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In this paper, we first establish a If-theory version of the equivari- 
ant family index theorem for a circle action, then use it to prove 
several family rigidity and vanishing theorems on the equivariant 
if-theory level. 

Introduction. 

In [W], Witten considered the indices of elliptic operators on the free loop 
space CM of a spin manifold M. In particular the index of the formal signa- 
ture operator on the loop space is exactly the elliptic genus of Landweber- 
Stong-Ochanine [LS], [O]. Motivated by physics, Witten made the conjec- 
tures about the rigidity of these elliptic operators which say that their 51- 
equivariant indices on M are independent of g G Sl. See [L] for the early 
history of the subject. 

These conjectures were proved by Taubes [T], Bott-Taubes [BT], and 
by Hirzebruch [H] and Krichever [K]. Many aspects of mathematics are 
involved in their proofs. Taubes used analysis of Predholm operators and 
Witten's interpretation of the Atiyah-Bott-Segal-Singer Lefschetz fixed point 
formula; Krichever used cobordism; Bott and Taubes and Hirzebruch used 
the Atiyah-Bott-Segal-Singer Lefschetz fixed point formula. In [Liul], it 
was observed that these rigidity theorems are consequences of their modular 
invariance. This allowed Liu ([Liul, 2]) to give a simple and unified proof, 
as well as various further generalizations, of the above conjectures of Witten. 
In particular, several new vanishing theorems were found in [Liul, 2]. 

In many situations in geometry, it is rather natural and necessary to 
generalize the above rigidity and vanishing theorems to the family case. 
For example, to use elliptic operators to study the fundamental groups of 
a manifold, one can reduce the question to a problem involving a family 
of elliptic operators.    In [LM1] and [LM2],  Liu and Ma proved several 
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family rigidity and vanishing theorems. Such theorems contain higher level 
vanishing terms which will be useful for our understanding of the relationship 
between group actions and fundamental groups. 

To be more precise, let M, B be two compact smooth manifolds, and 
TT : M -> B be a smooth fibration with compact fiber X. Assume that a 
compact Lie group G acts fiberwise on M, that is, the action preserves each 
fiber of TT. Let P be a family of G-equivariant elliptic operators along the 
fiber X. Then the family index of P, in the sense of Atiyah and Singer [AS], 

(0.1) Ind(P) = KerP - CokerP G KG{B), 

is well-defined. Note that Ind(P) is a family of virtual G-representation 
indexed by elements of the space B. Let G denote the space of all complex 
irreducible representations of G. By [S, Proposition 2.2], we have 

(0.2) Ind(P) - 0 HomG(V, Ind(P)) ® V 

vec 

with HomG(T/,Ind(P)) € K(B). We denote by (Ind(P))G E K(B) the G- 
invariant part of Ind(P). 

A family of elliptic operator P is said to be rigid on the equivariant 
Chern character level with respect to this G-action, if the equivariant Chern 
character chp(Ind(P)) G H*(B) is independent of g G G. If chp(Ind(P)) is 
identically zero for any g G G, then we say P has vanishing property on the 
equivariant Chern character level. More generally, we say that P is rigid 
on the equivariant K-theory level, if Ind(P) = (Ind(P))G. If this index is 
identically zero in KG{B)J then we say that P has vanishing property on 
the equivariant K-theory level. To study rigidity and vanishing properties of 
Ind(P), it is clear that we only need to restrict to the case where G = S1. 
Prom now on we make the assumption that G = 51. 

Note that the .K-theory level rigidity and vanishing properties are more 
subtle than those on the Chern character level. The reason is that, by 
taking the Chern character, some torsion elements involved in the index 
bundle might be killed. Such torsion elements may appear in the study of 
fundamental groups, which we hope to pursue in the future. 

In [LM1], Liu and Ma proved that the elliptic genera are actually rigid on 
the equivariant Chern character level. Several vanishing theorems for equiv- 
ariant Chern characters of these index bundles are also proved in [LM1]. 
Motivated by the family rigidity theorem of [LM1, Theorem 2.1], it is rather 
natural to expect that the elliptic genera have rigidity and vanishing prop- 
erties on the equivariant if-theory level. The purpose of the present paper 
is to show that this is indeed the case. 
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To achieve our purpose, we first establish a K-theory version of the equiv- 
ariant family index theorem [LM1, Theorem 1.1] for S^-action. However, 
we are not able to derive this formula directly by applying the localization 
formula in the equivariant If-theory as in [ASe], as the localizing process 
will also kill the torsion elements in Ksi(B). Here instead, we combine the 
analysis of Wu-Zhang [WuZ, §3], which in turn relies on the technique of 
Bismut-Lebeau [BL], with a deformation trick of Zhang [Z, §2], which allows 
us to avoid the small eigenvalues problem, to establish such a formula. 

To prove the main results of this paper, which are stated in Section 2.1, 
we will introduce some shift operators on certain vector bundles over the 
fixed point set of the circle action, and compare the index bundles after 
the shift operation. Then we get a recursive relation of these index bundles 
which will in turn lead us to the final result. This part is essentially a 
reformulation of the basic ideas of Taubes [T]. Our main observation here 
is that we can directly do the shift operations on the fixed point set by 
applying the if-theory version of the equivariant family index theorem. In 
this way, we avoid the construction of the Dirac operator on the normal 
bundle in the loop space, as well as the associated analysis on the Fredholm 
properties of these operators (cf. [T]). Consequently, some of the shifting 
operations we will construct are not the same as that in [T]. This simplifies 
the computation significantly. In fact, in some sense the proof we will present 
may be considered as a rather subtle if-theory version of the proof of Bott- 
Taubes [BT]. 

Some of the results of this paper have been announced in [LMZ1]. In 
a subsequent paper [LMZ2], we will use the method in this paper to prove 
several rigidity and vanishing theorems on the equivariant if-theory level for 
Spinc-manifolds, and also for almost complex manifolds. 

This paper is organized as follows. In Section 1, we prove a if-theory 
version of the equivariant family index theorem for circle action. In Section 
2, we prove the rigidity and vanishing theorems of elliptic genera on the 
equivariant if-theory level. The proofs of the main results in Section 2 are 
based on two intermediate results which will be proved in Sections 3 and 4 
respectively. 

Acknowledgements. Part of this work was done while the authors 
were visiting the Morningside Center of Mathematics in Beijing during the 
summer of 1999. The authors would like to thank the Morningside Center 
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reading and helpful comments. 
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1. A if-theory version of the equivariant family index 
theorem. 

In this section, we will prove a jST-theory version of the equivariant family 
index theorem [LM1, Theorem 1.1] for S^-actions, which will play a crucial 
role in the following sections. As an immediate consequence, we obtain a K- 
theory version of the famous A-vanishing theorem of Atiyah and Hirzebruch 
[AH] for compact connected spin manifolds with non-trivial 5,1-actions. As 
was pointed out in the introduction, unlike the case of the usual index, we 
can not get the if-theory index formula directly by applying the localization 
formula in equivariant if-theory as in [ASe], as the localizing process will 
kill the torsion elements in Ksi(B). So the formula we will derive is more 
precise and subtle for the S1 -action case. 

This section is organized as follows: In Section 1.1, we state a if-theory 
version of the equivariant family index theorem for an 51-action on a family 
of spin manifolds. In Section 1.2, we prove Theorem 1.1 by applying the 
techniques of [BL, Sections 8, 9], [WuZ, Section 3] and a deformation trick 
in [Z]. In Section 1.3, we generalize Theorem 1.1 to a somewhat more general 
situation. In particular, we obtain a if-theory version of the equivariant 
family index theorem for an S1 -action on a family of Spinc Dirac operators. 

1.1. A if-theory version of the equivariant family index theorem. 

Let M, B be two compact manifolds, and TT : M —> B a smooth fibration 
with compact fiber X such that dimX = 21. Let TX denote the relative 
tangent bundle. Let W be a complex vector bundle over M and hw an 
Hermitian metric on W. 

Let hTX be a Riemannian metric on TX and VTX be the corresponding 
Levi-Civita connection on TX along the fiber X. Then the Clifford bundle 
C(TX) is the bundle of Clifford algebras over M whose fiber at x € M is 
the Clifford algebra C(TXX) of (TX, hTX). 

We assume that the bundle TX is spin over M. Let S(TX) = S+(TX)® 
S~(TX) be the spinor bundle of TX. We denote by c(-) the Clifford action of 
C(TX) on 5(TX). Let {ej be an oriented orthonormal basis of (TX, hTX), 
let {e1} be its dual basis. Let 

(1.1) T = ilc(el)--'c{e2l) 

be the involution of S(TX). Then r\s±^rx) = il- 
Let V5^*) be the Hermitian connection on S(TX) induced by VTX. 

Let Vw be an Hermitian connection on (W,hw).   Let ^^x)^w be the 
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connection on S(TX)®W along the fiber X: 

(1.2) VS(TX)®W = V5(TX) ® ! + i ^ v^. 

For b£B,we denote by Eb, E±jb the set of C^-sections of S(TX) ® W, 
S'=t(TX) ® 1¥ over the fiber Xb- We regard Eb as the fiber of a smooth 
Z2-graded infinite dimensional vector bundle over B. Smooth sections of E 
over B will be identified to smooth sections of S(TX) ® W over M. 

Definition 1.1. Define the twisted Dirac operator to be 

(1.3) ^ = EiC(ei)vf(TX)^ 

Then Dx is a family Dirac operator which acts fiberwise on the fibers of TT. 

For b e B, Dff denote the restriction of Dx to the fiber Eb. Dx interchanges 
E+ and J^_. Let D^ be the restrictions of Dx to E±. 

Now we assume that 51 acts fiberwise on M. We will consider that S1 

acts as identity on B. Without loss of generality we can assume that 51 acts 
on (TX,hTX) isometrically. We also assume that the action of 51 lifts to 
S(TX) and W, and commutes with V^. Recall that the S1 action on E is 
defined by (g • s)(x) = g{s(g~1x)) for g e S1^ E E,x G M. 

From [LM1, Proposition 1.1], we know that the virtual bundle over JB, 

(1.4) lnd(Dx) = KerDX
jb - KerDx

b, 

is well-defined in the equivariant iiT-group Ksi(B). 
We denote by [n] (n G Z) the one dimensional complex vector space 

on which S1 acts as multiplication by gn for a generator g E S1. By [S, 
Proposition 2.2], we know that there exist A e N, i^ e K(B) (|n| < A) 
such that 

(1.5) Ind(Dx) = 0 Rn ® [n], 
\n\<A 

as an identification of virtual S^-bundles. 
For n e Z, let ^ 6, J^ 6 be the subspaces of J5+j6, E"-^ where 51 acts 

as multiplication by gn for g e S1. Then we can consider JE^ = E+ b © E1!!: b 

as the fibers of a smooth Z2-graded infinite dimensional vector bundle over 
B. Smooth sections of En over B will be identified with smooth sections of 
S(TX) ® W over M on which 51 acts as multiplication by gn for g G 51. 
Then the virtual bundle over B, 

(1.6) Ind(Dx, n) = KeiD^E^ - KeiDX
}b\Eny 
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is well-defined in the if-group K(B). 
By the construction of the index bundle Ind(Dx) (cf. [LM1, Proposition 

1.2]), it is well known that 

/-, 7x Ind(Dx,<n)    = i^,    for    |n| < A, 
1     j =0,    for    |n|> A. 

Let F = {Fa} be the fixed point set of the circle action on M. Then 
TT : Fa ^ B (resp. n : F -> £) is a smooth fibration with fiber 1^ (resp. 
y), and y is a totally geodesic compact submanifold in each fiber X. Let 
TT : N -> F denote the normal bundle to F in M. Then TV = TX/TY. We 
identify iV as the orthogonal complement of TY in TX\F. Let /iTy, /i^ be 
the corresponding metrics on TY, N induced by hTX. Then, we have the 
following Sfl-equivariant decomposition of TX when restricted to F: 

TX\F = Nmi@.-.®Nmi@TY, 

where each N^ is a complex vector bundle such that g € S1 acts on it by y7. 
To simplify the notation, we will simply write that 

(i.8) TX|F = ©^o^eTy, 

where Nv is a complex vector bundle such that g G S1 acts on it by gv 

with v e Z*. Clearly, N = ®v^oNv' We will regard iV as a complex vector 
bundle, and write ATR for the underlying real vector bundle of N. 

Since JVR is naturally oriented by the complex structure on iV, TY is 
naturally oriented by the orientations of TX and TV. Similarly, let 

(1.9) W\F = ®VWV 

be the S^-equivariant decomposition of the restriction of W over F.  Here 
Wv (v 6 Z) is a complex vector bundle over F on which g G Sl acts by gv. 

Let C{NK) be the Clifford algebra bundle of (iVR,/^). Then A(iV*) is 
a C(iVR)-Clifford module. Namely, if U G N, let U' G iV* correspond to U 
by the metric hTX. If U G iV, we write 

(1.10) c(C/) = y/2U'A,    c(U) = -y/2iw. 

On F, let ^2 (Ty), ^(JV) be the second Stiefel-Whitney classes of TY, N 
respectively. Let det Nv, det N = 0^ det Nv be the determinant line bundles 
ofNv, N over F. Let ci(det N) be the first Chern class of det N. As TX is 
spin, one gets the following identity in H2(F, Z2) : 

(1.11) ^2(Ty) = W2(N) = ci(det^)   mod (2). 
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As explained in [LaM, Appendix D, p. 397], we can construct a Spinc 

-principal bundle and a complex spinor bundle S (TY, (det AT)-1) over F 
which locally may be thought of as 

S (TY, (det JV)"1) = So{TY) ® (det AT)"1/2, 

A(]V*) = 5o(iVR)®(detiV)1/2, 

where So(TY), SQ(NII) are the fundamental spinor bundles for the (possi- 
bly nonexistent) spin structure on TY, ATR, and where (det AT)-1/2 is the 
(possibly nonexistent) square root of (det JV)"1. 

Since Y is totally geodesic in X, the connection VTX
\F also preserves the 

decomposition (1.8) of TX over F. Let VTy, V^, V^ be the corresponding 

induced connections on TY, N and A^. Let S7A(N ) be the connection on 
A(N*) induced by V^. 

Let V(detiV)~ be the connection on (det A")-1 induced by V^. The con- 
nections V^det N^~ and VTy induce an Hermitian connection ^/s(TY^det N) ) 
on 5(TY, (det AT)"1). In fact, locally, both So(TY) and (det AT)-1/2 exist and 
carry a canonical connection induced by VTy, V(detiV) . We give the bun- 
dle S (TY, (det A")-1) the tensor product connection. It is standard that this 
connection is well defined globally (cf. [LaM, Appendix D]). 

Let (ei,..., e2i'), fav+i5 • • •, e>2i) be the corresponding oriented orthonor- 
mal bases of TY and A/R. Then (ei,..., 621) is an oriented orthonormal basis 
of TX. The Z2-gradings on S (TY, (det AT)"1), A(]V*) are defined by the 
involutions i1'c(ei)... cfai'), and r^ — il~l c(e2i>+i)... c(e2i) respectively. 
Also note that under the involution r^, 

Aeven(]V*) - (A^*))"1",    Aodd(Ar*) = (A(]V*))-. 

Prom the above discussion, we see that there is a natural isomorphism 
between Z2-graded C(TX)-Clifford modules over F, 

(1.12) S (TY, (det iV)"1) ®A(iV*) ~ S(TX)\F. 

Here we denote the Z2-graded tensor product by (8) (cf. [LaM, p. 11]). 
Furthermore, since V^ is S'1 -invariant, one deduces easily that 

(1.13) Vs(rx)|F = V5(Ty'(detiV)"1)®l + l®VA^*). 

Let V be an Hermitian vector bundle over F. Let Vy be an Hermitian 
connection on V. From now on, we will also denote by DY ® V the fam- 
ily twisted Dirac operator on S (TY, (det AT)-1) <g> V on F, and DYa ® V 
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its restriction to Fa. Namely, let vs(rr'(detAr)~1)®v be the tensor product 
connection on S (TY, (detiV)-1) ® V induced by ^S(TY,(detN)-^ and vv 
Then 

21' 

(1.14) DY ® V = f2^i)^SeFndetNrl)®V- 
i=l 

We use the notation 

+oo 

Symg(F) = J2QnSymn(V) G K(F)[[q}}, 
n=0 

+oo 

Aq(v) = J2inAnWeK(F)M, 
71=0 

for the symmetric and exterior power operations in JfC(F)[[^]] respectively. 
Introduce the notations: 

(1.15) 

R(q) = gl £„ I"!dim^ (g) (Symg„ (JY;,) ® det JV,,) 
u>0 

® (g) Symg-„ (JV.) ® (J2 QVWV) = ^ i?n9n, 
i;<0 f 71 

^(9) = g-5 E« Mdiffi^ (g) Sym,-, (¥„) 

® (g) (Syny (^) ® det JVW) ® ( J^ ^^ti) = 5] <9n. 
u<0 

Note that by [AH] (also cf. the argument after (2.27)), one knows that, 
as TX is spin, 

(1.16) ^2vdimNv = 0    mod (2). 
V 

We can now state the main result of this section as follows. 

Theorem 1.1. For n G Z, we have the following identity in K(B) : 

(1.17) Ind(£>x,n) = ^(-l)£o<.dim7VVInd ^ ^ JQ 

a 

= X](-1)E"<0dim;V,'Ind (DYa ® R'n) ■ 
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If we take W = C the trivial line bundle over M, then the oper- 
ator Dx ® C is exactly the canonical Dirac operator Dx. The follow- 
ing consequence generalizes the famous A-vanishing theorem of Atiyah and 
Hirzebruch [AH] for compact connected spin manifolds with non-trivial 51- 
actions to the family case. 

Corollary 1.1. If M is connected, and the Sl action is nontrivial, then for 
the family of the canonical Dirac operators Dx along the fiber X, one has 

(1.18) Ind(Dx)=0    in   Ksi(B). 

Proof: If the S1 action is locally free, then by Theorem 1.1, we get 
directly (1.18). Otherwise, since on each Fa, 

(1.19) ^MdimiV^X), 
V 

one deduces easily from Theorem 1.1 that 

(1.20) lnd(£>x,n)=0     in   K(B) 

for any n € Z, from which (1.18) follows. ■ 

1.2. Proof of Theorem 1.1. 

In this subsection, we prove Theorem 1.1. The proof, which is contained 
here for completeness of the present paper, is modeled on [WuZ, Section 3] 
which in turn relies on the paper of Bismut and Lebeau [BL]. 

This subsection is organized as follows. In Section 1.2.1, we recall a re- 
sult from [WuZ, Proposition 3.2] concerning the Witten deformation on flat 
space. In Section 1.2.2, we establish a Taylor expansion of Dx + \f^lTc{H) 
near the fixed point set F, where H is the Killing vector field on M gener- 
ated by the circle action. In Section 1.2.3, by using the techniques of [WuZ, 
Section 3] and [BL, Section 9], we establish various estimates for certain op- 
erators induced from Dx + ^f:=:lTc(H). In Section 1.2.4, we prove Theorem 
1.1 by using a deformation trick in [Z], 

1.2.1. Witten's deformation on flat spaces. Let H be the canonical 
basis of Lie(51) = R, i.e., for t € R, exp(tiJ) = e27rii G Sl. Let W be a 
complex vector space of dimension n with an Hermitian form. Let p be a 
unitary representation of the circle group 51 on W such that all the weights 
are nonzero. Suppose W± are the subspaces of W corresponding to positive 
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and negative weights respectively, with dime W~ = v, dime W+ = n — v. 
Let z = {z1} be the complex linear coordinates on W such that the Hermitian 
structure on W takes the standard form and p is diagonal with weights 
A* € Z \ {0} (1 < i < n), and A; < 0 for i < v. The Lie algebra action on W 
is given by the vector field 

Set 

^(W) = Sym ((W±)*) ® Sym(W=F) ® det(W*). 

Let E be a finite dimensional complex vector space with an Hermitian form 
and suppose E carries a unitary representation of S1. 

Let d be the twisted Dolbeault operator acting on Q0>*(W, E) = 
r(A(PF*) ® E), the set of smooth sections of A(W*) ® E on W. And let 9* 
be its formal adjoint. Let D = \/2(<9 + d ). Let c(iZ') be the Clifford action 
of H on A(PF ) defined as in (1.10). Let LH be the Lie derivative along H 
acting on 9?^(W,E). 

The following result was proved in [WuZ, Proposition 3.2]. 

Proposition 1.1. 1. A basis of the space of L2-solutions of D + y/^lc(H) 

(resp. D — y/^Tc(H)) on the space ofC00 sections of A(W ) is given by 

v n 

(i.2i)   (n^X n ^)c"E?=i,rMw2^+i---^n (keN) 
2=1 2=^+1 

with weight Y!i=i h\M + Efc=v+i(*i + ^M fresP- 

i/ n 

(1.22) (II^X  11  zkii)e-J:U^Zi?<tei---<teu    (ifei€N) 

mth weight - £2=„+1 ArjIAil - Er=i(^ + l)\M)- 
So the space of L2-solution of a given weight of D + \f^lc(H) (resp. 

D—^/^lc(H)) on the space ofC00 sections of A(W )®E is finite dimensional. 
The direct sum of these weight spaces is isomorphic to K~(W) ® E (resp. 
K+(W) ® E) as representations of S1. 

2. When restricted to an eigenspace of LH, the operator D + v/-Tc(JH') 
(resp. D — V—~lc(H)) has discrete eigenvalues. 
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1.2.2. A Taylor expansion of certain deformed operators near the 
fixed-point set. In this subsection, we will use the notation of Section 
1.1. We assume temporarily that B is a point, and Y is the fixed point set 
of the Sl action on X. 

Following [BL, Section 8e)] and [WuZ, Section 3.2], we now describe a 
coordinate system on X near Y. For e > 0, set B£ = {Z G JV; \Z\ < e}. 
Since X and Y are compact, there exists so > 0 such that for 0 < e < £o? 
the exponential map (y, Z) G N —> exp^-(Z) G X is a diffeomorphism from 
B£ onto a tubular neighborhood U£ of Y in X. From now on, we identify Be 

with U£ and use the notation x — (y,Z) instead of x — exp^Z). Finally, 
we identify y € Y with (y,0) G N. Let 7r*((5(TX) ® I^)|y) be the vector 
bundle on N obtained by pulling back of (S(TX) ® W.)\Y for TT  : N ->Y. 

Let /iTy, /i^ be the corresponding metrics on TY and N induced by 
hTX. Let dvx, dvy and dviv be the corresponding volume elements on 
{TX, hTX), (TY, hTY) and (AT, fc*). Let fc(y, Z) ((y, Z) G Se) be the smooth 
positive function defined by 

dvx(y, Z) = fc(y, Z)dvY(y)dvNy(Z). 

Then fc(y) = 1 and ||(y) = 0 for y £ Y] the latter follows from [BL, 
Proposition 8.9] and the fact that Y is totally geodesic in X. 

For x = (y, Z) G UeoJ we will identify S{TX)X with S(TX)y and Wx with 
Wy by the parallel transport with respect to the S'1-invariant connections 
yS(rx) an(j yvr respectively, along the geodesic t -> (y,tZ). The induced 
identification of (S^TX)® W)x with (S^T-X")® W)^ preserves the metric and 
the Z2-grading, and is moreover 51-equivariant. Consequently, Dx can be 
considered as an operator acting on the sections of the bundle 7r*((Sf(TX) ® 
W)|y) over B£o commuting with the S'1 action. 

For e > 0, let H.(-Be) (resp. H(iVr)) be the set of smooth sections of 
?f*((5(TX) ® W)\Y) on B£ (resp. on the total bundle of N). If /, g G H(JV) 
have compact supports, we will write 

(1.23) (/,»> - ^) lm   jT (^ (/,^) (y.ZJd^CZ)) ^y(y). 

Then kl/2Dxk~1/2 is a (formally) self-adjoint operator on H(iV). 
The connection V^ on N induces a splitting TN = N © T^iV, where 

T^JV is the horizontal part of TN with respect to V^. Moreover, since Y 
is totally geodesic, this splitting, when restricted to Y, is preserved by the 
connection VTX on TX\Y-   Let V be the connection on {S(TX) ® W)\Y 
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induced by the restriction of ^/S(TX)^W to Y. We will still denote by V the 
lift of the connection V to n*((S{TX) ® W)|y). 

We choose a local orthonormal basis of TX such that ei,..., 621' form a 
basis of TY, and 621'+u • • • ? e2h that of NR,. Denote the horizontal lift of e^ 
(1 < i < 21') to T^iV by ef. As in [BL, Definition 8.16] and [WuZ, (3.15)], 
we define 

21' 21 

(1.24) ^ = X;c(ei)Vef,        DN=   Y.   c^)^- 
i=l l i=2V+l 

AT —N — Clearly, D™ acts along the fibers of N. Let d    be the <9-operator along the 
—iV* 

fibers of iV, and let d     be its formal adjoint with respect to (1.23).   By 

(1.13), it is easy to see that DN = V2(dN + dN*). Both DN and DH are 
self-adjoint with respect to (1.23). 

For T > 0, we define a scaling / <E H(5eo) -^ Srf € ii(B£oVT) by 

(1.25) 5r/(y,Z) = /(y,-^),        (yJZ)eB£oVT. 

For a first order differential operator 

21' 21 _ 

(1.26) QT = Y.(Jr{y,Z)VeH +   Y<   bUy,Z)Vei+cT(y,Z) 
i-l t=2/'+l 

acting   on   H(Be   z^),   where   a^,   6^   an(^   cr   are   endomorphisms   of 
v*((S(TX) ® PT)fy), we write 

(1.27) QT = O {\Z\2dN + \Z\dH + \Z\ + \Z\*>),        (p € N), 

if there is a constant C > 0 such that for any T > 1, (y, Z) 6 B£ ^^ we 
have 

(1.28) \JT{y,Z)\<C\Z\        (1<*<20, 

|6^(y, Z)| < C|Z|2        (2/' + 1 < t < 2Z), 

My,Z)|<C(|Z| + |Zn. 

Let Ju be the representation of Lie(51) on N. Then Z -> Ji/Z is a 
Killing vector field on AT. We have the following analog of [BL, Theorem 
8.18] and [WuZ, Proposition 3.3]. 
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Proposition 1.2. As T -> +00, 

(1.29) Srk1'2 (Dx + V^lTc(H)) k'^S^1 = Vf {DN + ^c(JHZ)) 

+ DH + -^=0 (\Z\2dN + \Z\dH + \Z\ + |Z|3). 

Proof: Since Y is totally geodesic in X and the actions of S1 on N and 
M commute with the exponential map, one can proceed as in the proof of 
[WuZ, Proposition 3.3] and [BL, Section 8] to get (1.29). ■ 

By Proposition 1.1, the solution space of the operator DN + \/^Tc( JRZ) 

along the fiber Ny {y G F) is (the L2-completion of) K-{Ny) ® Wy. They 
form an infinite dimensional Hermitian complex vector bundle K~ (N)® W\F 

over y, with the Hermitian connection Vy induced from those on N and 
W\Y-+Y. 

Let   H0(y)   be   the   Hilbert   space   of  square-integrable   sections   of 

^(ry^detJV)"1) ®K-{N) ® W)\Y, and H0(iV)7 that of the bundle 

7f*((S(TX) ®W)\Y), equipped with the corresponding Hermitian forms. By 
using (1.12), we define an embedding-0 : H0(y) -> H0(iV) by 

(1.30) il>:a®P€ H0(y) -+ TTCL A r(/3) G H0(iV). 

Here a G r(y, 5(Ty, (det iV)-1)), & G L2
(K-(N)®W\Y) and r is the isome- 

try from L2
{K'\N)®W\Y) to ^(^((A^*)®^)^)) given by Proposition 

1.1. Clearly, ^ is an isometry onto its image which we denote by H'5 . Let 
p : H0(iV) -> H''0 be the orthogonal projection. Then we have the following 
analog of [BL, Theorem 8.21] and [WuZ, Proposition 3.4], which can be 
proved in the same way as in [BL] and [WuZ]. 

Proposition 1.3. The following identity for operators acting on H0(y) 
holds ; 

(1.31) ip-lpDHp^ = DY ® 12(1), 

where JR(1) is defined in (1.15). 

1.2.3. Estimates of the operators as T —> +oo. We still assume tem- 
porarily that B is a point. For p > 0, let HP(X), Hp(iV) and UP(Y) 
be the p-th Sobolev spaces of sections of the bundles S(TX) ® W -> X, 
i?*({S(TX) ® W)\Y) -> N and 5 (Ty, (det iV)"1) ® K'(N) ® W\Y -^ y 
respectively.   The group iS1 acts on all these spaces.   For any f G Z, let 
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H|(X), Hj^iV) and Hj^Y") be the corresponding subspaces of weight f e Z. 
Recall that the constant SQ > 0 is defined in last subsection. We now take 
e e]0, ^], which is small enough for each eigenvalue of LH we will consider, 
but otherwise can be assumed to be fixed. Let p: R -► [0,1] be a smooth 
function such that 

<LK>       "C)={I«: i ^ 
For ZEN, set p£(Z) = p(&). Let a e r (Y,S {TY, (detiV)-1)), p e 
L

2
(K-(N)®W\Y), a- = a®p. We define a linear map IT( : B.PAY) -> B5(N) 

by 

(1.33) , e HJPO ^ lT*r = ^k^ra^irm e HfW. 

Let the image of. JT>f from H|(y) be H^^iV)  = /T^H^F)  C H|(JV). 

Denote the orthogonal complement of H^JV) in H^(iV) by H^(iV), and 

let H^(iV) = HJ(JV) n H^(iV).   Let W,* and p^ be the orthogonal 

projections from H^(iV) onto H^(JV) and H^(iV) respectively. 
Since the bundle S(TX) ® PF'over Ueo is identified with 

5r* ((S(TY; (det iV)"1) ® A^*) 0 w) \Y) 

over S£o, we can consider k-^2IT4a as an element of H|(X) for a 6 H£(y). 
Define the linear isometry map Jj^ by 

(1.34) a € Hf (y) ^> JTtecr = h-WlT^a € Hf(X). 

Let H^X) = JT^H|(y) be the image. Denote the orthogonal complement 

of H0
T^X) in H«(X) by H^(X), and let H^(X) = Hf (X) n H^(X). 

Let pT)? and p^ be the orthogonal projections from H9(X) onto BLAX) 
n I ^J^ 

and Hj^X) respectively. It is clear that pT^ = k~ll2pT^kll2. 

For any (possibly unbounded) operator A on H9(X), write 

Msra A      M
(1)    ^(2) 

(L35) A=\A<n AM 

according to the decomposition Hj(X) = H^?(X) © H^(X), i.e., A^ = 

PTtAprt, A® =pTtiAp^ A® =p^ApTA and A^ = p^Ap^. 
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Let DT = Dx+y/::lTc(H), where now H denotes the Killing vector field 
on M generated by the circle action. Let DT£ and Dj be the restrictions 

of the operators DT and DY ® R{1) on H^X) and H^(y) respectively. 

Proposition 1.4. 1. As T ^ +oo7 

(1.36) Jri^i^ = Dj + 0(^=j, 

where 0(4=) denotes a first order differential operator whose coefficients 

are dominated by -jL (C > 0). 

2. For each £ G Z, there exists C > 0 such that for any T > 1, a G EL^ (X), 

a' G Hy^(-X'), we have 

(1.37) ||42]a||o<c(& + |H|o 

II^Ho^C^ + lMlo 

3. For each £ E Z, there exist e e]0, f], To > 0, C > 0 such that for any 

T > To, a G H^(X)? we have 

(1.38) |l44,Hlo>^(lHli + ^IHIo)- 

Proof: Proposition 1.4 is the analogue of [WuZ, Proposition 3.5] and 
can be proved in the same way as in [WuZ, pp. 165-166], which in turn 
relies on [BL, Section 9]. ■ 

1.2.4. Proof of Theorem 1.1.   We now go back to the family case. The 
important observation is that the analysis in the above two subsections works 
well for the fiberwise (twisted) Dirac operators. 

For any u G R, we write 

(1.39) DT£{u) = D™ + D^ + u (^ + !>(?]) :E->E. 

The following lemma plays a key role in our proof of Theorem 1.1. 

Lemma 1.1.   There exists Ti > 0 such that for any u G [0,1] and T > Ti, 
DT^{U) is a continuous family of Fredholm operators over B. 
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Proof: Prom Proposition 1.4, one deduces (cf. [Z, Lemma 2.2]) that 
there exist Ci, C2 > 0 such that for u G [0,1], s G E and T large enough, 

(1.40) \\DTj:8- DT^u)s\\, < ^IIST.HIO + CfelHIo- 

Prom (1.40) and the Predholm property of DT£, one obtains the Fredholm 
property of DT^(U) for sufficiently large T. ■ 

Recall that the index bundle construction [AS] applies well to continuous 
families of Fredholm operators and that the homotopy invariance property 
for the index bundle still holds in this situation. 

Prom Lemma 1.1, one then gets the following identity of index bundles, 
when T is large enough, 

(1.41) Ind (£>f) = Ind (DTti) = Ind (2?r,c(0)) 

= Ind (D^\ + Ind (D^     in    K(B), 

where in the last line, Ind(D^l) (resp.   Ind(-D^l)) is now regarded as a 

family of Fredholm operators mapping from H^^(X) (resp.   H^AX)) to 

Hg^pQ (resp. H^(X)). 
On the other hand, by the third part of Proposition 1.4, when T is large 

enough, one has obviously that 

(1.42) Ind (D$\ = 0   in   K(5), 

Let D^l be the restriction of D^l on Fa. Prom (1.30), (1.36) and the 
definition of Jy^, one deduces easily that when T is large enough, one has, 

(1.43) Ind (Z>g) = ^(-l)^-dim^Ind (jf j^j,aJTA) 
a 

= j2(-i)j:o<vdimNvind(Dla) in K(B)- 
a 

By (1.41), (1.42) and (1.43), one deduces the first equation of (1.17) easily. 
To get the second equation of (1.17), we only need to apply the first 

equation of (1.17) to the 51-action on M defined by the inverse of the original 
S^-action on M. The proof of Theorem 1.1 is complete. ■ 
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1.3. The Spinc case. 

We will keep the notations in Section 1.1. For future applications, in this 
subsection, we will extend Theorem 1.1 to Spinc cases. 

Let TT : M -* B be a fibration of compact manifolds with compact fiber 
X such that dimX = 21 and S1 acts fiberwise on M. Let hTX be a metric 
on TX. We assume that TX is oriented. Let (W,hw) be an Hermitian 
complex vector bundle over M. 

Let V be a 2p dimensional oriented real vector bundle over M. Let L 
be a complex line bundle over M with the property that the vector bundle 
U = TX © V satisfies W2{U) = ci(L) mod (2) where W2 denotes the second 
Stiefel-Whitney class, and ci(L) is the first Chern class of L. Then the vector 
bundle U has a Spinc-structure. Let hv, hL be metrics on V, L. Let 5(17, L) 
be the fundamental complex spinor bundle for (£/, L) [LaM, Appendix D.9]. 

Assume that the S1 -action on M lifts to V, L and W, and assume the 
metrics /iTX, hv', /iL, hw are 51-invariant. Also assume that the S^-actions 
onTX, V, Lliitto S{U,L). 

Let VTX be the Levi-Civita connection on (TX, /iTX) along the fiber X. 
Let Vy, VL and V^ be Sl invariant and metric-compatible connections 
on (V,hv), (L,hL) and {W.h^) respectively. Let V5^ be the Hermitian 
connection on 5(C/, L) induced by VTX © Vy and VL as in Section 1.1. Let 
y.s,(t/,L)<g>w ^e tjie tensor product connection on 5(17, L) ®W induced by 
V5WL) and v^ 

Let {ei}!^, {/j}?=i be the corresponding oriented orthonormal bases of 
(TX,hTX) and {V,hv). Let Dx be the family Spmc-Dirac operator on the 
fiber X, 

(1.44) Dx = jrc(ei)V
s

e(
u'L^w. 

1=1. 

There are two canonical ways to consider 5(?7, L) as a Z2-graded vector 
bundle. Let 

(1.45) Ts=ilc{ei)-'c(e2i), 

re = 2/+pc(ei) • • • c(c2z)c(/i) • • • c(/2p), 

be two involutions of 5(17, L). Then r^ = r^ = 1. We decompose S(U,L) = 
5+(C/, L)ffi5~(17, L) corresponding to rs (resp. re) such that T^^i^^ = ±1 
(resp. Telsi^jr,) = ±1). For r = rs or rc, we can define the index bundle 
IiidT(D

x) e Ksi(B) as in Section 1.1. 



138 K. Liu, X. Ma, and W. Zhang 

We have the following 51-equivaxiant decomposition of V restricted to 

(1-46) V\F = Qv&Vv © F0
R, 

where Vv is a complex vector bundle such that g acts on it by gv, and V^ 
is the real subbundle of V such that S1 acts as identity. For v ^ 0, let Vv^ 
denote the underlying real vector bundle of Vv. Denote by 2$ = dimVo1 

and 21' — dimy. Let us write 

(1.47) LF = L® ((^detA^^^detK)"1. 

Then TY®V^ has a Spinc structure since W2{TY©V^) = ci(LF) mod (2). 
Let S{TY © V^, LF) be the fundamental spinor bundle for (TY © yo

R, LF). 
Let DY, £)yo: be the families of Spinc Dirac operators acting on S(TY © 

VQ
1

, LF) over F, Fa. If R is an Hermitian complex vector bundle equipped 
with an Hermitian connection over F, let DY ® E, jDya ® R denote the 
twisted Spinc Dirac operators on S(TY © VQ

1
, ^F) ® i?. 

Recall that NViB. and V^^ are canonically oriented by their complex 
structures. The decompositions (1.8), (1.46) induce the orientations of TY 

and VQ
1

. Let {ej}?^, {/j}^! be the corresponding oriented orthonormal 

basis of (TY, /iTr) and (VQ
1

, hvo ). There are two canonical ways to consider 
5(TY © V^, LF) as a Z2-graded vector bundle: let 

(1.48) rs=/c(ei)...c(e2,), 

Te = il,+P'c(e1)...c(e2lf)c(f1)-.-c(f2pf), 

be two involutions of 5(TY © V^^Lp). Then r5
2 = re

2 = 1. We decompose 
S(TY®V^LF) = 5'+(TY©Vr

0
R,LF) ®S-(TY®V^LF) corresponding to 

rs (resp. re) such that ra|5±(ry0ViRjLF) = ±1 (resp. Te\s±{TYevniLF) = ±1). 
By restricting to F, one has the following isomorphism of Z2-graded 

Clifford modules over .F, 

(1.49) S(U, L) ~ S {TY © T/0
R, LF) ® ®AiV,® 0AK. 

Here we denote the Z2-graded tensor product by ® (cf. [LaM, p. 11]). We 
denote by IndT5, Indre the index bundles corresponding to the involutions 
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Let Sl act on L by send g G 51 to glc (lc G Z) on■ JF. Then lc is locally 
constant on F. We define the following elements in K(F)[[ql{2]]* 

(1.50) 
R±(q) = ^EvMdim^-iE^dim^ + iic (g) (Sym^t^) ® det iV^) 

®(2)Sym,-, (]7V) ®(g)A±^(K)® (53^^) ^X^^71' 
i;<0 v^O v n 

Rf
±(q) = g-iEtf Hdim^-iE^'dim^ + ^c (g) Sym^ (]VV) 

0<'y 

® 0 (Syny (iVv) ® det iV^) 0 (g) A±^ (K) ® ( £ ^^) = J] i4>n<zn. 

As TX © V © L is spin, and the 51 action lifts to the spinor bundle of U © L, 
by using the same argument as (3.30) below, we know that 

^vdimiVt, + 5^i;dimVr
1, + /c = 0    mod (2). 

V V 

The following result generalizes [T, Theorem 2.6] to the family case. 

Theorem 1.2. For n e Z, we have the following identities in K(B) : 

(1.51)        Indr5 {Dx,n) = ^(-l^d^lnd^ (DY" ® R+,n) 
a 
= E(-l)S,<odimiV„IndTs (DYa g, ^J > 

a 

IndTe {DX,n) = ^(-l)2:o<„dim^IndTe (DYa ^ R^ 

a 
= ^(-l)Ev<odimArvIndre ^ ^ ^^J m 

Proof: The proof is a straightforward generalization of the proof of The- 
orem 1.1. The details are left to the interested reader. ■ 

4There is a misprint in [LMZ2], we should replace ®vqvWv in (1.11) of [LMZ2] 

by®(Y:vQvWv). 
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2. Family rigidity and vanishing theorems. 

The purpose of this section is to establish the main results of this paper: 
the rigidity and vanishing theorems on the equivariant if-theory level. The 
results in this section refine some of the results in [LM1, 2] to the if-theory 
level. 

As in the previous sections, we let n : M -> B be a fibration of compact 
manifolds with fiber X. We assume that 51 acts fiberwise on M with fixed 
point set F, and TX has an Sl-equivariant spin structure. Then TT : F -> B 
is a fibration with fiber Y. 

Following Witten, we will introduce some elements R(q) = E^N*/
1
^ G 

./^(M) [[#]]. To prove the rigidity theorem for these elements, Taubes and 
Witten suggested to use some shift operators to get a relation like Ind(jDx <g) 
Rm,h) = Ind(Dx <g> i2m+/l,/i) for h, m e Z. As Rm = 0 for m < 0, this 
implies the rigidity theorem. See the paper of Taubes [T] for a rigorous 
treatment. 

To get a similar equality in the family case, we first apply our if-theory 
version of the equivariant family index theorem [LM1, Theorem 1.1], Theo- 
rem 1.1, to reduce the problem to the fixed point set F. Then we introduce 
an auxiliary element in Ksi (F)[[q]]. We study the corresponding index bun- 
dles of the twisted Spinc Dirac operators on Y, which, after doing some shift 
operations, will be related to a term like lnd(Dx ® Rm+h, h). On the other 
hand, if we apply our if-theory version of the equivariant family index theo- 
rem iteratively, we may also relate the considered index bundle to a term like 
Ind(Dx ® i?m, h). This then completes the proof. To apply the equivariant 
family index theorem, we are inspired by the constructions of Taubes [T, §6]. 
Namely, we will construct some operators on the fixed point set M(n) of the 
induced Zn-action on M, and apply the equivariant family index theorem to 
them. 

As was pointed out in the introduction, our main observation is that we 
can directly construct and apply the shift operators on the fixed point set. 
In this way, we avoid the use of the Dirac operators on the normal bundle in 
the loop space and the associated analysis of Fredholm properties of these 
operators in [T]. 

This section is organized as follows: In Section 2.1, we state our main 
results, the rigidity and vanishing theorems on the equivariant if-theory 
level. In Section 2.2, we state two intermediate results which will be used 
to prove our main results stated in Section 2.1. In Section 2.3, we prove the 
family rigidity and vanishing theorem. In Section 2.4, we prove a vanishing 
theorem on the equivariant if-theory level of the index bundle of the Dirac 
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operator on loop spaces, which may be viewed as a loop space analogue of 
Corollary 1.1, and which also extends the corresponding loop space analogue 
of the Atiyah-Hirzebruch theorem in [Liu2] to the family case. 

Throughout this section, we use the notations of Section 1.1. 

2.1. Family rigidity and vanishing theorems. 

Let TT : M -» B be a fibration of compact manifolds with fiber X and 
dimX = 21. We assume that Sl acts fiberwise on M, and TX has an 51- 
invariant spin structure. As in [AH], by lifting to the double cover of 51, 
we can assume that the second condition is always satisfied. Let V be a real 
vector bundle over M with structure group Spin(2fc). We assume that V has 
an S'Mnvariant spin structure. Let S(V) — S+(V) © S~~(V) be the spinor 
bundle of V. 

The purpose of this section is to prove that the elliptic operators intro- 
duced by Witten [W] have some interesting rigidity and vanishing properties 
on the equi variant if-theory level. Let us recall some definitions first. 

For a complex (resp. real) vector bundle E over M, let 

(2.1) Symt(#) = l+tE + t2Sym2E + 

At{E) = l + tE + t2A2E + -.- , 

be the symmetric and exterior power operations of E (resp.   E (g)R C) in 
JKXAf )[[<]] respectively. Set 

oo oo 

(2.2) e'q(TX) = (g) Aqn(TX) ®(g)Symqn(TX), 
n=l 71=1 

00 oo 

eq(TX) = 0 A_qn-1/2(TX) ® (gjSynyCrX), 
n=l n=l 

oo oo 

e-q(TX) = (g) A^-iMTX) ®<g)Symqn{TX). 
n=l n=l 
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We also define the following elements in ^(M)^1/2]]: 

oo oo 

(2.3) e'q(TX\V) = <g)Aqn(V) ® (g)Symgn(rX), 
n=l n=l 

oo oo 

eq(TX\V) = (g)A_,„-i/2(7) ® <g)Symqn(TX), 
n=l 7i=l 

oo oo 

e-q(TX\V) = ® A^-i/a(F) ® (g)Symg>l(TX), 
71=1 n=l 

oo oo 

@*q(TX\V) = (g) A_gn(y) ® (g)Symg„(TX). 
71=1 71=1 

Recall that the equivariant cohomology group H^ (M, Z) of M is defined 
by 

(2.4) H*si(M,Z) = H*(M xsi ES\7,), 

where ESl is the universal 51-principal bundle over the classifying space 
BSl of S1. So H*S1{M,Z) is a module over H*(BSl,7,) induced by the 
projection TT : M xsi ESl -»• S51. Let pi(^)5i, Pi(TZ)5i € H*sl(M,Z) 
be the equivariant first Pontrjagin classes of V and TX respectively. As 
V xsi ESl and TX xsi ES1 are spin over M xsi E^S1, one knows that 
5Pi(V)si and ipi(TX)si are well-defined in H*sl{M,Z) (cf. [T, pp. 456- 
457]). Also recall that 

(2.5) F*(S51,Z) = Z[«] 

with u a generator of degree 2. 
In the following, we denote by Dx ® W the family of Dirac operators 

acting fiberwise on S(TX) ® W as defined in Section 1.1. We also write 
df = Dx ® 5(TX). 

We can now state the main results of this paper as follows. The first one 
is a family generalization of the Witten rigidity theorems as proved in [T], 
[BT] and [Liul]. It also refines [ LM1, Theorem 2.1]. 

Theorem 2.1. (a) The family operators df ® &q{TX), Dx ® Qq{TX) and 
Dx ® ©_g(TX) are rigid on the equivariant K-theory level. 

(b)If\Pl{V)si = \pl(TX)si, thenDx®{S+{V) + S-{V))®&q{TX\V), 
DX®{S+{V) - S-{V))®Q*q{TX\V), Dx®Qq{TX\V) andDx®<d-q{TX\V) 
axe rigid on the equivariant K-theory level. 
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The second main result generalizes the vanishing results of Taubes [T, 
Proposition 10.1] and Liu [Liu2, Corollary 3.3] to the family case. It also 
refines a result in [LM1, Theorem 3.2]. 

Theorem 2.2. If ^pi(V)si - ^pi(TX)si = e • Wu2 with e G Z satisfying 
e < 0, then the index bundles of Dx ® {S+{V) + S'iV)) ® &q(TX\V), 
DX®(S+(V) - S-(y))<8e*q(TX\V);Dx<S>eq(TX\V) andDx®0-q(TX\V) 
are zero in Ksi(B). In particular, they are identically zero in K(B). 

A quite interesting consequence of the above results is the following fam- 
ily A-vanishing theorem for loop spaces. It extends the corresponding loop 
space analogue of the Atiyah-Hirzebruch theorem in [Liu2, Theorem 6] to 
the family case. 

Theorem 2.3. Assume M is connected and the Sl-action is nontrivial. If 
^pi(TX)si = -e - n*u2 for some integer e, then the index bundle of Dx ® 
®^Li Symgn(TX) as an element in Ksi(B), in particular, as an element in 
K(B), is identically zero. 

As was pointed out by Dessai [De], when the 51-action is induced from 
a fiberwise S3 action on M which preserves the spin structure of TX, the 
condition ^pi(TX)si = -e-^u2 in H*sl(M, Z) is equivalent to \pi(TX) = 0 
in H*(M, Z). So one gets the following family vanishing theorem. 

Corollary 2.1. Assume M is connected and admits a nontrivial S1 action 
induced by a fiberwise S3-action which preserves the spin structure ofTX. If 
}}Pi(TX) = 0, then the index bundle as an element in Kgi (B) (in particular, 
as an element in K(B)), of Dx ® 0^! Syinqn(TX), is identically zero. 

Actually, our proof of these theorems works under the following slightly 
weaker hypothesis. Let us first explain some notations. 

For each n > 1, consider Zn C 51, the cyclic subgroup of order n. 
We have the Zn equivariant cohomology of M defined by H^ (M, Z) = 
if*(MxZn£;51, Z), and there is a natural "forgetful" map a(51, Zn) : MxZn 

ES1 -^ M xsi ES1 which induces a pullback a(S'1,Zn)* : H*sl(M,Z) -> 
fTJ (M, Z). The arrow which forgets the S1 action altogether we denote 
by na{S\l). Thus a{S\l)* : H*sl(M,Z) -+ H*(M,Z) is induced by the 
inclusion of M into M xsi ES1 as a fiber over BS1. 

Finally, note that, if Zn acts trivially on a space Y, then there is another 
map r* : H*(Y,Z) -> H^n(Y,Z) induced by the projection Y xZn ES1 = 

Y x BZn A Y. 
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We let Zoo = S1. For each 1 < n < +00, let i : M(n) ->• M be 
the inclusion of the fixed point set of Zn C Sl in M, and so i induces 
isi : M(n) xsi ESl -+ M xsi ESl. 

In the rest of this paper, we suppose that there exists some integer e G Z 
such that for each 1 < n < +00, 

(2.6)    a{S\Zn)*oi*sl(±p1(V-TX)si-e-T*U
2\ 

= r* oa(51,l)* oi*sl Qp^V -TX)siy 

Remark 2.1.    The relation (2.6) clearly follows from the hypothesis of 
Theorems 2.1 and 2.2 by pulling back and forgetting.  Thus it is a weaker 
condition. 
Remark 2.2. If e = 0, and B is a point, (2.6) is exactly [BT, (11.11)]. 

We can now state a slightly more general version of Theorems 2.1 and 
2.2. 

Theorem 2.4.  Under the hypothesis (2.6), we have 
i) If e = 0j then the index bundles of the elliptic operators in Theorem 

2.1 (b) are rigid on the equivariant K-theory level. 
ii) lfe<0, then the index bundles of the elliptic operators in Theorem 

2.1(b) are zero as elements in Ksi(B). In particular, these index bundles 
are zero in K(B). 

The rest of this section is devoted to a proof of Theorem 2.4. 

2.2. Two intermediate results. 

Let F = {Fa} be the fixed point set of the circle action. Then TT : F —>► B is 
a fibration with compact fiber denoted by Y = {Ya}. Recall that 

TX\F = TY®($NV^ 

where Ny^ denotes the underlying real bundle of the complex vector bundle 
Ny on which g £ 51 acts by multiplying by gv. Since we can choose either 
Nv or Ny as the complex vector bundle for iV^R, in what follows we may 
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and we will assume that 

(2.7) TX\F = TY®($NV, 
0<v 

TX ®R C|F = (TY ®R C) © 0(iVv © Nv), 
0<v 

where Nv is the complex vector bundle on which g G Sl acts by multiplying 
by gv. Here some Nv may be zero. Similarly, let 

(2.8) V\F = Vjl<B®Vv, 
0<v 

where Vv is a complex vector bundle on which g £ S1 acts by multiplying 
by gv, and V^ is a real vector bundle on which 51 acts as identity. 

On F, let 

(2.9) e(N) = J2v2dimNv,        d!(N) = J^vdimNy, 
0<v 0<v 

e(V) = ^2v2dimVv,        d'(Vr) = 5^t;dimVr
t,. 

(Kv 0<v 

Then e(iV), e.(V'), <i'(iV) and d'^V) are locally constant functions on F. 
Let us introduce some line bundles: 

(2.10) L(N) = (g)(det Nvy,        L(V) = (g)(det Vv)
v, 

0<v 0<v 

L = L(N)-l®L{V). 

We denote the Chern roots of JVi, by {xi} (resp. Vv by {u3
v}), and the 

Chern roots of TY ®R C by {±yj} (resp. Vb = V^ ®R C by {±^}). Then 
if we take Z^ = S1 in (2.6), we get 

(2.11) p1(V)si=J2H + vu)2, 

P1(TX)SI = ^(yj)2 + E W+vu)2' 
VyJ 

2\Yf(
uv+vu)2-Xfe)2-XJN+H2 -eu2 

= |fEW)2-E(w)2-EW)2) 
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By (2.5), (2.11), we get 

(2.12) C1(L) = J^vui - 5>4 = 0, 

e(V) - e{N) = ^v2 dimVv - J^v2 dimNv = 2e. 
0<v 0<v 

This means L is a trivial complex line bundle over each component Fa of 
F, and g G 51 acts on L by multiplying by g2e. So we can extend L to a 
trivial complex line bundle over M, and we extend the S1 action on it by 
multiplying the canonical section 1 of L to g2e • 1 for g E Sl. 

The line bundles in (2.10) will play important roles in the next two 
sections which contain the proofs of Theorems 2.5, 2.6 to be stated below. 

We now define the following elements in Ksi(M)[[q1/2]]: 

(2.13) Ri(V) = (S+(V) + S-(V))®Q<)Aqn(V), 
n=l 
oo 

R2(V) = (S+(V) - S-(V)) ® (g) A-qn(V): 

n=l 
oo oo 

Rs(V) = (g)A_9„-1/2(F),        i?4(F) = (g)Agn-1/2(n 
n=l n=l 

In what follows, if R(q) = Eme^z RmQm € Ksi (M)[[ql/% we will also 
denote Ind(Dx ® i?m, h) by Ind(i)x ® R(q),m, h). 

We first state a result which expresses the global equivariant family index 
via the family indices on the fixed point set. 

Proposition 2.1. For m G ^Z, h G Z, 1 < i < 4, we iiave the following 
identity in K(B), 

(2.14)    Ind IDX
 ®(g)Symqn(TX) ® i^(F),m,/i j 

(oo 
DYa ® ® Syny (TX) ® ^(F) 

®Sym( 0 iVv) ® (g) det iV„, m, /») 
0<v 0<v / 
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Proof: Proposition 2.1 follows directly from Theorem 1.1. ■ 

For p e N, we define the following elements in ^51 (JP) [[?]]: 5 

(2.15) 

rp(X) - (g)    (g)Symqn(Nv) (8) (g) Sym.n^) J ® (g)Symqn(TY), 
0<v \n=l n>pv /        n=l 

^P0=    0    (Syin,-»W)®detJVw), 
0<'y 

0<7l<pV 

^^(X)=^(X)(g)^(X). 

Then, by (2.7), over F, we have 

(2.16) J^iX) = (g)Symqn{TX)®Sym(@Nv) ®(g)detNv. 
n=l 0<v 0<v 

We now state two intermediate results on the relations between the family 
indices on the fixed point set. They will be used in the next subsection to 
prove Theorem 2.4. 

Theorem 2.5. For 1 < i < 4, h, peZ and p > 0, m G ^Z, we have 

(2.17) ^(-l)So<,dimArVInd^ya0jpO(x)0jR.(y)?m5^ 

a 

= Y^(-l)j:o<"dimNvInd(DY<* ® ^-p(X) 0i?i(V), 
a 

m + Ip2e(Ar) + Ip^(iv),/i). 

Theorem 2.6. For each a, 1 < i < 4, /i, p E Z, p > 0, m E 5Z, we have 
the foilowmg identity in K(B) : 

(2.18) Ind (DY"®F-p(X)®Ri(V),m + ^p2e(N) + ^(TV^/iJ 

= Ind(l>ya ® ^(X) ® i^(F), m + p/i + p2e, h + 2pe^. 

5Here by Ks^(F) we also mean the direct sum of the form 0nezFn with each 
En a finite dimensional vector bundle over F of weight n under the 51-action. 
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Theorem 2.5 is a direct consequence of Theorem 2.7 to be stated below, 
which will be proved in Section 4, while Theorem 2.6 will be proved in Section 
3. 

To state Theorem 2.7, set J = {v G N| there exists a such that Nv ^ 0 
on Fa} and 

(2.19) $ = {/3 e]0,1] [there exists v e J such that /3v e Z} . 

We order the elements in $ so that $ = {/%|1 < i < J0, J0 e N and # < 
A+i}- Then for any integer 1 < i < J0, there exist p*, n^ e N, 0 < p, < n2- 
with (pj, n2) = 1 such that 

(2.20) A = PiM 

Clearly, f3jQ = 1. We also set po = 0 and ^o = 0. 
For 1 < j < Jo, p e N* = N\ {0}, set 

(2.21) /Q = (f>,    the empty set, 

Ij = \ (v, n)\v e J, {p - l)v < n < pv, - = p - 1 + ^- I, 
I V tlj) 

= Uv,n)\v n 
E J, (p - l)v < n < pv, - > p - 1 + 

v 
Ell 

For 0 < j < Jo, we write 

(2.22)    Fp>j(X) = rp(X) ® ^.i(Jf) 

(Sym,-B(JVt;)®detJV;,)®   (g)   Sym^^). 
(w,n)euj=1/f («,n)g/J 

Then 

(2.23) rp,o(X) - ^-P
+1

(X)> jrp,7o(X) = F-P(X). 

For s € R, let [s] denote the greatest integer which is less than or equal 
to the given number s. Set 

(2.24) 

e(p, ft, N) = I X>imAg ((p - l)v + 
Q<v 

PjV 
(p - l)v + 

PjV 

Tin 
+   1 

X(&,A0 = £(dimJ\g 
0<'y 

PjV 

n 'j J 
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Then e(p,/3j,N),d'({3j,N) are locally constant functions on F. And 

(2.25) e(p,l3o,N) = ±(p-l)2e(N) + \(p-l)d'(N), 

e(p,(3j0,N) = ±p2e(N) + ±pd'(N). 

Theorem 2.7. For 1 < i < 4, 1 < j < J0, p € N*, h G Z, m € ^Z, we have 

(2.26) ^2(-l)d'(Pi-i<N)+Zo<v<l™Nvlnd^DYa 0 jr^^x) ® ^(F), 

a 

m + e(p,l3j-UN),hJ 

a 

m + e{p,^,N),hy 

Proof: The proof is given in Section 4. ■ 

Proof of Theorem 2.5: From (2.23), (2.25), and Theorem 2.7, for 1 < 
i < 4, h G Z, p 6 N* and m G ^Z, we get the following identity in K(B) : 

(2.27) J^(-l)£o<>+1)amtf»i11d(z>Vfl' ®^-p(X) ® ^(V), 
a 

m + ^e^ + ^pd^iV),^ 

= 2(-l)So<,dimAr„Ind^ya 0 jr-p+i(x) ® ^(F), 

m + |(p - l)2e(iV) + i(p - l)d'(iV), ft). 

As   ±p(TX)si   is   well   defined   in   H*sl{M,Z),   from   (2.11),   we   know 
^o^udimiV,, = 0 mod (2), thus we get Theorem 2.5. ■ 
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2.3. Proof of Theorem 2.4. 

Prom Proposition 2.1, Theorems 2.5 and 2.6, for 1 < i < 4, /i,p G Z, p > 0 

2: and m G iZ, we get the following identity in K(B) 

oo 

(2.28) Ind(£>x ® (g)Sym^n(TX) ® i2i(F),m, /i) 
71=1 

OO 

= Ind(£>x ® (g)Symqn{TX) ® i2i(Vr),m,
J/i + 2pe). 

n=l 

with 

(2.29) rri = m + ph + p2e. 

Note that, from (2.1) and (2.13), if m < 0, for /i G Z, we have 

oo 

(2.30) Ind(jDx®(g)Sym9n(TX)®it!i(y),m,/i) =0    in    K(B). 
n=l 

i) Assume that e = 0. Let /i G Z, mo G |Z and /i 7^ 0 be fixed. If /i > 0, 
we take m' = mo, then for p large enough, we get m < 0 in (2.29). If h < 0, 
we take m = mo, then for p large enough, we get m/ < 0 in (2.29). Prom 
(2.30), we know that for h ^ 0, mo G 5Z and 1 < i < 4, we get 

00 

(2.31) Ind(Dx ®(g)Symqn{TX)®Ri(V),mo,h) =0    in    #(5). 
n=l 

ii) Assume that e < 0. For /i G Z, mo G |Z, 1 < i < 4, we take m = mo, 
then for p large enough, we get m' < 0 in (2.29). Prom (2.30), we again get 
(2.31). The proof of Theorem 2.4 is complete. ■ 

Remark 2.3. It might be suitable to add a remark on the comparison of 
the various proofs of the Witten rigidity theorem given in [T], [BT], [Liul] 
and the present paper. On one hand, the proofs in [BT] and [Liul] rely 
on the Atiyah-Bott-Segal-Singer fixed point formula (cf. [ASe], [ASi]) and 
elliptic function theory, so they don't work on the iiT-theory level. This is 
reflected in [LM1] where a proof of a family Witten rigidity theorem on the 
equivariant Chern character level is given by extending the method in [Liul]. 
On the other hand, consider the proofs given in [T], [BT] and the present 
papei (for the last see Section 4 for more details). All these proofs rely on 
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Taubes's idea that in certain steps one needs to consider Dirac operators 
on the fixed point set of the induced Zn-actions. This requires that the 
topoiogical conditions imposed in these proofs are for half of the equivariant 
first Pontryagin classes. However the proof in [Liul] works directly on the 
fixed point set of the 51-action, and thus works under weaker conditions on 
the equivariant first Pontryagin classes without the factor ^. This leads to 
the natural question that whether a if-theory version of the proof in [Liul] 
exists. Very likely one needs to use Hecke operators in the theory of modular 
forms to understand the shift operators and the modular transformations. 

2.4. Proof of Theorem 2.3. 

In fact, by setting V = 0 in (2.12), we know that 

(2.32) J^t;2dimJVl, = -2e. 
0<v 

Thus the case e > 0 can never happen. lie = 0, then all the numbers dimNv 

are zero, so that the 51-action can not have fixed points. From Theorem 
1.1, we know that the index bundle is zero in Ksi(B). For e < 0, one may 
take V = 0 in Theorem 2.4 to derive Theorem 2.3. The proof of Theorem 
2.3 is complete. ■ 

3. Proof of Theorem 2.6. 

In this section, we will prove Theorem 2.6 by introducing some shift operators 
as in [T, §7]. This section is organized as follows: In Section 3.1, we introduce 
some notations. In Section 3.2, we prove Theorem 2.6 by introducing some 
shift operators as in [T, §7]. 

Throughout this section, we use the notations of Section 2. 

3.1. Reformulation of Theorem 2.6. 

To simplify the notations, we introduce some new notations in this subsec- 
tion. 

i 
For no G N*, we define a number operator P on Ksi(M)[[qno]] in 

the following way: if R(q) = .®n£jLZRnqn 6 Ksi{M)[[q^}l then P 

acts on R(q) by multiplication by n on Rn. From now on, we simply 
write Symqn(TX), Aqn(V) as Sym(TXn), A(Vn) respectively. In this way, 
P acts on TXn and Vn by multiplication by n, and the actions P on 
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Sym(TXn), A(Vn) are naturally induced from its actions on TXn and Vn, 
etc. So the eigenspace of P = n is given by the coefficient of qn of the corre- 

sponding element R(q). For R(q) = 0nGj_z-Rntf71 G ifsi(M)[[<?^]], we will 
no 

also write 

(3.1) Ind (Dx ® R(q), m, /i) = Ind (Dx ® E,,,, fc) . 

Let i? be the canonical basis of Lie(51) = R, i.e., exp(tH) = expftirit) 
for t G R. If J5? is an S^-equivariant vector bundle over M, let LH denote 
the corresponding infinitesimal action of H on r(M, 2?), the set of smooth 
sections of E on M. 

On the fixed point set F, let J/j be the representation of Lie(51) on E\F> 

Then on r(F, E\F), LH is exactly the operator J# on r(i?, jB|ir), and the 
weight of the S1 action on r(F,E\F) is given by the action 

(3.2) JH = I^^JH- 

Recall that the Z2 grading on 5(T-X") ® 0^! Sym(TXn) (resp. 
5 (TF, ®o<t;(det iV^)"1) ®^-^(X)) is induced by the Zs-grading on S(TX) 
(resp. 5,(Ty,®o<i;(detiVu)-

1)). Write 

00 

(3.3) l$ = S(lO®<g)A(ig,    ^=   ®   A^). 
^=1 nGN+i 2 

There are two natural Z2 gradings on Fy, Fy. The first grading is induced 
by the Z2-grading of S(V) and the nature Z2 grading (induced by forms 
of homogeneous degree ) of 0^L1A(V^) and 0nGN+i A(V^). We define 
T.pti = ±1 to be the involution defined by this Z2-grading.   The second 

grading is the one for which Fy (i = 1, 2) are purely even, i.e., Fft~ = Fy. 
We denote by rs = Id the involution defined by this Z2 grading. Then the 
coefficient of qn (n e ^Z) in (2.13) of Ri(V), R2{V) (resp. RsiV), Rt(V)) is 
exactly the Z2-graded vector sub-bundle of (i^, T5), (Fy, re) (resp. (Fy, re), 
(Fy,Ts)), on which P acts by multiplication by n. 

We will denote by re (resp. T5) the Z2-grading on S(TX) ® 
0^=1 Sym(TXn) ® Fy induced by the above Z2-gradings. 

Let hVv be the metric on Vv induced by the metric hv on V. In the 
following, we will identify AVV with KVV by using the Hermitian metric hVv. 
By (2.8), as in (1.12), there is a natural isomorphism between Z2-graded 
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C(F)-Clifford modules over F, 

(3.4) 5 {V^VoKvitetVv)-1) (8) (g)AK ~ S(V)\F. 
0<v 

By using above notations, on the fixed point set F, we rewrite (2.15), for 
pGN, 

OO 00 

(3.5) rp(X) = (g) ( ® Sym(Nv>n) ® 0 Sym(iV,)n)) ® 0 Sym(TYn), 
0<'y     n=l nGN, n=l 

n>pv 

K(X)=    0    (Sym^^Odet^), 
0<v,n6N, 
0<n<pv 

T-v{X) = Fp{X)®T'p{X). 

Let Vb = V0
R ®R C. Prom (2.7), (3.3) and (3.4), we get 

OO OO 

(3.6) ^(X) = 0 Sym( ©(iV^,,, 0 JV^))- ® 0 Sym(Tyn) 
n=l 0<?; 71=1 

® Sym( 0 JV^o) ® det ( 0 Nv), 

^y = 0 A ( 0(K,n © Vv,n) ® Vo,n ) 
n=l       \Q<v / 

® 5 (Vb* ®o<l,(det K)"1) ® 0 A(K)o), 
0<i; 

F*=        (g)        A (©(^©^nje^n     • 
0<neZ+l/2      \0<i; / 

Now, we can reformulate Theorem 2.6 as the following Theorem. 

Theorem 3.1. For each a, h, p e Z, p > 0, m £ \L, for i = 1, 2; r = re 

or TSJ we have the following identity in K(B), 

(3.7)    Indr (D
Y

« 0 T-P(X) 0 F^, m + ^2e(7V) + ^'(iV), ^ 

= Indr (i?
1^ 0 ^(X) 0 F^, m + ph + p2e, h + 2pe) . 

Proof'. The rest of this section is devoted to the proof of Theorem 3.1. 
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3.2. Proof of Theorem 3.1. 

Inspired by [T, §7], for p G N*, we define the shift operators, 

(3-8) r* : Nv,n -» ^v.n+pv, r* : NVin -> Nv,n-vv, 

This means that we change the action of the operator P on NUin (resp. Nyn) 
by n + pv (resp. n - pv), etc. 

Recall that L(iV), L(V) are the complex line bundles over F defined by 
(2.10). Also recall that L = L(N)~l ® L(V) is a trivial complex line bundle 
on F, and g £ S1 acts on it by multiplication by g2e. 

Proposition 3.1. For p e Z, p > 0, i = 1, 2, there are natural isomor- 
phisms of vector bundles over F, 

(3-9) r*(^-^(X))-^0(X)®i:(iV)^ 

u(Fl
v)~Fl

v ®L{V)-v. 

Proof: 1) Under the action of the shift operator r*, 

(3.10)    rr(^(X))=    0    (Sym(Aru,_n+p,)®det^) 
0<v 

Q<n<pv 

=   (g)   Sym(iVU)n)®0detiVi;®JL(iV)P, 
0<t; 0<'y 

0<n<pv 

Prom (3.5), (3.10), we get the first equation of (3.9). 
2) For Ffy (i = 1, 2), we only need to consider the shift operator on the 

following elements 
oo 

(3.11) Ffc = (g) A( 0(K,n © Vv,n)) ® (g) A(K)0), 

^F=   (8)   A(0(K,neF^)). 
neN+1/2 Q<v 

We compute easily that 
oo 

(3.12) nF^p = (g)A(0(Fl;,n+p„ ®Vv%n-pv)) ® (g)A(K,P,), 
n=l 0<'u 0<'y 

^,F=    (g)    A(0(Fw,n+pt;ffiFi;,n_pt,)). 
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The Hermitian metric hVv onVv induces a natural isomorphism of complex 
vector bundles over F : 

(3.13) A'V* ~ AdimK-% 0detVy. 

In fact, let dvvv be the volume form on {Vv^hVv), then we define $ : 
Ad™Vv-ivv®detVv -> (AV,,)* as follows: for si 6 AdimVv-iVv®det VVJ S2 e 

Clearly, $ is an isomorphism of complex vector bundles. By using the Her- 
mitian metric hVv, we identify (AlVv)* to A%VV. 

For n E N,  0 < n < p?;, 0 < i < dimT^, (3.13) induces a natural 
51-equivariant isomorphism of complex vector bundles 

(3.14) VV^-py ~ A^^Vvm+pv ® detVv, 

A^n^-J * Adim^-V,5_n^+| ® detF,. 

This means 

(3.15) 

(g)      A^n-p,, ~       (g)       (A^^-^K _„+,„.^detF,,), 
nEN,0<n<pi; ne'N,0<n<pv 

7i£N,0<n<p?; n€N,0<n<pt; 

Prom (2.10) and the isomorphisms (3.12) and (3.15) of complex vector bun- 
dles over F, one gets the second induced isomorphism in (3.9). The proof of 
Proposition 3.1 is complete. ■ 

Proposition 3.2. For p G Z, p > 0, i = 1, 2, the bundle isomorphism 
induced by (3.9), 

(3.16) r* : S (TY, ®o<t/(det iV^)"1) ® ^-p(X) ® F^ 

-> S (TY, ®o<v{det Nv)-
1) ® ^(X) 0 Ffr ® L"^, 

verifies the following identities: 

(3.17) r"1 • 3H • r* = 3H, 

r"1 • P • r* = P + pJF + p2e - ^2e(iV) - |^(JV). 

For the Z2-gradings, we have 
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Proof: The first equation of (3.17) is obvious. 
To prove the second equation of (3.17) we divide the argument into sev- 

eral steps. 
a) From (3.15), on 0   nGN   klnVv,n, we have 

0<n<pv 

0<n<pi; 

(3.19)    r-lPu=    ]r   {dimVy-in^-n + pv) 
GN 
i<pv 

P + pJtf+   ]P   {-n + pv)d\mVv 

1 

nGN 
f)<n<pv 

= P + pJtf + -(p v   -p7;)dimT^. 

Thus, from (2.9), (3.19), on (g)0<t; 0   nGN   AinF^^, we have 
0<n<pv 

(3.20) r-^r* = P + pJ^ + ^2e(F) - \pdHy). 

The operators P and Jy act on 5( V^R, det(©o<l;V
r

t,)
-1 ] by multiplication 

by 

(3.2i) o, -~Yt
v^mVv = -\^^y)- 

respectively. 
When P acts the rest part of Fy, we have 

(3.22) 'r-lPn = P + p3H. 

Prom (3.6), (3.20), (3.21) and (3.22), we know that when acting on i^, one 
has the equality: 

(3.23) rZlPu = P + PJH + \p2e(V). 

b) Similar to (3.20), from (3.15), on 0   n€N   AinVvn+i, we have 
0<n<pv '      2 

(3.24)    r^Pu =    2   (<limVi-tn)(-n + jw-i) 
nGN 

0<n<pv 

= P + pJH + (dimVv)   J]    (-n + pu--) 
nGN 

0<n<pv 

P + p3H + ^p2v2diniVv. 



Rigidity and Vanishing Theorems in iT-Theory 157 

Prom (2.9), (3.24), on <g)0<i; <g)  n€N   Ai"Vvn+i, we have 
0<n<pv '      2 

(3.25) r^Pr, = P + p3H + \p2e(V). 

When P acts on the rest part of Fy, one has 

(3.26) r^Pr^P + pJn. 

Erom (3.25), (3.26), on F$, we again have (3.23). 
c) Note that on <g)o<v,o<n<pv det Nvi 3H acts as pe(N) + d'{N). By (3.5), 

(3.10), we know that on ^"{X), 

(3.27) r^Pr* = P + p3H - p(pe(N) + d'(iV)). 

OnSi^Y,dei®Q<vNv)-
l),JH acts as -^'(iV). So on 5(Ty,det(eo<uiVl,)-

1) 
<2)jr-P(X) 

(3.28) r-^r, = P + PJH - p2e(N) - ^'(N). 

Prom (2.12), (3.23), b) and (3.28), we get the second equation of (3.17). 
Finally, under our operations, the Z2-grading rs does not change.   For 

the Z2-grading Te, it changes only on (g)0<u (g)   n€N   AinVv,n of i^ (resp. 
  0<n<pv 

on 0o<t; ®   new   A'" V     , i of Ffr). From (3.15), we know that 
0<n<pv '      2 

(3.29) r-lTen = (-l)So<.p«<iimV„Te_ 

As 5Pi(F)si € H*S1(M,Z) is well-defined, from (2.5), (2.11), we get 

(3.30) J2vdimVv = 0 mo<i (2)' 

Prom (3.29), (3.30), we get (3.18). The proof of Proposition 3.2 is complete. 

Proof of Theorem 3.1: From (2.12) and Propositions 3.2, for each a, 
h, p £ Z, p > 0, m € |Z, and for i — 1, 2, r = Te or TS, we have the 
following identity in K(B), 

(3.31)    IndT (D
Y

« ® ^-P(X) ® Ff, m + ^p2e(N) + ^pd'(N), h\ 

- Indr (D
Ya ® ^(X) ® Ff ® L-P, m + ph + p2e, h) 

= IndT (D
Ya <8> ^(X) ® i^, m + p/» + p2e} h + 2pe) . 

The proof of Theorem 3.1 is complete. ■ 
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4. Proof of Theorem 2.7. 

In this section, we prove Theorem 2.7. Many arguments in this section are 
inspired by [T, §6, 9]. We will construct a family twisted Dirac operator on 
M(nj), the fixed point set of the induced Zni action on M. By applying our 
iiT-theory version of the equivariant family index theorem to this operator, 
we derive Theorem 2.7. 

This section is organized as follows: In Section 4.1, we construct a family 
Dirac operator on M(nj). In Section 4.2, by introducing a shift operator, 
we will relate both sides of equation (2.26) to the index bundle of the family 
Dirac operator on M(nj). In Section 4.3, we prove Theorem 2.7. 

In this section, we make the same assumptions and use the same nota- 
tions as in Sections 2 and 3. 

4.1. The Spinc Dirac operator on M(nj). 

Let TT : M —> B be a fibration of compact manifolds with fiber X and 
dimR,X = 21. We assume that Sl acts fiberwise on M, and TX has an 
iSMnvariant spin structure. Let V be a real vector bundle over M carrying 
an S1 -invariant spin structure and diniR V = 2k. 

Let F = {Fa} be the fixed point set of the S1 action on M. Then 
TT : F —>> B is a fibration with compact fiber Y. For n G N, n > 0, let 
Zn C S1 denote the cyclic subgroup of order n. 

For rij G N with rij > 0, let M(nj) be the fixed point set of the induced 
7inj-action on M. Then r : M(nj) -> B is a fibration with compact fiber 
X(nj). Let N(nj) -> M(nj) be the normal bundle of M(nj) in M. Then 
we have the following Zn -equivariant decomposition of N(nj) ®R C over 

(4.1) iV(nJ)®RC=    0   Nin^. 
0<v<nj 

Here N(nj)v is the complex vector bundles over M(nj) with g G Znj acting 
by gv on it. Complex conjugation provides a C anti-linear isomorphism 
between N(nj)v and N(nj)nj-V. If rij is even, this produces a real structure 
on N(nj)nj_, so this bundle is the complexification of a real vector bundle 

2 

N(nj)'n^ on M(nj). Thus, N(nj) is isomorphic, as a real vector bundle, to 
2 

(4.2) iV(n,)~     0    Nin^fBNinjfe. 
0<v<nj/2 
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Similarly, we have the following Zni-equivariant decomposition of V ®R 

C, 

(4.3) V®KC=   0   Vin^y. 
Q<v<nj 

Here V(nj)v is the complex vector bundle over M(nj) with g G Znj acting 
by gv on it. For v ^ 0, complex conjugation provides a C anti-linear iso- 
morphism between V(nj)v and V(nj)nj-V. lirij is even, this produces a real 
structure on V(nj)nj_, so this bundle is the complexification of a real vec- 

2 

tor bundle V(nj)nj_ over M(nj). Complex conjugation also provides a real 
2 

structure on V(nj)o such that V{nj)o = V(nj)Q ®R C. Thus, over M(nj), 
V is isomorphic, as a real vector bundle, to 

(4-4) n^^K)*©     ©    Vin^QVin^. 
0<v<nj/2 

In (4.2), (4.4), the last term is understood to be zero when rij is odd. 
It is essential for us to know that the vector bundles TX(nj) and V^nj)^ 

are orientable. For this we have the following Lemma which was proved in 
[E] (cf. [BT, Lemma 10.1]). 

Lemma 4.1. Let W be a real, spin vector bundle over a manifold M. We 
assume that Zn (n E N*) acts on M, and that the Zn action lifts on W and 
preserves the spin structure of W. Let M(n) be the fixed point set of the 
7in action on M. Let WQ be the subbundle of W over M(n) on which the 
generator of Zn acts trivially.  Then WQ is orientable. 

By Lemma 4.1, TX(nj) and V{nj)^ are orientable over M(nj). Thus 
N{nj) is orientable over M(nj).    By (4.2),  (4.4), Ninj)^ and Vinj)^ 

2 2 

are also orientable over M(nj). In the following, we fix the orientations of 
N(nj)^j_, V(nj)%j_ over M(nj).   Then TX(nj) and Virtj)1^ are naturally 

2 2 

oriented by (4.2), (4.4) and the orientations of TX, V, JV(nj)^, ^(n^. 
2 2 

Let us denote by 

(4.5) rfa) = \ (1 + (-ID . 

Lemma 4.2. Assume that (2.6) holds. Let 

(4.6) L(nj)=     (g)     (det(iV(nj)„)®det(7(n:,)t)jJ 
0<v<nj/2 
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be the line bundle over M(nj).  Then: 

i) L(nj) has an n*h root over M(nj). 
ii) Let 

(4.7)       Lx =     (g)     (det (Ninj)*) ® det (7(n^) ) ® Lfa)^^, 
0<'y<nj/2 

^2 =     ®     ( det (^(n^v) ) ® L(ni)
r(n'")/n'. 

0<v<nj/2 

Let Ui   =   TXirij) 0 Fln^J1   and ^   =   TX(nj) 0 ^(n^.      Then 
2 

TX(nj),  Vfoj)1^ and Vfoj)^ are of even dimensions.   Furthermore, Ui 
2 

(resp. U2) has a Spin0 structure defined by Li (resp. L2). 

Proof: By [BT, Lemma 9.4], T-Y(nJ-), ^(^j)?- and V(nj)}?' are of even 
2 

dimensions. Prom the proof of [BT, Lemmas 11.3 and 11.4], we get the rest 
part of Lemma 4.2. ■ 

Lemma 4.2 is very important. It allows us, as we are going to see, to apply 
the constructions and results in Section 1.3 to the fibration M(nj) -> B, 
which is the main concern of this Section. 

For pj e N, pj < nj: (pj, nj) = 1, /^ = ^-, let us write 

(4.8) 

?(&)=   ®   Sym(TX(^)ri)®     ®     Sym [ 0        ^(n^n 
0<neZ (KvKnj/2 \0<nGZ+pJv/ni 

©        0        Wrh)^)®     ®     Sym(iV(n,)^in), 
OKneZ-pjv/nj j       o<n€Z+i 

^(^) = A (   0  7(»i)o,„ ©0(0        F(n^)n 
\0<nGZ 0<t;<ni/2   \0<n.€Z+Pjv/nj- 

©    0    W.J© © nnij^j, 
QKnZZ-pjv/nj /        o<n€Z+i 2       / 
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/ / 

Kifii) = A 
VCKnGZ 0<v<nj/2 

© V(nj)w,„ 
\Q<neZ+pjv/nj + % 

0<n€Z-pj-i;/nj + § y        0<nGZ+^ 

We denote by Dx^n^ the S'1-equivariant Spinc-Dirac operator on 
S(Ui,Li) or S(U2)L2) along the fiber X(nj) defined as in Section 1.3. We 
denote by Dx^ ® ^(/Jj) ® Ff (/3j) (2 = 1, 2) the corresponding twisted 
Spinc Dirac operator on S(Ui^Li) ® f{l3j) ® Fyifij) along the fiber X(nj). 

Remark 4.1. In fact, to define an ^-action on L(nj)r(n^/nJ, one must 
replace the S1 -action by its rij-fold action. Here by abusing notation, we 
still say an S1 -action without causing any confusion. 

In the rest of this subsection, we will reinterpret all of the above objects 
when we restrict ourselves to F, the fixed point set of the S1 action. We will 
use the notation of Sections 1.3, 2. 

Let Np/Min-) be the normal bundle of F in M(nJ). Then by (2.7), 

(4.9) NF/M{nj)=     0     Nv, 
0<v:venjZ 

TXirij) ®R C = (TY <g>R C) e     0    {Nv e Nv). 
Q<v,v€njZ 

By (2.7) and (4.1), the restriction of N(nj)v (1 < v < nj/2) to F is given by 

(4.10) Ninj)^ 0 JV^© 0 Nvf. 
Q<v':vf=v mod(nj) 0<v,:v,=—v mod(nj) 

By (2.8) and (4.4), the restriction of V(nj)v (1 < v < nj/2) to F is given by 

(4.11) ^(7^=        0        Tve 0 vv,. 
0<v,:v,=v mod(nj) 0<vf:v,=—v mod(nj) 

and for v = 0, 

(4.12) Vinfio = (FoR OR C) © 0 (VV®VV). 
0<v,v=0 mod(nj) 
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Prom (4.9)-(4.12), we have the following identifications of real vector bundles 
over F, 

(4.13) iV(ny)
;^= 0 Nv, 

0<v1v=-£- mod(nj) 

TX{n,)=TY@ 0 JV,,, 
0<i;,v=0 mod(nj) 

0<v,v=Q mod(nj) 

V{nj)\= 0 Vv. 
Q<viv=-£- mod(nj) 

We denote by VQ = VQ^ ®R C the complexification of VQ
1
 over F. As 

(Pjinj) — 1? we know thcit, for ?; 6 Z, Pjv/rij G Z iff v/rij E Z. Also, 
Pjv/rij  G  Z + 5 iff v/nj  G  Z + i.    Remark if v = —v! mod(nj), then 

{n,0 < n e Z + ^} = {^,0 <neZ- &£-}. Prom (4.9)-(4.12), we then 
get 

(4.14) 

HPj)=   (g)  Sym(TYn)0 (g) Sym(^>n e Nv,n) 
0<neZ 0<v,v=0i-^- mod(nj) 0<neZ+- 

/ 

Sym 
Q<v'<nj/2 

©   e 
v^—v' mod(nj) 

e 
/ \ 

^7        -iV^jTi ©        ^J7        ^v,n 

0<nGZ+- o<Tiez-- 
/ 

\ 

\jp        ^v,n © ^J7        NVin 

0<n€Zf- 0<nGZ-- 
/ 

\ 

^M) = A r       -1 
0<nGZ 0<'!;,t;=0,^- modCn,-) \0<neZ+^ o<72GZ-^ J 2 J/    y rtj nj J 

©     © 
0<z;/<nj/2 

e 
v=v',—v' mcd(nJ) 

\^jp Vv,n © \jp * v^ 

V 0<n€Z+- 0<n€Z-- 
/ 
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©  Vo,n ©          © 
0<7ieZ+!     o<t;,t;=0,^- mod(nj) 

©     K.n©      ©      Vv,n 

© ^j3     ^^ ®     vi/       v'n 

0<v,<nj/2 I v—v',—v' mod(nj) V 
—       Pi'V 1 o^ez+^+l —       Pi'V        i 

//J 

Now we want to compare the spinor bundles over F. Prom (4.6), (4.7), 
(4.10) and (4.11), we find that over F we have 

(detiVuigidetV^)2"' 

(4.15) 

L(ni) -i   =     ®     ( 
Q<v,<nj/2    v=v' mod(raj) 

^^      _2l,' \r(nj)/nj 
®        (g)        (detJVl,0detVr

t,)       J 
v=-v' mod(nj) 

ii = ■   ®     (      ®       (detNv®detVv) 
0<v,<nj/2    v^v' mod(nj) 

®        0        (detiVt)®detFt,)"
1)®L(ni)

r(^)/nj', 
v=—v' mod(nj) 

L2=     0     (       0    detiV„®      0    (detJVt;)-
1)®.L(nJ-)r(n')/^. 

0<v,<nj/2    v=v' mod(nj) v=—v' mod(nj) 

Prom (4.13), over F, we have 

(4.16) 
TXinj) © VCnj)?1 = TY © F0

R © 0 {Nv © K), 
0<v,v=0 mod(n>7) 

rx(nJ-)e^(nJ-)^.=Tr©       0      iv^©        0       K. 
0<i;,t;=0 mod(ni) o<i;,i;=^ modCn^) 

Recall that the Spinc vector bundles Ui and U2 have been defined in Lemma 



164 K. Liu, X. Ma, and W. Zhang 

4.2. Let us write 

(4.17) 

SiU^LJ^sfTYeVF,^®   (g)   (detiV^detV;)-1)®   0    AVV, 
0<v, 0<v, 

v=0 mod(nj) v=0 mod(nj) 

S(U2,L2)' = S(TY,L2®      (g)      (detiV,,)-1®        0       (detK)-1) 
0<v, 0<v, 

v=0 modirij) V=:V± mod(nj) 

® (g) hVv. 
0<u, 

v=-£- mod(nj) 

Then from (1.47), (1.49) and (4.17), for i = 1, 2, we have the following 
isomorphism of Clifford modules over F, 

(4.18) S(DiJLi)-5(i7ilLi)
l®A( 0 N^. 

0<v,v=0 inod(nj) 

We define the Z2 gradings on S(Ui,Liy (i = 1, 2) as that induced by the 
Z2-gradings on 3(17^ Li) (i = 1, 2) and on A(0o<V)V=o modfa) Nv) such that 

the isomorphism (4.18) preserves these Z2-gradings. 

We define formally the following complex line bundles over F, 

L\ = [Lj;1 ®       (g)      (det Nv ® det Vv) ® 0(det Nv ® det K,)"1]     , 
o<v, 0<'y 

t;=0 mod(nj) 

L^ = [L*
1
 ®       (g)      det A^ ® 0 det Vv ® 0(det iV^)"1]     . 

0<v, 0<T;, 0<l) 
v=0 mod(nj) v=nj/2 mod(nj) 

From Lemma 4.2, W2(Ui) = ci(Li) mod(2), by (1.11), (1.47), (4.13) and the 
assumption that V is spin, one get W2(Ui) = ci(2^ ® Li) mod(2). Thus 
ci(Lj ) = 0 mod(2) for i = 1, 2. Thus L^, L2 are we^ defined complex line 
bundles over F. For later use, we also write down the following expressions 
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of L- (i = 1, 2) which can be deduced from (4.15): 

(4.19) 

2 ii = lUnj)-1^ 0 0 (det Nv ® det F,,)] 
0<v,v=^- mod(nj) 

® 0 (detiV^)-1® 0 (detK)-1, 
0<u,0<'u<^- mod(nj-) 0<u,^-<u<nj mod(nJ-) 

'•(",) 

L^ = iLirij)-1^ ® 0 (det Nv ® det K) 

® 0 (detJV,,)-1. 

O^.OO^^-modCnj) 

Prom (4.15), (4.17) and the definition of Z^ (i = 1, 2), we get the follow- 
ing identifications of Clifford modules over F, 

(4.20) 

S(Ui, Li)' ® Li - 5 (TY, ®o<v(det W^)-1) ® 5 (VQ
11

, ®o<v(det K)-1) 

®A(        0        Vv), 
0<v,v=0 mod(nj) 

5(C/2,i2)/®i,2 = 5(Ty,®o<„(detiVv)-
1)®A( ® K). 

Q<v,v=-£- mod(nj) 

To compare the Z2-gradings in (4.20), we will compare explicitly the 
orientations. Recall that, if (W,hw) is a real Euclidean vector space of 
dimension 2m, and J is a complex structure on W which preserves hw. Let 
{e*, Jei}™! be an orthonormal basis of (W,/^). Then W is canonically 
oriented, and its orientation is defined by the canonical Riemannian volume 
form 

(ei A Jei) A • • • (em A Jem) = dvw- 

Let CIVTX, dvy be the corresponding Riemannian volume forms on 
(TX,hTX) and (V,hv) which define the orientations of TX7 V over M. 
Let dt;^ and dv^ ( resp. cfvy,,, dvy ) (0 < v) be the canonical Riemannian 
volume forms on JV^R and iVv>R = iV,,^ (resp. K,R, ^^R = K,R)- Then 
through the identifications (1.12) and (3.4), the orientations of TY and VQ

1 
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over F are defined by the volume forms dwrv and dvvn. respectively such 
that 

(4.21)       dvrx = dvTY ® (^) dvNv,    dvv = dvVR ® (g) dvVv. 

By (4.2), (4.4), (4.10) and (4.11), the orientations ofTXinj) and Vfa)?, 
when restricted to F, are g;iven by 

(4.22) 

dVTx\F = dVTx^.) ®  0      (        0    d^®      0    ^)®dt;JV(ni)R , 
Q<v'<njl2     v—v' mod(nj)        v=-v' mod(nj) 2 

rft^lF - Av(ni)R ® 0      (       0    duv. ®     0     d^) ® dvy^n . 
0<v,<nj/2     v=v' mod(nJ) 2;=-'u/ mod(nj-) ^Z" 

respectively. 
Clearly, we have 

(4.23) dvNv={-l)^^dv^    dvvv = {-l)A™v"dvyv. 

Prom (4.21), (4.22) and (4.23), we get 

(4.24) dvrx^.^i-l^^dvTY® 0 dvNv, 
0<t;,u=0 mod(nj) 

^K)oR = (-1)
AK

''
T/)
^VK ®        0        ifovi, 

where 

0<i;,t;=0 mod(72j) 

A(ni>JV)=     ^ ^ dim JV„ + o (V^)?^ , 

AK-,F)=     ^ 53 dimK + o/Vtn^V 
-/<^;,<7^i0<v=v, mod^) 

with oUV^lJ   = 0 or 1 (resp.    o m^)^. j   = 0 or 1), the value 

depends on whether the given orientation on N^rij)7^ ( resp.   V^)?'-) 

agrees or disagrees with the complex orientation of ff)    »,•      ,,   x iVi, freso 
\isv—_j_ mod(nJ)     v v      ^, 



Rigidity and Vanishing Theorems in if-Theory 167 

Prom (4.13), (4.18), (4.23) and (4.24), we see that, for the Z2-gradings 
induced by rs, the difference of the Zs-gradings of (4.20) is (-l)A(nJ'N); 
for the Za-gradings induced by Te, the difference of the Za-gradings of 
the first (resp.    second) equation of (4.20) is (_i)A(ni,.!\0+A(ni,v)  (resp- 

(-1) V        -*,/).. 

4.2. The Shift operators. 

Let p e N* be fixed. For any 1 < j < JQ, inspired by [T, §9], we define the 
following shift operators rj*: 

(4.25)    Tj* : JMVin -~* ^v^n-\-(j)-l)v+pjv/nj')      rj* '• ■" v,n ~^  ^v,n-(p-l)v-pjv/nji 

Tj* : Vv^n ~^ Vv,n+(p-l)v+pjv/nji      ^j* '•  * v,n ~~^ Vv,n—(p—l)v—pjv/nj- 

This means that we change the action of the operator P on NVjn by a mul- 
tiplication by n + (p — l)v + pjv/rij, etc. If E is a combination of the above 
bundles, we denote by rj*E the bundle on which the action of P is changed 
in the above way. 

Recall that the vector bundles Fy (i = 1, 2) have been defined in (3.3), 
(3.6). Prom (2.22), (3.5), we get 

(4.27)    Fpd(X)=Fp(X)®Pp_1(X) 

®       (g)       (Sym(iV,;_n)®detiVv)®    (g)   Sym(Nv,n). 

(v,n)€UJ
i=1I? (v,n)e7? 

Proposition 4.1.  There are natural isomorphisms of vector bundles over 
F : 

(4.28) 

r^pj-xiX)-^)® (g) SymOA^o) 
G<v,v=Q mod(nj) 

®(g)(deti^)ra+(P"1)t;+1<8) (g) (detiV,,)-1, 
0<'y 0<v,v=0 mod(nj) 
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rj.Fpj{X) ~ Ftfj) ®       0       Sym(iVUio) ® (g)(det Nv) 
0<vyv-0 mod(nj) 0<v 

r^Flr ~ S (F0
R, ®o<«(det l^)"1) ® F^Pj) ® (g) A(Vvfi) 

Q<v,v=0 mod(nj) 

+(P-1)T;+1 

®0(detVr
t,) 

+ (P-I)t7 

0<'y 

r^/^ - ^(/3,) ® 0 A(Vt,o) ® 0(det Vv) 
(Xv^v^- modinj) 0<v 

^  .      I" O +(p-l)v 

Proo/: The proof is similar to that of Proposition 3.1. We divide it into 
several steps. 

1) From (3.5), (4.26), we get 
(4.29) 

rj^dX) =       0      Sym (\_n+{p_l)v+T) ® 0(detiVv)^-1)^1. 
0<T;,n€N ^ ^   ' 0<V 

0<n<(p-l)v 

Note that by (2.20), for v G J = {v G N| There exists a such that Nv ^ 0 
on FQ}, there are no integer in ]-fjr~, ^r[- So for i; G J and io = j - 1, j, 

the elements (v,n) G U^iJ'f are (v, (p - l)i; + 1), • • - , (v, (p.- l)v + [^]). 
Furthermore, 

(4.30) 
'Pj-iv' 'Pjv' 

. nj-t. 
'Pj-iv' 'pjV' 

. nj-i . [njl 

-1    if   v = 0    mod(nj), 

if   v y£ 0    mod(nj). 
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Prom (2.21), (4.26) and (4.30), we have 

(4.31) 

rj*(       ®       (Sym(JVw,_n)®detJV1,)y 
(v,n)euizlif 

=    (g)    Sym^i_n+te_1)w+^®®(detiVw)L^'J® ® (det^)-1, 
(vn)PU'~1rp n) / o<u 0<D, 

^*(       ®       (Sym(iVt,>_n)®detJVt,)) 

(«,n)€Uj=1/f 

(v,n)6U^1/f V "J /        0<^ 

Prom (3.5), (4.14), (4.27), (4.29), (4.31), one easily gets the first two 
equations in (4.28). 

2) For 0 < n < (p - \)v + ^, n 6 Z, 0 < t < dimV^, (3.13) induces a 

natural 5 -equivariant isomorphism of complex vector bundles over F, 

(4.32) VV      ,   u    w ~ A^^-tV     ^   ^^PivtodetVy. ' v,n-(p-l)v--£- v,-n+(p-l)v+-l— ^ v 

Prom (3.6) and (4.32), as in (3.9), we obtain the third equality of (4.28). 

3) For 0 < n < (p - l)v + ^ + i, n € Z, 0 < i < dimVv, (3.13) induces 

a natural S^-equivariant isomorphism of complex vector bundles over F, 

(4.33)       AV      f    ^    P^      ^^imVv-iy ®detVv. 

From (3.6), (4.33), as in (3.9), we get the last equality of (4.28). The proof 
of Proposition 4.1 is complete. ■ 
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Lemma 4.3. Let us introduce the following two line bundles 

+(p-l)v+l 

0<t 

+(p-l)v 

(4.34)      £(&)! =L[ ® $$(detNv) 

®(g)(detn)L^ 
0<'y 

®      (deti^)"1, 
0<v, 

v=0 mod(raj) 

0<v 

®®(dstVr
l,)L

ni   2 

+(p-l)i;+l 

+(p»l)i; 
®      (detAT,)"1. 

0<t; 0<v, 
v=0 mod(nj) 

T/ien L((3j)i, L(f3j)2 can be extended naturally to S1-equivariant complex 
line bundles which we will still denote by L(/3j)i, L(f3j)2 respectively over 
Minj). 

Proof: We divide the argument into several steps. 
1) Write 

(4.35) 
pjv 
Hi 

PjV      UJ(V) 

Hi      m 

Note that for v = ^ mod(nj), ^ = 5. Prom (2.10), (4.19) and (4.35), we 
get, formally, 

(4.36)    £(A)i = L-b-V-nfa 
  UJ(V) 

(detJ\rt,®detVr
1,)    

nJ 
Q<v,v^-£- mod(nj) 

-r<ni) 
® ® {fetNv®&ztVv)®L(nj) 

0<v,-^<v<nj mod(nJ) 

Note that, if v = v' mod(^), then u(v) = co(vf). Also, for 0 < v' < ny, 
ufaj - v,)= nj - uiv'). E:om (4.6), (4.10), (4.11) and (4.36), formally, we 
get 

(4.37)    L(Pj)1=L-to-1')-*f/ni 

uj(v)—r(nj)v -j l/rij 
®[   (g)    (det(iV(nJ)u)®det(F(ni)u))  "^ ''(ni)"] 

0<v<-^ 
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We introduce the following line bundle over M(nj), 

(4.38)       Lw()8j)=    ®    (det(iV(nJ)t))<8>det(vX^yJ) 
—u}(v)—r(nj)v 

0<v<- 

Note that UJ(V) = pjV mod(nj).   If rij is odd, then r(nj) = 0, Lemma 4.2 
implies that L^^j)1/71^ is well defined over M{nj). If rij is even, then pj is 
odd, and r(nj) = 1, Lemma 4.2 again implies Lu{fij)llni is well defined over 
M(nj). So L(j3j)i extends naturally over M(nj). 

2) Prom (2.10), (4.19), (4.34), we get 

(4.39)   L(/?i)2 = L'to-V ® (g)(det TV,) L ^ J ® (g)(det n) Ln- 
p.iv , i 

^+2 

0<t; 

(g) detJVf,®[ 

0<t; 

(detiVt,®det^t,) 
^K)/2 

0<v, 
-£-<v<nj mod(nj 

0<t;, 

® L(nj)-r{nJ)l2nK 

By using the same argument as in 1), one deduces that 

(4.40) 

®(det;\g-a;w/n>® rK-)/2 

0<i;, 

-^-<v<nj mod(nj) 

detiV^^f        (g)        detivj 
v=-£- mod(nj) 

0<v<- 

Note that, if there exists m e [0^pj[ with m e N, such that m < Pjv/rij < 
(m + ^), then 

(4.41) 
rtj      2 

Pjv/rij — ui(v)/nj. 

While if there exists m €]0,pj], m € N such that (m - 5) < Pjv/rij < m, 
then 

(4.42) = piu/«j + K-w(v))/n:,-. 
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Prom (4.11), we have the following formal identity, 

(4.43) 
       (nj-u(v)) 

0 (detF„)   "-y  ®    0 (g) (detV,,)     ni 
0<v,<nJ-,TnGN     v='U/ mod(nj) 0<v/<nJ-,mGN   t;=v/ mod(nj) 

m<pjV,/nj<m+^ m-^<pjv' /nj<m 

® (       ®      (detF,,)""^   ®        0       (detn)^ ) 
0<v,<nJ/2,meN V=i;/  mO(l(Tlj) v=—v'  mod(7lj) 

m<pJ- v' /rij <m-\-1 

(n7-a;(^)) 

•*       ®    (§)    (det^)      ni 
v=t;/ mod(nj) 

0    (det^)" 
0<t;/<nj/2,m€N       ^7;=—V7   mod(nj) 

(det(y(^)vf))" ^   ® 
0<v'<nj/2 l<m<?i-m-\<pjv'lnj<m 

det (nn^) 

Recall that for u G Z, pp/rij G Z iff u/ny G Z, also Pjv/rij € Z + i iff 
v/ny € Z + i. Prom (2.10), (4.39)-(4.43), we get 
(4.44) 

L(^)2 = L"(p~1)~%®L'"(/gi)^®    0 0 det(V(^)vl). 
l<m<^- m-\<pjv'/nj<m 

The proof of Lemma 4.3 is complete. 

Let us denote by 

(4.45) 

£1 = o X^ (dim^ - dim Vy) 
0<'y 

p^v 
n-,- 

+ (p - l)t; 
p^ 
n-,- 

+ (p - l)t; + 1 

PjV 

Thn 
+ (p-l)v)    2 

p^ 

n7- 'j J 

"j J 

+ (p-l)v J +1 
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£2 = ^S(dimiV^   ( + {p- l)v 
PjV 

m 
+ (p - l)v + 1 

-(PJl + {p_1)v]{2 
rij 

PjV 

n ■3 J 

+ {p - l)v   + 1 

^(dim^) 
0<u 

P£U        1 

%      2, 

2(^ + (p-l)t; 
n,- 

+ (p - l)v 

PjV_+i 

L «i      2 
+ (p - l)v 

Then ei, £2 are locally constant functions on F. 
Recall that, if E is a 51-equivariant vector bundle over M, then the 

weight of the Sl action on r(.F, E) is given by the action J# (cf. Section 
3.1). 

Proposition 4.2. For i — 1, 2, the isomorphisms induced by (4.20) and 
(4.28) : 

(4.46) 

m : S (TY, ®o<v(det Nv)-1) <g> Tpj-iiX) ® Ff -> 

5(Ui, Li)' ® ^(/3,) ® i^^-) ® L^-Ji ® Sym(JVw,o), 
0<t;, 

v=0mod(nj) 

ri2 : 5 (Ty, ®o<t,(det i^)"1) ® ^(Jf) ® F^ -)• 

5(^, Li)' ® ^(^) ® Fitfj) (8) L^jJi 

®       0       (Sym(Nvfi) ® det JV,,), 
0<v, 

v=0 mod(nj) 

have the following properties : 
1) for i = 1, 2 ; 7 = 1, 2, one has 

(4.47) rr1 J^ = J^, 

r^Pr^ = p + (^ + (p - 1)^ J^ + ei7J 

where 

(4.48) en = Si - e(p, pj-i,N),    en = ei- e(p, fy, N). 
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2) Recall that o I Vfoj)1^ ) was defined in (4.25). Denote by 

(4.49) /ii = -x; 
0<v L     J 

pjv 

M2 = -^ 
0<v 

Eil + l 

dimVv + A(nj: N) + A(ni, V)    mod(2), 

dimK + A(nj,N) + o ( V^nj)* )     mod(2), 
2 

^3 = A(nj,N)    mod(2). 

Tiien, for i = 1, 27 7 = 1, 2, one lias 

(4.50) r-Vn = (-1)
W

TC,    r-V.r^ = (-l)^3^. 

Proof: The first equality of (4.47) is trivial. 
• From (2.24) and (4.30), one has 

(4.51) efafaN) = e(p,l3j.-1,N)+ £ ((p_ !)„ + ££) dimJV,,. 
\ Tin    / 

0<v,v=0 mod(nj) J 

For i = 1,  2, denote by ei(V) the contribution of dimF to £;.   Prom 
(4.32), when acting on (g)       o<v,n€N        A*"^^, as in (3.20), we get that 

0<7i<(p-l)i;+^ 

(4.52) rjfPrj, = P + ((p-1) + ^-)jH 

+ Y, (dim vv) (-n + (P " !)« + ^) 
0<n<(p-l)v+^^ 

.P+(,,_!) +a) Jl,+ei(v)-i((p-i) + a)<r(v). 

Similarly, by (4.33), when acting on (g) o<v,n€N kinV.,n_i, as 
0<n<(p-l)7;+^-+f 

in (3.24), we get that 

(4.53) rJ^Prj* = P + Up - 1) + £. W 

Y, (dimK)(-n + (p- l)„ + M+l) + 
0<u,n6N, 

Pf"      1 0<n<(p-l)v+^-H- 

'+((p-i) + £i)jff + e2(v). 
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Prom (2.24), (3.21), (4.29)-(4.31), (4.51), (4.52), (4.53), and by proceed- 
ing as in the proof of Proposition 3.2, one deduces easily the second equation 
of (4.47). _ 

• Prom (4.32), on <g)      o<v,neN       A^V^n, we have 
0<n<(p-l)v+^- 

(4.54) ri*Terj* = (-1) 
:<><,,( [iff]+(P-l)<') dim ^ 

From (4.33), on 0 o<>,,neN AinV       i, we have 
T)-V 1 ' 2 

0<n<(p-l)v+^-+l 

(4.55) -1 r    -w   So<«(. 
-•-.T«7\-* = (-1) V 'j*  'e'.;* 

+ (P-1> v ) dim Vy 

As we don't change the Z2-grading in the rest part of (4.46), from (3.30), 
(4.17), (4.54), (4.55) and the discussion following (4.25), we get (4.50). The 
proof of Proposition 4.2 is complete. ■ 

The following Lemmas 4.4 and 4.6 were essentially proved in [T, Lemmas 
9.6, 9.7]. 

Lemma 4.4. For each connected component M' of M(nj), ei, £2 flre inde- 
pendent on the connected component of F in M'. 

Proof\ From (2.12), (4.11), (4.13), (4.35) and (4.45), we get 

(4.56) 

ei = -    ^2 ^2 (dimJVu - dimVv) 
QKv'<nj Q<viV^v' mod(nj) 

PjV 

Tin 
+ (p - l)t; 

uj(v')(nj — ^{v')) 

n) 

= [p-l + - — (dima^nj)^ - dimR V^jJa.) 

yj     (dimiV(nj)„/— dimF(nj)^) 
u}(v')(nj — LU(V')) 

[2 ■ 
0<v'<nj/2 

TIA 
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By combining (4.11), (4.13), (4.16), (4.41), (4.42) and (4.45), as in (4.56), 
we get 

(4.57)    S2 = e1-l    Yl E (dimVinj)^) 
UJ(V') 

0<m<pj m<pjVr/nj<m+L 
Tin 

2 
-\    E E (dimyfoM (WJ   ^-IdimaV^)! 

0<m<pj m-\<pjv'/nj<ra 3 

The proof of Lemma 4.4 is; complete. ■ 

The following Lemma was proved in [BT, Lemma 9.3]. 

Lemma 4.5. Let M be a smooth manifold on which S1 acts. Let M' be a 
connected component of M(nj), the fixed point set ofZnj subgroup of S1 on 
M. Let F be the fixed point set of S1-action on M. Let V —> M be a real, 
oriented, even dimensional vector bundle to which the Sl-action on M lifts. 
Assume that V is spin over M. Let pj E]0,nj[, Pj G N and (pj^nj) = 1, 
then 

(4.58) 
0<v 

PjV 

n3 J 
+ A(nJ-,Vr)    mod(2) 

is independent on the connected components of F in Mr. 

Recall that the number d'^j^N) has been defined in (2.24). 

Lemma 4.6. For each connected component M' of M(nj), d'^j.N) + 
/iz- mod(2) {i — 1, 2, 3) is independent on the connected component of F in 
M'. 

Proof:  The assertions for the cases i = 1,  3 follow immediately from 
Lemma 4.5 by replacing V with TX. Prom (4.41) and (4.42), we have 

(4.59) 

^(^K)V2)+E(dim^) 
0<i; 

££ + ! 
n7- 

= ^(dimK) 
0<i; 

n-i 
+o {VMS/*) 

+ E      E y^       dimVv +        ^        dimT^- 
0<v, 0<m<Pj 0<v/<r.J- 

i ^      , ,      -    v=^v' mod(n7) m—±<pjv'inj<m v JJ 

0<v, 
v=-J- mod(nj) 
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By (4.13), the last term in (4.59), dimRVr(nJ)^./2, is a locally constant 

function on M(nj). 

By (4.11), the third term on the right side of (4.59) is mod(2) equal to 
(4.60) 

Y, E dimK+    £ £ dimV^-V 
nj/2<v'<nj0<v,v=v, mod(nj) 0<m<pj        o<vf<nj/2 

m—^Kpjv'/rijKm 

The last term of (4.60) is a locally constant function on M(nj). 

By (4.25), the first term in (4.60) is o (v(nj)JJ/2) +A(nj,y) mod(2). 

On the other hand, by Lemma 4.5, we know that Ylo<v(dimVv)   ^   + 

A(nJ-, V) mod(2) is independent on the component of F in M'. 

By the above discussion, the left side of (4.59) is mod(2) independent on 
the component of F in M'. The proof of Lemma 4.6 is complete. ■ 

4.3. Proof of Theorem 2.7. 

From (2.24), (4.10), (4.13) and (4.30), we have 

(4.61) 

]PdimiV<;=   £  dimN{nj)v + - dimRiV(nj)^./2 +        £        dimA^, 
0<v Q<V<!1± 0<v,v=0 mod(nj) 

d'iPj, N) = d'ipj-u N)+ Yl dimNv. 
0<v,v=0 mod(nj) 

By Lemma 4.6, and (4.61), df(f3j-i,N) + Ylo<v dimJVi, + m mod(2) is a 
constant function on each connected component of M(nj). 

From Lemma 4.3, one knows that the Dirac operator Dxi<n^ ® F(/3j) ® 
Fy(f}j) ®L(f3j)i (i = 1, 2) is well-defined on M(nJ). Thus, by using Propo- 
sition 4.2, Lemma 4.4, (4.9), (4.18) and (4.61), for i = 1, 2, h G Z, m e |Z, 
r = Te or r5, and by applying separately both the first and the second equa- 
tions of Theorem 1.2 to each connected component of M(nj), we get the 
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following identity in K(B), 

(4.62)    ^(-l)d'(^-i^)+i:o<vdimAr„IndT {pY* Q yrpJ_^x) ® fy, 

a 

m + e(p,Pj-i,N),h) 

= J2(-1)d,i0J'uN)+^o<v'iimNv+nndr(Dx^ ® Ftfj) ® Firtfj) ® L(/3j)t, 

m + £i+ f ^- + (p-l)J/i,/i) 

= ^(-l)d'^.JV)+2:o<.di«^indT (D
Y"®FPtj(X)®Fif,m + e(p,l3j,N),h) . 

a 

Here ^^ means the sum over all the connected components of M(nj). In 
(4.62), if r = T5, then /i = ua; if r = Te7 then /i = /i^. The proof of Theorem 
2.7 is complete. ■ 
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