenham and Wu determined whether a given surgery on a 2-bridge knot is
hyperbolic, reducible, toroidal, or atoroidal Seifert fibered. Note that 0-
surgery on a trefoil knot produces a toroidal Seifert fiber space. Since any
2-bridge knot is strongly invertible and admits a cyclic period 2 (see Section
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2 for definitions), Sym∗(K) contains two nontrivial elements represented by
these symmetries. Thus Theorems 1.1 and 1.5 imply:

Corollary 1.6. Let K be a 2-bridge knot which is not a trefoil knot. Then
TK ∩ SK = ∅.

Following [23] we shall say that a Seifert fiber space M is of type
X(n1, n2, . . . , np) if M admits a Seifert fibration over X with p exceptional
fibers of indices n1, n2, . . . , np (ni ≥ 2). Then M is called small if M is of
type S2(n1, n2, . . . , np) with p ≤ 3. For convenience, we assume (without
loss of generality) that n1 ≤ n2 ≤ · · · ≤ np and if M admits a Seifert fibra-
tion over X without exceptional fiber, then we say that M is of type X(1)
(by pretending that one regular fiber is an exceptional fiber of index 1).

Finally we apply the argument in the proof of Theorem 1.1 to surgeries
yielding small Seifert fiber spaces.

Let K be a knot with a cyclic period. If the period is greater than 2,
then it was previously known that (K; r) cannot be a Seifert fiber space
except when K is a torus knot or a cable of a torus knot ([35, Theorem 1.5,
Proposition 5.6 and Added in proof]). If the period is 2 and (K; r) is a Seifert
fiber space of type X(n1, n2, . . . , np), then X = S2 ([36, Theorem 1.3]) and
p ≥ 3 ([53]); Furthermore if p = 3, i.e., (K; r) is of type S2(n1, n2, n3), then
(ni, nj) = 1 for some i, j [36, Theorem 1.4]. By assuming further a strong
invertibility, Corollary 1.4 implies that p = 3 and we can put a stronger
restriction on n1, n2, n3.

Theorem 1.7 (Small Seifert fibered surgeries). Let K be a strongly
invertible knot with cyclic period 2.

(1) If (K; r) is a small Seifert fiber space of type S2(n1, n2, n3) with 2 <
n1 < n2 < n3, then K is a torus knot or a cable of a torus knot.

(2) If (K; r) is a small Seifert fiber space of type S2(2, n2, n3) such that

(n2, n3) �= 1 and (n2, n3) �= (3, 3), then K is a torus knot or a cable of
a torus knot.

In [37] we have shown that for a given triple (n1, n2, n3) such that
(ni, nj) = 1 for some i, j, there is a strongly invertible hyperbolic knot K
such that (K; r) is a Seifert fiber space of type S2(n1, n2, n3). [35, Theorem
1.5, Proposition 5.6] and Theorem 1.7 show that most of them have no cyclic
period.



Dehn surgeries, group actions and Seifert fiber spaces 347

Acknowledgements – A part of this work is motivated by a discussion
with Katura Miyazaki. I would like to thank him for useful discussions,
especially for suggesting Lemma 5.2 and the use of covering space theory in
the proof of Proposition 5.1. I would also like to thank the referee for careful
reading and useful suggestions.

2. Outline of the paper.

Let K be a nontrivial knot in S3 and ϕ : S3 → S3 an orientation preserving
periodic diffeomorphism of period p ≥ 2 (i.e., ϕp = id.) which satisfies
ϕ(K) = K. We write Fix(ϕ) to denote the set of fixed points of ϕ. If
Fix(ϕ) �= ∅, by the positive answer to the Smith conjecture [39], ϕ is a
rotation of S3 about the unknotted circle Fix(ϕ).

If Fix(ϕ) �= ∅, there are two possibilities: Fix(ϕ)∩K �= ∅ or Fix(ϕ)∩K =
∅.

Definition (strong inversion). If Fix(ϕ) �= ∅ and Fix(ϕ) ∩ K �= ∅, then
K is said to be strongly invertible. In this case Fix(ϕ) intersects K in two
points and ϕ reverses an orientation of K, and hence the period p = 2. Such
an involution is called a strong inversion of K.

Definition (cyclic period). If Fix(ϕ) �= ∅ and Fix(ϕ) ∩K = ∅, then we
say that K has a cyclic period p.

Next let us assume that Fix(ϕ) = ∅. We have two possibilities: Fix(ϕi) =
∅ for i = 1, · · · , p− 1, or Fix(ϕi) �= ∅ for some i (1 < i < p).

Definition (free period). If Fix(ϕi) = ∅ for i = 1, · · · , p− 1, then we say
that K has a free period p.

Definition (semi-free period). If Fix(ϕ) = ∅ but Fix(ϕi) �= ∅ for some i
such that 1 < i < p, then we say that K has a semi-free period p. Since ϕ
preserves an orientation of K, so does ϕi and ϕi gives a cyclic period of K.

Suppose that K is a hyperbolic knot with |Sym∗(K)| > 2. Then from [5,
Theorem 2.1(b)] or [45, Theorem 3.1] we have a finite group Γ ⊂ Diff∗(S3, K)
which realizes Sym∗(K). If Γ contains a diffeomorphism ϕ of period p > 2,
then ϕ gives a cyclic, free or semi-free period p > 2. If Γ contains no such
a diffeomorphism, then each nontrivial element of Γ has order 2 (i.e., each
element is an involution). Since |Γ| > 2, Γ contains involutions ϕ and ψ;
neither ϕ nor ψ gives a semi-free period.

Lemma 2.1. At least one of ϕ and ψ is a strong inversion.
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Proof. To the contrary suppose that neither ϕ nor ψ is a strong inversion.
Then both involutions ϕ and ψ preserve an orientation of K. This then
implies that the finite group 〈ϕ|K, ψ|K〉 acts freely on K. Thus 〈ϕ|K, ψ|K〉
is a finite cyclic group. The Smith conjecture [39] implies that 〈ϕ, ψ〉 is
isomorphic to 〈ϕ|K, ψ|K〉. Thus 〈ϕ, ψ〉 is also cyclic, which implies that
ϕ = ψ, because ϕ and ψ are involutions. This is a contradiction. �(Lemma
2.1)

Following the above observation, we shall say that a knot K has Type
C, F, or SF symmetry if K has a cyclic, free, or semi-free period p > 2, and
that K has Type I-I, I-C, or I-F symmetry ifK has two (distinct) involutions
ϕ, ψ generating a finite subgroup of Diff∗(S3, K) such that both ϕ and ψ are
strong inversions, ϕ is a strong inversion and ψ gives a cyclic period 2, or ϕ
is a strong inversion and ψ gives a free period 2, respectively.

Lemma 2.2. Suppose that K has Type I-I symmetry. Then K admits also
Type C, F, I-C or I-F symmetry.

Proof. By definition K has two distinct strong inversions ϕ and ψ, which
generate a finite group Γ. Put τ = ϕ ◦ ψ, which is also periodic, because Γ
is finite. Note that τ is not the identity map, because ϕ �= ψ, and that it
preserves an orientation of K. If τ i is fixed point free for all i less than the
period of τ , then τ gives a free period of K. Thus K has Type F or Type I-F
symmetry depending on whether the period of τ is greater than 2 or exactly
2. If τ i has a fixed point for some i less than the period of τ , then τ i gives
a cyclic period of K. Thus K has Type C or Type I-C symmetry depending
on whether the period of τ i is greater than 2 or exactly 2. �(Lemma 2.2)

We summarize the above observation in the following lemma.

Lemma 2.3. Let K be a hyperbolic knot with |Sym∗(K)| > 2. Then K
has Type C, F, SF, I-C or I-F symmetry.

For knots with Type C symmetry, we recall:

Theorem 2.4 ([35]). Let K be a knot with a cyclic period p > 2. If (K; r)
is a Seifert fiber space, then K is a torus knot or a cable of a torus knot.

In particular, a hyperbolic knot K with Type C symmetry has no Seifert
fibered surgery.

In Section 4, we will study Dehn surgeries on hyperbolic, freely periodic
knots and prove:



Dehn surgeries, group actions and Seifert fiber spaces 349

Theorem 4.5. Let K be a hyperbolic, freely periodic knot. Then (K; r)
cannot be a Seifert fiber space over RP 2.

Theorem 4.10. Let K be a hyperbolic knot with Type F symmetry, i.e., a
free period p > 2. Then (K; r) cannot be a toroidal Seifert fiber space.

From Theorems 2.4 and 4.10, we can deduce:

Theorem 4.15. Let K be a hyperbolic knot with Type SF symmetry, i.e., a
semi-free period p > 2. Then (K; r) cannot be a toroidal Seifert fiber space.

Section 5 is devoted to a study of Seifert fibered surgeries on strongly
invertible knots. We will study surgeries on hyperbolic knots with Type I-C
or I-F in Sections 6–9. In Section 9, we will prove:

Theorem 9.1. Let K be a hyperbolic knot with Type I-C symmetry. Then
(K; r) cannot be a toroidal Seifert fiber space.

Theorem 9.2. Let K be a hyperbolic knot with Type I-F symmetry. Then
(K; r) cannot be a toroidal Seifert fiber space.

In Section 10 we will prove Theorem 1.5. A proof of Theorem 1.3 will
be completed in Section 11. In the final section Section 12, we will study
Dehn surgeries yielding small Seifert fiber spaces and prove Theorem 1.7 by
applying some results in Sections 5–8.

Proof of Theorem 1.1. Let K be a hyperbolic knot with |Sym∗(K)| >
2. Then by Lemma 2.3, the theorem can be obtained by putting together
Theorems 2.4, 4.10, 4.15, 9.1 and 9.2. �(Theorem 1.1)

Proof of Corollary 1.2. Let K be a hyperbolic knot with two strong inver-
sions ϕ and ψ. Denote by [ϕ], [ψ] ∈ Sym∗(K) the pairwise isotopy classes of
ϕ, ψ, respectively. Both [ϕ] and [ψ] have order 2, in particular these are non-
trivial in Sym∗(K). Assume for a contradiction that [ϕ] = [ψ] ∈ Sym∗(K).
Then by [5, Theorem 2.1 (c)] ([52, Corollary 7.2]) ϕ and ψ are conjugate by
a diffeomorphism of (S3, K) isotopic to the identity map (see also [4], [10]).
This contradicts the assumption. It follows that Sym∗(K) contains more
than two elements and the result follows from Theorem 1.1. �(Corollary
1.2)

Proof of Corollary 1.4. Assume that K is a hyperbolic knot with
|Sym∗(K)| > 2. Then Lemma 2.3 implies that K admits a symmetry which
is not a strong inversion. By Theorem 1.3 the base surface of (K; r) must
be the 2-sphere, and by Theorem 1.1 the number of exceptional fibers is less
than four, for otherwise (K; r) contains a vertical incompressible torus. On
the other hand, the number of exceptional fibers is greater than two by [53],
because K has a cyclic or free period by Lemma 2.3. �(Corollary 1.4)
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3. Isomorphisms of base orbifolds and detecting fibers.

Let (K; r) be a Seifert fiber space and ϕ̄ : (K; r) → (K; r) an orientation pre-
serving periodic diffeomorphism with period p ≥ 2, which has a (non-empty,
possibly disconnected) 1-dimensional fixed point set Fix(ϕ̄). (In practice, we
shall consider a situation where ϕ̄ is induced from an orientation preserving
periodic diffeomorphism ϕ of (S3, K).)

Assume here that (K; r) has a Seifert fibration preserved by ϕ̄. In most
cases, such an invariant Seifert fibration exists. In fact, from [31] and [35,
Proposition 5.7] we have the following.

Lemma 3.1. Suppose that K is a nontrivial knot which is not a trefoil knot

and (K; r) is a Seifert fiber space.

(1) If π1((K; r)) is infinite, then for any finite group G acting on (K; r),
there exists a G-invariant Seifert fibration of (K; r).

(2) If π1((K; r)) is finite and g is a periodic diffeomorphism with a 1-
dimensional fixed point set, then (K; r) admits a 〈g〉-invariant Seifert
fibration.

Proof. If (K; r) is reducible, then since (K; r) is Seifert fibered and
H1((K; r)) is cyclic, (K; r) ∼= S2×S1 [27, VI.7.Lemma]. Then K is a trivial
knot and r = 0 [17, Corollary 8.3]. So we may assume (K; r) is irreducible.

(1) Since (K; r) is irreducible and π1((K; r)) is infinite, (K; r) possesses
a geometric structure modelled on E3, Nil, H2 × R or S̃L2R (see [47]). If
(K; r) possesses the E3-geometry, then K is a trefoil knot [35, Lemma 5.4],
contradicting the assumption on K.

Now we assume that (K; r) possesses a geometric structure modelled on
Nil, H2 × R or S̃L2R. Under these geometries it follows from a result of
Meeks-Scott [31] we can choose a G-invariant Seifert fibration of (K; r) (see
also [31, p.289]).

(2) Since g has a 1-dimensional fixed point set and (K; r) has a finite
fundamental group, the Orbifold Theorem ([4], [10]) implies that (K; r) pos-
sesses an S3-geometry and g is an isometry. Applying [35, Lemma 5.7], we
have a 〈g〉-invariant Seifert fibration of (K; r). �(Lemma 3.1)

The base surface of (K; r) has naturally an orbifold structure so that a
cone point of index n is the image of an exceptional fiber of index n. Such
a 2-orbifold B is referred to as the base orbifold of (K; r) and its underlying
space is denoted by |B|.
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Since ϕ̄ preserves the Seifert fibration, it induces an orbifold isomorphism
ϕ̂ on the base orbifold B so that the following diagram commutes. Here
π : (K; r) → B denotes the natural projection with respect to the Seifert
fibration of (K; r).

(K; r)
ϕ̄−−−−→ (K; r)

π

⏐⏐1 ⏐⏐1π
B −−−−→

ϕ̂
B

Note that ϕ̂ has also period at most p and it is conjugate to an orthogonal
transformation on S2 ([13], [9]), i.e., the identity map, a rotation around the
North-South axis, a reflection along the equator, or the composition of a
rotation around the North-South axis with a reflection along the equator.
For simplicity, we say that ϕ̂ is a rotation (resp. a reflection) if it is conjugate
to a rotation around the North-South axis (resp. a reflection along the
equator).

Lemma 3.2. Suppose that Fix(ϕ̄) �= ∅.

(1) If ϕ̂ preserves an orientation of the base surface |B| = S2, then each

component of Fix(ϕ̄) is a Seifert fiber in (K; r).

(2) If ϕ̂ is the identity map on the base surface |B| = RP 2, then each

component of Fix(ϕ̄) is a Seifert fiber in (K; r).

Proof. Let L be a component of Fix(ϕ̄) and t a fiber intersecting L. Since ϕ̄
preserves the Seifert fibration, we obtain a periodic map ϕ̄|t : t → t, which
has a nonempty fixed point set t ∩ L. Hence ϕ̄|t is the identity map or a
reflection. If ϕ̄|t = id., then t = L as desired.

Suppose for a contradiction that ϕ̄|t is a reflection. Let N (t) be a 〈ϕ̄〉-
invariant fibered tubular neighborhood of t. Since ϕ̄ is orientation preserving,
but reverses an orientation of t, ϕ̄ reverses an orientation of a meridian of
N (t). Hence ϕ̂|∂π(N(t)) reverses an orientation of ∂π(N (t)). This contradicts
the assumptions in (1), (2). �(Lemma 3.2)

Furthermore, we have:

Lemma 3.3. If a component of Fix(ϕ̄) is a regular fiber, then the induced

isomorphism ϕ̂ : B → B is not the identity map.
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Proof. Let us assume that a component L′
ϕ of Fix(ϕ̄) is a regular fiber. Let

N (L′
ϕ) be a fibered neighborhood of L′

ϕ which is invariant under 〈ϕ̄〉, and
let D be a 〈ϕ̄〉-equivariant meridian disk of N (L′

ϕ) ([32]). Since L′
ϕ∩D �= ∅,

ϕ̄(D) = D. Let us choose a regular fiber t intersecting ∂D transversely.
Since L′

ϕ is a regular fiber, the algebraic intersection number of t and ∂D is
±1.

To the contrary suppose that ϕ̂ is the identity map on B. Then ϕ̄(t) = t
and ϕ̄ induces a periodic diffeomorphism ϕ̄|t : t → t of period p ≥ 2. Since
ϕ̄(∂D) = ∂D, we have ϕ̄(t∩∂D) = t∩∂D. Thus ϕ̄ acts on t∩∂D, and since
ϕ̄ preserves an orientation of ∂N (L′

ϕ), each 〈ϕ̄〉-orbit in t∩ ∂D consists of p
points of the same sign. This implies the algebraic intersection number of t
and ∂D is a multiple of p ≥ 2, a contradiction. It follows that ϕ̂ is not the
identity map. �(Lemma 3.3)

4. Seifert fibered surgeries on freely periodic knots.

Assume that K is a freely periodic knot with period p ≥ 2 and f : S3 → S3 a
periodic diffeomorphism giving the free period p of K. Let us choose an 〈f〉-
invariant tubular neighborhood N (K) and an 〈f〉-equivariant simple loop
α on ∂N (K) representing r. Then we can extend f |S3−intN(K) over (K; r)
periodically to obtain an orientation preserving diffeomorphism f̄ : (K; r) →
(K; r) of period p. If f i(α) = α (resp. f i(α) ∩ α = ∅), then Fix((f̄)i) = K∗,
where K∗ denotes the dual knot of K, i.e., the core of the filling solid torus
(resp. Fix((f̄)i) = ∅). Thus for each i (1 ≤ i ≤ p− 1) we have Fix((f̄)i) = ∅
or K∗.

Assume further that (K; r) is a Seifert fiber space whose Seifert fibration
is preserved by f̄ . Then we obtain a periodic isomorphism f̂ of the base
orbifold B. Recall that |B| = S2 or RP 2.

4.1. Preliminary lemmas.

Lemma 4.1. Suppose that Fix(f̄) = K∗. If f̂ preserves an orientation of

the base surface |B| = S2 or f̂ is the identity map on |B| = RP 2, then K is

a torus knot.

Proof. Under the assumption in Lemma 4.1, Lemma 3.2 asserts that K∗ is
a fiber in (K; r). Thus S3 − K ∼= (K; r)− K∗ is Seifert fibered, and hence
K is a torus knot in S3. �(Lemma 4.1)
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Lemma 4.2. If K is not a torus knot and Fix(f̄) = K∗, then the period p
is 2.

Proof. If K∗ is a fiber in (K; r), then as in the proof of Lemma 4.1 we see
that K is a torus knot, contradicting the assumption. Therefore K∗ is not a
fiber in (K; r). Let t be a fiber intersecting K∗. Then f̄(t) = t and we have
a periodic diffeomorphism f̄ |t : t→ t. Since f̄ |t fixes a point in t ∩K∗, it is
a reflection and Fix((f̄)2) ⊃ t( �= K∗). This implies that the period p is 2.

�(Lemma 4.2)

Let us suppose that the action of 〈f̄〉 on (K; r) is free, i.e., Fix(f̄ i) = ∅
for i = 1, · · · , p− 1.

Definition (f̂-essential loop). A simple loop c on the base orbifold B
(|B| = S2 or RP 2) is called f̂-essential if
(1) c is two-sided, and hence it separates B;
(2) c does not meet any cone point and does not bound a diskal orbifold
(i.e., a disk with at most one cone point); and
(3) For each i, f̂ i(c) = c or f̂ i(c) ∩ c = ∅; if f̂ i(c) = c, then f̂ i does not
exchange the sides of c.

Lemma 4.3. Suppose that K is a hyperbolic knot and Fix(f̄ i) = ∅ for

i = 1, . . . , p− 1. Then there is no f̂ -essential loop on the base orbifold B of
(K; r).

Proof. To the contrary suppose that there exists an f̂ -essential loop c on B.
Then we have an 〈f̄〉-equivariant vertical incompressible torus T = π−1(c) ⊂
(K; γ), and by [7, Corollary 1.7] γ is an integral slope.

The free action of 〈f〉 on S3 induces a p-fold (unbranched) cyclic covering
ρ : S3 → S3/〈f〉; π1(S3/〈f〉) ∼= Zp. Then we have a new knot Kf = ρ(K) in
S3/〈f〉. Similarly, since the action of 〈f̄〉 on (K; γ) is also free, we have a p-
fold (unbranched) cyclic covering ρ̄ : (K; γ) → (K; γ)/〈f̄〉. Since the Seifert
fibration is invariant under the action of 〈f̄〉, (K; r)/〈f̄〉 admits an induced
Seifert fibration so that the covering map ρ̄ preserves their Seifert fibrations.
Furthermore, (K; r)/〈f̄〉 contains a vertical separating incompressible torus
ρ̄(T ). (Note that by the choice of T , ρ̄(T ) is a torus, not a Klein bottle.)
In particular, since any small Seifert fiber space cannot contain a separating
incompressible torus ([27, VI.13. Example]), (K; r)/〈f̄〉 is not a small Seifert
fiber space.

We remark here that the quotient manifold (K; γ)/〈f̄〉 can be regarded
also as the manifold obtained from S3/〈f〉 by γf -surgery on Kf (⊂ S3/〈f〉)
for some slope γf , which we denote by S3/〈f〉(Kf ; γf).
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Thus we have the diagram:

S3 Dehn surgery on K−−−−−−−−−−−−→ (K; γ)

ρ

⏐⏐1 ⏐⏐1ρ̄
S3/〈f〉 −−−−−−−−−−−−−→

Dehn surgery on Kf

S3/〈f〉(Kf ; γf) = (K; γ)/〈f̄〉

Claim 4.4. The distance, i.e., the minimal geometric intersection number,

between the surgery slope γf and the meridional slope µf is p.

Proof of Claim 4.4. Since Fix(f̄ i) = ∅ for 1 ≤ i ≤ p− 1, the 〈f〉-equivariant
loop α representing the surgery slope γ satisfies that α, f̄(α), · · · , f̄p−1(α)
are mutually disjoint loops. Thus ρ|α : α → ρ(α) is a diffeomorphism,
and ρ|K : K → Kf is a p-fold covering. Since γ is an integral slope, α is
homologous to K. Hence ρ(α), which is a simple loop representing γf , is
homologous to pKf . It follows that the distance between γf and µf is p as
desired. �(Claim 4.4)

Since K is a hyperbolic knot in S3 and S3 − K → S3/〈f〉 − Kf is
unbranched finite covering, S3/〈f〉 −Kf is irreducible, neither toroidal nor
Seifert fibered. Thus Kf is also a hyperbolic knot in S3/〈f〉 ([39]). Applying
[7, Theorem 1.5] to the cyclic surgery slope µf and the toroidal Seifert fibered
surgery slope γf , we see that their distance is 1. Hence by Claim 4.4 the
period p = 1, a contradiction. �(Lemma 4.3)

4.2. Seifert fibered surgeries over RP 2.

The goal in this subsection is to prove the following result, in which we allow
the case where (K; r) has a finite fundamental group.

Theorem 4.5. Let K be a hyperbolic, freely periodic knot. Then (K; r)
cannot be a Seifert fiber space over RP 2.

Proof. Assume for a contradiction that (K; r) is a Seifert fiber space over
RP 2. Then it contains a Klein bottle, and [24] shows that r is an integer
m. (This fact can also be deduced from [6] if |π1| <∞ and [7] if |π1| = ∞.)
Recall from [36] that:
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Lemma 4.6 ([36]). Suppose that (K;m) is a Seifert fiber space of type
RP 2(α1, . . . , αk). Then m = 4x for some nonzero integer x and αi �= αj for

i �= j.

Proof. The fundamental group of (K;m) has a presentation ([27])

〈a, c1, . . . , ck, h | aha−1 = h−1, cihc
−1
i = h, cαi

i = hβi , hb = a2c1 · · ·ck〉

for some integers βi and b; possibly α1 = 1 but αi ≥ 2 for i ≥ 2.
A computation of the determinant of the presentation matrix of the

abelianization shows that |H1((K;m))| = 4α1 . . . αk, i.e., |m| = 4α1 . . .αk.
Putting x = α1 · · ·αk, which is a nonzero integer, the first assertion is proved.

To prove the second assertion, assume for a contradiction that there is
a pair of cone points of the same index; without loss of generality we may
assume that α1 = α2 = α ≥ 2. Putting h = 1, c3 = · · · = ck = 1 and
then abelianizing the group, we obtain a non-cyclic group Zα ⊕ Z2α. This
contradicts the fact that H1((K;m)) is cyclic. �(Lemma 4.6)

Let f be a periodic diffeomorphism of (S3, K) giving the free period of
K. By taking some power fx of f , if necessary, we may assume that fx has
prime period p′ and Fix(fx) = K∗ or Fix((fx)i) = ∅ for i = 1, · · · , p′−1. For
notational simplicity, we still use f and p to denote fx and p′ respectively
so that we suppose that f gives a free period of K of prime period p.

We distinguish two cases depending on whether (K;m) contains at least
two exceptional fibers or not.

Case 1 : (K;m) contains at least two exceptional fibers.
Note that (K;m) contains a vertical incompressible torus. In this case

from Lemma 3.1 (1), we have an 〈f̄〉-invariant Seifert fibration of (K;m)
with the natural projection π : (K;m) → RP 2.

Let us divide into two cases: Fix(f̄) = K∗ or Fix(f̄ i) = ∅ for i =
1, · · · , p− 1.

First assume that Fix(f̄) = K∗. Since K is hyperbolic, by Lemma 4.2 the
period p is 2. Let α ⊂ ∂E(K) be an 〈f〉-equivariant simple loop representing
the surgery slope m. Recall from Lemma 4.6 that m is an even integer.

Claim 4.7. f(α) ∩ α = ∅.

Proof. Since f is a free involution, from the argument in [26, p.180] we see
that there is no 〈f〉-invariant preferred longitude, and hence that f |N(K)

is an involution of Type P4 described in [26]. Therefore we can choose a
diagonal loop δ representing [meridian] + [longitude] so that δ is invariant
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under 〈f〉. This implies that if m is even (resp. odd), then f(α) ∩ α = ∅
(resp. f(α) = α). �(Claim 4.7)

Claim 4.7 would imply that Fix(f̄) = ∅. This contradicts the assumption.
Next suppose that Fix(f̄ i) = ∅ for i = 1, · · · , p − 1. Assume first that

f̂ : RP 2 → RP 2 is the identity map. Then since B contains at least two
exceptional fibers, we have an f̂ -essential loop on B, contradicting Lemma
4.3. Thus f̂ is not the identity map. We distinguish two cases: the period
of f̂ is 2 or greater than 2.

First suppose that f̂ has period 2. Then Fix(f̂) is empty or else consists
of a point Pf and a 1-sided simple loop Cf ([48, p.414]). Let us suppose that
Fix(f̂) = ∅. Since B contains at least two cone points, we can choose one of
them, say x ∈ B. Then there are two cone points x and f̂(x) of the same
index, which would be impossible by Lemma 4.6.

Next we consider the case where Fix(f̂) consists of a point Pf and a
1-sided simple loop Cf . Let x be a (regular) point in Cf , and let D be an
〈f̂〉-invariant disk neighborhood of x. Then f̂ is a reflection on D. Therefore
f̄ reverses an orientation of the fiber t = π−1(x). Thus f̄ |t fixes two points
in t, and hence Fix(f̄) �= ∅, contradicting the assumption.

Finally we consider the case where the period of f̂ is greater than 2.

Claim 4.8. If the period of f̂ is greater than 2, then Fix(f̂) consists of at

most one point Pf .

Proof. To prove the claim, we suppose for a contradiction that Fix(f̂) con-
tains at least two points Pf and Qf .

Consider the universal cover q : S2 → RP 2, and put q−1(Pf) = {x̃, ỹ}.
Let f̃ : S2 → S2 be a lift of f̂ : RP 2 → RP 2 such that f̃(x̃) = x̃. Since the
period of f̃ , which coincides with that of f̂ , is greater than 2 and f̃ has a
fixed point, it is a rotation of S2. Since f̂(Pf ) = Pf and q(ỹ) = Pf , f̃(ỹ)
also covers Pf , hence f̃(ỹ) = x̃ or ỹ. Since f̃(x̃) = x̃, we have f̃(ỹ) = ỹ; thus
Fix(f̃) = {x̃, ỹ}. Let z̃ be a point in S2 such that q(z̃) = Qf . Since Qf �= Pf ,
z̃ �∈ Fix(f̃) and 〈f̃〉-orbit of z̃ consists of more than two points. On the other
hand, since f̂ (Qf) = Qf , any point in 〈f̃〉-orbit of z̃ covers the point Qf ,
hence 〈f̃〉-orbit of z̃ consists of two points, a contradiction. �(Claim 4.8)

By Claim 4.8, Fix(f̂) consists of at most one point, while B contains at
least two cone points, because that (K;m) contains at least two exceptional
fibers. It follows that there is a cone point x which is not in Fix(f̂). Then
there are two cone points having the same index. This contradicts Lemma
4.6. It follows that (K;m) cannot be a Seifert fiber space over RP 2 with at
least two exceptional fibers.
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Case 2 : (K;m) contains at most one exceptional fiber.
Since (K;m) is a Seifert fiber space over RP 2 with at most one excep-

tional fiber, which is not RP 3�RP 3, (K;m) admits also a Seifert fibration
over S2 with at most three exceptional fibers of indices 2, 2, x(≥ 1). Since
(K;m) �∼= S2 × S1, it has a finite fundamental group.

We divide into two cases: Fix(f̄) = K∗ or Fix(f̄ i) = ∅ for i = 1, · · · , p−1.
Let us assume that Fix(f̄) = K∗. Since dimFix(f̄) = 1, by Lemma 3.1

(2) an 〈f̄〉-invariant Seifert fibration of (K;m) exists. Then the result follows
by applying the same argument in Case 1.

Now suppose that Fix(f̄ i) = ∅ for i = 1, · · · , p − 1. As in the proof of
Lemma 4.3, Kf is a hyperbolic knot in the quotient manifold S3/〈f〉 whose
fundamental group is a cyclic group Zp. Furthermore, since (K;m) has
a finite fundamental group and ρ̄ : (K;m) → (K;m)/〈f̄〉 is (unbranched)
p-fold covering, (K;m)/〈f̄〉 has also a finite fundamental group.

It should be noted here that since π1((K;m)) is finite and the action
of 〈f̄〉 on (K;m) is free, we cannot apply either Meeks-Scott’s result [31,
Theorem 2.2] or [35, Lemma 5.7].

Claim 4.9. (K;m)/〈f̄〉 is a lens space ( �∼= S2×S1) or a prism manifold (i.e.,
a Seifert fiber space of type S2(2, 2, x) for some x ≥ 2).

Proof. First we recall the diagram below (see the proof of Lemma 4.3), where
the slope γ corresponds with the integer m.

S3 Dehn surgery on K−−−−−−−−−−−−→ (K; γ)

ρ

⏐⏐1 ⏐⏐1ρ̄
S3/〈f〉 −−−−−−−−−−−−−→

Dehn surgery on Kf

S3/〈f〉(Kf ; γf) = (K; γ)/〈f̄〉

Since the meridional slope µf of Kf is a cyclic surgery slope and γf is a
finite surgery slope of Kf , [6, Theorem 1.1 (2)], together with the argument
in the proof of Lemma 4.3, shows that the period p is 2.

Thus f̄ is a free involution on (K; γ), which is a Seifert fiber space of type
S2(2, 2, x) (x ≥ 1) excluding S2 × S1. We can then apply [44, Theorem 8]
to conclude that (K; γ)/〈f̄〉 is a lens space ( �∼= S2 ×S1) or a prism manifold.

�(Claim 4.9)

If (K; γ)/〈f̄〉 is a lens space, then the cyclic surgery theorem [11] shows
that the period p = 1, a contradiction. Assume that (K; γ)/〈f̄〉 is a prism
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manifold. Then its fundamental group is a D-type finite group in [6]([44,
p.131]). Applying [6, Thoerm 1.5 (1)] to the cyclic surgery slope µf and
the D-type finite surgery slope γf of Kf , we see that their distance, which
coincides with the period p, must be 1, a contradiction. Thus (K;m) cannot
be a Seifert fiber space over RP 2 with at most one exceptional fiber.

This finishes the proof of Theorem 4.5. �(Theorem 4.5)

4.3. Surgeries on knots with Type F symmetry.

In this subsection we prove:

Theorem 4.10. Let K be a hyperbolic, freely periodic knot with period
p > 2. Then (K; r) cannot be a toroidal Seifert fiber space.

Before proving the theorem, we observe the following. Recall from The-
orem 4.5 that the base surface of (K; r) is the 2-sphere.

Lemma 4.11. If (K; r) is a small Seifert fiber space which contains an in-
compressible torus, then K is a trefoil knot and r = 0.

Proof. Let us assume that (K; r) has at most three exceptional fibers and
contains an incompressible torus T . Then (K; r) has exactly three excep-
tional fibers and T is non-separating ([27, VI.13]). Hence r = 0 and (K; r)
is a torus bundle over S1. From [17, Corollary 8.23], we see that K is a
trefoil knot or the figure-eight knot. However 0-surgery on the figure-eight
knot does not yield a Seifert fiber space, hence K is a trefoil knot and r = 0.

�(Lemma 4.11)

It follows that if (K; r) is a toroidal Seifert fiber space over S2 for a hy-
perbolic knot K, then it contains more than three exceptional fibers, equiv-
alently the base orbifold contains more than three cone points.

Proof of Theorem 4.10. Let f be a diffeomorphism of S3 giving the free
period p(> 2) of K, and that f̄ is a diffeomorphism of (K; r) of period
p induced from f . Suppose for a contradiction that (K; r) is a toroidal
Seifert fiber space. By Lemma 3.1 (1) we have a Seifert fibration which is
invariant under 〈f̄〉, and f̄ induces an isomorphism f̂ on the base orbifold B
(|B| = S2). There are four cases to consider (see Section 3):

(1) f̂ : S2 → S2 is the identity map,

(2) f̂ : S2 → S2 is nontrivial rotation,
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(3) f̂ : S2 → S2 is a reflection, or

(4) f̂ : S2 → S2 is orientation reversing and Fix(f̂) = ∅.

Case (1) : f̂ is the identity map. By taking some power of f , we may assume
that fx has a prime period p′ ≥ 2, so that Fix(fx) = K∗ or Fix((fx)i) = ∅
for 1 ≤ i ≤ p′ − 1. Since f̂ = id., f̂x = f̂x = id.. If Fix(fx) = K∗, then
by Lemma 4.1 K is a torus knot, a contradiction. If Fix((fx)i) = ∅ for
1 ≤ i ≤ p′ − 1, then since f̂x = id., there exists an f̂x-essential loop on B.
This contradicts Lemma 4.3.

Case (2) : f̂ is a nontrivial rotation. The base orbifold B contains more
than three cone points (Lemma 4.11), while Fix(f̂) consists of two points.
So there is a cone point z which is not belonging to Fix(f̂). If the period of
f̂ is greater than 2, then there are three cone points of the same index. This
is impossible by the following lemma.

Lemma 4.12. Assume that (K; r) is a Seifert fiber space over S2. Then
the base orbifold B contains at most two cone points of the same index.

Proof. Suppose that (K; r) is a Seifert fiber space of type
S2(α1, α2, α3, . . . , αk). Then the fundamental group π1((K; r)) has a pre-
sentation ([27])

< c1, c2, c3, . . . , ck, h | cihc−1
i h−1 = 1, cαi

i = hβi , hb = c1c2c3 · · · ck >

for some integers βi and b. Adding the relation h = 1 and abelianizing, we
have a presentation

< c1, c2, c3, . . . , ck | αici = 0, c1 + c2 + c3 + · · ·+ ck = 0 > .

Now assume for a contradiction, without loss of generality, that α1 = α2 =
α3 = α ≥ 2. Then adding further relations c4 = · · · = ck = 0, we have
< c1, c2, c3 | αci = 0, c1+c2+c3 = 0 >∼=< c1, c2 | αc1 = αc2 = 0 >∼= Zα⊕Zα.
This contradicts that H1((K; r)) being cyclic. Thus (K; r) contains at most
three exceptional fibers of the same index and the result follows. �(Lemma
4.12)

Henceforth f̂ is a nontrivial rotation of order 2. Then since f̄p = id.,
we have f̂p = id. and hence p is even. Consider fx for some x with x|p
so that fx has a prime period p′ and Fix(fx) = K∗ or Fix((fx)i) = ∅ for
1 ≤ i ≤ p′ − 1. We note here that x > 1; for otherwise, the period p of
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f = fx is even prime, hence p = 2, contradicting the assumption. Now we
divide into two cases depending on whether x is even or odd. If x is even,
then since f̂2 = id., f̂x = f̂x = id.. Let us apply the argument in Case
(1) to fx to get a contradiction. If x is odd, then since x > 1 and x|p, the
period p is not of the form 2n. Hence we can choose fy so that fy has an
odd prime period q ≥ 3; since the period is prime, we have Fix(fy) = K∗ or
Fix((fy)i) = ∅ for 1 ≤ i ≤ q − 1 for fy.

Claim 4.13. f̂y : S2 → S2 is the identity map.

Proof. Since (fy)q = id., we have (f̂y)q = id.. On the other hand, (f̂y)q =
(f̂ q)y = f̂y = f̂y, because f̂2 = id. and q is odd. Thus f̂y = (f̂y)q = id..

�(Claim 4.13)

From Lemma 4.1, we have the only possibility: Fix((fy)i) = ∅ for 1 ≤
i ≤ q − 1. Then Claim 4.13 assures an existence of an f̂y-essential loop on
B. This contradicts Lemma 4.3.

Case (3) : f̂ is a reflection. Let x be a point in Fix(f̂). Then f̄ induces
an action on the fiber t = π−1(x). Since f̂ is a reflection, f̄ |t reverses an
orientation of t. This implies that f̄ has a nonempty fixed point set. Thus
Fix(f̄) = K∗. Then since K is not a torus knot, from Lemma 4.2, we see
that the period p = 2, contradicting the assumption.

Case (4) : f̂ is orientation reversing and Fix(f̂) = ∅. First suppose that the
period of f̂ is greater than 2. Then we have the following, which contradicts
Lemma 4.12.

Claim 4.14. There exist three cone points of the same index.

Proof. Since f̂2 is orientation preserving and f̂2 �= id., Fix(f̂2) consists of
two points. On the other hand, there are more than three cone points on S2

(Lemma 4.11), so we can take a cone point z ∈ S2−Fix(f̂2). Then it is easy
to see that z, f̂(z) and f̂2(z) are distinct from each other and they have the
same index. �(Claim 4.14)

Therefore f̂ has period 2, i.e., f̂ is an antipodal map. Let us consider fx

which has a prime period p′ ≥ 2 so that Fix(fx) = K∗ or Fix((fx)i) = ∅ for
1 ≤ i ≤ p′ − 1. Note that f̂x = f̂x = id. (if x is even) or f̂x = f̂x = f̂ (if x
is odd).

First suppose that Fix(fx) = K∗. Then Fix(f̂x) �= ∅, thus f̂x �= f̂ ,
and hence f̂x = id.. From Lemma 4.1, we see that K is a torus knot,
contradicting the assumption.
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Next suppose that Fix((fx)i) = ∅ for 1 ≤ i ≤ p′ − 1. In either case
f̂x = id. or f̂x = f̂ , we can find an f̂x-essential loop c so that f̂x(c) = c or
f̂x(c) ∩ c = ∅, respectively. This then contradicts Lemma 4.3.

The proof of Theorem 4.10 is now completed. �(Theorem 4.10)

4.4. Surgeries on knots with Type SF symmetry.

We are ready to prove:

Theorem 4.15. Let K be a hyperbolic knot with a semi-free period p > 2.
Then (K; r) cannot be a toroidal Seifert fiber space.

Proof. Let f : (S3, K) → (S3, K) be an orientation preserving periodic
diffeomorphism such that Fix(f) = ∅ but Fix(f i) �= ∅ for some i (1 < i < p).
Suppose for a contradiction that (K; r) is a toroidal Seifert fiber space, and
choose a Seifert fibration of (K; r) which is invariant under 〈f̄〉 (Lemma 3.1
(1)).

Note that f i gives a cyclic period of K. From [36, Theorem 1.3], we see
that (K; r) cannot be a Seifert fiber space over RP 2. Thus in the following,
we assume that the base surface |B| is S2.

Since f i gives a cyclic period of the hyperbolic knot K, we have:

Claim 4.16. f̂ i : S2 → S2 reverses an orientation of S2.

Proof. Recall from [35, Proposition 5.1] that a circle L = Fix(f i) ⊂ S3

cannot become a fiber in (K; r). (We can regard L ⊂ (K; r), because
L ⊂ E(K).) Since L ⊂ Fix(f i), Lemma 3.2(1) shows that f̂ i reverses an
orientation of |B| = S2. �(Claim 4.16)

It follows from Claim 4.16 that f̂ reverses an orientation of S2 and i is
an odd integer. We note that since i > 1, we have i ≥ 3.

Claim 4.17. f2 : (S3, K) → (S3, K) gives a free period of K with period i

which is greater than 2.

Proof. First we show that f2 has period i ≥ 3. By Theorem 2.4, the periodic
diffeomorphism f i has period 2. Hence f2i = (f i)2 = id., so we have 2i = pk
for some integer k ≥ 1. Since i < p, we have k = 1, i.e., p = 2i. This means
that f2 has period i ≥ 3.

Next we show that Fix((f2)j) = ∅ for 1 ≤ j ≤ i − 1. Suppose for a
contradiction that Fix((f2)x) �= ∅ for some x such that 1 ≤ x ≤ i− 1. Then
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f2x = (f2)x gives a cyclic period of K, and again by Theorem 2.4, the period
of f2x is 2, and hence, (f2)2x = (f2x)2 = id.. On the other hand, since f2

has period i, we have i|2x, which also implies i|x, because i(≥ 3) is odd.
This contradicts the assumption 1 ≤ x ≤ i − 1. It follows that f2 gives a
free period of K with period i ≥ 3. �(Claim 4.17)

Then Claim 4.17 contradicts Theorem 4.10. �(Theorem 4.15)

5. Strong inversions and Seifert fibered surgeries.

In this section we study Seifert fibered surgeries on strongly invertible knots.
Let g : S3 → S3 be a strong inversion of K with Fix(g) = Lg and let

N (K) be a 〈g〉-invariant tubular neighborhood of K in S3. Then we can
extend g|S3−intN(K) over (K; r) to get an involution ḡ : (K; r) → (K; r).
Since Lg intersects K in two points, Lg ∩ E(K) consists of two properly
embedded arcs c1 and c2 in E(K). On the other hand, ḡ fixes two properly
embedded arcs c′1 and c′2 in the filling solid torus; each c′i (i = 1, 2) intersects
K∗ (the core of the filling solid torus) in a single point. Thus the fixed point
set Fix(ḡ) consists of a single circle L′

g or two circles L′
g ∪ L′′

g depending on
how ci (i = 1, 2) and c′j (j = 1, 2) are connected in (K; r).

In what follows we assume that (K; r) is a Seifert fiber space over S2.
By Lemma 3.1 we choose a Seifert fibration of (K; r) which is preserved by
ḡ so that we can obtain an isomorphism ĝ on the base orbifold B.

Here we introduce,

Condition (ĝ) The induced automorphism ĝ of the base surface |B| = S2

is orientation preserving.

If we have Condition (ĝ), then by Lemma 3.2, Fix(ḡ) consists of fibers in
(K; r). The goal in this section is proving the following result.

Proposition 5.1. Assume that Condition (ĝ) holds.

(1) If (K; r) contains more than three exceptional fibers, then Fix(ḡ) con-

sists of exactly two components L′
g and L′′

g , and both L′
g and L′′

g are
regular fibers in (K; r).

(2) If (K; r) is a small Seifert fiber space such that indices of exceptional

fibers are distinct from each other, then a component of Fix(ḡ) is an
exceptional fiber of index 2.

Let ψ̄ : (K; r) → (K; r)/〈ḡ〉 be a 2-fold cyclic branched covering induced
from the action of 〈ḡ〉 on (K; r).
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Lemma 5.2. The quotient space (K; r)/〈ḡ〉 is diffeomorphic to S3, and ψ̄
branches along (possibly exceptional) fibers in some Seifert fibration of S3

and preserves Seifert fibrations.

Proof. The Montesinos trick [38] ([1]) shows that the quotient space
(K; r)/〈ḡ〉 can be obtained from S3 = S3/〈g〉 by performing an untangle
surgery, and hence (K; r)/〈ḡ〉 is also the 3-sphere (diagram below).

S3 Dehn surgery−−−−−−−−→ (K; r)

/〈g〉
⏐⏐1 ⏐⏐1/〈ḡ〉

S3/〈g〉 ∼= S3 −−−−−−−−−−→
untangle surgery

(K; r)/〈ḡ〉 ∼= S3

Moreover since ḡ preserves the Seifert fibration of (K; r) and Fix(ḡ) con-
sists of fibers (Condition (ĝ) and Lemma 3.2), the image of each fiber in
(K; r) by ψ̄ is a circle, so that S3 ∼= (K; r)/〈ḡ〉 is a union of these pairwise
disjoint circles F . Then F defines a Seifert fibration of S3 ∼= (K; r)/〈ḡ〉. In
the following we give a sketch of the proof of this fact.

Let t̃ be a fiber in (K; r) and N (t̃) a 〈ḡ〉-equivariant fibered tubular
neighborhood of t̃. If ḡ(t̃) �= t̃, then (N (t̃) ∪ ḡ(N (t̃)))/〈ḡ〉 is the required
fibered neighborhood of t = ψ̄(t̃). Suppose that ḡ(t̃) = t̃; then we have also
ḡ(N (t̃)) = N (t̃). It should be noted here that since Condition (ĝ) holds, ḡ|t̃
preserves an orientation of t̃. Let us take a finite cyclic covering S1 ×D2 of
N (t̃) so that the preimage of each fiber inN (t̃) is S1×{x} ⊂ S1×D2 for some
x ∈ D2. Let Γ be the group of all the diffeomorphisms of S1 ×D2 which lift
〈ḡ〉. Clearly Γ is a finite group and (S1 ×D2)/Γ = N (t̃)/〈ḡ〉. Furthermore
since 〈ḡ〉 preserves the Seifert fibration of N (t̃), Γ also preserves the Seifert
fibration of S1×D2. Let D be a Γ-equivariant meridian disk of S1×D2 ([32]);
we may assume that D intersects each fiber S1 × {x} transversely. Then by
taking a conjugation by a diffeomorphism of the form id.× η of S1 ×D2, we
may assume that the induced action of Γ on the second factor D2 is a finite
cyclic action generated by a standard rotation at the center (0, 0) ∈ D2.
Then it turns out that N (t̃)/〈ḡ〉 = (S1 × D2)/Γ is the required fibered
neighborhood of t = ψ̄(t̃) such that ψ̄|N(t̃) : N (t̃) → N (t̃)/〈ḡ〉 preserves
Seifert fibrations. �(Lemma 5.2)

The next lemma describes a relation between indices of fibers t̃ and ψ̄(t̃).

Lemma 5.3. Let t̃ be a fiber in (K; r) which covers a fiber t in (K; r)/〈ḡ〉 ∼=
S3. Then we have:
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(1) If ḡ(t̃) �= t̃, then index(t̃) = index(t).

(2) If ḡ(t̃) = t̃ and ḡ|t̃ : t̃ → t̃ is a rotation, then index(t̃) = index(t) or
index(t)

2 .

(3) If ḡ(t̃) = t̃ and ḡ|t̃ : t̃→ t̃ is the identity map, then index(t̃) = index(t)
or 2index(t).

Proof. If (1) happens, then (N (t̃) ∪ ḡ(N (t̃)))/〈ḡ〉 = N (t̃) gives a fibered
neighborhood N (t) of t in (K; r)/〈ḡ〉. Hence index(t̃) = index(t).

To prove (2) and (3), let N (t̃) be a 〈ḡ〉-invariant fibered tubular neigh-
borhood of t̃ in (K; r). Then we have ψ̄|N(t̃) : N (t̃) → N (t̃)/〈ḡ〉 = N (t),
which is fiber preserving. Let µ̃, λ̃ (resp. µ, λ) be a meridian-longitude pair
of N (t̃) (resp. N (t)). A regular fiber on ∂N (t̃) represents pµ̃+ qλ̃ for some
relatively prime integers p and q(≥ 1), where q is the index of t̃. (Note that
t̃ is a regular fiber if and only if q = 1. )

If (2) happens, then ψ̄(pµ̃+ qλ̃) = pµ+ q(2λ+ xµ) = (p+ qx)µ+ 2qλ =
(p+ qx, 2q){ p+qx

(p+qx,2q)µ+ 2q
(p+qx,2q)λ} for some x. Since p and q are relatively

prime, (p+ qx, 2q) = 1 or 2, and hence the index(t) = 2q
(p+qx,2q)

is 2q or q.
If (3) occurs, then we have

ψ̄(pµ̃+ qλ̃) = 2pµ+ q(λ+ xµ)
= (2p+ qx)µ+ qλ

= (2p+ qx, q)
{

2p+ qx

(2p+ qx, q)
µ+

q

(2p+ qx, q)
λ

}
for some x. Since p and q are relatively prime, (2p+ qx, q) = (2, q). Hence
the index(t) = q

(2p+qx,q) = q
(2,q) = q or q

2 depending on whether q is odd or
even. �(Lemma 5.3)

In particular, we have:

Lemma 5.4. Let t be a regular fiber in S3 = (K; r)/〈ḡ〉 and t̃ a fiber in
(K; r) such that ψ̄(t̃) = t. Then the index of t̃ is at most two; if the index
is two, then t is a component of Fix(ḡ)/〈ḡ〉 and ψ̄−1(t′) is connected for a

regular fiber t′ near t.

Proof. Since t is a regular fiber, i.e., index(t) = 1, the first assertion follows
directly from Lemma 5.3. Furthermore, t̃ can be an exceptional fiber only
when we have (3) with q = 2 in the above lemma. This means that t̃ is a
component of Fix(ḡ) and t = ψ̄(t̃) is a component of Fix(ḡ)/〈ḡ〉. To observe
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the last assertion, let t̃′(⊂ ∂N (t̃)) be a regular fiber representing pµ̃ + 2λ̃
which covers a regular fiber t′(⊂ ∂N (t)). The argument in the proof of
Lemma 5.3 shows that ψ̄(pµ̃ + 2λ̃) = 2{(p + x)µ + λ}. Hence the regular
fiber t̃′ doubly covers the regular fiber t′, and thus ψ̄−1(t′) is connected.

�(Lemma 5.4)

Proof of Proposition 5.1. As in the previous lemmas, let ψ̄ : (K; r) →
(K; r)/〈ḡ〉 = S3 be the branched covering projection, and let ψ be a restric-
tion of ψ̄ to (K; r)−Fix(ḡ), so that ψ is an unbranched covering projection.

Since S3 has a Seifert fibration over S2 (with at most two exceptional
fibers), the base surface of X = (K; r)/〈ḡ〉 − Fix(ḡ)/〈ḡ〉 is a once or twice
punctured sphere depending on whether Fix(ḡ) = L′

g or L′
g ∪L′′

g . If Fix(ḡ) =
L′
g, then X contains at least two exceptional fibers, and if Fix(ḡ) = L′

g ∪L′′
g ,

then X contains at least one exceptional fiber, for otherwise (K; r) would
be a union of two solid tori, i.e., a lens space (possibly S3 or S2 × S1), a
contradiction.

Let us prove Proposition 5.1 (1). First assume that Fix(ḡ) = L′
g. Then

from Lemma 5.2, we see that (K; r) is a 2-fold cyclic branched cover of S3

branched along the (nontrivial) torus knot L′
g/〈ḡ〉, which is a regular fiber.

Let c1, c2 be exceptional fibers of indices p, q in (K; r)/〈ḡ〉 ∼= S3; p and q
are relatively prime.

Here we recall the following from covering space theory.

Claim 5.5. Let c be a knot in X = (K; r)/〈ḡ〉 − L′
g/〈ḡ〉. Then c can be

lifted to (K; r)− L′
g (i.e., ψ−1(c) consists of two components) if and only if

the linking number �k(c, L′
g/〈ḡ〉) is even.

Hence if (K; r) has more than three exceptional fibers, then by Lemma
5.4 there are two possibilities:
(i) L′

g is an exceptional fiber and at least one of ψ−1(c1) and ψ−1(c2) consists
of two components, or
(ii) L′

g is a regular fiber and both ψ−1(c1) and ψ−1(c2) consist of two com-
ponents.

If (i) happens, then by Lemma 5.4, ψ−1(t′) is connected for a regular
fiber t′ near L′

g/〈ḡ〉. This implies that �k(t′, L′
g/〈ḡ〉) = pq is odd by Claim

5.5, hence both p and q are odd integers. It then follows from Claim 5.5,
ψ−1(ci) consists of only one component for i = 1, 2, a contradiction.

If (ii) happens, then both �k(c1, L′
g/〈ḡ〉) = q and �k(c2, L′

g/〈ḡ〉) = p are
even integers by Lemma 5.5, which contradicts the fact that p and q are
relatively prime.
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Next we consider the case where Fix(ḡ) = L′
g ∪ L′′

g . Recall that
S3 = (K; r)/〈ḡ〉 has at most two exceptional fibers, while X = (K; r)/〈ḡ〉 −
(L′

g/〈ḡ〉 ∪ L′′
g/〈ḡ〉) contains at least one exceptional fiber in S3 = (K; r)/〈ḡ〉

(see the second paragraph of the proof of Proposition 5.1). Thus we have
the following two possibilities:
(i) X has one exceptional fiber c1; in this case at least one of L′

g/〈ḡ〉 and
L′′
g/〈ḡ〉 is a regular fiber, or

(ii) X has two exceptional fibers c1 and c2; in this case both L′
g/〈ḡ〉 and

L′′
g/〈ḡ〉 are regular fibers.

We recall again the following from covering space theory.

Claim 5.6. Let c be a knot in X = (K; r)/〈ḡ〉 − (L′
g/〈ḡ〉 ∪L′′

g/〈ḡ〉). Then c

can be lifted to (K; r)− (L′
g ∪L′′

g) (i.e., ψ−1(c) consists of two components)
if and only if �k(c, L′

g/〈ḡ〉) + �k(c, L′′
g/〈ḡ〉) is even.

Suppose that (i) happens. Without loss of generality, we assume that
L′
g/〈ḡ〉 is a regular fiber.

Since (K; r) contains more than three exceptional fibers and any fiber
in (K; r) which covers a regular fiber in X is also a regular fiber (Lemma
5.4), both L′

g and L′′
g are exceptional fibers and ψ−1(c1) consists of two

components.
Let c be a fiber in S3 = (K; r)/〈ḡ〉 which is a core of a solid torus

S3 − intN (c1); c is possibly a regular fiber. Note that if S3 − intN (c1) is
exceptionally fibered, then necessarily c �= L′

g/〈ḡ〉, and if S3 − intN (c1) is
regularly fibered, then we choose c so that c �= L′

g/〈ḡ〉. We now consider two
subcases: L′′

g/〈ḡ〉 = c or L′′
g/〈ḡ〉 �= c.

First suppose that L′′
g/〈ḡ〉 = c; then �k(c1, L′′

g/〈ḡ〉) = �k(c1, c) = 1,
�k(L′

g/〈ḡ〉, L′′
g/〈ḡ〉) = �k(L′

g/〈ḡ〉, c) = q for some integer q(≥ 2), which
coincides with the index of c1. Finally we put �k(c1, L′

g/〈ḡ〉) = p(≥ 1),
which coincides with the index of L′′

g/〈ḡ〉 = c. Since L′
g is an excep-

tional fiber, by Lemma 5.4 ψ−1(t′) is connected for a regular fiber t′

near L′
g/〈ḡ〉. Thus �k(t′, L′

g/〈ḡ〉) + �k(t′, L′′
g/〈ḡ〉) = pq + q = (p + 1)q is

odd (Claim 5.6). On the other hand, since ψ−1(c1) has two components,
�k(c1, L′

g/〈ḡ〉) + �k(c1, L′′
g/〈ḡ〉) = p+ 1 is even (Claim 5.6). This is a contra-

diction.
Next suppose that L′′

g/〈ḡ〉 �= c. Then c is contained in X and hence it
is a regular fiber. We note that since fibers other than c and c1 are regular
fibers in S3 = (K; r)/〈ḡ〉, L′′

g/〈ḡ〉 is also a regular fiber. It follows that
�k(c1, L′

g/〈ḡ〉) = �k(c1, L′′
g/〈ḡ〉) = 1, which coincides with the index of c. We

have �k(c, L′
g/〈ḡ〉) = �k(c, L′′

g/〈ḡ〉) = q(≥ 2), which coincides with the index
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of c1. Since L′
g is an exceptional fiber, by Lemma 5.4 ψ−1(t′) is connected for

a regular fiber t′ near L′
g/〈ḡ〉. Thus �k(t′, L′

g/〈ḡ〉)+�k(t′, L′′
g/〈ḡ〉) = q+q = 2q

would be odd (Claim 5.6), a contradiction.
Let us assume that (ii) happens. We put �k(c1, L′

g/〈ḡ〉) = p and
�k(c2, L′

g/〈ḡ〉) = q. Then p coincides with the index of c2 and q coincides with
that of c1; we have also �k(c1, L′′

g/〈ḡ〉) = p and �k(c2, L′′
g/〈ḡ〉) = q. Let t′ be a

regular fiber near L′
g/〈ḡ〉. Since �k(t′, L′

g/〈ḡ〉) = pq and �k(t′, L′′
g/〈ḡ〉) = pq,

�k(t′, L′
g/〈ḡ〉) + �k(t′, L′′

g/〈ḡ〉) = 2pq. Hence by Lemma 5.4 and Claim 5.6,
L′
g is a regular fiber. Similarly L′′

g is a regular fiber.
This completes the proof of Proposition 5.1(1).
(2) If two exceptional fibers in (K; r) cover the same exceptional fiber in

S3, then they have the same index. Since (K; r) contains three exceptional
fibers whose indices are distinct from each other and for any Seifert fibration
of S3 there are at most two exceptional fibers, there exists an exceptional
fiber t̃ in (K; r) which covers a regular fiber t. Then by Lemma 5.4 the
index of t̃ is two and t is a component of Fix(ḡ)/〈ḡ〉, and hence t̃ must be a
component of Fix(ḡ). This establishes Proposition 5.1 (2) �(Proposition
5.1)

6. Non-cyclic actions before/after Dehn surgeries.

Throughout this section, we assume that K is a hyperbolic knot in S3, but
not assume that (K; r) is Seifert fibered.

6.1. Knots with Type I-C symmetry.

Assume that K has Type I-C symmetry. Hence we have a periodic diffeo-
morphism f realizing the cyclic period 2 and a strong inversion g such that
they generate a finite subgroup G = 〈f, g〉 ⊂ Diff∗(S3, K). Since h = g ◦ f
leaves K invariant but reverses an orientation of K and h is periodic (be-
cause 〈f, g〉 is finite), h2 fixes K pointwisely. Thus by the Smith conjecture
[39], h2 is the identity map and so h is also a strong inversion of K. Hence
g ◦ f = (g ◦ f)−1 = f−1 ◦ g−1 = f ◦ g and G = 〈f, g〉 is a dihedral group
D2

∼= Z2 ⊕ Z2 of order 4. From the commutativity of f and g, we have
f(Fix(g)) = Fix(g) and g(Fix(f)) = Fix(f). In the following, we write
Lf = Fix(f), Lg = Fix(g) and Lh = Fix(h), respectively.

Let us then consider the group action on the surgered manifold (K; r)
induced from G action on (S3, K). Let N (K) be a G-invariant tubular
neighborhood of K in S3. The restrictions f |E(K) and g|E(K) define a D2-
action on E(K). Then we can extend f |E(K) and g|E(K) over (K; r) so that
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each extension f̄ , ḡ : (K; r) → (K; r) has period 2 and they generate a
subgroup Ḡ ⊂ Diff((K; r)) isomorphic to G ∼= D2. Since Lf is contained in
E(K), Lf can be regarded as a circle in (K; r). To avoid a confusion, denote
the image of Lf in (K; r) by L′

f . Recall from the beginning of Section 5 that
the fixed point set Fix(ḡ) consists of a single circle L′

g or two disjoint circles
L′
g∪L′′

g in (K; r). Similarly Fix(h̄) consists of a single circle L′
h or two circles

L′
h ∪ L′′

h.
Then we have:

Lemma 6.1. The following (1), (2) and (3) are equivalent.

(1) Fix(f̄) = L′
f ∪K∗ (resp. Fix(f̄) = L′

f ).

(2) Fix(ḡ) = L′
g ∪ L′′

g (resp. Fix(ḡ) = L′
g).

(3) Fix(h̄) = L′
h ∪ L′′

h (resp. Fix(h̄) = L′
h).

Proof. We begin by showing:

Claim 6.2. Lf ∩ Lg = Lf ∩ Lh and they consist of two points P and Q.

Proof. First we show that Lf ∩ Lg consists of two points P,Q. Suppose
that Lf ∩ Lg = ∅. Since g(Lf) = Lf , g defines a cyclic period of the trivial
knot Lf , and hence Lf ∪Lg is a Hopf link in S3. Let Vf be an 〈h〉-invariant
tubular neighborhood of Lf ; then Vg = S3−intVf is an 〈h〉-invariant tubular
neighborhood of Lg. Referring the classification of semi-faithful involutions
of a solid torus [26], h has no fixed points on Vf and Vg, thus h is a free
involution. This is a contradiction. Hence Lf ∩ Lg �= ∅. It follows that the
periodic map g|Lf

: Lf → Lf reverses the orientation of Lf , otherwise g|Lf

is the identity map. Thus g|Lf
fixes exactly two points in Lf , i.e., Lf ∩ Lg

consists of two points P,Q. (Note that Lf and Lg are not tangent at both P
and Q. Because that f is the identity map on Lf and an reflection on Lg.)

Similarly Lf ∩ Lh consists of two points. Since h = g ◦ f fixes P and Q,
Lh contains P and Q. This implies that Lf ∩ Lh = {P, Q}. �(Claim 6.2)

Recall that Lg ∩ E(K) consists of two arcs c1 and c2. If c1 � P,Q, then
f |c1 is the identity, contradicting the fact Lf ∩ Lg = {P,Q} (Claim 6.2).
Hence, without loss of generality, we assume c1 � P and c2 � Q. This then
implies that if Fix(ḡ) = L′

g ∪ L′′
g , then we may assume that L′

g � P and
L′′
g � Q. Similarly if Fix(h̄) = L′

h ∪L′′
h, we assume that L′

h � P and L′′
h � Q.

Claim 6.3. f̄ leaves each component of Fix(ḡ) and Fix(h̄) invariant.
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Proof. The commutativity f̄ ◦ ḡ = ḡ ◦ f̄ implies f̄(Fix(ḡ)) = Fix(ḡ). If Fix(ḡ)
consists of two components L′

g, L′′
g , then since L′

g � P , L′′
g � Q, and P , Q

are fixed by f̄ , f̄(L′
g) = L′

g and f̄(L′′
g) = L′′

g , as desired. The same argument
shows that f̄ leaves each component of Fix(h̄) invariant. �(Claim 6.3)

Let us assume that Fix(f̄) = L′
f ∪ K∗. If Fix(ḡ) consists of a single

component L′
g, then from Lemma 6.3, we can consider an involution f̄ |L′

g
:

L′
g → L′

g. Since L′
g intersects L′

f in two points P , Q and L′
g intersects K∗ in

two points, L′
g intersect Fix(f̄) = L′

f ∪K∗ in four points. Hence f̄ |L′
g

fixes
at least four points and so it must be the identity map. Hence L′

g ⊂ Fix(f̄),
a contradiction. Thus Fix(ḡ) = L′

g ∪ L′′
g . In the same manner we can show

that Fix(h̄) = L′
h ∪ L′′

h.
Next assume that Fix(f̄) = L′

f , i.e., f̄ fixes L′
f pointwisely but f̄ is a

free involution on K∗. Suppose for a contradiction that Fix(ḡ) consists of
two components L′

g and L′′
g . Then L′

g intersects L′
f at P and intersects

K∗ in exactly one point. We recall that f̄(L′
g) = L′

g (Lemma 6.3). Thus
f̄ (L′

g ∩K∗) = L′
g ∩K∗, and hence f̄ has a fixed point on K∗, contradicting

the fact that f̄ is free on K∗. Thus Fix(ḡ) = L′
g. By the same argument

we can show that Fix(h̄) = L′
h. This completes the proof of Lemma 6.1.

�(Lemma 6.1)

6.2. Knots with Type I-F symmetry.

Let K be a knot with Type I-F symmetry. Then we have a periodic diffeo-
morphism f realizing the free period 2 and a strong inversion g such that
G = 〈f, g〉 is a finite subgroup of Diff∗(S3, K). As in the previous subsec-
tion, h = g ◦ f is also a strong inversion of K and G = 〈f, g〉 is a dihedral
group D2

∼= Z2 ⊕ Z2 of order 4. Choosing a G-invariant tubular neighbor-
hood N (K) of K in S3, restrictions f |E(K) and g|E(K) define a finite group
action on E(K). Then we can extend f |E(K) and g|E(K) over (K; r) so that
extensions f̄ and ḡ : (K; r) → (K; r) generate a subgroup Ḡ ⊂ Diff((K; r))
which is isomorphic to G. Since f has period 2, Fix(f̄) = K∗ or Fix(f̄) = ∅.
Recall that Fix(ḡ) = L′

g or L′
g ∪ L′′

g , and that Fix(h̄) = L′
h or L′

h ∪ L′′
h.

7. Reflections on base orbifolds.

Let K be a knot with Type I-C or I-F symmetry. Then we have two in-
volutions f and g; f gives the cyclic or free period 2 and g is a strong
inversion. We use notation, G, h, f̄, ḡ, Ḡ, established in Subsections 6.1 and
6.2. Assume further that Ḡ preserves a Seifert fibration of (K; r). Then
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each element ϕ̄ ∈ Ḡ induces an orbifold isomorphism ϕ̂ on the base orbifold
B. Note the following relations: ĥ = ĝ ◦ f̂ , f̂2 = ĝ2 = ĥ2 = id., which
follow from the relations h̄ = ḡ ◦ f̄ , f̄2 = ḡ2 = h̄2 = id.. Hence we have
also f̂ ◦ ĝ = ĝ ◦ f̂ . (In fact, ĝ ◦ f̂ = ĥ = ĥ−1 = f̂−1 ◦ ĝ−1 = f̂ ◦ ĝ.) Putting
{ϕ1, ϕ2, ϕ3} = {f, g, h}, we have: ϕ̂k = ϕ̂i ◦ ϕ̂j and ϕ̂i

2 = ϕ̂j
2 = ϕ̂k

2 = id.
for {i, j, k} = {1, 2, 3}. It should be noted here that the induced action of Ḡ
on the base orbifold is not necessarily effective.

If ϕ̂i is a reflection along a circle Cϕi (i = 1, 2), then the relation ϕ̂3 =
ϕ̂1 ◦ ϕ̂2 implies that ϕ̂3 preserves an orientation of |B| = S2.

Lemma 7.1. Suppose that both ϕ̂1 and ϕ̂2 are reflections on |B| = S2 and

that ϕ̂3 �= id.. Then Cϕ1 ∩ Cϕ2 = Fix(ϕ̂3), which consists of two points
(Figure 1).

Figure 1

�

�

�

�

Proof. Since ϕ̂3 = ϕ̂2 ◦ ϕ̂1, for any point x ∈ Cϕ1 ∩ Cϕ2, we have ϕ̂3(x) =
ϕ̂2(ϕ̂1(x)) = ϕ̂2(x) = x. Hence Cϕ1 ∩ Cϕ2 is contained in Fix(ϕ̂3). Since ϕ̂1

and ϕ̂2 are reflections, ϕ̂3 = ϕ̂2 ◦ ϕ̂1 preserves an orientation of |B| = S2.
By the assumption ϕ̂3 is a nontrivial rotation and thus Fix(ϕ̂3) consists of
two points. Hence Cϕ1 ∩ Cϕ2 consists of at most two points. On the other
hand, if Cϕ1 ∩ Cϕ2 consists of at most one point, then Cϕ2 is lying in one
side of Cϕ1 . However, since ϕ̂1 ◦ ϕ̂2 = ϕ̂2 ◦ ϕ̂1, ϕ̂1(Cϕ2) = Cϕ2 and hence
Cϕ2 cannot lie in one side of Cϕ1. It follows that Cϕ1 ∩ Cϕ2 consists of two
points and Cϕ1 ∩Cϕ2 = Fix(ϕ̂3). �(Lemma 7.1)
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Lemma 7.2. Let ϕ1 be a strong inversion of K. If ϕ̂1 is a reflection on
|B| = S2, then every cone point (i.e., π(exceptional fiber)) is lying on Cϕ1 .

Proof. Recall first that (K; r)/〈ϕ̄1〉 ∼= S3. Let us write S2−Cϕ1 = DN ∪DS ,
where DN , DS are open disks and DS = ϕ̂1(DN). If DN contains one cone
point, then (K; r)/〈ϕ̄1〉 is a lens space other than S3. If DN contains more
than one cone point, then (K; r)/〈ϕ̄1〉 is a connected sum of lens spaces (for
details, see [36]). Therefore S2 − Cϕ1 contains no cone points. This means
that every cone point is lying on Cϕ1 . �(Lemma 7.2)

8. Determining knot types using finite group actions.

Throughout this section K, G and Ḡ are as in Section 7. In what follows we
will consider the situation that (K; r) is a Seifert fiber space over S2 with
more than three exceptional fibers whose Seifert fibration is preserved by Ḡ.

The goal in this section is proving Lemma 8.5 in which we show under
the above situation that if we have Condition (f̂) or Condition (K∗) defined
below, then K must be a composite knot Tp,q�Tp,q.

8.1. Locating exceptional fibers and dual knots.

Let us consider the following condition.

Condition (f̂) f̂ is a reflection along a circle Cf on the base surface |B| =
S2.

If we have Condition (f̂), then the relation ĥ = ĝ ◦ f̂ implies that exactly
one of ĝ and ĥ preserves an orientation and the other reverses an orientation
of |B| = S2. Without loss of generality, by exchanging roles of g and h, we
assume that ĝ preserves an orientation (Condition (ĝ)) and ĥ reverses an
orientation. Since Fix(h̄) �= ∅, we have Fix(ĥ) �= ∅, so ĥ is a reflection. Thus
we have established:

Lemma 8.1. If we have Condition (f̂), then we can assume that ĝ preserves

an orientation of |B| = S2 (Condition (ĝ)) and ĥ is a reflection along a circle
Ch.

The next lemma describes the configuration of cone points.

Lemma 8.2. Suppose that Condition (f̂) holds. Then Cf and Ch inter-
sect in exactly two points and cone points are lying on Ch − Cf , i.e., the

configuration of cone points on |B| = S2 is given by Figure 2.
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Figure 2

cone points

Proof. By the assumption and Lemma 8.1, we have also Condition (ĝ). Thus
Proposition 5.1 (1) shows that Fix(ḡ) consists of two components L′

g and L′′
g

and each of which is a regular fiber in (K; r). Then it follows from Lemma
3.3 that ĝ is not the identity map, and hence ĝ is a nontrivial rotation.
Therefore from Lemma 7.1 we see that Cf ∩ Ch = Fix(ĝ), which consists
of two points π(L′

g) and π(L′′
g). Since L′

g and L′′
g are regular fibers, π(L′

g)
and π(L′′

g) are not cone points. On the other hand, applying Lemma 7.2 to
the strong inversion h, we can conclude that any cone point is lying on Ch.
Hence all cone points are lying on Ch −Cf as in Figure 2. �(Lemma 8.2)

Now let us introduce Condition (K∗) below.

Condition (K∗) The dual knot K∗ is fixed pointwisely by f̄ .

Note that since Cf contains no cone points (Lemma 8.2), π−1(Cf ) is a
torus.

Lemma 8.3. Suppose that Conditions (f̂) and (K∗) hold. Then the dual
knot K∗ is contained in the vertical torus π−1(Cf ), and K∗ intersects each

Seifert fiber in π−1(Cf) without tangency.

Proof. We show first that Cf = π(Fix(f̄)). It is clear that π(Fix(f̄)) ⊂ Cf .
To show the converse, let us take a point x ∈ Cf . Then the fiber t = π−1(x)
is invariant under 〈f̄〉. If f̄ |t : t → t preserves an orientation of t, then
f̂ is orientation preserving. This contradicts Condition (f̂). Hence f̄ |t is
orientation reversing and thus f̄ fixes exactly two points in t. This implies
that t ∩ Fix(f̄) �= ∅ and x ∈ π(Fix(f̄)).
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By Condition (K∗) the dual knot K∗ is contained in Fix(f̄), thus
π(K∗) ⊂ Cf . This means that K∗ is lying in the vertical torus π−1(Cf ).
To observe the last condition, assume for a contradiction that there is a
fiber t ⊂ π−1(Cf ) which is tangent to K∗. Then f̄ |t : t→ t is an orientation
preserving involution with nonempty fixed point set, and hence f̄ |t = id..
Thus t ⊂ Fix(f̄), and this would then imply that f̂ preserves an orientation
of |B| = S2, contradicting Condition (f̂). Hence K∗ intersects each Seifert
fiber in π−1(Cf ) transversely in the vertical torus. �(Lemma 8.3)

From Lemmas 8.2 and 8.3 we can deduce:

Lemma 8.4. Assume that (K; r) is a Seifert fiber space over S2 with more

than three exceptional fibers. If we have Conditions (f̂) and (K∗), then

K = Tp,q�Tp,q for some torus knot Tp,q.

Proof. From Lemma 8.2, we can choose an 〈f̂〉-invariant tubular neighbor-
hood A of Cf in S2 so thatA contains no cone points. Then S2−intA consists
of two disks DN and DS = f̂(DN), each of which contains at least two cone
points. Since Cf contains π(K∗), π−1(A) contains N (K∗) for some tubular
neighborhood N (K∗). Since A is an annulus without cone points, π−1(A) =
S1 × S1 × [−1, 1]. We may assume that π−1(Cf ) = S1 × S1 × {0}. The last
assertion of Lemma 8.3 implies that K∗ is an essential loop in π−1(Cf ), so
there is a diffeomorphism of π−1(A) sending K∗ to S1 ×{x} × {0} for some
x ∈ S1. This implies that π−1(A) − intN (K∗) is a 2-fold composing space
(i.e., S1×[disk with 2-holes]). Consider a decomposition S3 − intN (K) =
(K; r) − intN (K∗) = (π−1(A) − intN (K∗)) ∪ π−1(DN) ∪ π−1(DS). Since
π−1(DN)(∼= π−1(DS)) is a Seifert fiber space in the knot exterior, we see
that π−1(DN)(∼= π−1(DS)) is a (p, q)-torus knot space ([28, VI.3.4 Lemma])
for some relatively prime integers p and q. It follows that K is a composite
knot Tp,q�Tp,q. �(Lemma 8.4)

Remark. As shown in [45], in general we cannot choose a periodic diffeo-
morphism f realizing cyclic (resp. free) period and a strong inversion g so
that they generate a finite subgroup of Diff∗(S3, K). For a composite knot
K = Tp,q�Tp,q, we can choose such diffeomorphisms f and g so that they
generate a finite subgroup of Diff∗(S3, K).

8.2. Equivalence of Condition (f̂) and Condition (K∗).

In this subsection we prove that Condition (f̂) and Condition (K∗) are
actually equivalent under the assumption that (K; r) is a Seifert fiber space
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over S2 with more than three exceptional fibers, see Lemma 8.6 below. Hence
Lemma 8.4 can be improved in the following form.

Lemma 8.5. Assume that (K; r) is a Seifert fiber space over S2 with more

than three exceptional fibers. If we have Condition (f̂) or Condition (K∗),
then K = Tp,q�Tp,q.

Lemma 8.6. Assume that (K; r) is a Seifert fiber space over S2 with more

than three exceptional fibers. Then Condition (f̂) implies Condition (K∗),
and vice versa.

Proof. Note that since (K; r) is a Seifert fiber space over S2 with more than
three exceptional fibers, K is not a torus knot.

First we suppose that f gives a cyclic period 2 of K. Let us assume that
Condition (f̂) holds. Then from Lemma 8.1, we have also Condition (ĝ).
Since (K; r) contains more than three exceptional fibers, by Proposition 5.1,
Fix(ḡ) consists of two components. Then Lemma 6.1 shows that K∗ is a
component of Fix(f̄). Hence we have Condition (K∗). Conversely suppose
that Condition (K∗) holds. Since K is not a torus knot, the argument in
the proof of Lemma 4.1 shows that f̂ reverses an orientation of S2. Since
Fix(f̄) �= ∅, f̂ has also nonempty fixed point set and thus f̂ is a reflection,
i.e., Condition (f̂) holds.

Next we suppose that f gives a free period 2 of K. If we have Condi-
tion (f̂), then from the argument in the proof of Lemma 8.3 we see that
Fix(f̄) �= ∅. Hence Fix(f̄) = K∗ (cf. the first paragraph of Subsection 4.1),
and we have Condition (K∗). Conversely let us assume Condition (K∗). Re-
calling from Lemma 4.1, we see that f̂ reverses an orientation of S2. Since
Fix(f̄) �= ∅, Fix(f̂) �= ∅, and hence f̂ is a reflection, i.e., Condition (f̂) holds.

�(Lemma 8.4)

9. Toroidal Seifert fibered surgeries for hyperbolic knots.

We are now in a position to prove Theorem 1.1 for hyperbolic knots with
Type I-C symmetry (Theorem 9.1) and hyperbolic knots with Type I-F
symmetry (Theorem 9.2).

9.1. Surgeries on knots with Type I-C symmetry.

Theorem 9.1. Let K be a hyperbolic knot with Type I-C symmetry. Then

(K; r) cannot be a toroidal Seifert fiber space.
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Proof. Since K has Type I-C symmetry, we have a finite subgroup G of
Diff∗(S3, K) generated by an involution f realizing the cyclic period 2 and
a strong inversion g.

Assume for a contradiction that (K; r) is a toroidal Seifert fiber space.
Then the base surface of (K; r) is the 2-sphere ([36, Theorem 1.3]) and (K; r)
contains more than three exceptional fibers (Lemma 4.11).

As in Subsection 6.1 the action of G on S3 induces an action of Ḡ on
(K; r), where Ḡ is generated by f̄ , ḡ.

From Lemma 3.1 (1) we choose a Seifert fibration of (K; r) which is
invariant under Ḡ.

If L′
f , the image of the axis Lf = Fix(f)(⊂ S3), is a fiber in (K; r), then

by [35, Proposition 5.1] K is a torus knot or a cable of a torus knot. This
contradicts the hyperbolicity of K. Hence L′

f is not a fiber in (K; r) and the
argument in the proof of Claim 4.16 shows that f̂ : S2 → S2 is a reflection,
i.e., Condition (f̂) holds. Now it follows from Lemma 8.5 that K = Tp,q�Tp,q.
This contradicts the hyperbolicity of K again and establishes Theorem 9.1.

�(Theorem 9.1)

9.2. Surgeries on knots with Type I-F symmetry.

Theorem 9.2. Let K be a hyperbolic knot with Type I-F symmetry. Then

(K; r) cannot be a toroidal Seifert fiber space.

Proof. As in the proof of Theorem 9.1, let G be a finite subgroup of
Diff∗(S3, K) generated by an involution f realizing the free period 2 and
a strong inversion g.

Assume for a contradiction that (K; r) is a toroidal Seifert fiber space.
Then by Theorem 4.5 the base surface of (K; r) is the 2-sphere and (K; r)
contains more than three exceptional fibers (Lemma 4.11).

Let Ḡ be a finite group generated by f̄ and ḡ (see Subsection 6.2). We
choose a Seifert fibration of (K; r) which is preserved by Ḡ (Lemma 3.1 (1)).

If we have Condition (f̂) or Condition (K∗), then by Lemma 8.5 K =
Tp,q�Tp,q. This contradicts the hyperbolicity of K. Hence Fix(f̄) = ∅ and f̂

is not a reflection.

Lemma 9.3. The fixed point set Fix(f̂) is not empty.

Proof. To the contrary suppose that Fix(f̂) = ∅. Then f̂ is orientation
reversing. Since the period p is 2, f̂ is an antipodal map and there exists
an f̂ -essential loop c so that f̂ (c) ∩ c = ∅. This contradicts Lemma 4.3.

�(Lemma 9.3)
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Since f̂ is not a reflection, by Lemma 9.3, f̂ is the identity map or a
rotation of order 2 (see Section 3).

If f̂ is the identity map, then we have an f̂ -essential loop c on B. This
contradicts Lemma 4.3.

It follows that f̂ is a rotation of order 2 with Fix(f̂) = {P, Q}.
Since ĥ = ĝ ◦ f̂ , there are two possibilities:

(1) Both ĝ and ĥ preserve an orientation of |B| = S2.
(2) Both ĝ and ĥ reverse an orientation of |B| = S2.

Suppose (1) occurs. Then Condition (ĝ) holds. It follows from Proposi-
tion 5.1 (1) that Fix(ḡ) consists of two regular fibers, and then by Lemma
3.3, ĝ �= id.. Hence ĝ is a rotation of order 2 such that Fix(ĝ) consists of
two regular points. Exchanging the roles of g and h, we see that ĥ is also a
rotation of order 2 such that Fix(ĥ) consists of two regular points.

Lemma 9.4. There exists a cone point z in B − Fix(f̂) ∪ Fix(ĝ) ∪ Fix(ĥ).

Proof. Recall that the base orbifold B contains more than three cone points.
Since Fix(ĝ) ∪ Fix(ĥ) contains no cone points, B − Fix(ĝ) ∪ Fix(ĥ) contains
more than three cone points. Since Fix(f̂) consists of exactly two points, we
can find a cone point z in B − Fix(f̂) ∪ Fix(ĝ) ∪ Fix(ĥ). �(Lemma 9.4)

Then we have the following, which contradicts Lemma 4.12.

Lemma 9.5. Let z be a cone point given by Lemma 9.4. Then any two of

z, f̂(z), ĝ(z) and ĥ(z) are distinct. Thus there are four cone points of the

same index.

Proof. Since z ∈ B − Fix(f̂) ∪ Fix(ĝ) ∪ Fix(ĥ), f̂(z) �= z, ĝ(z) �= z and
ĥ(z) �= z. If f̂(z) = ĝ(z), then ĥ(z) = ĝ◦ f̂(z) = z, a contradiction. Similarly
we can show other inequalities. Hence there are four cone points z, f̂(z),
ĝ(z), ĥ(z), which have the same index. �(Lemma 9.5)

Finally suppose (2) happens. Since Fix(ḡ) �= ∅ and Fix(h̄) �= ∅, we
have also Fix(ĝ) �= ∅ and Fix(ĥ) �= ∅. Thus both ĝ and ĥ are reflections.
In addition, since f̂ is a nontrivial rotation, from Lemma 7.1 we see that
Cg ∩Ch = Fix(f̂), which consists of two points P and Q. Applying Lemma
7.2 to strong inversions g, h of K, we can conclude that all cone points are
lying on Cg ∩ Ch (Figure 3).

It follows that the base orbifoldB contains at most two cone points P and
Q, a contradiction. The proof of Theorem 9.2 is now complete. �(Theorem
9.2)
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cone points

Figure 3

10. Toroidal Seifert fibered surgeries for non-hyperbolic
knots.

The purpose in this section is proving:

Theorem 1.5. Let K be a non-hyperbolic knot with symmetry which is not
a strong inversion. If (K; r) is a toroidal Seifert fiber space, then K is a
trefoil knot (r = 0), Tp,q�Tp,q (r = 2pq) or Tp,q�T−p,q (r = 0).

Proof. Following Thurston’s uniformization theorem [51]([39]) and the torus
theorem [28], [29] if a knot K is non-hyperbolic, then K is a torus knot or
a satellite knot, i.e., a knot whose exterior contains an incompressible torus
which is not boundary-parallel. For a satellite knot K, a solid torus in S3

bounded by such a torus is called a companion solid torus.
We recall from [33, Theorem 1.2] that if K is a non-hyperbolic knot and

(K; r) is a toroidal Seifert fiber space, then one of the following occurs.
(i) K is a trefoil knot (r = 0),
(ii) K is the (2pq ± 1, 2)-cable of a (p, q)-torus knot (r = 4pq),
(iii) K is a connected sum of two torus knots Tp,q�Tp′,q′ (r = pq + p′q′), or
(iv) K has a companion solid torus V whose core is a torus knot and V −K
admits a complete hyperbolic structure in its interior (r =an integer).

Claim 10.1. Among knots described above, only Tp,q�T−p,q is amphicheiral.

Proof. Let ϕ be an orientation reversing diffeomorphism of (S3, K). Since a
tubular neighborhood N (K) of K is unique up to isotopy, we may assume
ϕ(N (K)) = N (K). Then the uniqueness of the torus decomposition of
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E(K), we can assume further that the family of decomposing tori is invariant
under ϕ. Since a torus knot space cannot admit an orientation reversing self-
diffeomorphism, ϕ cannot leave a torus knot space invariant. It follows that
only Tp,q�T−p,q (r = 0) is an amphicheiral knot among knots of types (i)–(iv).

�(Claim 10.1)

Henceforth we consider symmetries which preserve an orientation of S3.
Since a satellite knot of type (ii) has a cyclic surgery (4pq ± 1-surgery),

the knot has no symmetry other than a strong inversion [53]. Assume that
K = Tp,q�Tp′,q′ . If K has a free period, then [3, Lemma 2.1 (3)] implies that
Tp,q ∼= Tp′,q′ , i.e., K = Tp,q�Tp,q. If K has a cyclic period, then the period is
2 by Theorem 2.4 ([35, Theorem 1.5]), and the argument in the proof of [26,
Theorem 4.1] shows that Tp,q ∼= Tp′,q′ , i.e., K = Tp,q�Tp,q.

Thus it is sufficient to prove that satellite knots of type (iv) with a sym-
metry other than a strong inversion cannot admit a toroidal Seifert fibered
surgery.

We begin by showing the following.

Proposition 10.2. Let K be a satellite knot of winding number zero, i.e.,

K has a companion solid torus V in which K is homologous to zero. Then
K admits no Seifert fibered surgeries.

Proof. Note that if (K; r) is a small Seifert fiber space, thenK has a compan-
ion solid torus V whose core is a simple knot (i.e., a torus knot or a hyperbolic
knot) in S3, and K(⊂ V ) is a 0 or 1-bridge braid in V in the sense of Gabai
[18]([34, Proposition 2.2]). Clearly K has nonzero winding number in this
case. Henceforth we consider the case where (K; r) is a toroidal Seifert fiber
space. Except for (iv), K has nonzero winding number. Let us assume that
K is in (iv) and assume for a contradiction that K is homologous to zero
in V . Then we have a Thurston norm minimizing (orientable) surface S in
V − intN (K) such that ∂S is a meridian, which remains norm minimizing,
hence incompressible in V (K; r) (see [16, Corollary 2.5]). Now recall from
[33] that V (K; r) is a boundary-irreducible Seifert fiber space admitting a
Seifert fibration which is the restriction of that of (K; r). This implies that
a regular fiber on ∂V (K; r)(= ∂V ) intersects a meridian of V exactly once,
and hence that ∂S can be isotoped so that ∂S intersects a regular fiber
exactly once. Since S is essential in the Seifert fiber space V (K; r), S is hor-
izontal (i.e., transverse to fibers) or vertical (i.e., consists of fibers). However
the latter is impossible, because ∂S intersects a regular fiber exactly once.
Thus restricting the Seifert fibration π : V (K; r) → B (|B| = D2 or Möbius
band) to S, we obtain a branched covering π|S : S → B; π|∂S is one to one,
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because ∂S intersects each fiber in ∂V (K; r) exactly once. Therefore the
degree of the branched covering is one, i.e., π|S is a diffeomorphism. This
implies that S is a disk, which would imply that K is contained in a 3-ball
in V , a contradiction. �(Proposition 10.2)

Remark. A null-homologous knot in a solid torus may admit a Seifert fibered
surgery. For instance, take a Whitehead link k1 ∪ k2; V = S3 − intN (k2)
and K = k1 is a knot in V which is homologous to zero. Then V (K;−1) is
a Seifert fiber space of type D2(2, 3).

Let K be a satellite knot of type (iv) and f : S3 → S3 a periodic
diffeomorphism giving the cyclic or free period p of K. If f gives the cyclic
period, then by Theorem 2.4 ([35, Theorem 1.5]), we may assume p = 2. Let
N (K) be an 〈f〉-invariant tubular neighborhood of K. By the existence of
invariant torus decomposition of S3 − intN (K) ([31]) and its uniqueness up
to isotopy ([28], [29]) we can assume up to conjugation that f(V ) = V . Thus
we can obtain (after conjugation) a periodic diffeomorphism f |V : (V,K) →
(V,K) of period p ≥ 2.

Claim 10.3. f |V : (V,K) → (V,K) is freely periodic, i.e., f |V is a periodic

diffeomorphism such that Fix((f |V )i) = ∅ for i = 1, . . . , p− 1.

Proof. Note that f |V leaves K invariant and preserves an orientation of K.
If f : (S3, K) → (S3, K) is a freely periodic diffeomorphism, then f |V is also
freely periodic. Let us assume that f : (S3, K) → (S3, K) is a cyclically
periodic diffeomorphism with fixed point set C = Fix(f) which is a trivial
knot by the Smith conjecture [39]. As we mentioned above, we can assume
further p = 2. Suppose that C∩V �= ∅. Then referring [26], we can conclude
that C ∩ V consists of two properly embedded arcs or C is a core of V . If
the former case happens, then (f |V )∗ : H1(V ) → H1(V ) sends z to −z for
a generator z ∈ H1(V ). Since K is not homologous to zero (Lemma 10.2),
f reverses an orientation of K, a contradiction. If the latter case happens,
then C is knotted in S3, a contradiction. �(Claim 10.3)

Denote by f |V the periodic diffeomorphism of V (K; r) with period p ≥ 2
induced from f |V .

Note that V (K; r) admits a Seifert fibration which is the restriction of
that of (K; r) ([33]), and that the base surface is a disk or a Möbius band. If
the base surface of V (K; r) is a Möbius band, then the base surface of (K; r)
is RP 2. Hence by [34, Theorem 1.3] K is a (2pq±1, 2)-cable of a (p, q)-torus
knot. This contradicts that K is of type (iv). Thus with respect to the
restricted Seifert fibration, V (K; r) is Seifert fibered over the disk with at
least two exceptional fibers.
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Lemma 10.4. There exists an 〈f |V 〉-invariant Seifert fibration of V (K; r).

Proof. If V (K; r) is not of type D2(2, 2) (a twisted I-bundle over the Klein
bottle), then the Seifert fibration of V (K; r) is unique up to isotopy [27],
and hence by [31] there is an 〈f |V 〉-invariant Seifert fibration.

Now we show that V (K; r) cannot be a Seifert fiber space of type
D2(2, 2). To do so assume for a contradiction that V (K; r) is of such type.
Then attach a solid torusW to V so that the meridian ofW is identified with
pq[meridian of V ]+[longitude of V ]; recall that the core of V is a (p, q)-torus
knot. As a result we obtain S3 and a new knot K ′

pq in this new 3-sphere.
By the construction (K ′

pq; γ) ∼= RP 3�RP 3, it is impossible for homological
reason. �(Lemma 10.4)

Let us choose a Seifert fibration of V (K; r) preserved by 〈f |V 〉. By taking
some power of f |V , we may assume that f |V has a prime period p ≥ 2, so
that Fix(f |V ) = K∗ or Fix((f |V )i) = ∅ for 1 ≤ i ≤ p− 1.

Case 1 : Fix(f |V ) = K∗.
Since f |V preserves the Seifert fibration of V (K; r), we have the induced

orbifold isomorphism f̂ |V : B → B, where |B| is a disk.
If f̂ |V is orientation preserving, then the argument in the proof of Lemma

3.2 shows that Fix(f |V ) = K∗ is a fiber. Hence V − K = V (K; r) −K∗ is
Seifert fibered, contradicting the hyperbolicity of K in V . Suppose that f̂ |V
reverses an orientation of |B| = D2. Then f̂ |V is a reflection along a properly
embedded arc Fix(f̂ |V ) = � in D2. Let x be a point in � ∩ ∂D2. Then f |V
acts on the fiber t = π−1(x) as a reflection. Thus f |V has two fixed points on
t. Since t is embedded in ∂V (K; r), Fix(f |V ) ∩ ∂V (K; r) is nonempty. This
contradicts that Fix(f |V ), which is the dual knot K∗, is entirely contained
in the interior of V (K; r).

Case 2 : Fix((f |V )i) = ∅ for 1 ≤ i ≤ p− 1.
Since Fix((f |V )i) = ∅ and Fix((f |V )i) = ∅ for 1 ≤ i < p, we have covering

projections ρ : V → Vf = V/〈f |V 〉 and ρ̄ : V (K; γ) → V (K; γ)/〈f |V 〉. Let
Kf be the image ρ(K) in the solid torus Vf = V/〈f |V 〉 and γ the slope
corresponding with r. Then the quotient manifold V (K; γ)/〈f |V 〉 can be
regarded as Vf (Kf , γf) for some surgery slope γf . Thus we have the diagram:

V
Dehn surgery−−−−−−−−→ V (K; γ)

ρ

⏐⏐1 ⏐⏐1ρ̄
Vf −−−−−−−−→

Dehn surgery
Vf(Kf ; γf) = V (K; γ)/〈f |V 〉
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Since V (K; γ) is Seifert fibered and f |V preserves the Seifert fibration,
V (K; γ)/〈f |V 〉 is also Seifert fibered. Then [35, Theorem 1.2] asserts that
either (i) Kf ⊂ Vf(∼= S1 × D2) is a core of Vf or a cable of a 0-bridge
braid in Vf , or (ii) γf is integral, i.e., ∆(γf , µf), the minimal geometric
intersection number of γf and the meridional slope µf , is 1. On the other
hand, ∆(γf , µf) = p(≥ 2), because Fix((f |V )i) = ∅ for 1 ≤ i ≤ p − 1; see
the proof of Claim 4.4. Thus (ii) cannot happen. Since K is hyperbolic in
V and V −K → Vf −Kf is covering, Vf −Kf is irreducible, atoroidal and
not Seifert fibered. This excludes the first possibility (i).

It follows that a satellite knot of type (iv) has no toroidal Seifert fibered
surgery. Hence only a trefoil knot, Tp,q�Tp,q and Tp,q�T−p,q are non-hyperbolic
knots having a symmetry other than a strong inversion and admitting
toroidal Seifert fibered surgeries, as claimed in the theorem.

�(Theorem 1.5)
Those knots described in the theorem are strongly invertible and they

have further symmetries. In fact, a trefoil knot has also cyclic periods
and free periods, and 0-surgery yields a toroidal Seifert fiber space of type
S2(2, 3, 6); a composite knot Tp,q�Tp,q admits also a cyclic period and a
free period and (Tp,q�Tp,q; 2pq) is a toroidal Seifert fiber space of type
S2(|p|, q, |p|, q); a composite knot Tp,q�T−p,q is invariant under an orienta-
tion reversing involution of S3, and (Tp,q�T−p,q; 0) is a toroidal Seifert fiber
space of type S2(|p|, q, |p|, q).

11. Projective Seifert fibered surgeries on symmetric knots.

In this section we complete the proof of Theorem 1.3.

Theorem 1.3. Let K be a hyperbolic knot with symmetry which is not a
strong inversion. Then there exists no surgery on K yielding a Seifert fiber
space over RP 2.

Proof. Let ϕ be a symmetry of K, i.e., a periodic diffeomorphism of (S3, K),
which is not a strong inversion. First suppose that ϕ preserves an orientation
of S3. Then it gives a cyclic period, a free period or a semi-free period
(see Section 2). Recall that if ϕ gives a semi-free period, then some power
of ϕ gives a cyclic period. Theorem 1.3 follows from [36, Theorem 1.3] if
K has a cyclic period and Theorem 4.5 if K has a free period. Suppose
that ϕ reverses an orientation of S3, i.e., K is amphicheiral. Then there is
an orientation reversing diffeomorphism ϕ̄ : (K;m) → (K;−m). Since by
Lemma 4.6 m = 4k for some k( �= 0), thus the distance of two slopes m and
(−m) is greater than or equal to 8.
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Assume first that (K;m) is Seifert fibered over RP 2 with at least two ex-
ceptional fibers so that (K;m) is toroidal. Since both m and (−m)-surgeries
are toroidal surgeries and the distance of their surgery slopes |2m| is greater
than or equal to 8, [21, Theorem 1.1] implies that S3 − intN (K) is a figure-
eight knot exterior (and m = 4), and hence, K is the figure-eight knot. But
since the figure-eight knot has a cyclic period 2 (resp. genus one), by [36,
Theorem 1.3] (resp. [49]) it has no surgery producing a Seifert fiber space
over RP 2, a contradiction.

Next suppose that (K;m) is Seifert fibered over RP 2 with at most one
exceptional fiber. Then (K;m) is also a Seifert fiber space of type S2(2, 2, x)
(x ≥ 1), and hence, π1((K;m)) is a cyclic group or a D-type finite group in
[6]([44, p.131]). Since (K;m) is diffeomorphic to (K;−m), if m-surgery is
a cyclic surgery (resp. a D-type finite surgery), then (−m)-surgery is also
a cyclic surgery (resp. a D-type finite surgery) and the distance of their
surgery slopes is greater than or equal to 8. However the cyclic surgery
theorem [11] shows that the distance between two cyclic surgery slopes is
less than or equal to 1 and [6, Corollary 1.6 (1)(ii)] shows that there is at
most one D-type finite surgery. This contradiction completes the proof of
Theorem 1.3. �(Theorem 1.3)

12. Small Seifert fibered surgeries.

The purpose of this final section is proving Theorem 1.7.

Theorem 1.7. Let K be a strongly invertible knot with cyclic period 2.

(1) If (K; r) is a small Seifert fiber space of type S2(n1, n2, n3) with 2 <
n1 < n2 < n3, then K is a torus knot or a cable of a torus knot.

(2) If (K; r) is a small Seifert fiber space of type S2(2, n2, n3) such that
(n2, n3) �= 1 and (n2, n3) �= (3, 3), then K is a torus knot or a cable of
a torus knot.

Before proving the theorem, we give some examples of Seifert fiber spaces
obtained by surgeries on strongly invertible knots with cyclic period 2.

Examples. Let K be the figure-eight knot. Then (K; r) is a Seifert fiber
space of type S2(2, 3, 7) for r = ±1, type S2(2, 4, 5) for r = ±2. In these
examples the indices of three exceptional fibers are distinct from each other;
the smallest one is 2 (Theorem 1.7(1)) and the others are relatively prime
(Theorem 1.7(2)). ±3-surgery on K yields also a Seifert fiber space of type
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S2(3, 3, 4). In this example, every exceptional fiber has index > 2, but two
of them have the same index (Theorem 1.7(1)).

On the other hand, for a (3, 4)-torus knot T3,4, (T3,4; 7) is a Seifert fiber
space of type S2(3, 4, 5) and for a (2, 3)-torus knot T2,3, (T2,3;−3) is a Seifert
fiber space of type S2(2, 3, 9).

12.1. The case for hyperbolic knots.

Throughout this subsection we assume that K is a strongly invertible hy-
perbolic knot with a cyclic period 2.

We start with the following observation which shows that K has Type
I-C symmetry.

Claim 12.1. We can choose a strong inversion g and a periodic diffeomor-

phism f realizing the cyclic period 2 of K so that they generate a finite
subgroup of Diff∗(S3, K). In particular, h = g ◦ f is a strong inversion of K.

Proof. Let f ′ be a periodic diffeomorphism giving the cyclic period 2 and g′

a strong inversion of K. Then as in the proof of Corollary 1.2 both [f ′] and
[g′] are nontrivial and [f ′] �= [g′].

By [5, Theorem 2.1(b)] or [45, Theorem 3.1], we have representing diffeo-
morphisms f and g so that they generate a finite subgroup of Diff∗(S3, K)
and [f ] = [f ′], [g] = [g′]. Since g reverses an orientation of K, g is also a
strong inversion. Moreover from [5, Theorem 2.1 (c)] or more directly from
the argument in its proof [5, p.194 line 2–line 5] we see that f gives also the
cyclic period of K (see also [52, Corollary 7.2], [45, Theorem 2]). For the
last assertion, see the first paragraph of Subsection 6.1. �(Lemma 12.1)

Then as in Subsection 6.1, we have a finite subgroup Ḡ ⊂ Diff((K; r))
which is generated by two involutions f̄ and ḡ.

Let us show that (K; r) cannot be a Seifert fiber space of type
S2(n1, n2, n3) with 2 < n1 < n2 < n3. Assume for a contradiction that
(K; r) is such a Seifert fiber space. Then it has an infinite fundamental
group, and hence admits a Ḡ-invariant Seifert fibration by Lemma 3.1 (1).

Since K is assumed to be hyperbolic, [35, Proposition 5.1] shows that L′
f

(the image of Lf = Fix(f)) is not a fiber in (K; r). Then by the argument
in the proof of Claim 4.16, f̂ is a reflection on |B| = S2. Hence by Lemma
8.1 we can assume Condition (ĝ). If n1 < n2 < n3, then Proposition 5.1 (2)
implies n1 = 2. This contradiction establishes Theorem 1.7 (1) for hyperbolic
knots.
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Next we prove that (K; r) cannot be a Seifert fiber space of type
S2(2, n2, n3) with (n2, n3) �= 1 and (n2, n3) �= (3, 3). Again assume to the
contrary that (K; r) has such a Seifert fibration. Since (n2, n3) �= 1 and
(n2, n3) �= (3, 3), 1

2 + 1
n2

+ 1
n3

≤ 1 and hence |π1((K; r))| = ∞. Thus as in
the above we can assume Condition (ĝ). Let t̃2 and t̃3 be exceptional fibers
of indices n2 and n3, respectively. Since n2, n3 ≥ 3, by Lemma 5.4 t̃2 and
t̃3 cover exceptional fibers t2 and t3 in (K; r)/〈ḡ〉 ∼= S3; since n2 �= n3, we
have t2 �= t3. Note that (index(t2), index(t3)) = 1. By Lemma 5.3, ni is
equal to index(ti),

index(ti)
2 or 2index(ti). Since (index(t2), index(t3)) = 1

and (2, n2, n3) = 1, (n2, n3) = 1 for all possibilities. For instance, as-
sume that n2 = index(t2) and n3 = 2index(t3). If (n2, n3) �= 1, then
since (index(t2), index(t3)) = 1, (n2, n3) = 2. This is impossible, because
(2, n2, n3) = 1. This establishes Theorem 1.7 (2).

12.2. The case for non-hyperbolic knots.

Let us assume that K is a strongly invertible satellite knot with a cyclic
period 2 and that (K; r) is a small Seifert fiber space of type S2(n1, n2, n3)
satisfying the condition in Theorem 1.7 (1) or (2). Then by [34, Proposition
2.2] K has a companion solid torus V whose core is a simple knot (i.e., a
torus knot or a hyperbolic knot) k in S3 and K(⊂ V ) is a 0 or 1-bridge braid
in V .

Lemma 12.2. The companion knot k has also a strong inversion and a
cyclic periodic 2.

Proof. Let ϕ : S3 → S3 be a strong inversion of K or an orientation pre-
serving involution which realizes the cyclic period 2 of K. Let us choose
a 〈ϕ〉-invariant tubular neighborhood N (K) of K. Since the torus decom-
position of S3 − intN (K) is unique up to isotopy, we may assume, up to
conjugation, that ϕ leaves the companion solid torus V invariant. Note that
ϕ leaves a core k of V invariant. Since K is not homologous to zero in V , ϕ
preserves an orientation of k if and only if ϕ preserves an orientation of K.
It follows that if ϕ is a strong inversion of K, then it defines also a strong
inversion of k, and if ϕ gives a cyclic period 2 of K, then it gives also a cyclic
period 2 of the companion knot k. �(Lemma 12.2)

We distinguish two cases depending on whether K is a 0-bridge braid
in the companion solid torus V , or K is a 1-bridge braid in V . To prove
Theorem 1.7 for non-hyperbolic knots, it is sufficient to show that in the first
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case the companion knot k is a torus knot and that the second case cannot
happen.

First suppose that K is a 0-bridge braid in V , i.e., K is a (p, q)-cable of
k for some relatively prime integers p and q. Since (K; r) = (k; r/q2) ([20])
for the simple knot k. If k is hyperbolic, then the result in Subsection 12.1,
together with Lemma 12.2, gives a contradiction. Thus k is a torus knot as
desired.

Remark. If only integral surgery on a hyperbolic knot can yield Seifert fiber
space, then no satellite knot with hyperbolic companion can admit a Seifert
fibered surgery.

Next we suppose for a contradiction that K is a 1-bridge braid in V .
Attaching a solid torus W to V so that a preferred longitude of V bounds
a meridian disk of W , we obtain a new knot K ′ in S3 = V ∪ W as the
image of K. Note that since (K; r) contains no separating incompressible
tori, V (K; γ) ∼= S1×D2, where γ is the slope corresponding to r, and hence
(K ′; γ) is a lens space, possibly S3 or S2 ×S1. On the other hand, Hartley’s
criterion [26, Theorem 4.1] says that K ′ has also a cyclic period 2 with the
axis J a core of W . Then from [53], we see that K ′ is a torus knot. Since
an involution realizing the cyclic period of K ′ is standard, K ′ is a 0-bridge
braid in V (⊂ V ∪W ). Hence K is also a 0-bridge braid in V , contradicting
the assumption. This completes the proof of Theorem 1.7 for non-hyperbolic
knots. �(Theorem 1.7)
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[15] M. Eudave-Muñoz; On hyperbolic knots with Seifert fibered Dehn surg-
eries, (preprint).

[16] D. Gabai; Foliations and the topology of 3-manifolds II, J. Diff. Geom.
26 (1987), 461–478.

[17] D. Gabai; Foliations and the topology of 3-manifolds III, J. Diff. Geom.
26 (1987), 479–536.

[18] D. Gabai; Surgery on knots in solid tori, Topology 28 (1989), 1–6.
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