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Mean Curvature Flow of Spacelike Hypersurfaces

near Null Initial Data

Klaus Ecker

We prove an interior estimate for the gradient function of space-
like hypersurfaces which move by mean curvature in a Lorentzian
manifold. This estimate depends only on a time function which
measures how far the hypersurfaces are from being null. As a
consequence, we show that under mean curvature flow a weakly
spacelike initial hypersurface instantaneously becomes smooth and
strictly spacelike except along null geodesics which extend to its
boundary.

Introduction.

Let Xs = X(·, s) : Mn → V, s ∈ (0, s0) be spacelike hypersurface embed-
dings into a Lorentzian manifold with images Ms = Xs(Mn). The hyper-
surfaces Ms flow by mean curvature if

(MCF)
∂X

∂s
(p, s) = Hν (p, s)

for all p ∈ Mn and s ∈ (0, s0) where H and ν denote the mean curvature
and future directed unit normal field of Ms respectively.

Spacelike hypersurfaces with special mean curvature function have been
an important tool in the study of Lorentzian manifolds. In particular, maxi-
mal hypersurfaces, that is hypersurfaces with zero mean curvature were used
in the first proof of the positive mass theorem [SY] and foliations of space-
times by spacelike constant mean curvature hypersurfaces have played an
important role in the analysis of the Cauchy problem for the Einstein equa-
tions (see [CBY, MT]). We refer to [B3] for an extensive list of references.

Existence and regularity results both for compact hypersurfaces in cos-
mological spacetimes and for the Dirichlet problem of hypersurfaces spanning
a given set of spacelike boundary data were established in [G] and [B1]. In
[B1], the existence of maximal hypersurfaces in a class of asymptotically flat
spacetimes was proved. All these existence proofs are based on estimates
for the gradient function v = −〈ν, T 〉 which measures the angle between the
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future directed normal ν of the hypersurfaces and a fixed future directed
timelike vectorfield T on V . Such an estimate implies that the quasilinear
partial differential equation describing the hypersurface is uniformly elliptic.
In [B2], an interior gradient estimate was proved which depends only on
a time function measuring how far the hypersurface is from being null. A
version of this result in Minkowski space Rn,1 is related to the Cheng-Yau
geodesic completeness estimate for constant mean curvature hypersurfaces
(see [CY] and [B2]).

Based on this interior gradient estimate and an intricate time function
construction adapted to weakly spacelike hypersurfaces, the boundary value
problems were extended to include boundary data with points joined by
null geodesics ([B2]). For such boundary data, the spanning hypersurface of
prescribed mean curvature contains all null geodesics connecting points on
its boundary and is smooth and spacelike away from these ’contained light
rays’. This generalizes earlier results of [BS] in Minkowski space.

In [EH1] and [E1], an alternative approach to the existence problem of
prescribed mean curvature hypersurfaces was taken via the parabolic equa-
tion

(MCF)H
∂X

∂s
= (H −H) ν

for general functions H ∈ C∞(V ). This equation has hypersurfaces with
mean curvature H as stationary solutions and includes (MCF) as a special
case. As in the elliptic case, results on existence and convergence to station-
ary solutions rely on an estimate for the gradient function. An additional
complication in establishing such an estimate arises from the fact that the
mean curvature of the hypersurfaces Ms changes and therefore has to be
controlled simultaneously. In [EH1], compact hypersurfaces in cosmological
spacetimes were considered. In this case, a natural condition on H and the
timelike convergence condition

Ric (Y, Y ) ≥ 0

for timelike vectorfields Y combined with the maximum principle give control
on the mean curvature prior to an estimate on the gradient.

In [E2], noncompact geodesically incomplete solutions of (MCF) in
Minkowski space Rn,1 were found which have exponentially growing mean
curvature at infinity and in particular do not obey the parabolic maximum
principle. To include such solutions in the analysis an interior estimate for
solutions of (MCF) in Minkowski space was proved which led to an existence
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result for the Cauchy problem with arbitrary noncompact spacelike initial
data.

Theorem 2.1 of this paper provides a version of this estimate in a general
Lorentzian manifold which is also a parabolic version of the basic interior
gradient estimate in [B2]. In particular, we estimate the mean curvature
and the gradient function of the hypersurfaces Ms simultaneously. This es-
timate is independent of the initial values of these quantities. This allows
us to solve initial - boundary value problems for compact nonsmooth initial
hypersurfaces which contain null geodesics (Theorem 3.2). We prove, analo-
gously to the elliptic case, that the solution of (MCF) agrees with its initial
data along the null geodesics which connect boundary points (the singular
set ) but is smooth and spacelike away from these curves. Furthermore, the
flow converges subsequentially to a hypersurface which is smooth, spacelike
and maximal away from the singular set.

All our results extend to solutions of the equation (MCF)H assuming
only a mild condition on H. The timelike convergence condition which we
assume throughout this paper can also be relaxed to include the weak energy
condition in case the metric on V satisfies the Einstein equations.

This research was supported by the Australian Research Council and the
Sonderforschungsbereich 382 at the University of Tübingen, Germany.

1. Preliminaries and Evolution Equations.

We consider an (n+1) - dimensional smooth spacetime V with a Lorentzian
metric ḡ. The metric pairing will be denoted by 〈· , ·〉, the canonical con-
nection by ∇ and the curvature tensors by Riem and Ric. We shall adopt
the set up and notation of [B2] and assume that V is time oriented and that
T is a unit future-directed timelike C2 - vectorfield on V . We construct a
reference Riemannian metric ḡE by

ḡE(Y, Z) = 〈Y, Z〉+ 2〈Y, T 〉〈Z, T 〉

for vectorfields Y, Z on V . This metric is used to measure the size of tensors.
For any tensorfield Φ we define the supremum norms by

‖Φ(x)‖ = ḡE(Φ(x),Φ(x))1/2, x ∈ V

‖Φ‖ = sup{‖Φ(x)‖, x ∈ V }

‖Φ‖k =
k∑
j=0

‖∇jΦ‖.
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The Riemannian geodesic distance with respect to ḡE we denote by d .
Throughout this paper, we will assume the timelike convergence condition

Ric (Y, Y ) ≥ 0

for timelike vectorfields Y although this can be weakened in many cases to
the condition

(κ) Ric (Y, Y ) ≥ κ 〈Y, Y 〉

for timelike vectorfields Y and some constant κ ≥ 0 (see [E1]). If ḡ satisfies
the Einstein equations condition (κ) holds as a consequence of the weak
energy conditions with κ depending on the cosmological constant and a
bound for the scalar curvature.

A time function t ∈ C1(U), U ⊂ V has everywhere past-directed timelike
vectorfield ∇t. The level sets of t are then spacelike hypersurfaces, that is
they admit a timelike normal vector at every point. Their future-directed
unit normal vector is given by

−ψ∇t

where the lapse function ψ is defined by

ψ−2 = |∇t|2 ≡ −〈∇t , ∇t〉.

Using the integral curves of −ψ2∇t to define (zero-shift) coordinates (x, t)
on U the metric ḡ takes the form

−ψ2(x, t) dt2 + ḡij(x, t) dxidxj 1 ≤ i, j ≤ n.

For a smooth, spacelike hypersurface M ⊂ V we let ν be the future-
directed unit normal and

v = −〈ν, T 〉

its gradient function with respect to T . The restriction to TM of any tensor
field Φ of order m on V can be estimated by

(1.1) ‖Φ|TM
(x)‖ ≤ vm(x)‖Φ(x)‖.

The induced connection and Laplacian on M we denote by ∇ and ∆ respec-
tively. We will sometimes consider

vt = 〈ν, ψ∇t〉,
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the gradient function of M with respect to a given time function t. Note in
particular, that the identity

(1.2) |∇t|2 = ψ−2(v2
t − 1)

holds (see [B1, (2.6)]). Finally, we define the second fundamental form A of
M by A(Y, Z) = 〈∇Y ν, Z〉 for Y, Z tangent to M and its mean curvature by
H = traceA.

Let now Xs = X(·, s) : Mn → V, s ∈ [0, s0) with Ms = Xs(Mn) ⊂ V be
a family of spacelike hypersurface embeddings which satisfies

(MCF)
∂X

∂s
(p, s) = Hν (p, s)

for (p, s) ∈ Mn × (0, s0) where H and ν are the mean curvature and future
directed normal of Ms. On each Ms we adopt the above notation for M
usually without the subscript s.

With respect to a time function t we will often write the hypersurfaces
Ms as local graphs of functions us = u(·, s) over some subset Ω ⊂ S0 =
{x ∈ V, t(x) = 0} using zero shift coordinates. Note that since (MCF)
propagates the hypersurfaces Ms in the direction of their normal ν while
they are graphs with respect to the integral curves of −ψ2 ∇t, the local
height function us agrees with t|Ms

, the restriction of t to Ms only up to
a tangential diffeomorphism (depending on s) in Ω. A calculation using
(MCF) shows that

(1.3)
∂u

∂s
= ψ−1v−1

t H

while the time function t restricted to Ms satisfies

(1.4)
∂t

∂s
= ψ−1vtH.

Since vt ≥ 1, equation (1.3) leads to the inequality

(1.5)
∣∣∣∣∂u∂s

∣∣∣∣ ≤ ψ−1H.

Note also that (1.3) is a quasilinear parabolic equation of the form

(1.6)
∂u

∂s
= ψ−1

√
1− |ψDu|2 div

(
ψDu√

1− |ψDu|2

)
+
a (ψ,∇ψ, AS0, Du)

1 − |ψDu|2
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where D, div and AS0 denote the tangential gradient, divergence and second
fundamental form on S0 and a is bounded (compare [B1, 2.17]).

We refer to [EH1] for a derivation of the following evolution equations
from (MCF).

Proposition 1.1 ([EH1]). Any smooth solution of (MCF) satisfies(
d

ds
− ∆

)
t = −divMs∇t ,(1.7) (

d

ds
− ∆

)
v = −v

(
|A|2 + Ric(ν, ν)

)
− T (HT )−H〈∇νT, ν〉(1.8) (

d

ds
− ∆

)
H = −H

(
|A|2 + Ric(ν, ν)

)
(1.9)

where T (HT ) denotes the variation of H with respect to a deformation of V

generated by T (see [B1]).

Using the timelike convergence condition one derives from Proposition
1.1 the two main evolution inequalities (Lemma 1.3 and 1.4) used in the
proof of the interior estimate of Section 2. Lemma 1.3 also relies on the
following consequence of Schwarz’ inequality.

Proposition 1.2 ([B1]). On smooth spacelike hypersurfaces the inequality

(1.10) |A|2v2 ≥
(

1 +
1
n
− ε

)
|∇v|2 −H2v2 − Cεv

4

holds for any ε > 0 where Cε depends on ε−1, n and ‖∇T‖.

Proposition 1.2 appears in some form in all proofs of gradient type esti-
mates (see [B1,2], [CY], [G]).

Lemma 1.3 ([EH1], [B1, B2]). Suppose the timelike convergence condi-

tion holds. Then any smooth solution of (MCF) satisfies the inequality

(1.11)
(
d

ds
− ∆

)
v2 ≤ −4(1 +

1
4n

)|∇v|2 +Cv4 + 2H2v2

where C depends on n and ‖T‖2.

Proof. We repeat the argument in [B2] or [EH1] for the convenience of the
reader. Using [B1, (2.10)] we estimate the expression T (HT ) in the evolution
equation (1.8) by

|T (HT )| ≤ C(v3 + v2|A|).
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Here C depends on ‖LTg‖1 where LT g is the Lie derivative of the metric
with respect to T whose C1 - norm can be controlled in terms of ‖T‖2. By
(1.1),

|〈∇νT, ν〉| ≤ v2‖∇T‖.

In view of the timelike convergence condition, equation (1.8) then leads to(
d

ds
− ∆

)
v2 ≤ −2v2|A|2 +C(v4 + v3|A|)− 2|∇v|2

where C depends on n and ‖T‖2. Inequality (1.11) is now a consequence of
(1.10), Young’s inequality ab ≤ εa2 + 1

4εb
2 applied to the v3|A| - term and

an appropriate choice of ε depending on n. �
If we use the inequality |A|2 ≥ 1

nH
2 in combination with the timelike

convergence condition, the evolution equation (1.9) implies

Lemma 1.4 ([EH1]). Suppose the timelike convergence condition holds.
Then any smooth solution of (MCF) satisfies the inequality

(1.12)
(
d

ds
− ∆

)
H2 ≤ −2

n
H4.

Note that without the timelike convergence condition the form of (1.11)
does not change except that C will now also depend on ‖Ric‖. However, in
(1.12) we would obtain an additional term of the form 2‖Ric‖v2H2 on the
right hand side which we cannot handle in the a priori estimates of Section
2.

When the hypersurfaces Ms are compact without boundary (as in the
case of cosmological spacetimes considered in [EH1]) or solve an initial-
boundary value problem with ∂Ms = ∂M0 (see section 3) the parabolic
maximum principle can be applied to obtain height estimates. The max-
imum principle also holds in some noncompact situations (for conditions
see for example [EH2, Thm 4.3] or [E1, Thm 1.2]). In these situations the
mean curvature and local height functions of the solution can be controlled
(compare also [EH1] and [E1,2]).

Proposition 1.5. Let (Ms)s∈(0,s0) be a smooth solution of (MCF) with
smooth, spacelike initial data M0. Suppose that this solution is compact ei-
ther without boundary or smooth up to the boundary satisfying ∂Ms = ∂M0

for all s ∈ (0, s0) or that it is noncompact but satisfies the conditions of the
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noncompact maximum principle. Assume also that the timelike convergence
condition holds. Then the mean curvature satisfies the inequality

(1.15) sup
Ms

H2 ≤ n

2s

for all s ∈ (0, s0). If furthermore the hypersurfaces Ms can be written as
local graphs of functions us over some open set Ω ⊂ S0 = { t = 0 } where t

is a given time function with lapse ψ, then the inequality

(1.16) |us(x)− us′(x)| ≤
1

ψ(x)

√
2n|s− s′|

holds for all x ∈ Ω and s, s′ ∈ [0, s0).

Proof. From Lemma 1.4. we calculate(
d

ds
− ∆

)
sH2 ≤ −2

n
sH4 +H2.

By the compact maximum principle, sH2 can never reach a maximum larger
than n/2. Note that in the case where the hypersurfaces are smooth up to
the boundary and satisfy ∂Ms = ∂M0 we are using that ∂t

∂s = 0 and therefore
H = 0 on ∂Ms for all s ∈ (0, s0) in view of (1.4). Here H is the extension of
the mean curvature of Ms to ∂Ms.

In the noncompact case, we apply the noncompact maximum principle
of [EH2] to the function max (sH2 − n

2 , 0) (see [E1, Cor. 1.4]).
Inequality (1.16) is now obtained by combining (1.5) and (1.15) followed

by a pointwise integration with respect to the s variable. �
Let us more generally consider solutions of

(MCF)H
∂X

∂s
= (H −H) ν

where we additionally assume the condition

Y (H) ≥ 0

for all future directed timelike vectorfields Y as in [EH1]. If we also relax
the timelike convergence condition to condition (κ) then inequalities (1.11)
and (1.12) become

(1.17)
(
d

ds
− ∆

)
v2 ≤ −4 (1 +

1
4n

)|∇v|2 + C v4 + 4 (H −H)2v2
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and

(1.18)
(
d

ds
− ∆

)
(H −H)2 ≤ −1

n
(H −H)4 +C

where now C depends additionally on κ and ‖H‖1 in (1.17) and κ and ‖H‖
in (1.18) (see [E1]).

For a statement of the evolution equations for the second fundamental
form and its covariant derivatives we refer to [EH1] or [E1]. Once estimates
for v have been established bounds on these quantities replace standard
parabolic Schauder estimates for second and higher derivatives of solutions
of equation (1.6) (see Theorem 2.2 below).

2. Interior Estimates.

In this section we will assume that τ ∈ C2(V ) is a time function in the region
{τ > 0} such that

Ms ∩ {τ ≥ 0} is compact

and
∂Ms ∩ { τ > 0 } = ∅

for all s ∈ [0, s0] and that there are constants C0, C1 and C2 such that

〈∇τ,∇τ〉 ≤ −C−2
0

‖τ‖2 ≤ C1

‖T‖2 ≤ C2

where the norms are taken over the set
⋃
s∈[0,s0]

Ms ∩ {τ ≥ 0}.
In [B2, section 3], time functions were constructed which satisfy these

conditions with respect to a fixed spacelike hypersurface, see also Section
3 of this paper for a statement of the construction. Given an estimate on
the height of the hypersurfaces Ms above M0 one can usually determine
an interval [0, s0] such that a timefunction constructed with respect to M0

also satisfies the conditions for Ms when s ∈ [0, s0]. Such height estimates
generally follow from a maximum principle as in Proposition 1.5. In the
initial - boundary value problems considered in Section 3, the hypersurfaces
Ms satisfy the above conditions for all s > 0 as they are contained in the
domain of dependence of M0.

There are, however, solutions of (MCF) to which the maximum principle
does not apply (see [E2]) such as the translating solution in Minkowski space
given by the function us(x) = log coshx+s which has exponentially growing
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curvature at infinity and is geodesically incomplete. Here the graph of the
function us lies initially underneath the homothetic solution of (MCF) given
by (x2+2s)1/2 but crosses it at infinity for s = log 2. Since for such solutions
H2 is large on M0 ∩ {τ ≥ 0}, the above conditions will usually be satisfied
only for small s0 as Ms∩{τ ≥ 0} becomes noncompact very quickly (see the
discussion in the appendix.)

Theorem 2.1. Let (Ms)s∈(0,s0] be a smooth solution of (MCF) with

smooth, spacelike initial data M0. Let τ ∈ C2(V ) be a time function sat-
isfying the above conditions. Suppose also that the timelike convergence
condition holds. Then for all s ∈ [0, s0] the gradient function and the mean

curvature satisfy the estimates

(2.1) sup
Ms∩{τ≥0}

v2(Λ −H2)−1/qτp ≤ C + sup
M0∩{τ≥0}

v2(Λ−H2)−1/qτp

for Λ > max{n/2, supM0∩{τ≥0}H2} and

(2.2) sup
Ms∩{τ≥0}

sv2(Λ− sH2)−1/qτp ≤ C(1 + s0)2

for Λ > n/2 where q = q(n) > 0 and C, p > 0 depend on n, C0, C1, C2 and

τmax ≡ sup
s∈[0,s0]

sup
Ms

τ

as long as v and the quantities involving H2 are finite on Ms for s ∈ [0, s0].
The constant C additionally depends on Λ − max{n/2, supM0∩{τ≥0}H2} or

Λ − n/2. As a consequence of (2.1) and (2.2) the estimate

(2.3) sup
Ms∩{τ≥α}

v2 ≤ Cα(1 +
1
s
)

holds for any α > 0 and s ∈ (0, s0] with Cα depending on α−1, n, C0, C1, C2

and τmax.

Remarks. (i) The estimates of Theorem 2.1 with H replaced by H −H also
hold for solutions of (MCF)H as long as H ∈ C2(V ) satisfies

Y (H) ≥ 0

for all future - directed timelike vectorfields Y (compare [EH1]). The con-
stants will then additionally depend on ‖H‖2. The timelike convergence
condition can also be weakened to condition (κ) discussed in the previous
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section if we additionally impose a restriction on the size of s0 or alter-
natively choose Λ large enough depending on κ−1. The proof of Theorem
2.1 is easily modified to incorporate these more general assumptions using
inequalities (1.17) and (1.18) instead of (1.11) and (1.12).

(ii) Recall that in the cases where the maximum principle is applicable
to a solution of (MCF) the inequality

(1.15) sup
Ms

H2 ≤ n

2s

holds for all s ∈ (0, s0] by Proposition 1.5. The proof of Theorem 2.1 then
simplifies significantly as one only needs to consider the testfunction sv2τp in
this case, similarly as in [B2, proof of Thm 3.1]). Theorem 2.1 implies (1.15)
for Ms inside {τ ≥ 0} even if the solution does not obey the maximum
principle. However, in general s0 may be small in these cases so that we
cannot let s→ ∞.

(iii) In [E2], an alternative version of (2.1) in Minkowski space Rn,1 was
established inside the sets { (x, t) ∈ Rn,1, |x|2 − t2 ≤ ρ2 }.
Proof of Theorem 2.1. We will only present the proof of (2.2) by deriving
an evolution inequality for the function

f = sv2(Λ − sH2)−1/qτp.

The argument can be adopted almost without change in order to establish
estimate (2.1). One simply has to omit the factors s in f .

Estimate (2.3) follows by combining (2.1) and (2.2) for a fixed Λ > n/2:
If s0 ≤ 1, (2.3) is an immediate consequence of (2.2). If s0 > 1 we first apply
(2.2) for s ∈ (0, 1] and then use (2.1) to estimate v and H for s ≥ 1 in terms
of their bounds at s = 1.

Recall that we are assuming that f is finite for s ∈ [0, s0] and now
aim to establish a bound on f which only depends on its initial values. In
the following all constants which depend on n, C0, C1, C2 and τmax will be
denoted by C.

From (1.7) for the time function τ and the inequality |divMs∇τ | ≤
v2‖∇2

τ‖ which follows from (1.1) we obtain

(2.4)
∣∣∣∣( d

ds
− ∆

)
τ

∣∣∣∣ ≤ C1v
2.

Let T = − ∇τ
|∇τ | be the future - directed unit normal to the τ - foliation where

|∇τ |2 ≡ −〈∇τ,∇τ〉 ≥ C−2
0
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by assumption. We then estimate

−〈T , T 〉 =
〈∇τ, T 〉
|∇τ |

≤ C0C1.

As in [B2, section 3] we use the identity

|∇τ |2 = |∇τ |2(〈ν, T 〉2 − 1)

(see (1.2)) and the inequality

v = −〈ν, T 〉 ≤ 2〈T , T 〉〈ν, T 〉

for unit future - directed timelike vectors ([B2, Lemma 2.1]) to infer

(2.5) |∇τ |2 ≥ C−2
0

(
1

4C2
0C

2
1

v2 − 1
)
.

From Lemma 1.4 we obtain

(2.7)
(
d

ds
− ∆

)
sH2 ≤ −2s

n
H4 +H2.

Similarly to [E2, section 3] we first derive an evolution equation for the
function

f = sv2h(sH2)

where we will substitute h(r) = (Λ− r)−1/q later. Denoting derivatives of h
by ′, we calculate for w = s−1f = v2h from Lemma 1.3 and (2.7) using also
the inequalities h ≥ 0 and h′ ≥ 0(

d

ds
− ∆

)
w ≤− 4(1 +

1
4n

)|∇v|2h+Cv4h + 2H2v2h − 2s
n
H4v2h′

+H2v2h′ − s2|∇H2|2v2h′′ − 2s〈∇v2,∇H2〉h′.

With the help of Young’s inequality ab ≤ εa2 + 1
4εb

2 for ε = 1
2n , we estimate

|2s〈∇v2,∇H2〉h′| = |4sv〈∇v,∇H2〉h′| ≤ 1
2n

|∇v|2h + 8ns2v2|∇H2|2 (h′)2

h

and therefore(
d

ds
− ∆

)
w ≤− 4(1 +

1
8n

)|∇v|2h+Cv4h + 2H2v2h − 2s
n
H4v2h′

+H2v2h′ + s2
(

8n
(h′)2

h
− h′′

)
|∇H2|2v2.(2.8)
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The inequality |a+ b|2 ≤ (1 + δ)|a|2 + (1 + 1/δ)|b|2 for δ > 0 yields

|∇w|2= |2v∇vh+sv2∇H2h′|2≤4(1+δ)v2|∇v|2h2+s2(1+δ−1)v4|∇H2|2(h′)2.

This implies

(2.9) (1 + δ)
|∇w|2
w

≤ 4(1 + δ)2|∇v|2h+ s2(1 + δ)(1 + δ−1)v2|∇H2|2 (h′)2

h
.

We then choose δ = δ(n) > 0 such that (1 + δ)2 = 1 + 1
8n and substitute

(2.9) into (2.8) to arrive at(
d

ds
− ∆

)
w ≤− (1 + δ)

|∇w|2
w

+Cv4h + 2H2v2h − 2s
n
H4v2h′

+H2v2h′ + s2
(
c(n)

(h′)2

h
− h′′

)
|∇H2|2v2.

The function h satisfies(
c(n)

(h′)2

h
− h′′

)
(r) =

1
q2

(c(n)− q − 1)(Λ− r)−
1
q
−2 ≤ 0

if q + 1 ≥ c(n). We may therefore discard the |∇H2|2 - term on the right
hand side. For f = sw = sv2h this leads to(

d

ds
− ∆

)
f ≤ − (1 + δ)

|∇f |2
f

+Cv2f + 2H2f

− 2s
n
H4h

′

h
f +H2h

′

h
f + s−1f.

Multiplying by τp for p > 0 we calculate inside the set {τ > 0}(
d

ds
− ∆

)
fτp ≤− (1 + δ)

|∇f |2
f

τp + Cv2fτp + 2H2fτp

− 2s
n
H4h

′

h
fτp +H2h

′

h
fτp + s−1fτp

+ pfτp−1

∣∣∣∣( d

ds
− ∆

)
τ

∣∣∣∣ − p(p− 1)τp−2|∇τ |2f

− 2pτp−1〈∇f,∇τ〉.

We now estimate

|2pτp−1〈∇f,∇τ〉| ≤ (1 + δ)
|∇f |2
f

τp +
p2

1 + δ
τp−2|∇τ |2f
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use (2.4) and choose p = p(n) so large that − δ
1+δ p

2 + p ≤ − δ
2(1+δ)p

2. This
yields

1
fτp

(
d

ds
− ∆

)
fτp ≤Cv2 + 2H2 − 2s

n
H4h

′

h
+H2h

′

h

+ s−1 + pCv2τ−1 − δ

2(1 + δ)
p2τ−2|∇τ |2.

Using (2.5), we bound |∇τ |2 from below in terms of v2 and then make
p = p(n, C, τmax) even larger to achieve
(2.10)

1
fτp

(
d

ds
− ∆

)
fτp ≤ −τ−2v2 − 2s

n
H4h

′

h
+
(

2 +
h′

h

)
H2 + s−1 +Cτ−2.

At a point in Ms1 ∩ {τ ≥ 0} for s1 ∈ (0, s0] where fτp takes its largest
maximum on any Ms over the interval [0, s0] we have(

d

ds
− ∆

)
fτp ≥ 0.

Here we have used the compactness of Ms ∩ {τ ≥ 0}. In view of (2.10) we
obtain at this maximum point after substituting h′

h = 1
q (Λ − s1H

2)−1 and
multiplying by s1

(2.11) τ−2s1v
2+

2
nq

s21H
4

Λ − s1H2
≤ C(1+s1τ−2)+

(
2 +

1
q(Λ − s1H2)

)
s1H

2.

We now set θ ≡ Λ − n
2 > 0.

Case 1. Suppose that at the maximum point the inequality

(2.12) s1H
2 ≥ Λ − γ ≥ n+ θ

2

holds for some γ ∈ (0, θ/2) to be chosen. Since q > 1 this implies

s1H
2 ≥ qγ

1− 1
q ≥ q(Λ − s1H

2)1−
1
q

for sufficiently small γ depending on q = q(n) and hence

(2.13)
s1H

2

q(Λ− s1H2)
≥ h.

Furthermore, again for sufficiently small γ depending on n and θ we have

(2.14)
s1H

2

q(Λ− s1H2)
≥ n + θ

2qγ
≥ 4n

θ
.
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Combining (2.12) - (2.14) we obtain

2
nq

s21H
4

Λ − s1H2
≥ θ

2n
h +

(
2 +

1
q(Λ − s1H2)

)
s1H

2.

Substituting this into (2.11) and multiplying by τ2 yields

(2.15) s1v
2 +

θ

2n
hτ2 ≤ C(1 + s1)

and therefore
s1v

2hτp ≤ C(1 + s1)2τp−2

where now C depends also on θ−1. Since s1 ≤ s0 this implies

f ≤ C(1 + s0)2

at the maximum of f on [0, s0] in this case.
Case 2. If s1H2 < Λ − γ at the maximum point where γ = γ(n, θ) ∈

(0, θ/2) was chosen in case 1 we estimate the (Λ − s1H
2) - expressions on

the right hand side of (2.11) in terms of γ−1, discard the H4 - term on the
left hand side and multiply by τ2 to obtain as before

s1v
2 ≤ C(1 + s0).

In view of the inequality h < γ−1/q we arrive at

f ≤ C(1 + s0)

in this case. Combining the two cases, we conclude that for all s ∈ [0, s0]
the estimate

(2.15) sv2(Λ− sH2)−1/qτp ≤ C(1 + s0)2

holds on Ms ∩ {τ ≥ 0}. �

Theorem 2.2. Let (Ms)s∈(0,s0] be a solution of (MCF) satisfying the con-

ditions of Theorem 2.1. Then the second fundamental form of Ms and its
covariant derivatives satisfy

(2.16) sup
Ms∩{τ≥α}

|∇mA|2 ≤ C

for any α > 0, s ∈ (0, s0] and integer m ≥ 0 where C depends on n,m, α−1,

s−1, C0, C1, C2 and ‖Riem‖m+1.
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Proof of Theorem 2.2. For any β ∈ (0, α) and s1 ∈ (0, s0), estimate (2.3)
implies a bound on v in Ms ∩{τ ≥ β} for all s ∈ [s1, s0] in terms of s−1

1 , β−1

and the other quantities listed in Theorem 2.1. This yields the estimate

|∇τ |+
∣∣∣∣( d

ds
− ∆

)
τ

∣∣∣∣ ≤ C

in view of (2.4) and the identities and inequalities

|∇τ |2 = |∇τ |2(〈ν, T 〉2 − 1),

〈ν, T 〉2 ≤ 4〈T , T 〉2v2,

−〈T , T 〉 =
〈∇τ, T 〉
|∇τ |

≤ C0C1

listed thereafter. Here T denotes the future directed normal to the τ - foli-
ation. The function τ therefore satisfies condition (17) in [EH2, section 3]
required for a distance function r to be used in interior estimates.

The second fundamental form A and its covariant derivatives satisfy the
same evolution inequalities as in the case of (MCF) in a Riemannian man-
ifold treated in [EH2] (in fact the inequality for |A|2 is even better in the
Lorentzian setting in view of the negative |A|4 - term (see [E1, Prop.1.1])
which can be used to control the expressions arising from the ambient ge-
ometry).

We can therefore follow the argument in [EH2, section 3] exactly to
derive the desired estimates inside the set {τ ≥ α} for s ∈ (s1, s0]. One has
to replace the cut-off function (R− r)2 used there by (τ − β)2, use the flow
variable s − s1 and note that estimates in terms of R become estimates in
terms of α, β and τmax. Since β and s1 were arbitrary this implies the result.
�

3. Initial - boundary value problems.

In this section we solve an initial - boundary value problem for smooth
spacelike data (Theorem 3.1) and then combine this result with the interior
estimate (2.3) of Theorem 2.1 (which is independent of the initial values of
v and H) to deal with data which contain null curves. The corresponding
elliptic Dirichlet problems for hypersurfaces of prescribed mean curvature
were treated in [B1, 2] and [G].

For the definition of causal relations we refer to [HE] or [B2]. In partic-
ular, the domain of dependence and the future (past) domain of influence of
a set S ⊂ V are denoted by D(S) and I±(S).
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A set S ⊂ V is called achronal if no two points x, y ∈ S with x �= y can
be joined by a timelike curve.

Theorem 3.1. Let M0 be a smooth, spacelike hypersurface with smooth

∂M0 and K ⊂ V be a compact and globally hyperbolic set such that

D(M0) ⊂⊂ K

and M0 is achronal with respect to K. Suppose also that the timelike con-

vergence condition holds. Then there exists a compact, smooth, spacelike
solution (Ms)s∈(0,∞) of (MCF) with initial data M0 such that ∂Ms = ∂M0

andMs ⊂⊂ K for all s ∈ (0,∞). The mean curvature of this solution satisfies
the inequality

(3.1) sup
Ms

H2 ≤ n

2s

for all s > 0. Furthermore, for any sequence (sk) → ∞ there exists a subse-
quence (denoted again by (sk)) such that Msk → M∞ where M∞ is a com-

pact, smooth, spacelike hypersurface satisfying ∂M∞ = ∂M0 and HM∞ = 0.

Remarks. (i) The condition on D(M0) can be replaced by a barrier assump-
tion (see [B1, Thm 4.3]).
(ii) Theorem 3.1 also holds for solutions of (MCF)H as long as H satisfies
the condition

Y (H) ≥ 0

for all future directed timelike vectorfields Y . The decay estimate (3.1)
then holds for H −H instead of H and the limiting hypersurface M∞ has
mean curvature HM∞ = H. The condition on D(M0) can be replaced by
an assumption on the existence of barrier hypersurfaces adapted to H as in
[B1] or [EH1].
(iii) Note that there may be several hypersurfaces with prescribed mean cur-
vature H spanning the same boundary data. For a discussion of a number
of conditions which ensure an exponential convergence rate and therefore
unique convergence of Ms to a limiting hypersurface M∞ with mean curva-
ture H we refer to [EH1, p.606].
Proof of Theorem 3.1. We proceed similarly as in [B1] and [EH1]. In
view of the assumptions on D(M0) and K we can apply [B1, Prop. 3.2]
to construct a time function t with lapse function ψ inside K for which
M0 ⊂ S0 = {x ∈ K, t(x) = 0}.
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We then note that Lemma 2.2 of [B2] is applicable to smooth solutions of
(MCF) with ∂Ms = ∂M0, since M0 and Ms are homotopic with respect to a
timelike vectorfield (as defined there) via the embedding map X . Therefore,

Ms ⊂ D(M0) ⊂ K

for all s ∈ (0,∞) so that Ms is compact by the compactness assumption
on K (here Ā denotes the closure of a set with respect to the Riemannian
distance d). In particular, this yields the height estimate

(3.2) tmax ≡ sup
s∈(0,∞)

sup
Ms

|t| <∞.

Once a uniform bound on the gradient function (with respect to the t -
foliation)

vt = 〈ν, ψ∇t〉
on Ms has been established, equation (1.6) becomes uniformly parabolic as
vt agrees with the quantity (1 − |ψDus|2)−1/2 for the height function us of
Ms up to tangential diffeomorphisms (depending on s) in S0.

We can therefore as in [B1, proof of Thm 4.1] or [G] employ standard
theory for such equations ([LUS]) to find a smooth solution of (MCF) for
all s ∈ (0,∞) in the class of spacelike hypersurfaces which are graphs over a
subset of S0.

Inequality (3.1) was stated in Proposition 1.5. Note that the maximum
principle and Lemma 1.4 also yield

(3.3) sup
Ms

H2 ≤ sup
M0

H2.

In view of (3.2) and (3.3) we are now in the same situation as in [EH1, Prop.
4.4] where for a compact solution of (MCF) without boundary an estimate
for vt was established. We give an outline of the proof for the convenience of
the reader. Following [B1, proof of thm 3.1], we employ a maximum point
argument for the function

e±λtvt
on Ms: If at s1 > 0 the function e±λtvt first reaches an interior maximum
point larger than supM0

e±λtvt = supM0
vt = 1 we have(

d

ds
− ∆

)
e±λtvt ≥ 0

there. We then combine (1.7), (1.11) (with T replaced by −ψ∇t) and (1.2)
and choose λ suitably large to obtain an estimate of vt in the interior of Ms
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for s ∈ (0,∞) in terms of tmax, supM0
H2 and ‖∇t‖2. For the details we

refer to [EH1, Prop. 4.4]. Note that the notation u and v instead of t|Ms

and vt is used there.
If for s1 > 0 the maximum of the function occurs at a point on ∂Ms1 =

∂M0 we have
η(e±λt|Ms v) ≤ 0

there, where η is the inner normal to ∂Ms1 = ∂M0 in Ms1 . Since ∂t
∂s = 0

on ∂Ms = ∂M0 for all s ∈ (0, s0) we have H = 0 on ∂Ms where H is the
extension of the mean curvature of Ms to ∂Ms. The evolution equation (1.7)
furthermore yields

∆t = divMs∇t

on ∂Ms = ∂M0 where ∆ = ∆Ms.
We are now in the same situation as in the elliptic case for zero mean

curvature hypersurfaces treated in [B1] and may therefore copy the boundary
calculation of [B1, p163] exactly (with M replaced by Ms1). The argument
there uses the fact that t ≡ 0 on ∂M0 to give an estimate of vt on ∂M0 in
terms of H∂M0, the mean curvature of ∂M0. Again, note the difference in
notation.

The uniform estimates on vt for all s ∈ (0,∞) imply uniform estimates
for the second fundamental form of Ms and all its derivatives (see [EH1]).
Therefore, for any sequence (sk) → ∞ there exists a subsequence (again
denoted by (sk)) such that Msk → M∞ smoothly where M∞ is a smooth,
spacelike hypersurface with ∂M∞ = ∂M0 which satisfies HM∞ = 0 in view
of (3.1). �

Before proceeding to data which contain null curves let us first list those
definitions of [B2, Section 3] needed here.

S ⊂ V is called a weakly spacelike hypersurface if for each x ∈ S there
is a neighbourhood U of x such that S ∩ U is an embedded, achronal, C0,1

hypersurface which is closed in U (for an equivalent definition see [B2]).
The boundary of a weakly spacelike hypersurface S is defined by ∂S =

S̄ ∼ S where S̄ denotes the closure of S. Note that this definition allows
quite pathological situations as for example ∂S containing isolated points
(see [B2] for a discussion).

The singular set of S is defined by

singS = {x ∈ S, x = γ(l0) for some 0 < l0 < 1, where
γ : [0, 1] → V is a null geodesic such that γ(l) ∈ S

for all l ∈ (0, 1) and γ(0), γ(1) ∈ ∂S}.
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Our main theorem states that a solution of (MCF) retains those null
geodesics of its initial data which extend to the boundary in both directions
but becomes instantaneously smooth and spacelike away from these.

Theorem 3.2. Let M0 be a weakly spacelike hypersurface and K be a com-

pact globally hyperbolic set such that

D(M0) ⊂⊂ K

and M0 is achronal with respect to K. Suppose also that the timelike con-
vergence condition holds. Then there exists a family (Ms)s∈(0,∞) of weakly
spacelike hypersurfaces in K with

∂Ms = ∂M0 and singMs = singM0

for all s ∈ (0,∞) such that (Ms)s∈(0,∞) is a smooth, spacelike solution of

(MCF) with initial data M0 away from singM0 which satisfies the estimate

(3.8) sup
Ms∼singM0

H2 ≤ n

2s

for all s ∈ (0,∞). Furthermore, for any sequence (sk) → ∞ there exists a
subsequence (denoted again by (sk)) such that Msk → M∞ where M∞ is a

weakly spacelike hypersurface in K with

∂M∞ = ∂M0 and singM∞ = singM0

which is smooth and spacelike in M∞ ∼ singM0 and satisfies HM∞ = 0
there.

Remark. (i) A corresponding result holds for solutions of (MCF)H.
(ii) The remark after Thm 3.1 regarding convergence of Ms to a unique
stationary limit M∞ is still relevant here. The arguments of [EH1] carry
over to the case where there is a singular set as they only make use of the
inequality for H away from the singular set, inequality (1.5) and a pointwise
integration argument.
Proof of Theorem 3.2. We proceed similarly as in [B2, Section 4]. In
view of the assumptions on M0 there is a time function t with lapse ψ inside
K such that M0 can be written as the graph of a Lipschitz function u0 over
a bounded subset Ω ⊂ S0 = { x ∈ K, t(x) = 0 }. By mollification, we can
find a sequence (M j

0 )j∈N of compact, smooth, spacelike hypersurfaces with
smooth ∂M j

0 where each M j
0 is the graph of a smooth function uj0 over a
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domain Ωj ⊂ Ω with smooth ∂Ωj such that the M j
0 converge uniformly to

M0 in the sense that

(3.9) sup
Ωj

|uj0 − u0| → 0.

Moreover, the M j
0 are achronal with respect to K and satisfyD(M j

0 ) ⊂⊂ K.
By Theorem 3.1, (MCF) admits solutions (M j

s )s∈(0,∞) of compact, space-
like hypersurfaces with initial data M

j
0 and boundary given by ∂M

j
0 such

that M j
s ⊂⊂ K and the mean curvatures of the M j

s satisfy the estimate

(3.10) sup
M j

s

H2 ≤ n

2s

for all j ∈ N and s ∈ (0,∞). Furthermore, by construction, each M j
s is the

graph of a smooth function ujs over Ωj .
From Proposition 1.5. we conclude

(3.11) sup
Ωj

|ujs − ujs′ | ≤ C
√

2n|s− s′|

for all s, s′ ∈ [0,∞) where C depends on a lower bound for ψ in K.
In view of this estimate which is uniform in j and the fact that all hy-

persurfaces are spacelike (which amounts to a uniform Lipschitz condition)
the ujs form an equicontinuous sequence over S0× (0,∞). The Arzela-Ascoli
Theorem combined with a diagonal sequence argument then implies that
a subsequence (again denoted by (M j

s )) converges uniformly over compact
subsets of S0 × (0,∞) to a family (Ms)s∈(0,∞) of weakly spacelike hypersur-
faces which satisfy ∂Ms = ∂M0 for all s ∈ (0,∞). Moreover, in view of (3.9)
and (3.11) with s′ = 0 we conclude that Ms → M0 as s→ 0.

We now fix s0 > 0 and x0 ∈ Ms0 ∼ (singM0 ∪ ∂M0). Combining the
results in [B2, Ch.3] ((M0, K) is a standard data set as defined there) we
can find a constant α > 0, a relatively compact neighbourhood U of x0 such
that U ⊂⊂ K and

U ∩ (singM0 ∪ ∂M0) = ∅
as well as a function τ ∈ C2(K) which is a timefunction in the set {τ ≥ 0}
and satisfies

U ⊂ {τ ≥ α}.
Moreover, the estimates

〈∇τ,∇τ〉 ≤ −C−2
0

‖τ‖2 ≤ C1
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hold where C0 and C1 depend on M0 and dist (U, singM0 ∪ ∂M0) (distance
with respect to d).

In view of (3.9) which implies in particular that

lim
j→∞

dH(∂M j
0 , ∂M0) = 0

(dH denotes Hausdorff distance with respect to the Riemannian distance
function d) there exists j0 ∈ N such that for all j ≥ j0

∂M
j
0 ∩ {τ > 0} = ∅.

Since M j
s0 → Ms0 uniformly as j → ∞ and by (3.11) which is a uniform

estimate in j there exists j1 ∈ N with j1 ≥ j0 and constants 0 < s1 < s0 <
s2 <∞ such that for all j ≥ j1 and s ∈ (s1, s2)

M j
s ∩ U �= ∅.

The sets M j
s ∩ {τ > 0} are compact as M j

s ⊂⊂ K. Moreover, we have

∂M j
s ∩ {τ > 0} = ∂M j

0 ∩ {τ > 0} = ∅.

Therefore, the conditions of Theorem 2.1 are satisfied with respect to the
time function τ . Finiteness of the quantities considered in (2.2) follows from
(3.10) and the fact that v is finite on M j

s . The interior estimates (2.3) and
(2.16) applied to M j

s ∩ U in {τ ≥ α} yield

(3.12) sup
M j

s∩U
(v + |∇mA|) ≤ C

for all x ∈M j
s ∩U , j ≥ j1, s ∈ (s1, s2) and integers m ≥ 0 where C depends

on α−1, s−1
1 and the other quantities listed in Theorems 2.1 and 2.2, which in

turn depend on the constants in (3.6) and (3.7). Note that τmax is bounded
since M j

s ⊂⊂ K.
The M j

s which by (3.12) are uniformly spacelike and smooth in U in-
dependently of j therefore converge smoothly for j → ∞ to Ms in U

for s ∈ (s1, s2). This yields that for all s0 > 0 and every x0 ∈ Ms0 ∼
(singM0 ∪ ∂M0) there is an open set U × (s1, s2) containing (x0, s0) such
that U∩(singM0∪∂M0) = ∅ and (Ms)s∈(s1,s2) is a smooth, spacelike solution
of (MCF) in U . As s0 and x0 were arbitrary we conclude that (Ms)s∈(0,∞)

is a smooth, spacelike solution of (MCF) away from singM0 ∪ ∂M0.
Since ∂Ms = ∂M0 for all s ∈ (0,∞) the definition of the singular set

implies that
singMs = singM0
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(see [B2, Lemma 3.6]).
To obtain convergence to a mean curvature zero hypersurface we proceed

as follows. Every sequence (sk) → ∞ has a subsequence (again denoted by
(sk)) such that Msk → M∞ uniformly where M∞ is a weakly spacelike
hypersurface satisfying ∂M∞ = ∂M0. Moreover, singM∞ = singM0. To
show that M∞ ∼ (singM0 ∪ ∂M0) is smooth and spacelike and satisfies
H = 0 we note that the bounds in (3.12) are independent of s2. The sequence
(Msk ) therefore is uniformly spacelike and converges smoothly to M∞ away
from ∂M0 ∪ singM0. Letting j → ∞ in (3.10) we obtain inequality (3.8)
which implies for (sk) → ∞ that HM∞ = 0 in M∞ ∼ (singM0 ∪ ∂M0). �

Appendix.

Let us discuss a simple example along the lines of [B3] involving the time
function

τ(x, t) =
√
t2 − |x|2

in Minkowski space Rn,1.
Let M0 = graphu0 ⊂ Rn,1, where u0 : Ω → R is spacelike that is

|u0(x) − u0(y)| < |x − y| for all x �= y ∈ Ω ⊂ Rn. For ρ > 0 such that
Bρ(0) ⊂ Ω we may assume (by vertically translating u0 if necessary) that

0 < u0(0) = ρ − sup
y∈∂Bρ(0)

u0(y).

One easily checks that then u0(x) < |x| − u0(0) for |x| ≥ ρ and therefore

M0 ∩ {τ ≥ 0} ⊂ {(x, t) ∈ Rn,1, |x| < ρ, 0 ≤ t < 2ρ}

such that in particular M0 ∩ {τ ≥ 0} is compact.
Let (Ms)s∈(0,s0) be a solution of (MCF) with initial data M0 correspond-

ing to spacelike functions us : Ω → R. Assume that this solution obeys the
parabolic maximum principle (see the discussion in Section 1). Proposition
1.5 (or [E2, Proposition 1.3]) implies

|us(x)− u0(x)| ≤
√

2ns

for all x ∈ Ω and s ∈ [0, s0). One then verifies that

Ms ∩ {τ ≥ 0} ⊂ {(x, t) ∈ Rn,1, |x| < ρ, 0 ≤ t < 3ρ}

and hence Ms ∩ {τ ≥ 0} is compact for all s ∈ (0, s0) as long as
√

2ns0 ≤
u0(0).
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Note that in general the maximum (flow) time s0 for which the con-
ditions of Theorem 2.1 hold will be finite. The solution Ms given by
us(x) = log coshx + s, x ∈ R does not intersect { τ > 0 } at all if s = 0
but for s ≥ log 2

Ms ⊂ {τ ≥ 0}

and therefore in particular Ms ∩ {τ ≥ 0} is noncompact.
To determine the constants C0 and C1 we calculate ∇τ(x, t) = −τ−1(x, t)

which implies 〈∇τ,∇τ〉 = −1 and

−〈∇τ, ∂t〉 =
t

τ

which is the quantity controlling norms of tensors with respect to T = ∂t.
The second derivatives of τ enter the constants of Theorem 2.1 only when
estimating the expression

(
d
ds − ∆

)
τ (compare (2.14) above). In Minkowski

space we have (
d

ds
− ∆

)
τ = τ−1

(
n+ |∇τ |2

)
analogously to [B3] which can be estimated independently of ∇2

τ .
Hence for the time functions τε = τ − ε we find that C0 = 1 and C1

depends on ε−1 and the quotient ε−1ρ. Note that for ε = u0(0)
2 the constant

C1 is therefore controlled by the reciprocal of the ’gap’ quantity

1 − sup
y∈∂Bρ(0)

u0(y) − u0(0)
ρ

.
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