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On the Well-posedness of the Wave Map Problem in
High Dimensions

ANDREA NAHMOD, ATANAS STEFANOV AND KAREN UHLENBECK
\

We construct a gauge theoretic change of variables for the wave
map from R x R" into a compact group or Riemannian symmetric
space, prove a new multiplication theorem for mixed Lebesgue-
Besov spaces, and show the global well-posedness of a modified
wave map equation - n > 4 - for small critical initial data. We
obtain global existence and uniqueness for the Cauchy problem of
wave maps into compact Lie groups and symmetric spaces with
small critical initial data and n > 4.

Introduction.

The wave map equation between two Riemannian manifolds- the wave equa-
tion version of the evolution equations which are derived from the same
geometric considerations as the harmonic map equation between two Rie-
mannian manifolds- has been studied by a number of mathematicians in
the last decade. The work of Klainerman and Machedon [8] [9] [10] and
of Klainerman and Selberg [12] focus on the study of the general Cauchy
problem in any dimensions bigger or equal then two for regular data and
provide the almost optimal local well-posedness. In the difficult case of
two dimensions, some of the early results include those of Christodoulou
and Tahvildar-Zadeh [3] who studied the regularity of spherically symmetric
wave maps assuming a convexity condition in the target manifold. Shatah
and Tahvildar-Zadeh [17] [18] studied the optimal regularity of equivariant
wave maps into two-dimensional rotationally symmetric and geodesically
convex Riemannian manifolds. The study of the general wave map problem
incorporated methods that exploited the null-form structure of the wave map
system such as that of M. Grillakis [4] [5] as well as the geometric structure

1The first author was partially supported by NSF grant DMS 9971159. The
first and third authors acknowledge the support and hospitality of IAS at Princeton
(May 2001), where part of this research was carried out. The third author would
like to thank Montana State University for their hospitality as well.
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of the equation as done by M. Struwe [19] [20] [21]. Keel and Tao studied
the one (spatial) dimensional case in [7]. For a more complete presentation
of the developments in this subject we refer the interested reader to the
excellent book by Shatah and Struwe [16].

More recently, the pivotal work of Tataru [24], [25], followed by that
of Tao [22] [23] have introduced new techniques which allow one to treat
the Cauchy problem with critical data. Their methods rely and further
develop important ideas from harmonic analysis such as adapted frequency
decompositions and Littlewood-Paley theory; and in Tao’s case are used in
conjunction with gauge theoretic geometric methods. Although the general
theory for these equations is far from complete, the field seems at present
very promising. »

In [22], Tao established the global regularity for wave maps from R X
R™ into the sphere S™ when n > 5. Similar results to those of Tao were
obtained by Klainerman and Rodnianski [11] for target manifolds that admit
a bounded parallelizable structure.

In this paper we are interested in revisiting this work. We study the
Cauchy problem for wave maps from R x R" into a (compact) Lie group
(or Riemannian symmetric spaces) when n > 4 and establish global exisi-
tence and uniqueness provided the Cauchy initial data are small in the crit-
ical norm. Similar results were obtained by Shatah and Struwe at roughly
the same time when the target is any complete Riemannian manifold with
bounded curvature.

Our method combines both delicate techniques from harmonic analysis
with fairly standard global gauge theoretic geometric methods. Both our
work and that of Shatah-Struwe [15] use the same gauge change; the analytic
approach however, is significatly different as Shatah-Struwe base their results
on Lorentz spaces and we use Besov spaces. Besov spaces are contained in
Lorentz spaces -for appropriate indices- (c.f. [16] for example). Lorentz
spaces seem to be better behaved under coordinate transformations.

It is interesting to note that in none of the works above is possible to
obtain (strong) well posedness at the critical level for the wave map itself.
In other words even though one indeed has well posedness for the gauged
map; there are no estimates available on differences for the original wave
map itself and one cannot obtain any continuous dependence of the map on
the data in the coordinate setting. It thus seems reasonable to think that
the notion of wellposedness is not appropriate for this type of geometric
equations at the critical level. The problem stems in that well posedness is
not a gauge invariant notion; it is not even necessarily true that uniqueness
in one coordinate system implies uniqueness in another directly.
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The plan for this paper is as follows. In section 1 we describe the ge-
ometry which translates wave maps into compact groups and Riemannian
symmetric spaces to a gauged equation - the gauged wave map (GWM). This
equation is overdetermined and we give a modified version (MWM). Section
2 contains the basic estimates for our theory, which involve multiplication
theorems in Lebesgue-Besov spaces. Proposition 2.12 is the key estimate.
This is the tool which contributes to handling the notoriously difficult first
derivative non-linearity of the wave equation

Ou+a-du=0.

We obtain our results using the quadratic structure of the definition of a in
terms of b  (which is linear in du)

Aa + div([b,b] + [a,a]) = 0.

This estimate is the subject of section 3. Section 4 contains the proof of the
global well-posedness of the modified wave map equation (MWM) for small
initial data in the scale invariant norm H™2. In section 4 we briefly outline
the translation back to the original wave map coordinates. Our main result
is the existence and uniqueness of global wave maps into compact Lie groups
and symmetric spaces for small initial data in H"/2 x H"/2-1 for n > 4.

There are small difficulties in handling the case of non-compact symmet-
ric spaces. The natural isometric embeddings are into spaces with indefinite
metrics. For the standard methods on density theorems and coordinate
changes to apply, it is necessary to know the existence of a Nash embedding
into an Euclidean space with bounded geometry.

Our results extend the results of Tao and Tataru for M = S™. The
Shatah-Struwe methods using Lorentz spaces are stronger since they obtain
estimates for solutions with variable curvature.! (On the surface, our diffi-
culties with non-compact targets have somehow been circumvented in their
work [15]).

We have stated the results in sections 1 and 2 in great generality in the
hopes that they may be applicable to other non-linear wave equations. The
Main Multiplication theorem is the principal tool needed in estimating the
non-linearity term in Theorem (2.13).

The authors particularly thank both J. Shatah and T. Tao for their
generous sharing of information and suggestions in a field relatively new to
us, as well as for their enthusiastic support.

!F. Planchon has recently pointed out that actually, multiplication theorems for
Besov spaces and L are sufficient to include variable curvature in our proof of the
main theorem.
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1. Formulation of the problem and gauge choices.

We regard the wave map equation as an equation given through covariant
derivatives. These arise as follows:

s:RxR*"—> M
where M is an arbitrary Riemannian manifold and
ds :TRxR*) »TM

where T(R x R*) = (R x R*) x (R® R™).
Let s*V be the pullback of the Levi-Civita connection on M to s*7T M via
the map s. Then, in coordinate free notation, the wave map equation is

e 05 o= .o Os
SVO——ZSV]'E:;;=O.
1

Since the Levi-Civita connection on M is torsion free,

Os 0s
Ll v il
sVJ&B Svkaxj,
for j=0,1,...,n, k=1,...,n where we have set t = z°.

We assume the map s is topologically trivial which is usually implied by
the later curvature bounds. (The wave map fixes spatial infinity so topologi-
cally, s : R*U{oo} — M). Hence, s*T M is the trivial bundle (R! x R?) x R™.
We also have control on the curvature of s*V via the equation

[57V505Vi] = Rls) (5, %),

Our first theorem asserts that under smallness assumptions on s €
L Wa n/ 2, there is a unique choice of coordinates for s*7 M. Given a smooth
‘map s with sufficient decay in asymptotics (to a point) at infinity, the initial
coordinates can be found by a partition of unity. The theorem we need is
stated in a more general framework, as we hope to find applications for this
theorem in gauge theory.

Theorem 1.1. Let d + A be a smooth connection with compact structure
groups G over R x R® or I x R*. Assume A ~ 0 at spatial infinity and let
Fy4 = dA + [A, A] be the space-time curvature. Then there exists a positive
constant € = €(n, G) such that if the mixed space-time Lebesgue norm

1Pl gopore <€,
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then, there exits a unique smooth gauge change g, g ~ I at spatial infinity,
such that if A = gAg~! — dgg~"' we have,

(1 114l L?W;.n/z < ¢(n, G)||Fallpgor n2

(2) 51 52745 =0

Proof. The method of proof follows the method used by the third author
in [26]. We omit the dependence of constants on G in the following proof.
First, we fix each time slice ¢ = t9. The methods of [26] show that in every
ball By = {z : |z| < N} there exists a gauge change gy such that the spatial
part of the connection Ay = gNAg]T,1 —dgn gl}l satisfies

”AN“t,v'V;*"/Z(BN) < en) | Fally p,mr2(By)-

By taking N — oo,' gN—g, AN — A, and we obtain a solution

- "9 -
A=gAg~t —dgg, 354=0

7=1

on each time slice (¢, R") which satisfies on all R",
1Al yyrnrz < ()| Fall, pns2 -

Since A is asymptotic to 0 at infinity, dg is as well, and we may choose g ~ I
at spatial infinity as well. Let g = exp(u). We fix a time slice and then
differentiate in ¢. Namely, if

0

Z ——exp(u)A iexp(—u) — =——exp(u)exp(—u) =0

— O0xJ ozi

j=
is the equation at the time slice ¢y, the derivative at ¢ = %y is

Lzu=Au+d*[u,A] = Au+ [du, 4].
0 « . .

Here we use the fact that @Aj =0 at t = t9. Examine the properties of

this linear map -which is the derivative-

Lj;: JRETCINY 5 2 L ; = A + lower order terms.
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We have

< 2|ldulL | Allzn

< e(m)lullypznse | Allyne
<

c(n) € [ullyyran/2-

ldw, Al w2

Choose € so that c(n)e < 1/2; we have that the lower order term is small

1 where

ot

. . . . . 0
enough for L ; to be invertible. The precise estimate is for u = ) g~

Note that an estimate on %% is available by the general methods we have
been using,.

To obtain an estimate on the time component Ay = gAgg™! — %‘3— -1
note that .
~ 0A ~
dAy — Bt +[4, 4] = (FA)(space,time)~
Since d x A = 0, we have
~ 0 - .9
AAg + @[Aj, Ao] = JZ:; 8_1173(1;"4)]"0-
Let p; = A‘l/za—‘z;. Then
1 ollyirnre = I1AY? Aol s
n n
< D0 LA Al + 1Y 1i(Fa)sollpnre
=1 =1
< co(n) (IAllze 1 AollLn + 1F4ll pns2)
< c(n) (ellAollzn + | Fallpnr2)-
Again, under the assumption ¢(n) e < 1/2, we have
[ Aollyirinsz < 2¢(n) |Fallpnre
as claimed. O

Corollary 1.2. Theorem (1.1) remains true if A € L?W;’n/ 2 and Fy €
LeLn/?



On the Well-posedness of the Wave Map Problem 55

Proof. Approximate A by smooth connections A, — A in WLn/2, For each
a, construct g, as in the theorem and Ao = goAagy L — dgag, 1 a space-
time connection 1-form which satisfies the estimates. We have denoted by

d= (%, d) the full derivative. Then,

ldga 95 llzn
< |l Aallze + llgadaga e
<l dallze + [ Aallze-

ldgal

Hence ||dg||» is bounded on each time-slice. To complete the estimate note
that

Jdg ~

(@)a = (Aa)jga - ga(Aa)j
d(%)a = d(z‘ia)jga - gad(Aa)j + (Aa)jdga — dga(Aa)j.

Then again, on each time slice

ldgallwinsz < | Aallwrne + | Aallwinz + (|Aallze + | Aallzn) lldgall e

is also bounded.
In each time slice, we have subsequences which converge to weak limits
gor — g in W2n/2 However, the weak limit is unique. Suppose not. Then,

9o =9, gar — hg;
A=gAg ' —dgg' and  A=hAR'—dnh7l.
Both A and le satisfy the time-slice estimate

||1‘~1||W1,n/2 + ||A||W1,n/2 < 2e

as well as

But dh = hA— Ah and Ah = (dhA) — (Adh). If we let k, be the appropriate
Sobolev constant,

lldh||Ln c(n) ||Ah||Ln/2

c(n) kn lldhllzn (I 4]l + | Alln)
c(n) kn €||dh|| L.

IANIN IA
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If 2¢(n) kn € < 1 we have that dh = 0. Since h ~ I at infinity, h = I. Thus
the weak limit is unique. Hence, g is unique and
dge — dg in Win/2, Ay = A in WHn/2
and :
VAl gz < ) 1EAlL o

as claimed. 0O

Corollary 1.3. Let s : R! x R® — M be an arbitrary map. Suppose the
curvature R(M) is bounded by K. There exists 0 < § = d(n, K) such that
- ifs: R*U{oo} — N is topologically trivial, and

| ds|lgern <6,

then there exists a unique frame in s*T M such that the hypotheses of (1.1)
- the main gauge-fixing theorem- are satisfied.

Proof. Since 0 8
s Os
(Fow)kj = R(S)(?, 51:—,0) ,

on time slices we have the estimate
| Fsrwllpnre < K||ds||Zn-

The desired conclusion follows by choosing § > 0 such that K¢ < € where
0 < € = €¢(n, M) is as in Theorem (1.1). 0O

Next we give a coordinate invariant description of the wave equations.
Let
D=s*V=d+a,

where the curvature of d is
Fps=(Ros)(ds, ds).

The term (R o s) is not explicit unless one is working on a Lie group or
symmetric space.
Let b = ds. Then the equations themselves are written

n
Dobg — Y Djb; =0.
j=1
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Because the Levi-Civita connection on M has no torsion, we find
Dybj =Djby, k=0,1,...,n, j=12,...,n.

This is a non-linear first order hyperbolic system. It may be that the correct
method is to analyze this directly. In keeping with the present standard
methods, we convert it to a single equation using Hodge theory (see also [3]).
In what follows we will denote by d the exterior differentiation operator and
by d* = div(space,time) its dual, the space-time divergence operator computed
using the Lorentz metric.

Theorem 1.4. Let b d¢ + dx1p. Then the wave map equations can be
rewritten as

(a) O¢ + (a,b) =0
(b) Oy +aAb=0

(c) b=d¢+dxyp
(d) da + [a,a] = R(z)[b,b]

;)
(e) ;b?jaﬁ:o'
]:

Here R(z) is the Riemannian curvature of M evaluated at s(z).
The initial data on ¢ and 1 can be taken to be

$(0,z) =0, $(0,2) =0
g¢ (0, z) = bo(0, z) 38_11{1 ’](0 yz) = b;(0,x)

Proof. Let b = Og with ¢(0,z) = 92(0,z) = 0 where 0 = ddx + dxd.
Let

¢=d*Q——bo ZBJ j

and 8 8. 9 9
b — -0 b,

¥ =dg =75 55 5%~ 53

Hence
O¢p=d*xb and Oy =dAbd
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S0, b = dd + div(space,time)P- Note dp = 0 automatically.
The initial data clearly consists of ¢(0,z) = 0, ¥(0,z) = 0. Hence,

8, 0 9
by = 5£¢ - ; 3_$;¢j’0 3 so bo(o, 37) = 'a‘i‘ﬁ(oa .72)

Likewise,

0 0

n a a
%= 5a1? " pi¥0i kz_:l agF ki 50 bi(0:2) = 2:90,(0,2).

Note also that
) ) o 9 '
églbj,k = wzlfo,k + 5;5%’,0 , SO afﬁj,k(O, z) = 0.

The last equation (d) of (1.4) is not determined by the rest of the data
since the curvature depends on the original map (and gauge change). No
general formula is available. This would not preclude a priori estimates.
However, the estimates for our global existence and uniqueness theorem for
wave maps are done in Besov spaces (which here prove inferior to the Lorentz
spaces). The equation

da + [a,a] = R(z)[b,b]

however behaves ‘badly’ (for bounded R(z)) in this context. Hence we must
restrict the manifold M to a group or a Riemannian symmetric space.

Theorem 1.5. If M = G or M = H/G where G is a compact Lie group,
then the equation (d) in Theorem (1.4) can be replaced by the equation

(d)’ da+ [a,a] +[b,b] =0.

Moreover, the original map s : R' x R* — G (or H/G ) can easily be
reconstructed from the fact that d+a+b and d+ a — b are flat connections.
Let

(d+a+bgt=0 and (d+a—bg =0.

The original map is g =gt -g~.

Proof. The computations for a Lie group are straightforward if we remember
that 7*G = &, the Lie algebra of G, that [-,:] generates curvature, and
that the structure group is a specialization of the orthogonal group. The
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symmetric space case is best understood by regarding M as an Ad orbit in
the possibly non-compact group H. That is,

M = AdH(2)

and G is the (compact) isotropy subgroup of 2. For H™, H is the
Lorentz group O(1,m) and G is the Euclidean group O(m). Choose
1 = diag(1,—1,—1,...,—1). Then by construction b will always lie in the
off-diagonal vectors

0-'0]'-
0 ... 0
bi=1 _pr 0 ... 0]
0 ... 0

and the compact structure group O(m) is represented on the diagonal. The
construction cannot work for non-compact Lie groups H such as O(1,m)
since the do not have bi-invariant Riemannian metrics. |

Corollary 1.6. Suppose M = G or M = H/G. Then a subset of the
gauged wave map equations (a)-(e) (GWM) has a structure of a non-linear
wave system of integral differential operators.

(a) O¢ + (a,b) =0

(b) OYp+anb=0

(c) b=d¢+ dxyp

L o .
(d) Aaj+z-£g[ak,aj]+ﬁ[bk,bj] =0, j=0,1,...n.
k=1

Proof. The wave equation structure of the system in ¢ ad % is clear, and b
is a (linear) first order derivative of ¢ and 1 (note that the initial data for
¢ and 9 have been worked out as coupled to that of b.)

$(0,z) = 4(0,z) =0

To obtain the last equation, note that
0

Waj — %ak + [aj,ak] + [b]abk‘] =0
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for k =1,2,...,n, j=0,1,...,n and a%,’;'o = %. Since ELI%% =
0 , we obtain our new equation by taking the divergence. We call this
system the modified wave map (MWM). By indirect arguments, it is clear
that if (¢, 1, b,a) have initial data which satisfy appropriate constraints, the
evolution, at least in the smooth case, will actually be data coming from a
wave map. The direct argument is not available to us however.

2. Definitions and Product Estimates.

In this section we set out definitions, notations and basic estimates that will
be used throughout the paper. We shall frequently use the notation A < B
to mean A < const. B for some positive constant const. which is allowed to
vary from line to line but does not depend on any of the relevant parameters
in the estimates.

We begin reviewing some Littlewood-Paley theory. Let ¢(¢, z) be a func-
tion on R x R”, we define the spatial Fourier transform gZ)(t, &) by

dta) = [ e g,z de

We define now the usual Littlewood-Paley projection operators P, and
Qk. To that effect, let m(§) be a non-negative radial bump function sup-
ported on the ball |¢| < 2 and equal to 1 on the ball |¢| < 1. Then for each
integer k& we define Py(¢) the projection onto the frequency ball |¢| < 2F by

Pi(9)(€) == m(27%)$(¢,€)-
Note that P, — 0 in L? as k — —oo while P, — I in L? as k — oo.

The operator @y is the projection onto the frequency annulus |£| ~ 2F given
by the formula,

Qk = P, — By1.

We note that if we let ¥(¢) := m(€) — m(2€), then 9 is supported on the
annulus 1/2 <[¢] <2, forallé #0, Y ,cz9%(27%¢) =1, and

Qu(P)(t,8) = p(27%)d(1, 6).

The Littlewood-Paley projections are bounded operators in all the Lebesgue
spaces and commute with any constant coefficient differential operator. Fi-
nally we note that Qy is given by a convolution kernel whose LP-norm equals
2(kn)(1-1/p) for all 1 < p < oo. In particular its L!- norm is identically 1 for
all k € Z.
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Let j = 0or j =1 and let k € Z. Following [22] and also [11], we

introduce S,E_j)(R x R™), the Strichartz space at frequency 2F to be the
space of functions whose space-time norm is given by:

k(lyn_g _
Il g5 := sup 2GTF (0] g p, + 27180 o),
k q,rEA

1 -1 -1
where A := {(¢,7) : 2 < ¢q,r < oo,—+n2T < n4 } is the set of
admissible Strichartz exponents. We remark that when 7 = 0 the spaces
above are H™/2- normalized and correspond to Tao’s spaces Sy in [22]. We
also note that for each n > 4, only specific values of (g, r) are needed. Finally

observe that control of the S,(c_j ) norm gives, for example, the estimates:

2.1)
on_(at))
IRk 2meny +27 M0 QD) 20y < 2VUFEDT )"Qk(¢)“5(—j)
L? Lm(n—a) Ltng(n—3) k
(2.2) 1Qk(D)lzgor2 + 27 *10:Qu(D) I pgorz < 2k(=3) ||Qk(¢)||sl(c—j)
(2.3) 1Qk(A)ll 2200 +27*10:Qr(B 220 < 2k(=3) 1Qk(Al 5-»

Finally we state the Strichartz estimates in this framework (c.f. [22] [6] and
references therein ).

Theorem 2.4 (Strichartz Estimates). Let k be an integer and let ® be

any function on Rx R"™ with spatial Fourier support on the annulus |¢| ~ 2.
Then

12l S 120, )l /2= + 1020, )l gnso-i+n) + 26 =0H0) | 0@ 13 1.

Definition 2.5. Let S(~9) be the space of functions on R x R™ whose norm
is given by

9llscn = (X 1Qx(@)IE-) "™

keZ
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Definition 2.6. A pair (q,r) is said to be sharp admissible if2 < q,r < o0

and
1 n-1 n—1

q 2r 4
Remark. Ifn > 4 and (q,7) is sharp admissible then s = 1/q+n/r—1> 0.
Also, in particular, ¢ > 2 and 2 < r < -%7%2

Lemma 2.7. For any j > 0 we have that

lyn_g,
sup  2FatT ])“Qk(f)“LZL;

(g,m)—admissible

k(42—
= sup 2T DQu(f)l| oy
(g,r)—sharp admissible

In other words,

l,n_.
Ifllsc-5 = (Z | sup 2Fats j)(”Qk(f)”LgL;"'

kez  (@r)—sharp admissible

[SIES

+27%10: Qe () o1 |2>

Proof. Let (g,7) be admissible but not sharp admissible and define rg such
that (g,70) is sharp admissible. Then it is clear that 79 < r. Let s > 0 be

such that
1 1 v

T Trg Mn

By the Sobolev embedding we then have

1Qk(Nlzsry < 27NQk(F)llpapro-

Note that when r = oo, W% <« BMO but ||Qx(f)|lrec ~
|Qk(f)l|Brmo- Hence on each Littlewood-Paley piece the Sobolev embedding
above holds.

Then,

l,n_., T2 ty—j
2 NQDlgr; < 2N gz

k(i _5
2G5 Qi () oo

IA
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and similarly for 27%|6;Qx (f)|| pez;, from where the conclusion follows.  [J

In what follows we will denote by |V|™1 := VA~! be the pseudodifferen-
tial operator defined by

|€Fﬁa@r=§ﬁu@>

Definition 2.8. We denote by B, be the Banach space of functions on R x
R* whose norm is given by

1flis, = (NQeIEy ) 7

k€EZ
for 1 < p < oo and suitable modified with the {*°-norm when p = 0o

Remark. Note that it follows naturally from the embeddings ¢¢ C ¢9 that
B, C By for1 <p<gq < oo.

We proceed to prove the Main Multiplication Estimate. The point of it
is that it implies in particular the three multiplication estimates that will
be needed later and more. It thus gives a unified framework under which to
understand the action of the ‘inverse gradient’ |V|~! on the space S(-1) x
S(-1)_ For solutions of the homogeneous wave equation, Klainerman and
Tataru [13] obtained the first bilinear estimates of this type on an improved
range; those can be viewed as generalizations of the well-known Strichartz-
Pecher inequalities. -

We first need some definitions. In what follows, for any a € R, we will
denote by a~ and a* the real number @ — 1/100 and a + 1/100 respectively.

The constant 1/100 is of course arbitrary; any (fixed) small positive number
will do.

Definition 2.9. Let us denote by C, D, £, G the following sets of pairs (g, p)
where ¢,p > 1.

C={(g,p) €A %+§sr}
D=t{(en)s 5+ "= < ()
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1 1 1 1 1 1
E={(g,p): - ==+ =; == —+ — with (q1,p1) € A and (g2, p2) € C
{@p) Q g2 p PpP1 P2 (@,71) ( ) }

where A is as above, the set of all (wave) admissible pairs. Finally, let

g=:DnS gtzthﬂé'

Remark. Note that since A C D, A C Dy, and A C £ we obviously have
that A C G and A C G;. We will refer to the pairs in G as the set of ‘good
pairs for frequency localized wave products’.

Definition 2.10. Let 5_(;1) be the space of functions on Rx R™ whose norm

is given by
16l g = ZIIQk((ﬁ)IISkSF—l)
kEZ
where
n_ k n_ _
12l = sup 2°GHEV@llgpy + sup 2°GHENaRIg @ by

(2,p)€9 (2:p)€0:
Lemma 2.11. We have the following embeddings
s o st
sV o B
stV o LIBs for all ¢ > 2, > 2 and -1 T
+ t P52 g=22,p2>2an S—q+ﬁ

Proof. This is an easy consequence of the definition of G, Lemma (2.7), the
embeddings /P C ¢ for p < q and the fact that

15, S (2 2 IQuNIE, )"

kEZ

We should also note that (g,p) € G for any q,p > 2. O
Proposition 2.12 (Main Multiplication Estimate).

V|71 CD 5 sCD 5 5D
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)

Proof. We consider the first supremum term in the S-(l-_l -norm; i.e. we need

to show :

sup 2U/TPDQu(IVITHS - 9))lIpags S IF lse-nllgllse-n
ez (@.P)€G ‘

Let f and g be in SV and let fr = Qx(f) and g; = Qj(g) be their
corresponding Littlewood-Paley projections. We write

VTN g) = VIS freg))

k,J€EZ
= VIO Y. Feg) HIVITNCOY. fregh)-
k,jEL:k>] k,jEL:k<j

By symmetry of the sums, it is enough to consider only one of them. The
- proof for the other ﬂentical after exchanging k£ and j

Since supp (fi - gk-m) C {& : [¢] < 2°} we have that Qu(fk * gk-m) =0
unless & > I. On the other hand, we have that supp (fx - gk—m)N{€ : [{] <<
2k=m1 — 0 if m > 5 Hence, Q;(fx - gk—m) = 0 unless I = k and m > 5 or
m<b5and! < k.

Define Qi (f) = >k—s<j<k+s @j(f). By the above argument we conclude
that it is enough to prove each of the following two estimates :

sup 2P0 N UV (f - Q@) ez

1z (&:P)ED k>l
(2.12)(i) S lls-nllgllge-
sup 27 2WTHEDQ (DT figem)llpags S
leZ (6,]3)65 m>5 e
(2.12)(ii) S I lls-nllgll s
since G =DNE.

e We consider (2.12)(i).
For each (¢,p) € Dlet s=1/G+n/p—1
First note that

> sup Z2ls||Qz(|V|_1(fk'Qk(g)))lngLgS

1ez (GPED 3y
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< Z Z sup 21(3_1)”Ql((fk : Qk(g))lngng
ICEZ l<k (q7ﬁ)€D

Since (¢,p) € D we have that

1 + n—1 (n — 1)_
2 4p — 4
By the same argument used in the proof of Lemma (2.7) it is enough to
take the supremum over all (¢,p) € D such that 2% + %‘:ﬁl = (1)~ We
denote this set by D#.
Since p < 00, let 1 < p < oo such that
' 1 1 1 1

S R —
p p P 50(n-1)

Then we have that

n—1 n—1 n—1 1
<

B S 1 B 200
Let » > 1 be such that
1 1 1
1+:=—+—.
p T p

By Young’s inequality and Holder’s inequality we then have that

S suwp 26 VIQu(fi Q0D

kez i<k (@:P)ED#*

< Z Z sup 21(8_1)27”(1_1/”“fk”LftiLgP“Qk(g)”LféLgp-
kez i<k (@:P)ED#

But by our choice of p we have that if (¢, 5) € D# then (2§, 2p) is still in
A the set of admissible pairs. Moreover,

n—1 1 n—1<1 n—1<l n—1 1 n—1

) =% % S5t Sut 5 T < 1

Hence, up to a constant, we can bound the last sum by

>> sup 2l(s_l)w(l—l/”?%(l_"’L‘f_%)||fic||5<—1>||C>~2ﬂc(9)||5(—1)
kez i<k (@P)ED#* k k

—j(iyn_o ~
SOD s 277G A oo 1 @r(9) g
kez j>0 (GP)ED# k k
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Since n > 4 and (§,p) € D¥, we have that 2 < 2 < 6 and hence,

1 n 1 n n—1,_ n—1 2n
it iy © ¥ 41) _2(+41;5)+§5
= A )*J’nzﬁ
S 2(n;1)*+n-é-1
> 2(%)‘+%>2+.

Thus, we can sum in j > 0 above; and the desired estimate follows by
Cauchy-Schwartz in the sum over k.

e We consider (2.12)(ii).
We proceed as follows,

sup 9~lgl(/a+n/p-1) ||Ql Z fi-g- m)”LqLP
ez, (@D)EY m>5

<Z Z sup 2- lzl(l/q+n/p 1)“Ql(‘fl 91— m)”Lqu
leZ m>5 (Qap)ee

< Z Z SUP 2l(1/q+n/p 2)||fl”quL”1 ”gl mllL""?Lpz

by Hoder's lnequahty Wlth = Ll ?11—’ % = ;71—1_ + 1’_2 and (ql’pl) € -Aa
(g2,p2) € C C A Recall also that [[Qu = 1

By the Strichartz inequalities we then have that the sum above is
bounded by

S5 sup 2M/an/p=2gl@-1/a-n/B)g=m(1-1/e2=n/p2)| 1

1€Z m>5 (@P)EE
S, 2_m(1/100)2||fz||5( 0 l191-mll s-»
m>5 leZ

”Sl(—-l) ”gl—m”S,(:;)

from where the desired estimates follows by doing first Cauchy Schwartz in
the sum over [ € Z and finally summing over m > 5.

To obtain the desired estimate for the second supremum in the definition
of the S_(l_ _norm we need to show a companion estimates to (2.12) (i) and
(2.12) (ii).

The high-low estimate for a time derivative is treated in a similar manner
to (2.12)(ii). Indeed, the time derivative first introduces a ‘loss’ of 2! and
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then one recoups 2! (or even 2=™) from the estimate for |9, fi| Loz We
omit the details for that part and we concentrate instead on the hlgh high
interaction. To this end, we will show that

Z2l(1/q+"/p_3)z sup || Qu(0efu Qe pgrz S 171l - llgll 5=

k>l (¢.5)eDf

where D;# = {((j,ﬁ) 1 q > 2, 21_q + @;;—11 = "—Z—l—}. We note that the case,

when the time derivative falls on Qg is symmetric. By applying the same
estimates as in (2.12)(i), one obtains that the sum is bounded by

SOY sup  0/En/r gkl 2n B £ gl g,
1 i<k (@.p)eD¥

< 2kok(1- 1/2‘1“"/21’)||f|| (-1)- Therefore, we

~

since by definition ||3; fx/| 122
need to bound

ZZ sup 2(l—k)(1/q+n/ﬁ_3)||f||8(—1)Hglls(—l)-
1 i<k (@:p)eD¥ * k

which amounts to verifying 1/§ + n/p > 3+, which is somewhat stronger
than what was needed in (2.12)(i). We have

n=1\ n+1_n-1 n+1 1
L ——2 > _ L
+p> -+ (2q % >+ % = 2 | 25 50

The restriction ¢ > 2 in the definition of DZ‘?E implies p < (n—1)(n —2) and
thus
l.+ﬁ S n—-1 (n+1)(n-2) 1
qd p 2 2(n-1) 50
for n > 4. We note that one can do a slightly larger domain of admissi-
ble pairs in the time derivative estimates, but Df& will suffice to close the

estimates later on.

>3

Remark. As a consequence of Theorem (2.12) we have that any element
n S( b belongs to both By C L}LY and LQB"/2 Y2 This will imply, in
partzcular, that the connection 1-form a - whose existence, uniqueness and
regularity is established in section 8- belongs to By C L} LY and L2Bn/ 2-1/2,

This is the crucial fact needed to obtain the apriori bounds on the non-
linearity (c.f. Theorem 2.13 below).
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Remark. Although the above embeddings will suffice for our purposes in the
present paper; it is interesting to note that in fact, |V|™! maps S(_l) x S(-1)
into a slightly larger class of Besov spaces. Namely into Lq o for any

1
g>2,s=1/q+n/p—1 and p > p; where p < 2 is such that a+; = §+1.

Theorem 2.13. Let a € S_(F_l) and b € SV then

(> 22V Qula- D)l 12) " S llall o 1bllscn
keZ

Proof. We start as usual by performing a Littlewood-Paley decomposition of
a and b. We obtain

> 220D |Qu(a- )3y 1

keZ
< 222D N Qr(Qi(a) - Qr-m®)I71 12
keZ m>5
+> 202D N Qu(Qk-m(a) - Qk(b))”i% 2
keZ m>5
+ 30 202D 5 Qu(Qula) - QU2 1o
kez k<l

Now since a and b belong to different spaces we lose the ‘symmetry’ and
need to consider all three cases separately.
e We consider the first of the three sums above.

> 37 2D Qu(@k(@) - Qu-ml®)

keZ m>5

S22 D20 Qk(@) 22 1Qk-m(B) | 2o
m>5 kel

S22y okn/2-1/2) 1@k (@) 22 22 1Bk -mll g0
m>5 kEZ *

since the pair (2,00) is admissible. Note that the pair (2,2) € G, whence

1Qk(@)llzzzz < 2°027D|Qi(a) g - -since 1/2+n/2 — 1 =n/2—1/2-.
+

Finally do Cauchy- Schwartz and the desired estimate follows after summing

over m > 5 last.
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o We consider next the second sum.

Z 22k(n/2—1)” Z Qr(Qx(b) - Qk,—m(a))”i%L%

k€EZ m>5
— 2
S22 Qu(0) 17 12 (D 1Qk-m (@)l Ly L)
keZ m>5
< 2 2
~ ||G||Si—1) i;Z”Qk(b)”S’E—I)

S llall3 o 1ol -1
+
e Finally, we consider the third sum.

> D 2D NQR(Qu®) - Qua)llsy e

kEZ k<1

<SSO k20101 50 12 1Qu(0) | oo

kezZ k<l

< Z Z 273(n/2=1)||Q; (b) ||Sl(—1) 1Qi(a)llL; Lo

1€Z §>0

P[] Ol o 1Qu@)lI L} e

leZ
from where by Cauchy-Schwartz we obtain the desired estimate invoking

once again the fact that a € Bs. O

3. Existence, uniqueness and regularity of the connection
1-form in S-1,

Proposition 3.1. Let b € S(-1) have sufficiently small norm; then the map
®(w) = V|~ w,w] + V|6, 8]

has a unique fixed point a = ®(a) € SV, Moreover, the fixed point a
belongs to L L N B, foranyp>2andn/p—1<s<n/p—-1/2.

1
Proof. Let b € SV such that ||b]|g-1 = € < 100er where ¢; > 0 is the
1

constant from (2.12) such that |||V|‘1[a,,3]llsi_1) <cllalllse-ollBllse-1-

Let 0 < r < € and let B = B,(0) be the ball in S-1) centered at 0 and
radius 7. Then
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(1) @: B,(0) > By (0)
(2) 12(w1) — @(w2)lls-n < llwr — wallse-
To check (1) let w € B,(0) then
12W)lls-v < ellwlen +eallblyey <r
To check (2) let wy,wy € B,(0) then

|®(w1) — @(w2)lls-v < erllwr — wallg-v ?;%’é{llwi“s(-n}

1
mllﬂu — wollg-1) < |lwy — w2 gc-1)

Thus @ is a contraction and hence there exists a unique fixed point
a=®(a) € SV such that
a=|V|"!a,a] + |V|7'[b, 0]

By Lemma 2.12, |V|7'[,-] € L}LP N B, for any > 2 and s = 1/ +
n/p—1 with § > 2 . Hence so does a. O

4. The Modified Wave Map System.

In this section we prove that the Cauchy problem for the MWM system
~ derived in Section 2 has a unique global solution in L (R; Hy / 2) provided
the initial data has sufficiently small Hg 12 X Hg /-1 norm.

Let us denote by B(a,b) the quadratic form equal to any finite linear
combination of functions a € S_(fl) and b € SCU of the form Zn,ﬁ CropQyc by

where a, € Sg__l), be € SO and ¢,y € C.
According to our reductions in the previous section, we consider the
system of coupled wave equations in R**1, n > 4.

Ov = B(a,b)
(4.1) v(@,0) = f(a)
vi(2,0) = g(z)
Lemma 4.2. Leta € Si_l) and b € SV, Then the solution to the MWM
system (4.1) with initial data (f,g) € H"? x H"?! satisfies

olls S Wl + llglzgara-s + llall g-n 1Bl s
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Proof. Let us denote by vy, = Qg (v). By the Strichartz estimates, we have
that

lvellse S full gure + gkl gasamr + 26072V B(a, )| 1112

from where by Theorem ( 2.13) we have that

olls = (O lluelz,) 2

k€EZ
_ 1/2
S Ml gose + gl gmras + (3 242D B(a,b) 12, 12)
kEeZ
S W llgnre + gl grase-1 + IIGIISgr—nIIbIIs(—n
as desired. O

Theorem 4.3 (Existence). There exists € > 0 such that whenever the
initial data ||(f, )|l gns2« jgns2—1 < €, the system (4.1) has a unique global
solution v € S.
In particular, the solution v belongs both to
o L°(R H??) n L*(R;B},,)  and
o WHR(R H/*71) 0 WHA(R; B, ).
Moreover, there is stability; i.e.

eSSSltIP“Ul — vl gz S I1(f1,91) = (F20 92) |l gms2 o frnsa—1

| provided the r.h.s. is small enough.

Proof. The proof proceeds by Picard’s iteration relying on the a priori esti-
mates as well as the necessary smallness of the data.
Suppose [|(f, 9)ll gns2 « frn/2-1 = 6 and let vy be the solution to

Ovg = 05 'UO(Oa ) =f a15'00(07 ) =g
By the Strichartz estimates

”/00“5 < cllI(f’g)”H'n/2xH‘n/2—1 = CIJ-
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Now, vy = (0, %0) produces by = dpg + div(ep.s Yo With ||bo|ls-1 <
62“’00”3 S 63(5.

Next, the multiplication estimates allow one to perform a fixed point
argument to produce ag from by by solving

ag = |V|_1[a0,a0] + |Vl—1[bo,bo].

Moreover, lag[| -1 < callboll%-y) < c56?
Let v; be the solution of

Ovy = B(ag,b))  v1(0,) =f 06w1(0,-) =g.
By the a priori estimate,

[loalls < co(d + ||ao|lsgr—1)l|b0||s<—1)) < 2¢6

provided ¢ is small enough.

We proceed next by induction to show that for any j > 0, ||b;]|s < 2¢2¢,9,
llajlls < c56% and thus ||v;41]|s < 2co6 provided § > 0 is small enough (indep.
of j), where v;4; is the solution to

Ovjy1 = B(aj,bj)  v41(0,)) = f 040j41(0,7) = g.
Note that once again by the a priori estimates
Iosslls < co(1(F,0)jrmra fimramr + llajll gon 1Bl scn)-
Lastly, for the differences,

O(vj42 —vjt1) = Blaj+1,bi41) — B(aj, b))
B(aj+1 = aj,bj41) + Blag, bjt1 — b;)
’Uj+1(0, : ) =0
atvj+1 (0, . ) = 0.
On the other hand note that since
a1 =a; = |V Majn —aj,050] + V[ ag, 0511 — a5
+ VI 1 = b, bja] + |V|—_1[bj, bj+1 — bj]

10541 = bjllsc-n < eollvjer — vjlls
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and

llajsills-v s lajllse- s 1bj1lls-v 5 105l -1 < ed,

we have that

llaj+1 — aj“sf:”

< cllajrillse-nllajr1 — ajlls-v + llajllsc-vllajr1 — ajlls-1
Hbj+1ll s 10541 — bjll s-1 + 1165l s-1) [1b+1 — bjll =)

< cbllaj41 — ajllg-v + )|bjr1 — bjllsc-1)-

Hence,
llaj+1 — ajHSi—l) < edlbjtr — bjllse-n < edljvj+1 — vjlls.
All in all we then have that

o2 — vjitlls
< c(llajsr - ajll o llbgrllsn + llageillseo b = billse-n)

< c6®||vjt1 — vills

Finally, by choosing § small enough we have that

1
lvjre — vig1lls < §||’Uj+1 - vjlls-

Hence v; is Cauchy in S, thus establishing existence and uniqueness. For
the stability result one proceeds in the same fashion as in the proof of being
Cauchy; thus concluding the proof of the theorem. O

The theorem above gives uniqueness solely in § which is not enough to
claim the solution to the MWM system came from a wave map. Thus we
proceed next to prove a stronger uniqueness result which will indeed suffice
in section 5 to return to the wave map.

Theorem 4.4 (Uniqueness). Suppose (v, a1) and (v, a3) are two solu-
tions to

Ov + B(a,dv) = 0
Aa + divB(a,a) + divB(dv,dv) = 0
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such that dv; = bj, for j = 1,2 are small in L{°L};. Suppose that dv; = b; €
LZL2™ for j = 1,2. Assume in addition that a; = a1(v1) € L{LP. Then
v = V2.

Remark The smaliness of dv; in L{°L} is the necessary condition to solve
the ‘gauged’ equation. Indeed this condition corresponds to the smallness of
the LPLY of ds which is the necessary condition in Corollary 1.8 guaran-

teeing the existence of a ‘good gauge’. Also note that it is not necessary for
ag = az(vz) to be in L L.

Proof. The proof follows the scheme devised by Shatah-Struwe to establish
uniqueness [16], [15]. Let us denote

ow = v — Uy
da = aj—ag
ob = d’l)1 - d’vz ,

and so on. Then,

Oéw = B(a1, 6b) + B(da, bs)

) 10 ,
/( atéfw Oéw ) dz = 3 EE where
E? /ld(6 )W+ | ( )|2 /|5b|2 dz.
Then,
3 5 S lotllaz B20) + B@5all I
25T = ai|jt,Le |6a —2-n—|| ||t,Lgn-

7 (l)

Integrating over ¢ we then obtain that

]
() < maxBr) [ ol i
(4.5) o+ maxE(T) hdell , 2oy Il

(0 t) (0,t) L
where L%O,t) means the L? norm on the time interval (0,t). Now,
Ada + divB(ba, a1 + a2) + divB(6b, b1, b2) =0
Hence,

9all ¢y yyransnry < Nball, ponm-r)(larlirz) + lazliery))
(4.6) 11660l ¢e,z2) (101l ¢,2n) + 102]l(2,L20)-
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On the other hand, ||a;j|lyyinz < llajl|2a + |16j]|2. and ||b;]|2. is small for
each t. Moreover, by Sobolev embedding ||a;|lL» < c(n)||aj|lyi 1,n/2; hence
(for example by a fixed point argument in L™ similar to Lemma 3.1 ) we
have that ||aj||z» is also small for each fixed ¢.

All in all, from (4.6) we have that,

I8l ane < Elm)lsall an, < Em)B(Oouleczn) + Il czm)

’ Z

H

Integrate 7 <t to get,

2+ lb2llpz  r2n)-

(0, t)’

n < C
ldal, e < e mex Bl

Sticking this estimate back in (4.5) we obtain

E*(t) < I;lggiEz(T)(llalllLl e + ) (lloallLz

(Ot),L2" ”b2||LgOt), )2)'

Since E(0) = 0, we must then have that E(t) = 0. O

By differentiating the MWM system (4.1) and observing that the re-
sulting nonlinearity has the same bilinear structure -for which the main
multiplication estimates hold- the following regularity result follows.

Theorem 4.7 (Higher Regularity). Suppose the initial data (f,g) to
(4.1) is in H™2! x H™?2 and has sufficiently small H™? x H™?2-! norm.
Then the solution v to the Cauchy problem (4.1) with initial data (f, g) can
be continued in H™?*1 x H™/? globally in time. Furthermore, we have the
global bounds

191, o . grnrzery S U(E O sz gnre
Lg (R; Hy ) H, XHy

Proof. Assume for simplicity that the data is infinitely smooth. The con-
stants in our estimates will depend only on the relevant smoothness assump-
tions in the theorem.
Differentiate (4.1) to get
Ow = B(da,b)+ B(a,db)
w(z,0) of (z)
wt(zJO) ag(x)i



On the Well-posedness of the Wave Map Problem 7

where w = Gv (& may signify any of 9;). Recall also that a is a (unique)
fixed point for ® and therefore its derivative will satisfy

da = |V|™Y[8a, a] + |V|}[a, 8a] + |V|~1[8b,b] + |V|*[b, 8b).

Estimating both sides in || - || s7b together with the main multiplication
estimate and || - “5;1 <|Ills-1, yields

19alls-1 S l1dalls 1 llalls-1 + [|0blls-1 ]l s-1-

Recall from the Picard iteration method, that since ||(f,g)|| gn/2y gn/2-1 18
small, we have | al| 571 and ||b||s-1 small as well. By the usual hiding argu-

ment, one deduces

AT
Baf| g < N0t Iols—t i v,
lallsz S T ape <1

thus placing the nonlinearity B(0a,b) in the form Sjr’l - 871 as in Lemma
4.2. Since b ~ v, the same holds for the other nonlinearity associated with
the derivated equation, namely B(a,db). An application of the Strichartz
estimates and Lemma 4.2 yields

lwlls S 18l gz + 189l grnsz-s + 1bli5-1 l1Blls
S NE Dl gnrzer gz + oUl(F, DNy gror) 0l

The result follows, since [|v]| o yn/2+1 S llwlls. 0O

5. The Return to the Map.

The well-posedness results on the modified wave map apply to a larger class
of formal solutions (a,b) to the equation than those which come from wave
maps. Our method of using the results on the modified wave map equation
to show existence of wave maps is similar to the idea we used for Schrédinger
maps [14] and not very different from the technique used by Shatah-Struwe
[15]. The translation depends on the compactness of M (or certain bounds on
the isometric Nash embedding of a non-compact M in an Euclidean space).
The proofs are very simple for the Lie group case because of the natural
parallel structure; and the compact symmetric space case (e.g. S™) is a
special case due to the totally geodesic embedding G/K C G. Since we have
estimates only for this case, we restrict to this case; although the theorems
below are true in general.
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Theorem 5.1. Let n > 3. If (s, s71 %) € H™? x H"/?-1 gre sufficiently
small initial data for a wave map into a compact Lie group G, then there ex-
ists a gauge transformation g € H™? and a formal derivative —= T I ¢ fri2- L
such that the initial data

1

b=Zg(s™ ds)g™

are small in H™/2-1, Furthermore, if
1
a=—dgg™" + 5g9(s7'ds)g ",

then a satisfies 3 7, % =0 and is small in W™/%:20/(n+2) < fn/2-1

Proof. Note that the pull-back connection in the frame of left pull-back to

the Lie algrebra is d + —;-s_lds. The curvature is i[s_lds, s~lds], which

will be small in L™?2 since H™"/2~! C L™. We can then apply Theorem (1.1)
(or actually the first step in a time-slice of the proof) to get a good gauge.
Since

9 s7lds
Za— (dgg™") - g(——)g-1] =0,

a standard regularity theorem will give g to be as smooth as s. Here we use
heavily the fact that g is bounded. Then b = g(s lds) ~1 has components

which are small in H"/2-!, Since a = —dg g~ +g(& ds) ~1 has 23—1 527 =

0 on the time-slice ¢ = 0; a € W™? is small. A standard regularity theorem
applied to the equation

"\ 9 “\ 9
Aaj + Z w[ak, aj] + Z w[bk, bj] =0
k=1 k=1

gives a; € W"/227/(*+2) small and bounded by ||b) Fn/e—1-

. . .. 0Og. .
The time derivative 99 is chosen so that if

ot
_ 99 ., 1 5 _40s
@G = -5 9 t59 s %9
"9
0 = Aap+ Z ’8—([(1],0,0] + [b],bo])
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and ag will also be small in W7/22%/(n+2) " This implies g'I@ is small in

) ot
H"/271 35 claimed.

The estimates follow from standard composition and multiplication the-
orems, and elliptic regularity. The needed multiplication theorems are less
straightforward for the fractional derivatives needed in odd dimensions, but
are extended to the fractional derivatives by interpolation between integral
derivatives. 4 O

Theorem 5.2. Let (s,s‘l%) € H™? x H™?~1 be initial data for a wave
map into a compact group. If s is sufficiently close to the identity in H™?,
then there exist approximations (sq,va) in Cff x C* such that

105

%) i M
t

(8arVa) = (8,8
By C;7 we have denoted the space of C°° maps which are the identity
at infinity.

Proof. Let s € G C RE x R¢, and v = s‘“%% € &, which is a vector space.
The standard approximation method is to convolve

va(z) = / Uz + 27%y)p(y) dy = / v+ 1)palt) &y = Jo(v)()

where ¢4 (y') = 2"*p(2%y') and ¢ is a smooth bump function with compact
support such that [ ¢ = 1. Since v = s‘lg—i is in the Lie algebra, this makes
sense. The approximation for s is more subtle. Let P : U(G) — G be the
projection operator of a neighborhood of G onto the nearest point in G. We
define

Sa = P(Ju(9)).
This is well define in the case that

/ |ds| < r~"Mle
lz—y|<r

for all small » > 0 and € > 0 sufficiently small (depending on the diameter of
the neighboorhood U(G) ). If s € H™? is sufficiently small, this will be true.
Then, the result that sq — s in H*/?2 follows by applying the regularity or
density result of F. Bethuel of smooth maps between certain manifolds in
Sobolev spaces ([2]; c.f. in [1]). O
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Theorem 5.3. Let s : [0,7] x R* — G be a wave map in a time interval
[0,T) such that ds € L{°L? N L2L2". Assume the initial data is in H™? x
H™?2-1 and has sufficiently small norm. Then s is a gauge transformation
of a modified wave map, and s € H™? x H"?~1 remains small in [0, T].
Moreover, if the initial data is in H"/2*! x H™"2, then s € L§°H n/2+1 and
% € L H™? for the time the solution exists.

Proof. Since solutions of the wave map are local, we can assume without loss
of generality that its L°L7 norm is small for the time interval of existence
( a posteriori this will be true anyway ). Make a gauge transformation to a
modified wave map. The gauged modified wave map lies in the regime of our
uniqueness theorem (4.4). Therefore, it coincides with the solution we have
found (the constructed solution satisfies a € L}LS°). Hence it is a gauge
transformation of a solution in §. The regularity theorem (4.7) implies the
second statement. a

We define next $(~1) as the natural mixed Lebesgue-Sobolev norm space
S(=1) lies in. More precisely,

Definition 5.4. Let S(-1) be the space of functions on R x R® whose norm
is given by

“¢“5(—1) = sup “¢”L§WS»P'
{(a,p,8):q,p>2 ;+Z~1=5}

Corollary 5.5. Suppose s : [0,T] x R* — G is a wave map with ds €
LeLEN L%Lgn Suppose, in addition, the data at any point of time is small
in HY2 x H"2=1_ Then s exists for all time and ds € §¢-1).

Proof. The gauge transformation of this map coincides with the MWM we
have found. Moreover, if ab, € SV, then solution g+ of

dg+ag+tbg=0

exist -since the curvature of d+a = is zero, we can apply Theorem 1.1 - and
a standard regularity argument shows that dg+ € S(-1). Then s = g, g~}
has the same property. a

Theorem 5.6. If (s,v) € H"?t1x H"Y? are initial data for a wave map and

(s,v) € HY? x H™/?-1 has small enough norm, then there exists a unique
global solution with d?s € S(-1).
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Proof. Local existence theorems for data in H n/2+1 % H™/2 are available
(8] [12]). By theorem 5.3, the norm of (s,s7*%) € LPHM?M x Lo HP?
remains bounded. Hence the local existence theorems can be used to extend

the solution intervals to obtain a unique global solution.

Theorem 5.7. Let (s,v) € H"?2 x H"?~1 be small data for a wave map
into a compact group or symmetric space. Then there exists a unique global
solution, which is a gauge transformation of a solution to the modified wave
equation in S and hence ds € (-1,

Proof. Approximate (s,v) by smooth data (sq,%). Then there exist global
solutions to the wave map problem with initial data (sq, o). These are gauge
transformations of solutions of the modified wave map problem. Choose a
weak limit. This limit must have a gauge transformation coinciding with one
of our constructed solutions to the modified wave map problem. But since
this solution is a weak limit of solutions satisfying da + [a,a] + [b,b] = 0,
this modified wave map has properties of the complete wave map and can

be gauged back (using theorem (1.4) since the curvature of d+a =+ b is zero).
O
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