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On Isoperimetric Profiles of Product Spaces 

THIERRY COULHON, ALEXANDER GRIGOR'YAN, AND DANIEL LEVIN 

Let p £ [1,-foo]. Given the Lp-isoperimetric profile of two non- 
compact Riemannian manifolds M and AT, we compute the Lp- 
isoperimetric profile of the product M x N. 

1. Introduction. 

We start with an almost tautological identity for the product of Euclidean 
spaces: Erf = W1 x M771, where d — m + n. This simple fact says that 
dimensions of Euclidean spaces add up under direct product. The aim of 
this paper is to show that this fact admits an analogue for isoperimetric 
dimensions of non-compact Riemannian manifolds (and more general spaces, 
see Section 7 below). As we will see, the correct notion of dimension here 
is not a number, but rather a family of functions indexed by a parameter 
p € [l,+oo], the family of p-isoperimetric profiles] we shall give a formula 
that enables one to compute this family of functions for a product, given the 
ones associated with the factors, and generalizes the addition of dimensions 
in the Euclidean case. 

1.1. p-isoperimetric profiles of non-compact Riemannian mani- 
folds. Let M be a Riemannian manifold. The notion of topological dimen- 
sion of M does not reflect the geometry of M in the large. One of the ways 
to capture the large scale structure of M is by using isoperimetric inequali- 
ties. Let fjb be the Riemannian measure on M, or more generally, a measure 
with a positive C00 density a with respect to the Riemannian measure. We 
shall call (M, /i) a weighted Riemannian manifold. For any open set fi C M, 
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denote |fl| = // (ft). On any hypersurface S in M, consider the surface mea- 
sure having the density a with respect to the Riemannian surface measure; 
let |5| be the full surface measure of S. Denote by Lipg (M) the space of 
Lipschitz functions with compact support on M. 

If, for some d > 1, C > 0 and for any non-empty precompact open set 
ft C M with smooth boundary, 

(i.i) |ft|^<c|aft|, 

then it is natural to say that M has isoperimetric dimension d. It is known 
([36], [53]) that (1.1) is equivalent to the following Sobolev inequality: for 
any function / G Lipg (M) 

0\ — r l/l^d/i) d <C f |V/| 
M / JM 

dfi. 

Alongside (5^), one can consider a more general family of Sobolev inequali- 
ties of the form 

d—p 

(sp
d) ([ i/i^d/i)d <CP[ |V/rdM, 

\JM / JM 

for any / G Lipg (M), assuming 1 < p < d. If (Sv
d) holds, then one says that 

M has p-isoperimetric dimension d. The idea that such Sobolev inequalities 
carry some large scale dimensional information on Riemannian manifolds 
can be traced back at least to [61] and [54, Sect. 3]. 

One can also write down a natural version of (3%) for d < p < +oo (the 
so-called Gagliardo-Nirenberg inequalities), for p = d (the Trudinger-Moser 
inequality) and even for p = +oo (see [24]). Then one observes that (5^°) is 
equivalent to the volume lower bound 

V(x, r) > crd,    Vx e M, Vr > 0, 

where V(x,r) is the volume n(B{x,r)) of the geodesic ball B(x^r) on M 
of radius r centered at x. It is possible to show that (3%) => (5^) for all 
1 <p < q < +oo (see [15], [24]) but the converse is in general false (see [29], 
[14], [4]). 

The importance of Sobolev inequalities for analysis on manifolds is well 
known (see for instance [1], [17], [44], [47], [48], [49], [50], [58]). For example, 
Varopoulos [61] proved that, for d > 2, (5^) is equivalent to the heat kernel 
upper estimate 

sup pt {x, x) < Ct-d/2,    W > 0, 
xeM 
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where pt(x,y) (t > 0, x,y G M) is the heat kernel of (M, /x), that is the 
minimal positive fundamental solution to the heat equation dtu = Au on 
M x HLf.. Here A is the Laplace operator of the weighted manifold (M, /i), 
that is the generator associated with the Dirichlet form / •-> / |V/| d/j, in 
L2(M,/x) with domain Lip0(M) or ^(M). 

However, the nice picture above is spoiled by the fact that even very 
simple manifolds may not have any isoperimetric dimension. For example, 
none of the inequalities (5^) takes place for the cylinder M = Mm x Sn~m^ 
n > m. Indeed, (3%) holds for functions / with small supports if and only if 
n < d since locally M looks like W1. On the other hand, if (3%) is true then 
it implies (S^0), that is V(x,r) > crd, whereas for large r we have y(x,r) < 
Crm. Hence, we obtain n < d < m which contradicts the assumption 
n > m. The point of this argument is that the local topological dimension 
of a manifold and its asymptotic dimension at infinity may be different, in 
which case the Sobolev inequality (5^) cannot be satisfied. 

A way to overcome this difficulty consists in localizing properly the 
Sobolev inequalities (see [18], [21], [22], [31]) so that one distinguishes the 
local dimension and the dimension at infinity. This approach is satisfactory, 
say for polynomial volume growth Lie groups (see for instance, [65]), but 
already for Lie groups with exponential volume growth, Sobolev inequalities 
are not well adapted (cf. [64]). 

On the other hand, it is easy to generalize the isoperimetric inequality 
(1.1) so that it would take place on a much larger class of manifolds including 
those mentioned above. Given a non-negative non-increasing function ip on 
]0,+oo[, consider instead of (1.1) the following isoperimetric inequality 

(1.2) i>{\n\)M < \dQ\. 

Clearly, (1.1) is a particular case of (1.2) for ijj(v) = cv~lld. The cylinder 
jjm x gn-m admits ^2) with the function 

ij)(v) -{ 
civ'1/71,    V < 1, 
C2*r1/m,     V > 1. 

Lie groups with polynomial growth lead to an isoperimetric profile of a sim- 
ilar form. Examples of a different kind are as follows. On unimodular 
amenable Lie groups with exponential volume growth, one obtains 

/ civ-1/",- v<2, 

I    log(u)' v > A 
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and on co-compact covering manifolds 

CiV ~lln      V < 1 

\   V-l{Cv)i    V > i' 

where V is the volume growth function of the deck transformation group 
(see [30]). More examples of isoperimetric inequalities on manifolds and 
their applications can be found in [16], [17], [19], [41], [42], [51], [68], [69]. 

Following [23], let us introduce a general (p, VO -isoperimetric inequality 
on M as follows: for any precompact open set Vt C M and for any function 
/ € Lip0 (fi), 

(sj) iKin|)ll/ll„ < ll|v/|||p. 

Here ij) is a non-negative non-increasing function on (0,+oo), p G [l,+oo], 
and || -Jlp is the 1^ (M,/i)-norm. 

It is possible to show that if ifriv) = cv~l/d (we shall refer to this as the 
polynomial case) then (5^) is equivalent to (5j), which justifies our notation 
(see [15], [24], [3]). Again, (5^) is equivalent to (1.2), and (5^°) is equivalent 
to 

V(x,r) >ip-l(l/r), VrreM, r > 0. 

Also, for 1 < p < q < +oo, (S^) implies (5^,). However, contrary to the 
polynomial case, it is no more true in general that (5^) with 1 < p < +oo 
implies (S™) (this follows from [56]). 

Denote by Ai (fl) the bottom of the spectrum of —A in L2(fi, /i), that is 

feup0(n)    J pd/j, 

Then (51) can be rewritten as the Faber-Krahn inequality 

(1.3) x^tyy^m, 

for any non-empty precompact open set fi C M. This inequality was intro- 
duced in [39], [40] to investigate various aspects of the heat kernel behavior. 
In particular, it was proved in [40] that under certain regularity assump- 
tions about Vs (1-3) is equivalent (up to constant multiples) to the heat 
kernel estimate 

(1.4) supptix.x) < -r-r-,    V*>0, 
xeM <P{t) 
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where the functions ip and ?/> are related by 

(1.5) ^M = V,2Mf)))    ^=0 

- see also Section 6 below. Another application of (S^) is related to the 
notion of p-hyperbolicity (see [28, Sect. 3.3], [38], [40]). For details see 
Section 5 below. 

Given a weighted Riemannian manifold M, with each p G [l,+oo] one 
can associate the largest function ijj such that (S^) holds on M: 

(1.6) VM» = inf {rjf^- ■■ f e Lipo (fi) \ {0}, m = «} , 

where Q, is a precompact open subset of M, and the infimum is taken over 
all / and £1 as specified. The function ipM^p is automatically non-increasing 
(but it can vanish). We shall call it the p-isoperimetric profile. This notion 
was introduced in [26], see also [28, Sect. 3.3], although there one considers 
cp = ^ rather than T/J. In the examples considered above, the p-isoperimetric 
profile does not depend on p: up to multiplicative constants I/JM^P = V7? 
p G [l,+oo]; this fact contains a lot of non-trivial information, concerning 
for instance the connection between the heat kernel decay and the volume 
growth (see [27]). But this connection is not as tight in general (see [4]), 
and, as we already mentioned in the polynomial case, the p-isoperimetric 
profile does depend on p; one can show that ifl<p<g<-|-oo, then 

^M,q{v) >c(p,q)ll>Mj,(v), 

but conversely (if M has bounded geometry) one only has 

and the examples in [29], [14] show that this is sharp. 

1.2. The cases p — 1,2, +oo. Now we can come back to our initial question 
on the isoperimetric dimension of product manifolds, and reformulate it in 
the following way: given two weighted Riemannian manifolds (M,/i) and 
(AT, i/) that satisfy respectively (S^M) and (Sj^) for some p G [1, +oo], which 
inequality (5£) does the product (M x JV, /i x v) satisfy? 

Before we start, let us recall that the question of the behaviour of Sobolev 
and isoperimetric inequalities under products has recently received a lot of 
attention in other contexts (see for instance [11], [12], [47], p.330, and [70], 
§2). 
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In the polynomial case, if the Riemannian manifolds M and N satisfy 
respectively (5m) and (3%) for 1 < p < min(m, n), then the Riemannian 
product M x N satisfies (5£+m). However, this is not so easy to prove. This 
was done by Varopoulos (see [62], [63]), using the interpolation inequality for 
mixed norms [9], see also in [18] the remarks after Prop. 4; a more detailed 
proof can be found in [59] (in the setting of graphs). 

Outside the polynomial setting, the only case which was investigated so 
far is p = 1. The case p = +oo is easy, and the case p = 2 can be settled 
by a heat kernel argument. Let us briefly outline the results in these cases, 
assuming in each case that M and N satisfy respectively the {p,i)MY and 
(PJ V,Ar)-isoperimetric inequalities. 

Case p = 1. It was proved by one of the authors [37, Theorem 2] that 
the product M x N satisfies the (1, ^)-isoperimetric inequality with 

(1.7) VM :=   inf (^M(U) + Vwfa)), uv=w 

assuming that the functions ipuiuju and I^N^V are increasing. Note that 
the techniques of [37] are very specific to the case p = 1. 

The shape of (1.7) is very natural from the point of view of (1.2). Indeed, 
consider the particular case when the set f) is a product VLM X ^AT, where 
Q,M and VLN are precompact open sets with smooth boundaries in M and TV 
respectively. Then <90 is the union of S^IM 

X
 ^iv and Q.M X C^TV, whence 

\dsi\ = \dsiM\\£iN\ + \siM\\dnN\. 

Since \VL\ — \£IM\ I^ATI, we obtain 

On the other hand, if the {I^MY and (l,/0iv)-isoperimetric inequalities on 
M and N are sharp, this argument shows that one cannot get better than 
(l,'0)-isoperimetric inequality on M x N. In other terms, if IJIM, ^N-, and 
ipMxN are the 1-isoperimetric profiles respectively of M, iV, and M x JV, 
then 

I,, 
2^ < WMxN < V> 

where ip is defined by (1.7). 

Case p = 2. This case can also be treated by a specific method, using 
the aforementioned equivalence of the (2, /0)-isoperimetric inequality and the 
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heat kernel decay (1.4) (in the next argument, we skip the constant factors). 
Indeed, the heat kernels on M and N admit the estimates 

snpp^ix.x) < —    and    supply,!/) <  r-r, 
xeM <PM\t) yeN <PN{t) 

where ipM and (p^ are determined by (1.5). The heat kernel pt on M x N is 
the product of p\.   ' and p\.  ' in the following sense: 

if   z = (z, y) G M x N   then   pt(z, z) = pf**(rr, x)piN'{y, y) 

(see for example, [42, Section 1.5]). Hence, we obtain 

sup   pt{z,z)< — — = ——, 
zeMxN <PM{t)(pN{t) ip(t) 

where <p = (PMVN- Therefore, M x N satisfies the (2, ^-isoperimetric in- 
equality, where ^ is determined by 

Consequently, if we define ^ by 

(1.8) ^Hw)-.= uinjw&Uu)+<ip%(v)), 

then ^ > ^ so that the (2, ^-isoperimetric inequality holds on M x JV*. 
Case p = +oo. For any z = (x,y) e MxN, the geodesic ball B(z, V^r) 

in M x JV contains Buix^r) x 'Bjv(y,r), whence 

V(s, VSr) > yM (rr,r) ^(^r) > ^ (1/r) ^ (1/r). 

Defining the function ijj by 

we see that M x N satisfies the (oo, V^-isoperimetric inequality, where 
il>(w) = ip(y/2w). Setting in (1.9) UQ = ^M (5) and ^o = ^ W, we obtain 

which implies that ip can also be defined by 

(1.10) .il)(w)=   ini ma,x(ijM(u)^N{v)). 
UV—W 

1.3. Statement of the main result. We are now in a position to formulate 
the following generalization of (1.7), (1.8), (1.10) which is the main result of 
this paper. 
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Theorem 1.1. Let p G [l,+oo]. Suppose that the weighted Riemannian 
manifolds (M^/i) and (N,v) satisfy respectively the (P^M)- and (P^N)" 

isoperimetric inequalities, where ^M and I/JN are non-negative and non- 
increasing on (0, +oo). Define the function ^ by 

(1.11) VM:=  inf (^(u)+V») 1/p 

forp < +oo, with the obvious modification, i.e. (1.10), for p = +oo. Then, 
for any 6 > 1, the product manifold (M x iV, fj, x is) satisfies the (pjip)- 
isoperimetric inequality where 

^(w) := CI/J^W) 

and c = c(p, 9) > 0. 
If in addition for some a > 0 one of the functions ^MW)^ and i/jN(v)va 

is increasing, then 0 can be taken 1. 

Of course, since finally we allow a multiplicative constant in front of ip, 
we could suppress p in formula (1.11) and write instead 

(1.12) tf(«/):=  inf (i;M(u) + i/>N(v)). 
uv=w 

But the advantage of formula (1.11) is that it admits (1.10) as a limit case 
for p = +oo. 

The fact that formula (1.12) is the same for every p G [l,+oo[ implies 
that the operation of taking finite products is not able to create substantial 
differences between p-isoperimetric profiles, contrary to the constructions in 
[29], [14] or [4]. 

It is an easy exercise to check that, if ipMiu) — civT1/*1 and Vw^) = 
C2V~l/m, then formula (1.12) yields ^{w) = cw~l/d, with d = m + n. A more 
exotic family of examples is treated in Section 5 below. 

An important point is that (1.12) is sharp: if I^M, ipN, and ipMxN are 
the p-isoperimetric profiles respectively of M, TV, and M x TV, then 

(1.13) cil>(0w) < II>MXN(W) < V>(w), 

for any 6 > 1 and c = c(p, 6) > 0. Indeed, for all u, v > 0 and any e > 0 
there exist precompact open sets with smooth boundaries CIM and QN in M 
and N respectively and / G Lip0 (QM) \ {O}? 9 € Lip0 (QN) \ {0}, such that 
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and 

|||V/|||P < (1 + £)VM(IM)||/|IP,    IllVfflllp < (1 + e)il>N(\nN\)\\g\\p. 

Now let w > 0, and let u, v be such that uv = w and 

IPM(U) + ^N{V) < (1 + e)il)(w). 

Consider CIM, JIJVJ /? ff? associated with u and i; as above, and set 

h = fg G Lip0 (^M x ^M) • 

Then 

ll%HI/UMU 
and, since V/i = gVf + /Vg, 

llivft|||,<yi,iiiv/iiip + ii/iipiiivi/ii|p. 

It follows that 

lllVftllln ^IHV/lllp , lllVglllp<n , rw7/T   no   h.f/irio m 
"IK" " ITiT + "MT -(1 + £) (^M (KiMl) + **(|fiivl)) 

Finally, since E > 0 is arbitrary, we obtain the upper bound in (1.13). Of 
course, the lower bound follows from Theorem 1.1. 

Our method of proof of Theorem 1.1 is based on the observation that 
the (p, ip) -isoperimetric inequality is equivalent to another kind of functional 
inequality which we call F-Sobolev inequality, following F-Y. Wang ([66]) 
who considered it in the case p = 2. This inequality appeared also in [20] 
and [10], also for p = 2. 

Let F be a non-decreasing non-negative function on [0, +oo[ and let p £ 
[l,+oo[. We say that M satisfies the F-Sobolev inequality in Lp if, for any 
/GLip0(M),/^0, 

/"KBTIH/1^"' 
Our second main observation is that it is relatively simple to deduce such an 
inequality on a product manifold from similar inequalities on the factors. 

A famous example of a F-Sobolev inequality is the so-called L2 Moser 
inequality 

(1.14) An f   \f(x)\2+$dx<( [   \f(x)\2dx)   n f   \Vf(x)\2dx, 
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which holds in M71; here p = 2 and .F(r) = Anr
2/n. In the Lp version of 

this inequality, one would find F(r) = An#rpln. This example shows that 
contrary to ijj in {p^yiso^evimetvic, inequalities, F contains generically a 
dependence on p; in this respect, the correct object to consider would be 
Fllv rather than F. This will appear in the relationship we shall establish 
below between F and if). 

In the polynomial case, our point can therefore be summarized in the 
following way: on the one hand, Moser inequalities are easily seen to be 
"multipliable", and on the other hand they are equivalent to the more fa- 
miliar Sobolev inequalities (this already follows from [3]). This yields an 
alternative proof of the Varopoulos result on products of Sobolev inequali- 
ties mentioned above. 

In Section 2 we prove, following Wang, that F-Sobolev inequalities are 
equivalent to suitable (p, ^-isoperimetric inequalities. In Section 3, we prove 
that F-Sobolev inequalities are multipliable. Theorem 1.1 is proved in Sec- 
tion 4. In Section 5 we treat a family of examples and show an application of 
Theorem 1.1 to the p-hyperbolicity of a product manifold, where one is led 
to estimate the p-isoperimetric profile, for p ^ 1,2, +oo, in a non-polynomial 
situation. In Section 6, we examine the relationship between jP-Sobolev in- 
equalities, (p, V^-isoperimetric inequalities, and one-parameter log-Sobolev 
inequalities. In Section 7, we put our results into the general framework of 
[3]. Finally, in an appendix, we use Proposition 3.1 (the fact that F-Sobolev 
inequalities are multipliable) to give a new proof of the Sobolev inequali- 
ties in the Euclidean space, and to prove the Moser inequality (1.14) with 

2 
An = \n, which gives the correct rate of growth of the sharp constant as 
n '-¥ oo. A similar result is proved in the case 1 < p < 2. 

2. Equivalence of ^-isoperimetric and F-Sobolev inequalities. 

In this section we show that, for p E [1, +oo[, the (p, V^-isoperimetric inequal- 
ity is equivalent to a certain F-Sobolev inequality, up to constant multiples. 
Our approach is similar to the one in [66, Thms 3.1 and 3.2] and [10], al- 
though these works treated only the case p = 2. One of the differences with 
our approach is that we consider (p, ^-isoperimetric inequalities, whereas 
[66] works with a so-called /3-Nash inequality, and [10] works with a gener- 
alized Nash inequality (introduced in [60] and [25]). It is possible to show 
that a /3-Nash inequality can be reduced to a generalized Nash inequality by 
optimizing on the parameter, and a generalized Nash inequality is equivalent 
to a {p, V,)-isoperimetric inequality (see [3, Prop.10.3]). Hence, in some sense 
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our approach is equivalent to that in [66] and [10], although technically our 
proofs are simpler, avoiding difficulties related to inversion of a Legendre 
transform (cf. also Section 6). 

As in [66], [10], the path from (p, xjj)-isoperimetric inequalities to F- 
Sobolev uses the truncation technique already exploited in [3], whereas the 
converse implication is more direct. 

Proposition 2.1. Let p G [l,+oo[ and assume that (M,/i) satisfies the 
(p, VO -isoperimetric inequality. Then, for any rj > 17 (M,/i) satisfies the 
F-Sobolev inequality in Lp with 

(2.1) F(r):=cV^) 
r 

and c = c (p, 77) > 0. 

Proof: Let / G Lipo (M) and suppose that 

I/I'd/* = 1. / 
JM 

-pk 

IM 

Fix p > 1 and define, for any k G Z, the set 

nk = {xeM:\f(x)\>pk} 

and the function /& by 

fk = min((\f\-pk)+,(pk+1-pk)). 

One has 

\nk\ = ti{\f\>pk}<p-pkJ\f\pd» = p- 

Applying the (p, ip) -isoperimetric inequality to each //. and observing that 
fk G Lipo(fiA;)5 we obtain 

f\vfk\
pd» > rmk\)f fidn > r(p-pk) f fp

kd», 

since i/; is non-increasing. It is also clear that 

f ftdv > [     fp
kd» = \Qk+1\ (/+1 - pky. 

Combining with 

/  |V/|'d/i > W |V/|'d/i = J2 f\Vfk\pdn 
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and denoting 
(P-I)

P
 = {P

k+l-pky 
i - p~p   (jpk - pp^-1)' 

we obtain 

[ \vf\pdi* > '£r(p-pk)m+i\(pk+1-pk)p 
JM
 tez     K      J 

=   a^r (P-Pk) H {iff > Pp{k+1)}(ppk - pp{k-1)) 
kez 

> aY,[pP  r(b»{\f\p>P2pt}dt 

r+°°     i 

(2.2) =   b ri^pilff^sjds, 
Jo s 

where 

r ptP - pP 

Define the function F by 

b   T       p2p 

F(r) = - /   lP{?—)ds. 
r Jo s 

Then we have 

\ i/rFd/n^ = b   I       r{—)ds d^x) 
JM JM \JQ s J 

Jo    ym^s}   J      * 
r+oo _2p 

=   b r(—M\f\p>s}ds- 
Jo s 

Comparing with (2.2), we see that M satisfies the F-Sobolev inequality. 
Let us observe that, for any 0 < e < 1, 

F(r)>-      i>P(?—)ds>b(l-s)j;p(?-). 
r Jsr        s er 
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If 1 < /92p < r/, then take e = £—, which yields 

Finally, optimizing in p, we obtain F(r) > F(r) where F is defined by (2.1) 
and 

c = c (p, rj) :=     sup     -r  [ 1 

Proposition 2.2. Fix p 6 [l,+oo[, and assume that M satisfies the F- 
Sobolev inequality in Lp. Then for any 0 < e < 1, M satisfies the {p^)- 
isoperimetric inequality with if) defined by 

(2.3) p(w) = {\-e)F(^). 

Proof: Let O be a precompact open subset of M and let / G Lip0 (fJ) 
be a function such that 

(2.4) j\f\*dn = l. 

Let F~l be the generalized inverse to F defined by 

F-\t) =inf{5:F(5) > t] . 

Observe that the following inequality is true for all non-negative s and t: 

is < sFisy+tF'1^). 

Taking here 5 = \f\p we obtain 

(2.5) t\f\p-tF-l(t)<\f\pF(\f\p). 

Integrating (2.5) over O yields 

tJiwdp-tF-Hmi < J ifmmdv. 

Applying (2.4) and the F-Sobolev inequality, we obtain 

t-tF-^t)^] <  [ \Vf\pdfji. 
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This inequality is valid for all t > 0. Fix e E]0,1[ and choose ^ = ^[7^1] so 

that'JP"1^) < T^j. Hence, we obtain 

<i-e>F(pi)£/iv/|p'i''' 
which exactly means that the (p, /0)-isoperimetric inequality is valid with ^ 
defined by (2.3).   ■ 

3. F-Sobolev inequality on a product manifold. 

In this section we shall prove the following. 

Proposition 3.1. Let p € [1, +oo[. Suppose that the weighted Riemannian 
manifolds (M, /i) and (JV, v) satisfy respectively the F- and G-Sobolev in- 
equalities in Lp. Then the product manifold (M x N, JJL X V) satisfies the 
CpH-Sobolev inequality in Lp, where the function H is given by the formula 

H(r)=mi[F(s) + G(t)} 
st=r 

and 

>2, 
<2. 

Proof: Let / G Lip0 (M x N). Without loss of generality, we can assume 

(3.2) f       |/|P^di/ = l. 
JMxN 

Introduce the function 

h(y):=(Jjf(x,y)\i>d»(x)y. 

Applying the F-Sobolev inequality to f(x^y) as a function of x and then 
integrating in y, we obtain 

(3.3) /   f  \f\pF(^P\ d^dvK  I   I  \VJ\rdfxdv. 

By (3.2), we have \\h\\v = 1. Applying the G-Sobolev inequality to h(y) (note 
that h is a Lipschitz function as one can see from (3.6) below) we obtain 

(3.4) f   [  \f\pG{hp)dfidis= [ hpG{hp)du< [ \Vyh\pdu. 
JNJM JN JN 
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Let us observe that 

(3.5) f \Vyh\*dp< f   f \Vyf\rdvdv. 
JN JMJN 

Indeed, we have 

= K/MV*H(/MH" V„/» 
i-1 
P 

whence, by the Holder inequality, 
(3.6) 

-1       /  r \ l/P 

iv„h| < (/Miv./ii/r1*.) (J„\ir»y * (/Mivr*) '. 
and (3.5) follows. 

Summing up (3.3), (3.4) and using (3.5), we obtain 

/J„I/K^)^+/J„I/|PGW* 
< f   f \Vxf\pdiidv+ f  f \Vyf\pdtidu. 

JNJM JNJM 

Now, by the definition of the product metric on M x JV, we have 

|v/|2 = iv./p + |V,/|2 . 

Therefore, 

|v/|» = (iv./l2 + |vy/|2)P/2 > Cp (|VX/|P + |Vy!\P) , 

where cp is defined by (3.1). Thus 
(37) 

[   f  \f\pF(l-Q-)diidv+f   f  \f\pG{hPWdv<c-1 f   f  \Vf\pdndv. 
JNJM \ W J JNJM JNJM 

In order to estimate the left-hand side of (3.7) from below, we use the 
definition of function H which implies 

F(^Pj+G(hp)>H(\f\p). 
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Therefore (3.7) yields 

/   /  \f\pH(\fnd»dv<c^ I   [  \Vffd»dv, 
JNJM JNJM 

which is exactly the CpfZ"-Sobolev inequality on M x TV.   ■ 

4. Proof of the main theorem. 

We are finally in a position to prove Theorem 1.1. The case p = H-oo has al- 
ready been treated, let therefore p G [1, +oo[. Assuming that the manifolds 
M and N satisfy respectively the (p, I/)M)- 

and (p, V'Arj-isoperimetric inequal- 
ities, Proposition 2.1 says that they also satisfy the CFM- and aFV-Sobolev 
inequalities in Lp, where 

i?M(r) = c^(^)    and    FN(r) = ctfofy, 

rj > 1 is arbitrary and c = c{p^rj) > 0. By Proposition 3.1, M x N satisfies 
the F-Sobolev inequality where F is defined by 

F{r)   =   Cpiiif[FM(3)+i^(t)] 
st=r 

=   ccp    inf    [^P
M (u) + ipp

N{v)] 
uv=riz/r 

v2 
=   ccpi/;p(—), 

the function ip being defined by (1.11). By Proposition 2.2, M x N satisfies 
the (p, VO-isoperimetric inequality where 

ftiw) := (1 - e)F{-) = (1 -e)ccp<i/jp(e-lr)2w). 
w 

We are left to observe that 9 := s-1//2 > 1 can be made arbitrarily close to 
one. 

If, say, ipMiuju01- is increasing for some a > 0, then we see from 

W(w)W
ay = inf [(VM(^) (^)") Vp + rN(v)wa*>~ 

that ilj(w)wa is non-decreasing. Therefore, for any 0 > 1, we have 
ip(0w)9awa > ip(w)wa and ip(9w) > 9~aip(w), which settles the second 
claim of Theorem 1.1. 
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5. An example and an application. 

To motivate our family of examples, suppose that the heat kernel on a man- 
ifold M admits the following upper bound 

(5.1) suppiM)(a;,x)<—^—,        t > to > 0, 

with a > 0 and 7 6 R (such examples can be found in [4]). By using 
[40, Theorem 2.2], (5.1) implies that M satisfies the (2, ^-isoperimetric 
inequality, with 

o 1 T 
V> {v) = cv~" (log?;)",        v > VQ > 0. 

Let now p G [l,+oo[.   Suppose that M and N satisfy respectively the 
(P?^M)- 

a'nd (p, ^AT)-isoperimetric inequalities, with I/JM and T/JJV such that 

1 JC 

VMM = Cllt"" (logli)  S    ■ 7X > UQ > 1, 

and 
^p

N(v) = C2?;~^(log'u)^2,    u > VQ > 1, 

where a,/3 > 0and <Ji,^2 G M. Using Theorem 1.1, one can check that MxN 
satisfies the (p, ^MXAT)-isoperimetric inequality with 

for a large enough WQ and some c > 0. In order to estimate 

jrffoSrM + l&M]. 

let us first observe that 

(5.2) inf      [^(«) + VM] > inf ^(«) > ^(uo), 

since ^M is non-increasing. Similarly, 

(5.3) inf      [rM(u)+rN(v)}>^N(vo). 

Finally, to estimate 

(5-4) inf W>) + VM], 
UV=W,U>U0,V>VQ 
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observe that the infimum in (5.4) is attained when the two summands are 
comparable, which is the case for 

(5.5) u = w'£e(\ogw)63, 

where 5% = (5i — ^X^ + h)"1- Note that if w is large enough then u > UQ 

and v := w/u > VQ. Substituting (5.5) into (5.4) and taking into account 
that the infima in (5.2) and (5.3) are bounded by positive constants, we 
obtain the claim. 

In [28, Theorem 3.3], it was shown that if 1 < p < oo and M satisfies 
the (p, /0)-isoperimetric inequality with a function ip such that 

(5.6) / 
+00        dv 

< +00, 
(vipty^p-1 

then M is p-hyperbolic (the case p = 2 was treated before in [40, Theorem 

2.3]; see also [43, Section 10]). For example, if ^(v) = cv~p log6 v, for large 
v, then M is p-hyperbolic provided 9 > ^-jp. 

Suppose that (M, //) satisfies the (p, V;i)-isoperimetric inequality with 
_ 2 « 

^I(IA) = ciu p log^ w, for large u, and that (JV, i/) satisfies the (p,^)- 

isoperimetric inequality with V^^) = C2^~plog^2^, for large v, where ^i 
and ^2 are real numbers. We have just seen that the (p, ^)-isoperimetric 
inequality on (M x N, [j, x i/) holds with the function 

^(w) = cw~p log^1+fe)/2 ti;, 

for large w. Hence, we conclude that (M xN^fixu) is p-hyperbolic provided 

01 + 02 >*t!l. 

6. One-parameter log-Sobolev inequalities and 
ultracontractivity. 

Given 1 < p < +oo and a decreasing1 function m(t) : (0, +oo) —> M, we say 
that the m-log-Sobolev inequality holds in Lp (M, //) if 

(6.1) /"  |/|^logfi^) ^<t /  |V/|p^ + m(t) f l/^rf/i, 

1We understand the terms "decreasing" and "increasing" in the non-strict sense, 
that is, as synonyms for "non-increasing" and "non-decreasing", respectively. 
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for all / 6 Lip0(M), / ^ 0, and all t > 0. Such inequalities were introduced 
by Davies and Simon [35] and were intensively used to investigate the decay 
of the heat semigroup (see for example [32], [33]). If one optimises in t in 
(6.1), one obtains a form of inequality which was introduced for p = 2 by 
Bakry under the name energy-entropy inequality (see [1], [2]). 

Let A be the Laplace operator of (M, /J,). We say that the heat semigroup 

{etA}t>o ls rn-u^racontrac^ve if for alH > 0 

(6.2) He^Hi-oo^e"*). 

By [34, Theorem 2.2.3], if etA is m-ultracontractive then the m-log-Sobolev 
inequality holds, with the same function m. Conversely, by [34, Corol- 
lary 2.2.8] if the m-log-Sobolev inequality holds in L2 then etA is m- 
ultracontractive where 

1 r m(t) = -       m(r)(ir, 
* Jo 

provided m(t) is finite. 
It is well known in various contexts that log-Sobolev inequalities behave 

nicely with respect to taking direct product of the underlying spaces (see 
for instance [5, p.108]). This is also the case for (6.1) as is shown in the 
following statement (the proof is similar to the one of Proposition 3.1 and is 
omitted). 

Proposition 6.1. If the mi- and m2-log-Sobolev inequalities hold in 
LP(M, fi) and LP(N, v) respectively, then the m-log-Sobolev inequality holds 
in LP(M x iV, /i x z/)? where m = cp(mi + 1x12) and Cp is the constant defined 
by (3.1). 

In this section, we will establish a direct link between the F-Sobolev and 
the m-log-Sobolev inequalities. Together with Proposition 6.1, this yields 
an alternative route for computing the (p, I/J)-isoperimetric inequalities on 
product manifolds, although this route is longer than the one used in the 
proof of Theorem 1.1. 

Theorem 6.2. Let 1 < p < +00. 
(a) If the F-Sobolev inequality holds in Lp (M, /J,) then the m-log-Sobolev 

inequality holds in Lp (M, fi) where 

(6.3) m(t) := sup{log5 - tF(s)}, 
s>0 

provided the right-hand side of (6.3) is finite. 
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(6) If the m-logSobolev inequality holds in Lp (M, fi) then the F-Sobolev 
inequality holds in Lp (M, //) with function 

(6.4) ^(r) = cF(r/r)) 

for any rj > 1 and c — c(p5 77) > 0, where 

(6.5) F(5) := sup^ {logs-m(t)}, 

provided the right-hand side of (6.5) is finite and non-negative. 

Remark 6.3. It is clear that the function m obtained by (6.3) is decreasing, 
and the function F obtained by (6.5) is increasing. 

Remark 6.4. In the case p = 2, a very close result was proved by Biroli 
and Maheux [10]. Namely, they showed the equivalence of the F-Sobolev 
inequality and the m-log-Sobolev inequality in L2 via two intermediate steps 
- a generalized Nash inequality and an energy-entropy inequality. Part (a) 
for p = 2 was also observed in [57]. 

Proof: (a) Let / G Lip0(M) and ||/||p = 1. By the definition (6.3) of 
m(t), we have for all t, s > 0 

logs <tF(s) + m(t). 

Multiplying this inequality by 5, setting s = \f\p, and integrating over M 
we obtain 

I \f\p log \f\pdp < 11 \f\pF(\f\ndp + m(t) J l/Pty. 

Applying the F-Sobolev inequality yields (6.1). 
(6) As an intermediate step, we first prove that the m-log-Sobolev in- 

equality in Lp (M, p) implies the (p, ^-isoperimetric inequality where V is 
defined by 

(6.6) V» := sup - (log - - m(t) X . 

Consider first the case p > 1. Let O be a non-empty precompact open subset 
of M, and let / e Lip0 (fi), ||/||p = 1. We start with Jensen's inequality: 

-\ogf\f\dp = -\ogf\f\l-p\f\pdp 

^-/(logl/l^l/l^^^ll/riogl/l^. 
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Hence, the ra-log-Sobolev inequality (6.1) implies 

(6.7) -JL-fozJiffa < tJ\Vf\PdvL + m(t). 

The Holder inequality and ||/||p = 1 yield 

(6.8) I \f\dn < W*? (J \f\Pd^ " = M*? . 

Therefore, combining (6.7) and (6.8), we obtain 

-log|fi|<t I \Vf\vdn + m(t) 

and hence 

Kiogp-m<t))s/|v/|p'"'- 
Taking sup in t yields 

rm)< f\vf\vdn, 
that is the (p, ^-isoperimetric inequality. 

In the case p = 1 we argue slightly differently.   Assuming that /  E 
Lipo (ft), H/lli = 1, and using Jensen's inequality, we have 

-iog|i/ii/2^=-iog|i/r1/2i/i^ 

< - f (log 1/r1/2) |/| ^ = I j |/| bg |/| dp. 

Then (6.1) implies 

-2\ogj\f\l,2diJi<tj\Vf\dn + m(t). 

On the other hand, by the Cauchy-Schwarz inequality, 

whence 

-log|fi| <t j \Vf\dn + m(t). 
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One finishes the proof as above in the case p > 1. 
By Proposition 2.1, the (p, ^-isoperimetric inequality implies the F- 

Sobolev inequality in Lp with the function F(s) = cF (s/rj) where F(s) = 
ipp (l/s). Combining this result with (6.6), we conclude the proof.   ■ 

We summarize the above proof of Theorem 6.2 in the following diagram: 

F(r)=c^(j}) 

(6.9) 

F-Sobolev     <*~> 

/ 

F-Sobolev 

\ 

m-log-Sobolev (p, '0)-isoperimetric 

m(t)=s\ips>0{\ogs-tF(s)} ^P(v)=supt>0 ±{\og±-m(t)} 

Let us introduce the functions 

(6.10) f{a) = F(ea)    and    p(r) = rm(l/r). 

Then the equations (6.5) and (6.3) can be rewritten as follows: 

(6.11) f(<j) = sup {rcr - P(T)}     and    ^(r) = sup{ra- - /(a)}. 

In other words, the functions / and g are related by the Legendre transform. 
Consider the following two functional classes 

(6.12) C+ ■ 

and 

(6.13) C 

/ is convex, increasing,    lim /(*) 
a—»-foo     (j 

= +00 

-> p is convex, g(0) < 0,    lim 9(r) 
T—>+OQ       T 

= +ooi 

(where R+ = [0, +oo)). The condition ^(0) < 0 in (6.13) can be replaced by 
the requirement that <7(T)/T is increasing. 

Denote by £ the Legendre transform on the class C, and by C+ the Leg- 
endre transform on the class C+, given by (6.11). An elementary argument 
shows that C maps C to C+ and £+ maps C+ to C; moreover, C and £+ are 
mutually inverse. We skip this argument but indicate the following points: 

• the condition lim^-^+oo f(a)/a = +oo ensures the finiteness of g (the 
same applies to the finiteness of /); 
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• the condition ^(0) < 0 is equivalent to the non-negativity of /; 

• the fact that £ and £+ are the mutually inverse transforms roots in 
the observation that the derivatives /' and </ are mutually inverse 
functions. 

Consider also the following functional classes: 
(6.14) 

Jr= < F : K+ -> !+ | F(s) and sF'^s) are increasing,    lim   —— = +oo > , 
1^ s-^+oo log S ) 

assuming that F is absolutely continuous so that F' makes sense, and 

(6.15)     M = {m'.W+ —>» R | mis convex, decreasing, m(0+) = +00} . 

It is easy to show that 

F(s) e T <=> Fie*7) e C+     and     m(t) e M *=^ rm(l/r) G C. 

Consequently, the relations (6.3), (6.5) provide a bijection between T and 
.M, and we obtain the following statement. 

Corollary 6.5. IfFeJ7, then starting with the F-Sobolev inequality and 

making a loop in the diagram (6.9), we arrive at the F-Sobolev inequality 
withF(s) = cF(s/rj). 

Alternatively, one can say that if m G M then a loop on the diagram 
(6.9) returns to the initial hypothesis, up to constant multiples. 

Note that the condition lims_>+00F(s)/logs = +00 in the definition of 
J7 is important. Indeed, if F(s) = logs (for large 5) then the F-Sobolev in- 
equality amounts to a non-parametric log-Sobolev inequality, which is known 
to be weaker than any m-log-Sobolev inequality. 

In the case p — 2 the diagram (6.9) can be complemented by the above 
mentioned relations between log-Sobolev inequalities and the ultracontrac- 
tivity of the heat semigroup (see [57, Section 4] for a direct relation be- 
tween F-Sobolev inequalities and ultracontractivity). Consider for compari- 
son another line of implications based on an alternative method of obtaining 
the ultracontractive estimate (6.2) using a generalized Nash inequality (this 
method was employed in [40] and [25]). 

Given a decreasing non-negative function ^ on (0, +00), we say that the 
i/j-Nash inequality holds in L2 (M, /i) if, for any / G Lipo(M), / ^ 0, 

(6-16) V (|jy!) Il/lb < IIV/II2. 
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It is known (see [3, Theorem 10.3}, [40, Lemma 2.1]) that the (2,^)- 
isoperimetric inequality implies the ^-Nash inequality with 

(6.17) £(«) = ^(4i/). 

Conversely, the ^-Nash inequality implies the (2, ^-isoperimetric inequality, 
just by the Cauchy-Schwarz inequality. 

By the standard Nash method one deduces from the ^-Nash inequality 
that e*A is m-ultracontractive where m(t) is determined by the differential 
equation 

(6.18) _^ = V;2(e-m))    m(0+) = +OO) 

provided such m exists (see for example, [25, Proposition 2.1], [40, Theorem 
2.1], [60]). It is easy to see that any m satisfying (6.18) must be in M. On 
the other hand, if m G Mo C M where 

MQ = {meC1(R+) | m is convex, m'< 0, ra(0+)= +oo, m(+oo)= -oo} , 

then indeed m solves (6.18); the corresponding class of functions 

F(S) = ^(l/s) 

is 

f , f+00    ds 1 
JFQ = < F G C{R+) | F > 0, F is increasing,   /       —— < +oo ^ 

(cf. [40, Section 2]). There are examples of ^-Nash inequalities which do 
not imply any ultracontractivity; this follows from [35, Section 6, Remark 1, 
p. 359]. 

It was observed respectively in [40, Proof of Theorem 2.2] and [25, Propo- 
sition 11.2] that the m-ultracontractivity implies the (2, ^-isoperimetric and 
the ^-Nash inequality with 

(6.19) V2 (v) = sup j (log - - m(t) ) , 

assuming m £ M. It is worth mentioning that the function m(t) = 
log ||etA||i^oo is always in M. Let us also emphasize a remarkable fact that 
(6.19) is identical to (6.6) with p = 2; that is the m-log-Sobolev inequality 
and the m-ultracontractivity imply the same (2,/^)-isoperimetric inequality. 
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Combining together the above statements and neglecting the constant 
multiples in (6.17), we obtain one more diagram: 

F(s)=supt>0 |(logs-m(t)) 

(2, I/J) -isoperimetric (2, '0)-isoperimetric 

(6.20) / \ m€A4 

^-Nash inequality m£Mo m-ultracontractivity 

-m/=F(em), m(0+.)=+oo 

Here we use the notation F(s) = I/J
2
 (l/s) and F(s) = ^2 {l/s). 

Let us verify that always F < F, as one should expect. Indeed, it suffices 
to show that for all a G M and t > 0 

(6.21) 
t 

{a-m{t)) <F(ea) 

Iim(t) > a then there is nothing to prove. Otherwise, there exists 0 < t* < t 
so that m(t5|e) = a. Using the convexity of m and the intermediate value 
theorem, we obtain 

- (a - m(t)) = ' t <  — < -m (U) = ^(e^). 

For example, if m(t) = exp (^-), a > 0, then for s large enough 

whereas 

F(s) = a log s (log log 5) <* 

F(s) x log 5 (log log 5)« « F(s). 

Situations with such function m(t) were considered in [35], [46], [20], [7], [2], 
[8]. 

For any S > 0, introduce the following subclass of MQ: 

(6.22) Mg = {m€Mo: |m' (2*)| > 8 \m'(t)\ ,    for all t > 0} . 

We claim that if m 6 Ms then 

F(s) > -F(s),    for all s > 0 
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(cf. [40]). Indeed, choosing t so that m(t) = logs, we obtain 

p;/ x      1 /, /« XN      m(t) — m(2t) 1    , >   x F(s) > - (logs - m(2t)) = 2t > -yn' (2t) 

>~rn>(t) = 6-F(emU) = 6-F(s). 

Hence, if m G Ms then the loop on the diagram (6.20) comes back to the 
initial hypothesis, up to constant multiples. 

7. A more general setting. 

For the sake of exposition, we have so far presented our results in the setting 
of Riemannian manifolds. They are however valid in the more general setting 
of [3], which covers other situations such as manifolds endowed with a second- 
order subelliptic operator or graphs endowed with a Markov kernel. We 
explain now the way one should state the above results so that they fit in 
this setting. We refer to [3, sections 2 and 7] for details on the examples 
that can be treated in this way. 

Fix 1 < p < +oo. Let (M, /i) and (JV, u) be two measured spaces, TM 

and FN some classes of measurable functions on M and N respectively, 
stable under truncation (see [3, pp. 1037-1038] for details) and WM and 
WN some semi-norms on FM and j^/v respectively. One can then write 
(5^) inequalities, F-Sobolev inequalities, etc. on M and N simply replacing 
HlV/IHpby WM(f) (resp. |||V5|||P by WN(g)), andLipo (M) (resp. Lip0(iV)) 
by FM (resp. J^/v) in the above definitions. 

Consider now the product space (M x JV,// x v), and let T be a class 
of measurable functions on M x iV, such that, if u G J7 then u(-,y) G FM 

for i/-almost every y G JV, and u(x, •) G TN for /i-almost every x G M. Let 
WMXN be a semi-norm on J7. We must assume the following three axioms: 

(i) There exists a > 0 such that for all u G T 

Wp
MxN(u) >cx(fN W^(u(; y))dv{y) + j Wv

N{u{x, O)^^)) • 

This axiom means that the functional WMXN is adapted to the product 
structure. 

(ii) Fix p > 1; for k G Z, and / G J^, set 

fPtk:=mm{(\f\-pk)+,pk(p-l)}. 



On Isoperimetric Profiles of Product Spaces 111 

Then one should have 

kez 

for any / G FM 
and some /3 > 0. The functional WN should satisfy a 

similar property, possibly for a different p. 

This axiom is called (Hp) in the terminology of [3]. It plays a role in the 
proof of the equivalence between the (p, ip) and the F-Sobolev inequality in 
Lp when applying a truncation argument (Proposition 2.1). 

(Hi) This condition is imposed on only one of the functionals (say, W^) and 
it reads: if u € ^ then 

f(x):=(Jju(x,-)\Pdv(x)y 

belongs to FN and 

/ Wp
N(u(xr))dfx(x)>1Wp

N(f), 
JM 

for some 7 > 0. 

This axiom is forced upon us by the estimate (3.5) in the proof of Propo- 
sition 3.1. 

If all axioms (i), (ii) and (Hi) are satisfied, then one can prove along the 
same lines a generalization of Theorem 1.1. 

It has been shown in [3] that axiom (ii) is satisfied for a variety of local 
and non-local gradients. As for (m), consider first the case of local gradients, 
e.g. WN(f) is the Lp norm of the "carre du champ" of a diffusion semi-group, 
or 

^=(fN(h*f\j 
2      \ p 

du 

where {Xi,i = 1,..., 1} is a family of vector fields on N. Then (m) follows 
from the property that for a local gradient V, / G Lipo(M), and a > 0, 

Ivi/H^ai/Mv/i. 
Applying then Holder's inequality, one gets (Hi) following the same lines as 
in the proof of Proposition 3.1. 
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In the non-local case, say 

WN(f)=(f   f \f(;yi) - f(;y2)\pK(y1,y2)dtz(yl)dn(y2) 
\J N JN 

where if is a non-negative kernel such that 

/ K(x,y)dv(y) + f K(x,y)dfi(x) < C < +00, 
JN JN 

axiom (m) is a consequence of the elementary inequality 

(X l/(*'yi) ^^ P - (fM \f(*>V2)\pdn(x) 

< (fjf&yi)-f(x,y2)\pd»(x)y. 

8. Appendix: Euclidean inequalities. 

Let us first observe that our method yields yet another proof of the Sobolev 
inequality in W1 (see for instance [13, pp. 162-164] for the classical proof, 
and [52] for an alternative proof). Start with 

2sup|/(*)i< [\nt)\dt, 

which is true for any / e Lip0(M) and which obviously implies the one- 
dimensional Ll Moser inequality: 

2 f f2(t)dt< [\m\dt [ \f'(t)\dt. 
JR JR JR 

Now, Proposition 3.1, applied n times, yields the n-dimensional Ll Moser 
inequality 

(8.1) Cn f   \f{x)\l+1ndx<([   \f{x)\daS   n f   \Vf(x)\dx. 
jRn \JR" J jRn 

It follows from the results of Section 2 or [3] that (8.1) is equivalent to the 
regular Sobolev inequality (S*) (this can be seen also in a more direct way 
by going through the isoperimetric inequality (1.1)). Hence, it implies all 
the (Sg), 1 < p < +00 (see Introduction for the meaning of (8%) if p > n). 
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The above simple-minded procedure can be applied to obtain also the 
n-dimensional D* Moser inequality and, surprisingly enough, gives for 1 < 
p < 2 a constant that grows with n at a correct rate. Let us start with the 
one-dimensional L2 Moser inequality 

Ax f f(t)dt< ([m\2dt)[\f'(t)Fdt, 
JR \JR J   JR. 

with the sharp constant A\ = ^ that was computed by Nagy [55]. Assuming 
that we have already the n-dimensional Moser inequality 

(8.2) An [   \f(x)\2+Ux<( [   \f(x)\2dx)   n (   \Vf{x)\2dx, 
JRn \JRn / ^Mn 

with some constant An > 0, let us compute ^4n+i. Indeed, (8.2) is equivalent 
to the F-Sobolev inequality with F(v) = Anv2/n. Therefore, Proposition 3.1 
applied to M = W1 and N = R yields the tf-Sobolev inequality on En+1 

with 
H(v) = mf(AnA+A1(-)2). 

r>0 \ r    / 

,2 . 
Evaluating this infimum, which is attained at r = (^^ ) 2(n+i) 7 one obtains 

H(v) = A^iAxn)^ (l + - J v^, 

that is the Moser inequality holds in En+1 with the constant 

An+1 = A^1 (Am)^! fl + ^V 

One easily obtains by induction that 

A A ^ An = A\n = —n. 

It is shown in [6] that the best constant .A* in the Moser inequality has the 
following asymptotic: 

TTC 

Hence, our approach gives the correct linear rate of growth of An as n -> oo. 
Note also that A2 = ^ = TT • 1.5708... whereas A} = TT • 1.8623... (see [67]). 

For p ^ 2, the above argument does not yield the correct asymptotic 
order for the best constant of the n-dimensional Lp Moser inequality, which 
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E 
is known to be n 2 (see [6]). In the case 1 < p < 2, the origin of the difficulty 
is the constant Cp in the proof of Proposition 3.1. One can overcome this 
difficulty by defining a modified length of the gradient in the following way: 

(a similar idea was used in [45] in a discrete setting). Using the inequality 

(n        \ 1/P (  n        \ 1/2 

£<)  <^-MEan > ^^ 
one sees immediately 

(8.3) /   IV/gda; < n1-! /   \Wf\pdx. 

On the other hand, if one rewrites Proposition 3.1 with M = W1 endowed 
with the functional JEn |V/|pGfa;, and iV = M, one finds that the constant Cp 
disappears. 

Now starting with the one-dimensional Lp Moser inequality with constant 
Ai^p and applying n times this version of Proposition 3.1, one obtains 

An>p[   \f(x)\P+£dx<([   \f(xWdx]Pn [   \Vf\>(x)dx 
jRn \JM.n / JRn 

with 

Taking (8.3) into account yields 

An,P[    \f(x)\P+£dx<([    \f(x)\Pdx)P n [    \Vmx)dx 
JR71 \JRn / JR71 

with 
, T £_i T £_i A 2 Anip = Anipn2   L = Aiipnn2     =Aiipn2. 

which gives the correct asymptotic order in n. 
In the case p > 2, the constant Cp is 1, but the above computation leads 

us only to Anjp = nAi# x n while the correct order for the best constant 
is 722. Note added in proof: in a preprint called Estimates on Moser 
embedding, William Beckner has recently been able to treat also this case. 

Acknowledgement: The first-named author thanks Michel Ledoux for 
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