COMMUNICATIONS IN
ANALYSIS AND GEOMETRY
Volume 11, Number 2, 223-233, 2003

Closed Geodesics on Oval Surfaces and Pattern
Formation

C. E. GArRzaA-HUME AND P. PADILLA

We study a singularly perturbed semilinear elliptic partial differen-
tial equation with a bistable potential on an oval surface. We show
that the transition region of minimizers of the associated functional
with a suitable constraint converges in the sense of varifolds to a
minimal closed geodesic on the surface.

1. Introduction.

We consider the equation
—Au+W'(u) =0 (1)

on a smooth oval surface M, where A represents the Laplace-Beltrami op-
erator and W is a nonlinear term to be specified later. Equation (1) arises
in many contexts, for instance in materials science, superconductivity, pop-
ulation dynamics and pattern formation (see for instance [13] and references
therein.)

Depending on the context, u might represent an order parameter, con-
centration of a chemical, population density, etc. and is usually assumed to
be defined on a two- or three-dimensional domain Q. Equation (1) is nor-
mally supplemented with a zero flux or homogeneous Neumann boundary
condition

%:()on 01,

where v represents the outer normal to 2. For the nonlinear term W, a
very important case is given by a bistable potential. In particular the Allen-
Cahn-Hilliard equation and the Ginzburg-Landau model belong to this class.
It would be impossible to list all the relevant works in this area, which has
been actively studied for already several decades, both from the theoretical
and the applied points of view. We refer the reader to [8] and [10] and the
bibliography therein for a more comprehensive account.
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In this work we are interested in equation (1) on an oval surface. From
the pattern formation or morphological perspectives it is more natural to
consider equation (1) on a surface and not on subsets of the plane for various
reasons. Some organisms, for example radiolarians, exhibit almost spherical
symmetry. Pattern formation during the first stages of the embryo’s devel-
opment (up to the formation of the morula) may be considered to be taking
place on the sphere. In [7] a similar equation was considered for a prototyp-
ical reduction of the Gierer-Meinhardt system, and, for ¢ — 0 an underlying
geometrical problem, sphere-packing, was identified as the mechanism de-
termining the behaviour of the limiting solutions. In [16] a problem on the
sphere related to spiral waves is considered. Here to fix ideas we will take
the bistable potential

W(u) = (1 —u?)?,

although this specific form is not needed as long as W is bistable and sym-
metric (see assumption A in section 2.)

For € — 0 we establish the behaviour of nontrivial minima. Again there
is an underlying geometrical problem, this time related to a shortest closed
geodesic on M. More specifically, we show that when ¢ — 0, nontrivial
minimizers of the corresponding energy (with a suitable constraint) have a
transition layer located at the shortest closed geodesic. This is not surprising
if one considers the corresponding variational problem. Finding solutions of
(1) is equivalent to finding critical points of the functional

E.(u) = /M(g\VuP%—%W(u))dS,

in a suitable function space.

For € — 0, functions u with uniformly bounded energy E.(u) < Ey, can
be proved to be close to £1 in most of the domain, except for a transition
curve (a codimension-1 hypersurface in the general case). Moreover,

E(u) ~ length of the transition region,

that is, up to higher order terms the energy is proportional to the length of
the transition.

Since the pioneering work of DeGiorgi much has been done to establish
properties of E rigorously (see for instance [14]). In particular in [§8], [10]
several convergence results for the transition layer are established, for a
particular case in the first work and for the general case in the second.
Roughly speaking, this result allows us to locate the interface and to handle
it as a rectifiable curve.
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Once this is accomplished, the proof follows from a classical result in
differential geometry due to Birkhoff that guarantees the existence of a closed
geodesic on a surface diffeomorphic to the sphere.

We present here the basic idea of the proof using this geometrical fact.
Consider an oval surface, M, that is, a closed and compact surface which
encloses a strictly convex domain in R?. We will also require M to be
smooth. A well-known result stated by Poincaré in [9] and studied in detail
later on in [3] is the following:

Proposition 1. Suppose that v is a closed curve on M that under the Gauss
map, g, divides the unit sphere in two parts of equal measure. Assume further
that among all the curves satisfying the above conditions, v has minimal
length. Then ~v is a closed geodesic.

This suggests a natural constraint. So the main point consists in minimizing
E. among functions u such that

/52 u(g~(y)) d& = 0 and E, < E. (2)

For € small, since the interface is localized and close to the zero level set of
u and u is close to either 41 or —1 elsewhere, one expects this restriction to
be equivalent to imposing the condition that it divides S2, under the Gauss
map, into two regions of equal area. Then we can show that the Lagrange
multiplier introduced by condition (2) goes to zero, so that critical points
for the constrained problem are still approximate solutions of (1).

Using the results of [8] and the result by Birkhoff mentioned above we
show that the interface converges, as € — 0, to a minimal closed geodesic.
For a precise statement of the result see theorem 3.

Similar problems have been analysed using I'—convergence (see [1]) but
we decided to use the results of [8] for two reasons. First, I'—convergence
only applies to minima and the results of [8] apply to general critical points
(see section 4). Second, the approach in [8] allows us to obtain a multiplic-
ity result for certain nonconvex domains constructed by ”glueing together”
convex ones (see the end of section 3). Moreover, the results of Ljusternik
and Schnirelman guarantee the existence of closed geodesics that are not
minima. In this case the general framework of [8] would be needed.

In the next section we recall some facts about equation (1) and its vari-
ational structure. We also present the results we need from [8]. In section
3 we prove the existence of nontrivial approximate solutions of equation (1)
by minimizing E. subject to (2) and establish the geometric properties of
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the solution when ¢ — 0. Finally, section 4 is devoted to the discussion of
related open problems.

2. Preliminary Results.

In this section we introduce the necessary notation and quote some results
from [8]. We require that W satisfies the following assumptions:

Assumptions

A : The function W : R — [0,00) is C® and W(+£1) = 0. For some u €
(=1,1),W <0 on (1) and W >0 on (-1, ). For some a € (0,1)
and k > 0, W' > & for all |z| > a.

This is to ensure that W is W—shaped with non-degenerate minima
at +1 and local maximum at pu.

B : U C R"is a bounded open set with Lipschitz boundary OU. A sequence
of C3(U) functions {u'}22; satisfies

GZ‘A’U,i = G;IW/ (’U,Z) — )\i (2)

on U. Here, lim; ., ¢; = 0, and we assume there exist cg, A\g and Fy such
that supy |u'| < co, |Ni| < Ao and

Ve i
/ €| Vu'| N W (u") < B,
- :

for all 7.
Let

and define new functions

for each 1.

Let G(n,n —1) be the Grassman manifold of unoriented (n —1)—dimen-
sional planes in R"™. We regard S € G(n,n— 1) as the orthogonal projection
of R™ onto S. We say V is an (n — 1)-dimensional varifold in U C R"™ if
V is a Radon measure on G,,—1(U) = U x G(n,n —1). Let V,,_1(U) denote
the set of all (n — 1)-dimensional varifolds in U. Convergence in the varifold
sense means convergence in the usual sense of measures. For V € V,,_1(U)
we let the weight ||V|| be the Radon measure in U defined by

IVII(A) = V({(z,S)|lz € A, § € G(n,n—1)})
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for each Borel set A C U. If M is a (n — 1)-rectifiable subset of U we define
v(M) € Voeq(U) by

v(M)(E) = H" ' ({z € U|(z, Tan" L (K" |1, ) € E})

for each Borel set E € G,,_1(U), where Tan"~1(H"~! |, x) is the approxi-
mate tangent plane to M at z and so exists for H" ! a.e. x € M.
We associate to each function w* a varifold V* ([5], [12]) defined as follows:

Vi(A) = /oo o({u = 11)(A) dt

for each Borel set A C G,,—1(U).
By the compactness theorem for BV functions, there exists an a.e. point-
wise limit w™. Let ¢~! be the inverse of ¢ and define

u>® = qﬁ_l(woo).

u®® = £1 a.e. on U and the sets {u®™ = £1} have finite perimeter in U.
In [8] the following theorem is proved:

Theorem 1. Let V* be the varifold associated with u' (via w®). On passing

to a subsequence we can assume
Ai — Ao, u—u™ ae., V' —V in the varifold sense.

Moreover,

(1) For each ¢ € C,(U),

. 1|2 i
i@ = Jim 65T < [ R

2 1—00
= Alim/qb\Vwi\.

1— 00

(2) supp||o{u®> = 1}|| C supp||V||, and {u’} converges locally uniformly
to £1 in U \ supp||V ||, where O denotes the reduced boundary.

(3) For each UccUand0 <b <1, {|u'| <1—>b}NU converges to
U N supp||V|| in the Hausdorff distance sense.

(4) o~V is an integral varifold. Moreover, the density 0(x) = oN(x) of
V satisfies

N(z) = odd H" ! ae zin M,
") even H" ! ae xe supp VI M=,
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where M is the reduced boundary of {u*™ = 1} and
1
o= / V)2 ds.
-1

(5) The generalized mean curvature H of V' is given by

iy | ) e
0 H" a.e. z € supp |V \ M,

where v is the inward normal for M.

Theorem 2 is also proved in [8].

Theorem 2. In addition to assumptions A and B suppose {uz} are locally
energy minimizing on UccU for E, (with or without volume constraint).
Then N(z) =1, H""! a.e. on U Nsupp||V||. The set d{u™ =1} on U has
constant mean curvature %%VOO and no energy loss occurs on U.

These results are proved for subsets of R™ but all the proofs are based
on local estimates and therefore theorems 1 and 2 can be extended to our
setting by taking local coordinates. Also, our equation requires a slightly
more general result, when \; might depend on x but this has been recently
proved in [15].

3. Existence and properties of solutions.

We will characterize the behaviour of minimal solutions of the following
problem when € — 0:

€ u2 u
infEE(u)—inf/ ( \V2 | _|_W( )

M

)do, (3)

€

for all u € H(M), subject to the restriction
Gl = [ ut) () dr =0, @

where f(y) is the determinant of the Jacobian of the transformation from S?
to M and can be chosen to be positive (since for an oval surface the Gauss
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map is a diffeomorphism.) In fact this factor is just the Gaussian curvature
at y. The associated Euler-Lagrange equation is

1
GZ‘A’U,—'—;W(’U,) + Aif =0, (5)

where )\; is the corresponding Lagrange multiplier. Our result is the follow-
ing:

Theorem 3. When € — 0 the varifolds V' associated to minimal solutions
of (3), (4) converge (up to a subsequence) in the sense of varifolds to a closed
geodesic of minimal length, vy, on M. In fact, as in point 3 in theorem 1,
for each compact U € M and 0 < b < 1, {|u’| < 1 —b}NU converges
to U N supp||V,, || in the Hausdorff distance sense, where V., is the varifold
assoctated with 7.

Proof: The existence of a minimizer for a fixed ¢ > 0 is immediate.
Indeed it is a standard fact that this functional satisfies the Palais-Smale
condition (see [11]) and since the restriction defines a closed linear subspace
the infimum is achieved. Also, the minimum cannot be a constant for e
sufficiently small since the only constant satisfying the restriction is ug = 0,
but

Vol(M)

Ec(up) > W(0) — oo

as € — 0. On the other hand there are trial functions . such that
Ee(ae) < EO

for some Ey > 0. One way to construct such a function is to take the inverse
image under the Gauss map of a smooth curve v C S? dividing S? in two
parts of equal area. Then I' = g~!(v) is a smooth curve on M. We can
construct i, by locating a transition layer on I' (see [6] or [14] for details.)
We will now show that the Lagrange multiplier of the constrained prob-
lem tends to zero when € — 0.
First observe that the restriction is natural in the following senses (see
[3] lemma 1):
(a) every nontrivial closed simple smooth geodesic on M satisfies the
constraint
KdV =2m, (6)
(0)
where K is the Gaussian curvature of M and X(C) denotes a simply con-
nected subset of M bounded by C.
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(b) every critical point in C of the arclength functional on M with the
constraint (3) is automatically a critical point of the unrestricted arclength
functional.

Note that the constraint (6) is equivalent to the one used in proposition
1 since the integral of the Gaussian curvature over the whole domain is 4.

Then it follows from the work by X. Chen ([4]) and from the fact that
M is regular that the Lagrange multipliers \; corresponding to the Euler-
Lagrange equation (5) are bounded so assumption B in section 2 is satisfied.

The rest of the proof is by contradiction. We know from a classical result
by Birkhoff that there is a closed geodesic on the oval surface. We state the
theorem for completeness:

Theorem 4. ([11], Thm. II.4.4 or [2]) On any compact surface S in R3
which is C3-diffeomorphic to the standard sphere, there exists a non-constant
closed geodesic.

Suppose the sequence of minimizers does not concentrate on a minimal closed
geodesic. Then by the convergence results (theorems 1 and 2) and standard
approximation by Lipshitz functions of rectifiable varifolds (see [12]), we may
identify the sequence V? with a sequence of Lipschitz curves 7* converging,
in the Hausdorff sense, to the support of V' (see point 3 in theorem 1). More-
over, since u, is regular by elliptic regularity, we see using Sard’s theorem
that =1 (C) is a union of smooth closed curves for almost every C' and so
7" has to be a union of such curves too. Accordingly, we have:

E..(u) = A(length of v*) + o(e),

where A is a constant (independent of €). Let vy be the geodesic given by
Birkhoff’s result (theorem 4). Construct a function ug, with a transition at
7o in the way described above. It follows that ug_ is an admissible function.
Moreover

E(up) = A(length of the transition layer for ug) + o(e)

Then A
Ee(uo) < Ee(u")

for sufficiently small € thus contradicting the minimality of u’.

This proves theorem 3.

It remains to observe that by the naturality (in the sense of (a) and (b)
above) of constraint (3) implies by contradiction that the Lagrange multi-
pliers \; tend to zero as i — oc.
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We now show how the results of [8] enable us to localize the previous
argument and give a multiplicity result in a specific example.

Consider the domain Q = E(l) U Zg U X3, where X1 and Y9 are two over-
lapping ovals. The region of overlap is contained in a slab A = {a < 21 < b},
in this region X1 and Yo are smoothly connected by another surface 33 and
¥ =3, \ A (see figure 1).

Figure 1: Region Q2

We assume that the minimal geodesics 1 and 7 of Yo and Yo respec-
tively do not intersect A. Then we will consider the same functional as
before but with a different constraint. To do that we observe that there is
a diffeomorphism ¢ from £9 U X3 to ¥ \ 9. Then the Gauss map g of ¥4
composed with ¢ is well-defined in Q: § = go ¢ = g(¢(x)) — S2. So we can
apply the same procedure as before with the restriction

[ @@ =0

and imposing the additional pointwise constraint 1 — u(z) < ¢ in X3 U X9
to ensure that the transition lies in $¢. So we obtain, as € — 0, a minimal
geodesic on ¥Y. By the convergence results in [8] we know that u. — 1 uni-
formly away from the transition so the pointwise constraint is automatically
met for e sufficiently small. Clearly the same procedure can be repeated to
obtain a geodesic on Yo.
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4. Conclusions and open problems.

There are two aspects that we would like to emphasize. The first is that
the approach used here could in principle be used to determine multiplicity
results for closed geodesics on manifolds. It would provide an alternative way
of proving the results of Ljusternik and Schnirelman, namely the existence
of three geometrically distinct non-self-intersecting closed geodesics on any
surface of genus 0.

It would be natural to expect that multiplicity results for equation (1)
would give corresponding results for closed geodesics. However, there are
several points to consider. Ljusternik and Schnirelman’s results are valid for
general manifolds, not necessarily oval so the first question is whether our
approach goes through in this case.

Also, we used the minimality of the sequence of solutions in order to
prove that concentration has to take place on a geodesic. Notice that for
multiple geodesics one would have to deal with general critical points of F.

Finally we observe that our approach generalizes directly to oval mani-
folds in higher dimensions and codimension-one minimal submanifolds.
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