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On the Well-posedness of the Wave Map Problem in 
High Dimensions 

ANDREA NAHMOD, ATANAS STEFANOV AND KAREN UHLENBECK 

We construct a gauge theoretic change of variables for the wave 
map from M x W1 into a compact group or Riemannian symmetric 
space, prove a new multiplication theorem for mixed Lebesgue- 
Besov spaces, and show the global well-posedness of a modified 
wave map equation - n > 4 - for small critical initial data. We 
obtain global existence and uniqueness for the Cauchy problem of 
wave maps into compact Lie groups and symmetric spaces with 
small critical initial data and n > 4. 

Introduction. 

The wave map equation between two Riemannian manifolds- the wave equa- 
tion version of the evolution equations which are derived from the same 
geometric considerations as the harmonic map equation between two Rie- 
mannian manifolds- has been studied by a number of mathematicians in 
the last decade. The work of Klainerman and Machedon [8] [9] [10] and 
of Klainerman and Selberg [12] focus on the study of the general Cauchy 
problem in any dimensions bigger or equal then two for regular data and 
provide the almost optimal local well-posedness. In the difficult case of 
two dimensions, some of the early results include those of Christodoulou 
and Tahvildar-Zadeh [3] who studied the regularity of spherically symmetric 
wave maps assuming a convexity condition in the target manifold. Shatah 
and Tahvildar-Zadeh [17] [18] studied the optimal regularity of equivariant 
wave maps into two-dimensional rotationally symmetric and geodesically 
convex Riemannian manifolds. The study of the general wave map problem 
incorporated methods that exploited the null-form structure of the wave map 
system such as that of M. Grillakis [4] [5] as well as the geometric structure 
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49 



50 A. Nahmod, A. Stefanov and K. Uhlenbeck 

of the equation as done by M. Struwe [19] [20] [21]. Keel and Tao studied 
the one (spatial) dimensional case in [7]. For a more complete presentation 
of the developments in this subject we refer the interested reader to the 
excellent book by Shatah and Struwe [16]. 

More recently, the pivotal work of Tataru [24], [25], followed by that 
of Tao [22] [23] have introduced new techniques which allow one to treat 
the Cauchy problem with critical data. Their methods rely and further 
develop important ideas from harmonic analysis such as adapted frequency 
decompositions and Littlewood-Paley theory; and in Tao's case are used in 
conjunction with gauge theoretic geometric methods. Although the general 
theory for these equations is far from complete, the field seems at present 
very promising. 

In [22], Tao established the global regularity for wave maps from M x 
W1 into the sphere Sm when n > 5. Similar results to those of Tao were 
obtained by Klainerman and Rodnianski [11] for target manifolds that admit 
a bounded parallelizable structure. 

In this paper we are interested in revisiting this work. We study the 
Cauchy problem for wave maps from M x Rn into a (compact) Lie group 
(or Riemannian symmetric spaces) when n > 4 and establish global exisi- 
tence and uniqueness provided the Cauchy initial data are small in the crit- 
ical norm. Similar results were obtained by Shatah and Struwe at roughly 
the same time when the target is any complete Riemannian manifold with 
bounded curvature. 

Our method combines both delicate techniques from harmonic analysis 
with fairly standard global gauge theoretic geometric methods. Both our 
work and that of Shatah-Struwe [15] use the same gauge change; the analytic 
approach however, is significatly different as Shatah-Struwe base their results 
on Lorentz spaces and we use Besov spaces. Besov spaces are contained in 
Lorentz spaces -for appropriate indices- (c.f. [16] for example). Lorentz 
spaces seem to be better behaved under coordinate transformations. 

It is interesting to note that in none of the works above is possible to 
obtain (strong) well posedness at the critical level for the wave map itself. 
In other words even though one indeed has well posedness for the gauged 
map] there are no estimates available on differences for the original wave 
map itself and one cannot obtain any continuous dependence of the map on 
the data in the coordinate setting. It thus seems reasonable to think that 
the notion of wellposedness is not appropriate for this type of geometric 
equations at the critical level. The problem stems in that well posedness is 
not a gauge invariant notion; it is not even necessarily true that uniqueness 
in one coordinate system implies uniqueness in another directly. 
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The plan for this paper is as follows. In section 1 we describe the ge- 
ometry which translates wave maps into compact groups and Riemannian 
symmetric spaces to a gauged equation - the gauged wave map (GWM). This 
equation is overdetermined and we give a modified version (MWM). Section 
2 contains the basic estimates for our theory, which involve multiplication 
theorems in Lebesgue-Besov spaces. Proposition 2.12 is the key estimate. 
This is the tool which contributes to handling the notoriously difficult first 
derivative non-linearity of the wave equation 

Du + a • du = 0. 

We obtain our results using the quadratic structure of the definition of a in 
terms of b     (which is linear in du) 

Aa + div([b, b] + [a, a]) = 0. 

This estimate is the subject of section 3. Section 4 contains the proof of the 
global well-posedness of the modified wave map equation (MWM) for small 
initial data in the scale invariant norm Hn/2. In section 4 we briefly outline 
the translation back to the original wave map coordinates. Our main result 
is the existence and uniqueness of global wave maps into compact Lie groups 
and symmetric spaces for small initial data in H71/2 x iJ™/2-1 for n > 4. 

There are small difficulties in handling the case of non-compact symmet- 
ric spaces. The natural isometric embeddings are into spaces with indefinite 
metrics. For the standard methods on density theorems and coordinate 
changes to apply, it is necessary to know the existence of a Nash embedding 
into an Euclidean space with bounded geometry. 

Our results extend the results of Tao and Tataru for M = Sm. The 
Shatah-Struwe methods using Lorentz spaces are stronger since they obtain 
estimates for solutions with variable curvature.1 (On the surface, our diffi- 
culties with non- compact targets have somehow been circumvented in their 
work [15]). 

We have stated the results in sections 1 and 2 in great generality in the 
hopes that they may be applicable to other non-linear wave equations. The 
Main Multiplication theorem is the principal tool needed in estimating the 
non-linearity term in Theorem (2.13). 

The authors particularly thank both J. Shatah and T. Tao for their 
generous sharing of information and suggestions in a field relatively new to 
us, as well as for their enthusiastic support. 
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main theorem. 
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1. Formulation of the problem and gauge choices. 

We regard the wave map equation as an equation given through covariant 
derivatives. These arise as follows: 

s : R x W1 -> M 

where M is an arbitrary Riemannian manifold and 

ds :r(MxRn) -+TM 

where T(R x W1) = (R x Rn) x (ReRn). 
Let 5*V be the pullback of the Levi-Civita connection on M to s*TM via 
the map 5. Then, in coordinate free notation, the wave map equation is 

Since the Levi-Civita connection on M is torsion free, 

*Y7   ^s  —   *V7   ^s 

3dxk dxi ' 
for j = 0,1,...., n, k = 1,..., n where we have set t = x0. 

We assume the map s is topologically trivial which is usually implied by 
the later curvature bounds. (The wave map fixes spatial infinity so topologi- 
cally, s : RnU{oo} -► M). Hence, s*TM is the trivial bundle (R1 xRn)xRm. 
We also have control on the curvature of s* V via the equation 

Our first theorem asserts that under smallness assumptions on 5 G 
L™ Wx 'n , there is a unique choice of coordinates for s*TM. Given a smooth 
map s with sufficient decay in asymptotics (to a point) at infinity, the initial 
coordinates can be found by a partition of unity. The theorem we need is 
stated in a more general framework, as we hope to find applications for this 
theorem in gauge theory. 

Theorem 1.1. Let d + A be a smooth connection with compact structure 
groups G over R x Rn or / x Rn. Assume A ~ 0 at spatial infinity and let 
FA = dA + [A, A] be the space-time curvature. Then there exists a positive 
constant e = e(n, G) such that if the mixed space-time Lebesgue norm 

ll^||roor»/2   <€, 
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then, there exits a unique smooth gauge change g, g ~ I at spatial infinity, 
such that if A = gAg~l - dgg~l we have, 

(1) ||i||LriVw2<c(n,G)||FA||LooLa„/2 

(2) E^iA^ = 0 

Proof. The method of proof follows the method used by the third author 
in [26]. We omit the dependence of constants on G in the following proof. 
First, we fix each time slice t = to. The methods of [26] show that in every 
ball i?jv = {x :\x\ < N} there exists a gauge change gw such that the spatial 
part of the connection AN = gnAg^  — dgw g^  satisfies 

II^H^1^2^)   ^   ^ 11^11^^/2^). 

By taking N -* oo, gN^9, A^ -> A, and we obtain a solution 

A = gAg-1-dgg-\        E ^ = 0 

.7=1 

on each time slice (t, W1) which satisfies on all W, 

\\A\\tM,n/2 < c(n)\\FA\\t^ . 

Since A is asymptotic to 0 at infinity, dg is as well, and we may choose g ~ I 
at spatial infinity as well. Let g = exp(^). We fix a time slice and then 
differentiate in t. Namely, if 

Y^ ]^exp(u)Ajexp(-u) - -^jexp(u)exp(-u) = 0 

is the equation at the time slice to, the derivative at t = to is 

L^u = Au + d * [u, A] = Au + [du, A], 

Here we use the fact that TT-^AJ = 0 at t = to- Examine the properties of 
oxJ   J 

this linear map -which is the derivative- 

LA : L2'n/2 -> Ln/2,        LA = A + lower order terms. 
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We have 

||[d«,i]||L„/2    <   2||dn||L»||i||Ln 
< c(n)||M||^2,„/2||il||virl,n/a 

< c(n)e||?i||^2,n/2. 

Choose e so that c(n) e < 1/2; we have that the lower order term is small 

dt- 
enough for L^ to be invertible. The precise estimate is for u = —g 1 where 

Note that an estimate on -gj? is available by the general methods we have 
been using. 

To obtain an estimate on the time component AQ = QAQQ'
1
 - —g~l, 

note that 
dA 

dA^ - — + [A, J4O] = (i?A)(space,time)- 

Since d * A = 0, we have 

Let ftj = A"1/2^-. Then 

||4)|lwri,»/2     =    HA^ioH^/a 
n n 

< II Yl & A' ML"/* + II XI A*i(-FA)i,ollL»/2 
3=1 3=1 

< c(n)(||i||^||lo||Ln + ||^llL^) 
< c(n)(e\\Ao\\Ln + \\FA\\Ln/2). 

Again, under the assumption c(n) e < 1/2, we have 

\\A0\\Wl,n/2 < 2c(n) ||FA||Ln/2 

as claimed. □ 

Corollary 1.2.  Theorem (1.1) remains true if A G ZrfWi'n/2 and i^ E 
roo rn/2 
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Proof. Approximate A by smooth connections Aa -* A in W1^2. For each 
a, construct ga as in the theorem and Aa = Qa^aQa1 - ^affa1 a space- 
time connection 1-form which satisfies the estimates.  We have denoted by 

d= (^-,d) the full derivative. Then, 
(Jo 

\\dga\\Ln   =   WdgaQa1^ 

< WAaUn+WgaAag^WL* 
< \\Aa\\Ln+\\Aa\\Ln. 

Hence ||d^||Ln is bounded on each time-slice. To complete the estimate note 
that 

(7r^")a   —    {Aa)jga — ga[Aa)j 

dig-j)*    =   d(Aa)jga-gad(Aa)j + {Aa)jdga- dg^A^j. 

Then again, on each time slice 

\\dga\\w^/2 < HiaH^i.n^ + IIAalltvi.n/2 + (ll^ll^n + II^IU") IMffalU" 

is also bounded. 
In each time slice, we have subsequences which converge to weak limits 

Qa' -^ 9 m W2>n/2. However, the weak limit is unique. Suppose not. Then, 

9af -* 9, 9a" -^ hg; 

A = gAg~l - dg g~l and A = hAh'1 - dhhT1. 

Both A and A satisfy the time-slice estimate 

as well as 

3=1 J=l 

But dh = hA—Ah and Ah = (dhA) — (Adh). If we let kn be the appropriate 
Sobolev constant, 

\\dh\\Ln       <       C(n) \\Ah\\Ln/2 

< c(n)kn\\dh\\Ln(\\A\\Ln + \\A\\Ln) 

< c(n)kne\\dh\\Ln. 
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If 2 c(n) kn e < 1 we have that dh = 0. Since h ~ I at infinity, h = I. Thus 
the weak limit is unique. Hence, g is unique and 

dga-^dg   'mW^n/2,        Aa^A   in Wl>n/2 

and 

as claimed. □ 

Corollary 1.3. Let s : E1 x W1 —> M be an arbitrary map. Suppose the 
curvature R(M) is bounded by K. There exists 0 < 8 = J(n, if) such that 
if s : Mn U {oo} —> N is topologically trivial, and 

then there exists a unique frame in s*TM such that the hypotheses of (1.1) 
- the main gauge-fixing theorem- are satisfied. 

Proof. Since 

on time slices we have the estimate 

\\Fs^\\L^<K\\ds\\ln. 

The desired conclusion follows by choosing S > 0 such that Kd < e where 
0 < e = e(n, M) is as in Theorem (1.1). □ 

Next we give a coordinate invariant description of the wave equations. 
Let 

D = s*V = d + a, 

where the curvature of d is 

FA = (Ros)(ds, ds). 

The term (R o 5) is not explicit unless one is working on a Lie group or 
symmetric space. 

Let b = ds. Then the equations themselves are written 

n 

Dobo-Y^D3bJ = ()- 
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Because the Levi-Civita connection on M has no torsion, we find 

Dkbj^Djbk,    fc = 0,l,...,.n, j = l,2,...,n. 

This is a non-linear first order hyperbolic system. It may be that the correct 
method is to analyze this directly. In keeping with the present standard 
methods, we convert it to a single equation using Hodge theory (see also [3]). 
In what follows we will denote by d the exterior differentiation operator and 
by d* = div(spaceitime) its dual, the space-time divergence operator computed 
using the Lorentz metric. 

Theorem 1.4. Let b = dcf) + d*^. Tien the wave map equations can be 
rewritten as 

(a) n^+(a,6)=0 

(b) n^ + aA6 = 0 

(c) b = dcf) + d*ip 

(d) da + [a,a} = R(x)[b,b] 

<«)'    £ £<*-"• 
Here R(x) is the Riemannian curvature of M evaluated at s(x). 
The initial data on (/> and I/J can be taken to be 

0(0, re) =0, il>(Q,x)=0 

^(o^H&oM ^(o^^o,*) 

Proof. Let b = Oq with q(0, x) = |f (0, a;) = 0 where □. = dd* + d* d. 
Let 

and 

Hence 
\2(j) = d * b     and     D^ = d Ab 
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So, b = d(f) + div^space^ime^. Note dip = 0 automatically. 
The initial data clearly consists of </>(0, x) = 0, ^(0, x) = 0. Hence, 

Likewise, 

n 

Note also that 

The last equation (d) of (1.4) is not determined by the rest of the data 
since the curvature depends on the original map (and gauge change). No 
general formula is available. This would not preclude a priori estimates. 
However, the estimates for our global existence and uniqueness theorem for 
wave maps are done in Besov spaces (which here prove inferior to the Lorentz 
spaces). The equation 

da + [a, a] = R(x)\b, b] 

however behaves 'badly' (for bounded R{x)) in this context. Hence we must 
restrict the manifold M to a group or a Riemannian symmetric space. 

Theorem 1.5. If M = G or M = H/G where G is a compact Lie group, 
then the equation (d) in Theorem (1.4) can be replaced by the equation 

(d)'     da + [a, a] + [6, b] = 0. 

Moreover, the original map s : M1 x Rn -> G (or H/G ) can easily be 
reconstructed from the fact that d + a + b and d+a — b are flat connections. 
Let 

(d + a + b)g+ = 0 and (d + a - b)g~ = 0. 

The original map is g = g+ • g~. 

Proof. The computations for a Lie group are straightforward if we remember 
that T*G = 0, the Lie algebra of G, that [•,•] generates curvature, and 
that the structure group is a specialization of the orthogonal group.   The 
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symmetric space case is best understood by regarding M as an Ad orbit in 
the possibly non-compact group H. That is, 

M = AdH{%) 

and G is the (compact) isotropy subgroup of I. For B771, if is the 
Lorentz group 0(1, ra) and G is the Euclidean group 0(m). Choose 
I = diag(l, -1,-1,..., -1). Then by construction b will always lie in the 
off-diagonal vectors 

bj = 
—Vj 

0   .. .    0 
0   .. .    0 
0   .. .    0 

and the compact structure group 0(m) is represented on the diagonal. The 
construction cannot work for non-compact Lie groups H such as 0(1, ra) 
since the do not have bi-invariant Riemannian metrics. □ 

Corollary 1.6. Suppose M = G or M = H/G. Then a subset of the 
gauged wave map equations (a)-(e) (GWM) has a structure of a non-linear 
wave system of integral differential operators. 

(a) 

(b) 

(c) 

(d) 

□0 + (a, b) = 0 

Dtp + a A b = 0 

b = d<f) + d*ip 

d 8 
AaJ + 12^ak' aA + ^k [^' 6J] = 0> i = o,i,. n. 

k=l 

Proof. The wave equation structure of the system in (f> ad tp is clear, and b 
is a (linear) first order derivative of 0 and ^ (note that the initial data for 
<j) and ip have been worked out as coupled to that of b.) 

0(0, a?) = 'tp(0,x) =0 

d<l>, 
dt 

(0,x) =&o(0,a;) 

dipjfi 

dt 
dipj,k 

dt 

To obtain the last equation, note that 

(0,ar) = bj(0,x) 

(0, x) = 0. 

dxk ■' 
_d_ 

dxi 
r-at + [aj,ak] + [bj,bk} = 0 
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for k = 1,2,...,n, j = 0,1,...,n and ^ = gj. Since ELi af^aA: = 
0 , we obtain our new equation by taking the divergence. We call this 
system the modified wave map (MWM). By indirect arguments, it is clear 
that if (0, V*, 6, a) have initial data which satisfy appropriate constraints, the 
evolution, at least in the smooth case, will actually be data coming from a 
wave map. The direct argument is not available to us however. 

2. Definitions and Product Estimates. 

In this section we set out definitions, notations and basic estimates that will 
be used throughout the paper. We shall frequently use the notation A < B 
to mean A < const. B for some positive constant const, which is allowed to 
vary from line to line but does not depend on any of the relevant parameters 
in the estimates. 

We begin reviewing some Littlewood-Paley theory. Let </>(£, x) be a func- 
tion on M x Mn, we define the spatial Fourier transform (/>(£,£) by 

e-2lvix<(t){t,x)dx 

We define now the usual Littlewood-Paley projection operators P^ and 
Qh- To that effect, let ra(£) be a non-negative radial bump function sup- 
ported on the ball |£| < 2 and equal to 1 on the ball |£| < 1. Then for each 
integer A; we define Pk{4) the projection onto the frequency ball |£| < 2k by 

S(5)(0:=m(2-W(*,0- 
Note that P^ -> 0 in L2 as k -> — oo while P^ -> / in L2 as k —> oo. 

The operator Q^ is the projection onto the frequency annulus |£| ~ 2k given 
by the formula, 

Qk -'= Pk - Pk-i- 

We note that if we let ^(£) := m(^) — m(2^), then ij) is supported on the 
annulus 1/2 < [£[ < 2, for all ^ ^ 0,    Y,kez ^(2~kZ) = h and 

S(?)(t,0=^(2"*0^(*i0- 

The Littlewood-Paley projections are bounded operators in all the Lebesgue 
spaces and commute with any constant coefficient differential operator. Fi- 
nally we note that Qk is given by a convolution kernel whose Lp-norm equals 
2(kn)(i-i/p) £or aii i < p < oo. in particular its Ll- norm is identically 1 for 
all k e Z.      . 
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Let j = 0 or j = 1 and let k E Z. Following [22] and also [11], we 

introduce ^^"(M x Rn), the Strichartz space at frequency 2k to be the 
space of functions whose space-time norm is given by: 

Hftll^, := sup 2k^-i\mytLr + 2-fc||at$||L?Lj), 
k q,reA 

1 71 — 1 77/ — 1 
where A := {(a,r)   :   2 < a, r   < oo, - H — < —-— } is the set of LV^'   / - q 2r     ~~      4 
admissible Strichartz exponents. We remark that when j = 0 the spaces 
above are ifn/2- normalized and correspond to Tao's spaces Sk in [22]. We 
also note that for each n > 4, only specific values of (g, r) are needed. Finally 

observe that control of the S^' norm gives, for example, the estimates: 

(2.1) 

WQkiM    2i»=ii+2-fc||^Qfc(^)||    2^ < 2k{j+^)-il^1) WQkim (_,-) 
T2T   (n-3) T2T   (n-3) ^k 

■L't ^x ■Ljt    x 

(2.2) WQkiMLFLl +(Z-k\\dtQkmL?Ll < 2^-t) HQib^ll^-i, 

(2.3) \\QkmL>L~ + 2-*||aQ*(fl||L?L~  < 2^'-^ ||Qib(^)||, r(-i) 

Finally we state the Strichartz estimates in this framework (c.f. [22] [6] and 
references therein ). 

Theorem 2.4 (Strichartz Estimates). Let k be an integer and let $ be 
any function on Mx W1 with spatial Fourier support on the annulus |£| ~ 2k. 
Then 

ms(-j) < ll^(o,Oll^-i + IIWO^II^-O-K) +2*(*-w+i)) ||n$||LlLi. 
iJr JIj; fix t       X 

Definition 2.5. Let S^ ^ be the space of functions on Mx Mn whose norm 
is given by 

l5(-i):=(Ell«*WII^))1/2- 
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Definition 2.6. A pair (q, r) is said to be sharp admissible if 2 < g, r < oo 
and 

1     n-1 _ n—1 
g+    2r     =      4    " 

Remark. Ifn>4 and (q,r) is sharp admissible then s = 1/q + n/r — l > 0. 
Also, in particular, q > 2 and 2 < r <   ^~3'. 

Lemma 2.7. For any j > 0 we have that 

sup        2k^-»\\Qk(f)\\LiLrx 
(q,r)—admissible 

sup 2fc^+^^||QA;(/)||ifLs. 
(q^r)—sharp admissible 

In other words, 

s(-i)=    E    I SUP 2*(« + ''i)(IIQ*(/)llLfi;S + 
VitGZ       (q,r)—sharp admissible 

+2-k\\dtQk(f)\\LtLr)\2)2. 

Proof. Let (g, r) be admissible but not sharp admissible and define ro such 
that (<7,ro) is sharp admissible. Then it is clear that ro < r. Let s > 0 be 
such that 

I - _I_2 
r      ro      n' 

By the Sobolev embedding we then have 

\mmL<Lr<^\mmLUio. 

Note that when r = oo, W>,'ro <-> 5MO but ||Qjt(/)||io0 ~ 
IIQA;(/)||BAfO- Hence on each Littlewood-Paley piece the Sobolev embedding 
above holds. 

Then, 

2k{^-j)\mmLiLr < 2k{<+^-j)\mmLjLlo 

<       2k{^-J)\\Qk(f)\\LqtLr0 
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and similarly for 2~k\\dtQk(f)\\LqLr from where the conclusion follows.     □ 

In what follows we will denote by IV]-1 := VA-1 be the pseudodifferen- 
tial operator defined by 

|vp/(*,0 = ^|/(*,0- 

Definition 2.8.  We denote by Bv be the Banach space of functions on M x 
W1 whose norm is given by 

kez 

I/P 

for 1 < p < oo and suitable modified with the i^-norm when p = oo 

Remark.   Note that it follows naturally from the embeddings tp C lq that 
Bp C Bq for I < p < q < oo. 

We proceed to prove the Mam Multiplication Estimate. The point of it 
is that it implies in particular the three multiplication estimates that will 
be needed later and more. It thus gives a unified framework under which to 
understand the action of the 'inverse gradient' \V\~l on the space S^~1^ x 
S(~l\ For solutions of the homogeneous wave equation, Klainerman and 
Tataru [13] obtained the first bilinear estimates of this type on an improved 
range; those can be viewed as generalizations of the well-known Strichartz- 
Pecher inequalities. 

We first need some definitions. In what follows, for any a G K, we will 
denote by a~ and a+ the real number a — 1/100 and a + 1/100 respectively. 
The constant 1/100 is of course arbitrary; any (fixed) small positive number 
will do. 

Definition 2.9. Let us denote byC, V, £, Q the following sets of pairs (q,p) 
where q,p>l. 

C=:{(9,p)G A:- + -<!-} 
q      p 

^      r/     N     1      n — 1      ,n — 1.   , 
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£ =: {{QiP) :- = — + —;- = — + — with {quPi) E A and (92,^2) G C} 
■   Q      Qi      Q2   P     Pi     P2 

where A is as above, the set of all (wave) admissible pairs. Finally, let 

g=:vns gt=:Vtn£ 

Remark. Note that since A C V, A C T>t, and A C £ we obviously have 
that A C G and A C Qt- We will refer to the pairs in Q as the set of 'good 
pairs for frequency localized wave products \ 

Definition 2.10. Let 0+ ' be the space of functions on RxRn whose norm 
is given by 

where 

mSA-» ■•= ^p 2fc^+F-i)||$iiL?Lp + sup 2k^+r-ih-k\\dtnLm 
5k+        (Q,P)eg * (q,P)egt 

Lemma 2.11. We have the following embeddings 

4-1)     ^     <?(-!) 

Sir1'   ^   B1 
1      n 

S{~1)   M.   X?B|2 for all q>2,p> 2 and s = - + "-! 

Proof. This is an easy consequence of the definition of G, Lemma (2.7), the 
embeddings P C lq for p < q and the fact that 

kez 

1/2 

We should also note that (g,p) G £ for any q,p>2. □ 

Proposition 2.12 (Main Multiplication Estimate). 

|Vl"1 : S^1) x SW —»• St1) 
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Proof. We consider the first supremum term in the SjjT -norm; i.e. we need 
to show : 

£   sup  2^WP-I)||Q,(|^^ 

ieZ W»P)€0 

Let / and g be in S^1) and let fk = Qk{f) and gj = Qj(g) be their 
corresponding Littlewood-Paley projections. We write 

fc,jez 

kJeZ:k>j kJeZ:k<j 

By symmetry of the sums, it is enough to consider only one of them. The 
proof for the other is identical after exchanging k and j 

Since supp (fk • gk-m) Q {£ : 1^1 < 2^} we have th^Qi{fk • gk-m) = 0 

unless k > I. On the other hand, we have that supp (fk • gk-m)^{^ - |£| << 
2/c~m} = 0 if m > 5 Hence, Qi{fk ■ ^jb-m) = 0 unless / = A; and m > 5 or 
m < 5 and / < &. 

Define Qk(f) = Y2k-5<j<k+5 Qjif)- ^y ^e above argument we conclude 
that it is enough to prove each of the following two estimates : 

E   ^p      2W/P-D £ HQKIVI"1^ • Qfe(3)))llLfLj < 
iez (9*)ex> fc>J 

(2-12)(i) <ll/lls(-oyis(-«- 

E   SUP   2-^^P-^\Ql(Y/fr9i-m)\\m< 

(2.12)(ii) <ll/ll5(-i)ll5ll5(-i) 

since ^ = V fl £:. 
• We consider (2.12)(i). 

For each (q7p) G V let 5 = 1/g + n/p - 1 
First note that 

E sup E^Kivr1^-^)))!^-^ 
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<££ SUP *ia-1HQi((fk-Qkm\LiIi 
kez Kk (^Piev 

Since (q,p) G V we have that 

1      n — 1      ,71 - 1. 
 1 <( )~. 
2q        ip    - K    4    ; 

By the same argument used in the proof of Lemma (2.7) it is enough to 
take the supremum over all (qf,p) G V such that A + ^^ = C21^)-. We 

denote this set by 2?*. 
Since p<oo, letl<p<oo such that 

111 1 
p     p     p     50(n — 1)' 

Then we have that 

n — 1      n — 1      n — 1        1 
Ap    <    4p    "^    4p    + 200' 

Let r > 1 be such that 
-,      1      1      1 

p      r     p 

By Young's inequality and Holder's inequality we then have that 

<^^    sup    2'(-1)2^1-1/0||/fe|| ||Qfc(5)||       2p. 

But by our choice of p we have that if {q^p) G X># then (2g, 2p) is still in 
^4 the set of admissible pairs. Moreover, 

n-1      _   1      n—1       1      n-1       1      n —1        1        n-1 
^    4    ^    ~ 2^+    4p    - 2^+    4p    " 2^+    4p    + 200 <     4 

Hence, up to a constant, we can bound the last sum by 

<2^     sup    2-^?+F-2)||/fc||s(_1)||Qfe(5)||5(_1). 
k€Z j>0 (Q>P)£V# 

Jk 
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Since n > 4 and (q,p) eV^, we have that 2 < 2p < 6 and hence, 

I + n>i + ?   =   2(!Lzl)-_2(!L^)+^. 
q     p        q     P 4 4p 2p 

^.n - 1.        n + 1 

.n - 1.        n+ 1 
> 2(—>   +-6- 

> 2(i)- + |>2+- 

Thus, we can sum in j > 0 above; and the desired estimate follows by 
Cauchy-Schwartz in the sum over k. 

• We consider (2.12)(ii). 
We proceed as follows, 

£   sup    2-I2'(V*WP-i)||QI(.2/ra.m)||LfLg 

ieZ W'P)^ m>5 

iGZ m>5 (9,P)e5 

;$EE SUP iKl/*+n/p-2)\\f^ 
lei m>5 W'^ 

by Holder's inequality with J = ^ + ^, J = ^ + ^ and (gi,pi) E ^4, 
(^25P2) G C C A Recall also that ||Q/||i = 1. 

By the Strichartz inequalities we then have that the sum above is 
bounded by 

Y y    sup   2'(1/«+n/p-2)2l(2-l/«-n/P-)2-m(l-l/W-n/M)||/j|| ||^_m||        , 

.      t l — m 
m>5 ZGZ 

from where the desired estimates follows by doing first Cauchy Schwartz in 
the sum over / G Z and finally summing over m > 5. 

To obtain the desired estimate for the second supremum in the definition 
of the S+ -norm we need to show a companion estimates to (2.12) (i) and 
(2.12) (ii). 

The high-low estimate for a time derivative is treated in a similar manner 
to (2.12)(ii).   Indeed, the time derivative first introduces a closs' of 2l and 
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then one recoups 2* (or even 2/_m) from the estimate for \\dtfi\\L<iiLPi. We 
omit the details for that part and we concentrate instead on the high-high 
interaction. To this end, we will show that 

i k>i(g,p)eDf k k 

where uf = Uq,p) : g > 2, i + ^- = 2=1-J.   We note that the case, 

when the time derivative falls on QkQ is symmetric. By applying the same 
estimates as in (2.12) (i), one obtains that the sum is bounded by 

Y,Y1     SUP     2^V^^-3)2^22^(l-l/2^n/2p)||/||^(_i)||5||^_i)j 

i   Kkmenf k k 

since by definition ||^M|L2^2p < 2
A:
2^

1
-

1
/^-V2P)||/||^(_1). Therefore? We 

need to bound 
'^ 

I    l<k(q,p)eDt k k 

which amounts to verifying 1/q + n/p > 3+, which is somewhat stronger 
than what was needed in (2.12)(i). We have 

1      n      1      n     ^ / 1       n-l\      n + 1      n — 1      n + 1       1 
q     p      q     p \2q        4p   )        2p 2 2p        50 

The restriction q > 2 in the definition of Df implies p < (n - l)(n — 2) and 
thus 

1      n      n-1      (n + l)(n-2)       1 
q     p 2 2(n-l) 50 

for n > 4. We note that one can do a slightly larger domain of admissi- 
ble pairs in the time derivative estimates, but Df will suffice to close the 
estimates later on. 

Remark. J4S a consequence of Theorem (2.12) we have that any element 

in S+ ' belongs to both Bi C LlL™ and L^B^ ~ • This will imply, in 
particular, that the connection 1-form a - whose existence, uniqueness and 
regularity is established in section 3- belongs to Bi C LJL^ and L^B^^ • 
This is the crucial fact needed to obtain the apriori bounds on the non- 
linearity (c.f.  Theorem 2.13 below). 
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Remark. Although the above embeddings will suffice for our purposes in the 
present paper; it is interesting to note that in fact, \V\~l maps S(~l> x tV1) 
into a slightly larger class of Besov spaces.   Namely into L^B-^ for any 

1     n      n 
q>2,s = l/q + n/p — 1 and p > p; where p < 2 is such that - H— = — +1. 

q     p      2 

Theorem 2.13. Let a G S^ and b G S*"1) then 

(^22fc(w/2-1)||Qfc(a-6)||JtlL5)
1/2 < Nl^ll&ll^) 

kei x + 

Proof We start as usual by performing a Littlewood-Paley decomposition of 
a and b. We obtain 

£22*W2-l)||Qfc(a.6)||2^ 

kez 
< ^22^/2-1),! J- Qk{Qk{a) . Qk_m(b))\\lL 

k€l m>5 

+ ^22fc(n/2-i)|| J- Qk{Qk_m{a).Qk{b))\\l 
keZ m>5 

+E2^(n/2"1)iiEo*W'(a).-oi(6))iiiiLS 

LlLl 

Now since a and b belong to different spaces we lose the 'symmetry' and 
need to consider all three cases separately. 

• We consider the first of the three sums above. 

E E 2fe(n/2-1)IIQfe(Qfe(a) • Qk-mm\Lii4 
keZm>5 

m>5 keZ 

< J- 2-/2E2^2-1/2)||g,(a)||L?I|||6fc_m||J 
m>5 A:GZ 

since the pair (2, oo) is admissible.  Note that the pair (2,2) G G, whence 
\\Qk(a)\\L2Li < 2^1/2-n/2)||gfc(a)||^_i) _since 1/2 + n/2 - i = n/2 - 1/2- . 

Finally do Cauchy- Schwartz and the desired estimate follows after summing 
over m > 5 last. 
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• We consider next the second sum. 

£ 22*(n/2-i)H J2 Qk(Qk(b) ■ Qk_m(aMllLl 
keZ rn>5 

<Yl#«n/2-1)\\Qkml?Ii{Y, IIG*-m(a)llL}L?)2 

keZ m>5 

< 

Finally, we consider the third sum. 

EE
2

*
(B/2

"
1,

II«*(^(
6
) ■ ^WJIILILS 

<^^2fe(n/2-l)||QK6)||i?oLi||QKa)||ijLso 

I6Z Z 

from where by Cauchy-Schwartz we obtain the desired estimate invoking 
once again the fact that a G #2- d 

3. Existence, uniqueness and regularity of the connection 
1-form in S^~lK 

Proposition 3.1. Let b 6 S^1^ have sufficiently small norm; then the map 

^(w)=:\V\'1[wJw] + \V\-%b] 

has a unique fixed point a = $(a) E S^-1).   Moreover, the fixed point a 
belongs to LJL^ fl Bp2 for any p>2 and n/p — 1 < s < n/p — 1/2 . 

Proof. Let b G S^  1^ such that H&H^c-i) = e < -—— where ci > 0 is the 

constant from (2.12) such that HM-^a,/?]!!  (-D < ci||a|||5(-i)||/3||5(-i 
+ 

Let 0 < r < e and let B = jBr(0) be the ball in <?(  1) centered at 0 and 
radius r. Then 
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(1) $ : Br(0) -)■ £,-(0) 

(2) ||$(wi) - $(w2)|ls(-i) < IK - t^Hsc-D 

To check (1) let w G Br{0) then 

ll*MI5(-i) < cillwll^-D +c1||6|||(_1) < r 

To check (2) let 101,102 G Br(0) then 

H^W-^MH^-D    <   ci||tui-W2||5(-i)max{||t0i||5(-i)} 
1=1,2 

-  Too"^ ~ ^H^-1) < \\Wl ~ ™2lU(-i) 

Thus $ is a contraction and hence there exists a unique fixed point 
a = $(a) e S^-V such that 

a=|Vr1[a,a] + |V|-1[6,6] 
By Lemma 2.12,  IVI-1^, •] 6 Ljl™ n J5|>2 for any p > 2 and 5 = 1/g + 

n/p — 1 with q > 2 . Hence so does a. O 

4. The Modified Wave Map System. 

In this section we prove that the Cauchy problem for the MWM system 
derived in Section 2 has a unique global solution in L00(]R;ii^/ ) provided 

the initial data has sufficiently small Hx     x Hx   ~   norm. 
Let us denote by B(a,b) the quadratic form equal to any finite linear 

combination of functions a G SljT    and b G c^-1) of the form ^2K£CK£aKb^ 

where aK G <S+~1), h G S^1) and c^ G C. 
According to our reductions in the previous section, we consider the 

system of coupled wave equations in if1"*"1, n > 4. 

Q;   =   B(a,b) 

(4.1) v(x:0)    =   /(*) 

^(a;,0)    =■   ^(rr) 

Lemma 4.2. Let a G ^"^ and b G S^1). Tiien tie solution to the MWM 
system (4.1) with initial data (f,g) G H71/2 x H71/2'1 satisfies 

IMU  ^  ll/llffn/2  + llslljyn/2-1   + 11^11^-1) WHs^) 
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Proof. Let us denote by v^ = Qk(v). By the Strichartz estimates, we have 
that 

IHk < IIAIIji-/. + \\9k\\6n/*-i +2kW2-V\\B(a,b)\\LlLl 

from where by Theorem ( 2.13) we have that 

Ms =  (E\Ml) 2   \l/2 

kez 

1/2 

< ii/iiH»/=» + yiH»/a-i + iHi5(-i)ii6iU(-i) 

as desired. □ 

Theorem 4.3 (Existence). There exists e > 0 sucii that whenever the 
initial data \\(fig)\\ffn/2XHn/2-i < £, the system (4.1) has a unique global 
solution v € S. 

In particular, the solution v belongs both to 

• L~(R;i^/2) H L2(M;Blni2)        and 

Moreover, there is stability; i.e. 

eSS SUp 11^  - V2||£n/2   <   \\(fu9l) - (/2,^)j|^n/2x^n/2-l 

provided the r.h.s. is small enough. 

Proof. The proof proceeds by Picard's iteration relying on the a priori esti- 
mates as well as the necessary smallness of the data. 

Suppose \\(f^g)\\^n/2XHn/2-i = 8 and let VQ be the solution to 

0^ = 0;        t;o(0,-)=/    dtvo{Or) = g. 

By the Strichartz estimates 

\\V0\\S  < Cl\\(f,g)\\An/2xHn/2-l   = ctf. 
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Now, VQ = (^OJ^O) produces 60 = dtpo + div(sp.t)ipQ with ||&o||5<-i) < 

C2||vo||5 < C3S. 
Next, the multiplication estimates allow one to perform a fixed point 

argument to produce ao from 60 by solving 

ao = |Vr1[ao,ao] + |Vr1[6o?6o]. 

Moreover, ||oo||5(-i) < C4||6o||^(-i) < c5S
2 

Let vi be the solution of 

Dvi = 5(ao, 60)        vi(0, •) = /    ^(O, •) = g. 

By the a priori estimate, 

||«i||5 < co{5+ ||ao||5(-i)||&o||5(-i)) < 2co(5 

provided 8 is small enough. 

We proceed next by induction to show that for any j > 0, \\bj\\s < 2c2C0S, 
\Wj\\s < csJ2 and thus HUJ+IUS < 2co8 provided 8 > 0 is small enough (indep. 
of j), where Vj+i is the solution to 

Dvj+i - B(aj, 6,-)        vj+i(0, •) = /    ^Uj+i(0, •) = g. 

Note that once again by the a priori estimates 

hj+i\\s < co(||(/,ff)||^/2xijn/2-i + IKIIs(-i)IIM<s(-i))- 

Lastly, for the differences, 

0(VJ+2 - Vj+i)    = B(aj+i,bj+i) - B(aj,bj) 

= B(aj+i - aj, bj+i) + B(aj, bj+i - bj) 

VJ+1(0,-)    = 0 

dtvj+1(0,-)   = 0. 

On the other hand note that since 

aj+i - aj   =   |Vl^oj+i - oj, aj+1] + iVr1^-, oj+i - OJ] 

+ \V\-1[bj+i - bj,bj+1] + IvrH^^i+i - bj] 

\\bj+l - bj\\s(-l)  < C2\\VJ+1 - Vj\\s 
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and 

llaj+ill<s(-i)» II^IUC-D > ll^+ilUc-1) > ll^'ll^-1) < c^> 

we have that 

IK'+i -ajllc(-i) 

< cHaj+iH^c-Dllaj+i - a^ll^-i) + IK'lU-iillaj+i - OjH^C-D 

+ Il&j+ill5(-i)ll6i+i - bj\\s(-» + ll^ll^-^ll^+i ~ ^llsc-1) 
< c5\\aj+i - aj\\S(-i) + c8\\bj+i - 6j||5(-i). 

Hence, 

llaj+i "" aill5<-i) < ^ll&i+i - bjWsi-D < c5\\vj+1 - ^||5. 

All in all we then have that 

\\vj+2 - Vj+l\\s 

< c(\\aj+i - aill5(-i)||6j+i|l5(-i) + ||ai+ill5(-i)ll6j+i - bj\\s(-v) 

<c82\\vj+1-vj\\s 

Finally, by choosing 6 small enough we have that 

\\vj+2 - Vj+i\\s < -\\Vj+l - VjWs- 

Hence Vj is Cauchy in <S, thus establishing existence and uniqueness. For 
the stability result one proceeds in the same fashion as in the proof of being 
Cauchy; thus concluding the proof of the theorem. □ 

The theorem above gives uniqueness solely in S which is not enough to 
claim the solution to the MWM system came from a wave map. Thus we 
proceed next to prove a stronger uniqueness result which will indeed suffice 
in section 5 to return to the wave map. 

Theorem 4.4 (Uniqueness), Suppose (vi, ai) and (v2 , ^2) are two solu- 
tions to 

av + B(a,dv) = 0 

Aa + divB(a, a) + divB(dv, dv) = 0 
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such that dvj = bj, for j = 1,2 are small in L^L™. Suppose that dvj = bj G 
L%Lln for j = 1,2.   Assume in addition that ai = ai(vi) E LjL^.   Then 
Vi   = V2. 

Remark The smallness of dvj in Lf^L™ is the necessary condition to solve 
the 'gauged' equation. Indeed this condition corresponds to the smallness of 
the Lf^L™ of ds which is the necessary condition in Corollary 1.3 guaran- 
teeing the existence of a 'good gauge7. Also note that it is not necessary for 
^2 — ^2(^2) to be in L^L^. 

Proof. The proof follows the scheme devised by Shatah-Struwe to establish 
uniqueness [16], [15]. Let us denote 

8w = V\ — V2 

5a = ai — a2 

8b   =   dvi - dv2 , 

and so on. Then, 

DSw = B{au5b) + B(8a,b2) 

( —8w , Ddw )dx — - -JTE
2
 ,      where I 

E2 = J\d(5w)\2 + \?^\2dx = j\8b\2dx. 

Then, 

\ JtE
2 < IMkL-i^) + E(t)\\Sa\\    A\\b\\tMn. 

i-^x t,L 

Integrating over t we then obtain that 

E2{t)    <    maxE2(T)  [   ||oi||t>LSo dt rSt Jo 
(4.5) '+ max^(r) \\Sa\\ -^{M^    L2n , 

T<t r2 rn-l"    M^(0,t)^     ' 
- (0,t)1Jx 

where L?0 ^ means the L2 norm on the time interval (0, t). Now, 

Ada + divB(5a,ai 4-a2) + divB(Sb, 61,62) = 0 

Hence, 

\\Sa\\(t,W^2n/n+l)     -     II^II^L^71-1)^01!!^^) + lla2|l(t,LS)) 

(4-6) +llW(jLj)(l|6ill(t>L2») + l|62ll(t>L2»))- 
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On the other hand, ||aj||^i,n/2 < ||ttj|||n + ||&j|lx,n and ||&j|||n is small for 
each t.   Moreover, by Sobolev embedding ||aj||£,* < ^(nJllajll^yi.n^; hence 
(for example by a fixed point argument in Ln similar to Lemma 3.1 ) we 
have that HO/HL

71
 is also small for each fixed t. 

All in all, from (4.6) we have that, 

\\8a\\    j^ < c(n)||5o||    ^ < cWEiftWuW^y*) + INIftL*.))- 

Integrate r < t to get, 

\\6a\\ _2n_ < c(n)maxjB(r)(||6i||L2     L2n + H^IL2     L2
^)- 

Sticking this estimate back in (4.5) we obtain 

E2(t) < max^MdlaiH^^oo + c^dl^H^^n + H^ll^^n)2). 

Since E(0) = 0, we must then have that E(t) = 0. □ 

By differentiating the MWM system (4.1) and observing that the re- 
sulting nonlinearity has the same bilinear structure -for which the main 
multiplication estimates hold- the following regularity result follows. 

Theorem 4.7 (Higher Regularity). Suppose the initial data (f,g) to 
(4.1) is in Hnl2+l x Hnl2 and has sufficiently small Hnl2 x iW2"1 norm. 
Then the solution v to the Cauchy problem (4.1) with initial data (f,g) can 
be continued in Hn/2+l x if71/2 globally in time. Furthermore, we have the 
global bounds 

Proof. Assume for simplicity that the data is infinitely smooth. The con- 
stants in our estimates will depend only on the relevant smoothness assump- 
tions in the theorem. 

Differentiate (4.1) to get 

□w   =   B(da,b)+B(a,db) 

w(x,0)    =   df(x) 

wt(x,0)   =   dg{x), 
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where w = dv (d may signify any of dj).  Recall also that a is a (unique) 
fixed point for $ and therefore its derivative will satisfy 

da - ivp^M + M^Ma] + Ivp^M] + M-%db]. 

Estimating both sides in || • ||5-i, together with the main multiplication 

estimate and || • ||5-i < || • II5-1, yields 

\\da\\s-i < ||aa||5-i||a||5-i + ||a6||5-i||6||5-i. 

Recall from the Picard iteration method, that since \\{f^g)\\fIn/2Xffn/2-i is 
small, we have ||a||5-i and ||&||s-i small as well. By the usual hiding argu- 

ment, one deduces 

thus placing the nonlinearity B(da,b) in the form S+l • S"1 as in Lemma 
4.2. Since b ~ dv, the same holds for the other nonlinearity associated with 
the derivated equation, namely B(a,db). An application of the Strichartz 
estimates and Lemma 4.2 yields 

HI* <  lia/llfl»/. + ||a9||^/2_1 + ||6|||_1||6||5 
^     \\(f,9)\\H»/i+ixH»/*+0(Mf>9)\\2Hn/2XH»/J\\W\\s- 

The result follows, since |M|roo„n/2+i < ||t"||5- D 
■*-/t x 

5. The Return to the Map. 

The well-posedness results on the modified wave map apply to a larger class 
of formal solutions (a, b) to the equation than those which come from wave 
maps. Our method of using the results on the modified wave map equation 
to show existence of wave maps is similar to the idea we used for Schrodinger 
maps [14] and not very different from the technique used by Shatah-Struwe 
[15]. The translation depends on the compactness of M (or certain bounds on 
the isometric Nash embedding of a non-compact M in an Euclidean space). 
The proofs are very simple for the Lie group case because of the natural 
parallel structure; and the compact symmetric space case (e.g. §m) is a 
special case due to the totally geodesic embedding G/K C G. Since we have 
estimates only for this case, we restrict to this case; although the theorems 
below are true in general. 



78 A. Nahmod, A. Stefanov and K. Uhlenbeck 

ds 
Theorem 5.1. Let n > 3. If (s, s"1 —) e Hn/2 x H71/2-1 are sufficiently 

small initial data for a wave map into a compact Lie group G, then there ex- 

ists a gauge transformation g e Hn/2 and a formal derivative -^- E iW2-1, 

sucli that the initial data 

b = ^9{s~lds)g-1 

are small in Hn/2~l. Furthermore, if 

a = -dgg'1 + -g(s-1ds)g-1, 

then a satisfies Y,7}, -^ = 0 and is small in Wn/2>2n/(n+2) c Hn/2-1 

Proof. Note that the pull-back connection in the frame of left pull-back to 

the Lie algrebra is d + -s~lds.  The curvature is -[s-lds, s~lds], which 

will be small in Lnl2 since Hnl2-1 C Ln. We can then apply Theorem (1.1) 
(or actually the first step in a time-slice of the proof) to get a good gauge. 
Since 

3=1 

a standard regularity theorem will give g to be as smooth as 5. Here we use 
heavily the fact that g is bounded. Then b = g(s~1ds)g-1 has components 
which are small in iW2"1. Since a = -dg g-1+g(^^)g-1 has ^^ |2f = 

0 on the time-slice t = 0; a e W^nl2 is small. A standard regularity theorem 
applied to the equation 

n     c) n     f) 
Aai + E Q^fa'«;] + E dZk lbk> bj] = 0 

k=l k-1 

gives aj 6 wW2'2n/("+2) small and bounded by ||6|U„/2-i. 

The time derivative — is chosen so that if 
at 

dg  _!     1 _! _xda 
«o   =   —ZTQ    +-g   s l—g, 

d 
71 f) 

i=i 
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and ao will also be small in pj/™/2>2rc/(rc+2)e This implies ff-1"^- is small in 

fjn/2-1 as claimed. 

The estimates follow from standard composition and multiplication the- 
orems, and elliptic regularity. The needed multiplication theorems are less 
straightforward for the fractional derivatives needed in odd dimensions, but 
are extended to the fractional derivatives by interpolation between integral 
derivatives. □ 

Theorem 5.2. Let (s^-1^) e Hnl2 x H71'2'1 be initial data for a wave 

map into a compact group. If s is sufficiently close to the identity in Hnl2, 
then there exist approximations {sa,va) in C^ x C00 such that 

(sa^-^^s-1^)     in     H^xH^-K 

By C^ we have denoted the space of C00 maps which are the identity 
at infinity. 

Proof. Let 5 G G C R1 x M^, and u = s~~1^ G ©, which is a vector space. 
The standard approximation method is to convolve 

Va(x)= / v(x + 2-ay)v(y)dy=  / v(x + y'^aiy') dy' = Ja(v)(x) 

where <Pa{yf) — 2nQ;(^(2Q:y/) and (p is a smooth bump function with compact 
support such that J ip = 1. Since u = s"1^ is in the Lie algebra, this makes 
sense. The approximation for s is more subtle. Let P : U(G) -+ G be the 
projection operator of a neighborhood of G onto the nearest point in G. We 
define 

sa = F(Ja(s)). 

This is well define in the case that 

\ds\ < r-n-hle i x—y\<r 

for all small r > 0 and e > 0 sufficiently small (depending on the diameter of 
the neighboorhood U(G) ). If 5 G Hn/2 is sufficiently small, this will be true. 
Then, the result that Sa -> s in Hn/2 follows by applying the regularity or 
density result of F. Bethuel of smooth maps between certain manifolds in 
Sobolev spaces ([2]; c.f. in [1]). D 
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Theorem 5.3. Let s : [0,T] x W1 —> G be a wave map in a time interval 

[0,T] such that ds e LfL^ n LJL2^. Assume the initial data is in Hnl2 x 
£p/2-i ai2Cj j^g, suffiCientiy small norm. Then s is a gauge transformation 
of a modified wave map, and s G H71/2 x Hn/2~l remains small in [0, T]. 
Moreover, if the initial data is in Hn/2+1 x H71/2, then s G L^H71^1 and 
|f e L^H11/2 for the time the solution exists. 

Proof. Since solutions of the wave map are local, we can assume without loss 
of generality that its L^L™ norm is small for the time interval of existence 
( a posteriori this will be true anyway ). Make a gauge transformation to a 
modified wave map. The gauged modified wave map lies in the regime of our 
uniqueness theorem (4.4). Therefore, it coincides with the solution we have 
found (the constructed solution satisfies a € LlL™). Hence it is a gauge 
transformation of a solution in S. The regularity theorem (4.7) implies the 
second statement. □ 

We define next S^"1^ as the natural mixed Lebesgue-Sobolev norm space 
c^-1) lies in. More precisely, 

Definition 5.4. Let S^1^ be the space of functions on Ex W1 whose norm 
is given by 

Il0lls(-i) := SUP II<?HIL?V^- 
{(<7,M:<7,P>2 £ + £-!=*} 

Corollary 5.5. Suppose s : [0, T] x W1 -* G is a wave map with ds G 
L^L™ fl L2L2n. Suppose, in addition, the data at any point of time is small 
in Hnl2 x H71/2'1. Then s exists for all time and ds G S^V. 

Proof. The gauge transformation of this map coincides with the MWM we 
have found. Moreover, if ab, G S^"1^, then solution g± of 

dg + ag ± bg = 0 

exist -since the curvature of d+a ±6 is zero, we can apply Theorem 1.1 - and 
a standard regularity argument shows that dg± G S^1^. Then 5 = g+gZl 

has the same property. □ 

Theorem 5.6. If(s, u) G iJn/2+1 x iT1/2 are initial data for a wave map and 

(s^v) G H71/2 x Hn/2~l has small enough norm, then there exists a unique 
global solution with d2s G S^"1^. 
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Proof. Local existence theorems for data in Hn/2+1 x Hn/2 are available 
([8] [12]). By theorem 5.3, the norm of (s-,*-1^) G LfH^/2+1 x LfH^2 

remains bounded. Hence the local existence theorems can be used to extend 
the solution intervals to obtain a unique global solution. 

Theorem 5.7. Let (5, u) £ if71/2 x Hn/2~l be small data for a wave map 
into a compact group or symmetric space. Then there exists a unique global 
solution, which is a gauge transformation of a solution to the modified wave 
equation in S and hence ds G S^K 

Proof. Approximate (s,v) by smooth data (sa,va). Then there exist global 
solutions to the wave map problem with initial data (sa, ua). These are gauge 
transformations of solutions of the modified wave map problem. Choose a 
weak limit. This limit must have a gauge transformation coinciding with one 
of our constructed solutions to the modified wave map problem. But since 
this solution is a weak limit of solutions satisfying da + [a, a] + [6, b] = 0, 
this modified wave map has properties of the complete wave map and can 
be gauged back (using theorem (1.4) since the curvature of d + a±b is zero). 
□ 
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