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Heifer in [6] was the first to produce an example of a spacelike 
Lorentzian geodesic with a continuum of conjugate points. In this 
paper we show the following result: given an interval [a, b] of M 
and any closed subset F of M contained in ]a, 6], then there exists a 
Lorentzian manifold (M, g) and a spacelike geodesic 7 : [a, b] ->» M 
sucti that j(t) is conjugate to 7(a) along 7 iff t G F. 

1. Introduction. 

It is well known that, in Riemannian geometry, the set of conjugate (or, more 
generally, focal) points along a geodesic is discrete; Beem and Ehrlich (see 
[1, 2]) have shown that the same holds for causal, i.e., timelike or lightlike, 
geodesies in a Lorentzian manifold. The issue of the lack of discreteness for 
the set of conjugate points along a geodesic in a semi-Riemannian manifold 
with metric of arbitrary index has been somewhat ignored or overlooked in 
the literature (see for instance [9, Exercise 8, pag. 299], or [7, The Index The- 
orem]). However, without a suitable nondegeneracy assumption, the classical 
proof of discreteness for the Riemannian case does not work in the general 
case, and Heifer in [6] gave the first counterexample to the discreteness of 
conjugate points along a spacelike Lorentzian geodesic. In [6, Section 11] it 
is produced an example of a whole segment of conjugate points. 

The occurrence of an infinite number of conjugate points along a compact 
segment of a semi-Riemannian geodesic is a rather pathological phenomenon, 
for instance it cannot happen if the metric is real-analytic; moreover, the 
nondegeneracy assumption mentioned above is generic (see for instance [11]). 
Nevertheless, in order to fully understand the theory of conjugate points 
for non positive definite metrics, it is a natural question to ask what are 
the possible "shapes" for the set of conjugate points along a geodesic.   In 

1The first author is partially sponsored by CNPq (Processo n. 301410/95); the 
second author is partially sponsored by CNP, Grant 300254/2001-6. 
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this paper we answer this question by reducing the problem to the study of 
intersection theory of curves in the Lagrangian Grassmannian of a symplectic 
space. 

Given a geodesic 7 : [a, 6] —>► M in a semi-Riemannian manifold (M, g): 

the set l(t) of pairs (J(t),gj/(t)), where J is a Jacobi field along 7 with 
J(a) = 0, is a Lagrangian subspace of the symplectic space T^M ®T^M* 
endowed with its canonical symplectic form; the conjugate points along 7 
correspond to instants t G ]a, b] where l(t) is not transversal to the La- 
grangian subspace {0} © T7(^M*. The use of a (parallel) trivialization of 
TM along 7 allows to associate to I a curve in the Lagrangian Grassmannian 
A of the fixed symplectic space Mn © JRn* = lR2n. Conjugate points along 
7 correspond therefore to intersections of this curve with the subvariety of 
A consisting of Lagrangians that are not transverse to {0} ffi iRn*. Details 
of this construction can be found in [6, 8, 11, 13]. The problem of deter- 
mining precisely which curves of Lagrangians arise from a semi-Riemannian 
geodesic is a rather difficult task. A partial result in this direction can be 
found in the last section of [8], where it is proven that a necessary condition 
for a smooth curve in the Lagrangian Grassmannian A to arise from a semi- 
Riemannian geodesic is that it be tangent to a singular distribution of affine 
planes in A. However, this condition alone is not sufficient, and attempts to 
produce interesting examples of conjugate points along geodesies using this 
characterization lead quickly to rather involved computations. 

In this paper we introduce a new procedure for constructing a curve £ in 
the Lagrangian Grassmannian A starting from a semi-Riemannian geodesic 
7. This new construction is canonical (see Remark 4.2), i.e., it does not 
depend on the choice of a trivialization of TM along 7, and, again, the 
curve f contains the relevant information about the conjugate points along 
7. The main feature of this new construction is that it is very easy to 
characterize which curves f actually arise from semi-Riemannian geodesies; 
namely, such curves are precisely those for which £'(£) (which is naturally 
identified with a symmetric bilinear form on £(£)) is nondegenerate for all t 
(Theorem 2.8). Using this characterization, it is easy to produce examples 
and counterexamples concerning the occurrence of several types of conjugate 
points along a semi-Riemannian geodesic; we prove in particular that any 
compact subset of 1R appears as the set of conjugate instants along some 
spacelike Lorentzian geodesic (Theorem 3.4). 
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2. The abstract setup. 

Given (finite dimensional) real vector spaces V, W we denote by Lin(V, W) 
the space of linear maps from V to W and by B(V, W) the space of bilinear 
fcrms B : V x W -> iR; by Bsym(y) we denote the subspace of B(V,V) 
consisting of symmetric bilinear forms. The index of a symmetric bilinear 
form B 6 BSym(V) is defined as the supremum of the dimensions of the 
subspaces of V on which B is negative definite. We always implicitly identify 
the spaces B(V, W) and Lin(V, W*) by the isomorphism B(v, w) = B(v)(w)J 

where W* denotes the dual space of W. 
Let (M,g) be an (n + 1)-dimensional semi-Riemannian manifold and let 

7 : [a, 6] -> M be a non lightlike geodesic, i.e., 0(7,7) is not zero. Using a 
parallel trivialization of the normal bundle of 7, the Jacobi equation along 7 
can be seen as a second order linear system of differential equations in M71 of 
the form v" = Rv, where t H* R(t) is a smooth curve of ^-symmetric linear 
endomorphisms of IRn representing a component of the curvature tensor and 
g is a nondegenerate symmetric bilinear form in IRn representing the semi- 
Riemannian metric fl on the normal bundle of 7. An equation of the form 
v" = Rv with a ^-symmetric R is called a Morse-Sturm system; the index 
of g is called the index of the Morse-Sturm system. 

We recall from [6] the following: 

Lemma 2.1. Every Morse-Sturm system in IRn can be obtained by a par- 
allel trivialization of the normal bundle from the Jacobi equation along a 
non lightlike geodesic 7 : [a, b] —> M, where (M, Q) is an (n + l)-di2ziensioi2ai 
(conformally Hat) semi-Riemannian manifold. Moreover, the geodesic can 
be chosen to be either spacelike or timelike; in the first case the index of the 
metric g equals the index of the Morse-Sturm system, and in the latter case 
the index of the metric g equals the index of the Morse-Sturm system plus 
one. 

Proof. Consider M = IRn+1 with coordinates (a;i,... ,a;n+i) and let 7 : 
[a, b] —> M be given by j(t) = t-^—; consider in M the metric g = e^go? 

with go = g ± da;^+1, and fi given by: 

ft(zi,...,£n+i) = ±Y1 g(R{xn+i) — ,—JXiXj. 

The choice of the sign ± in the above expressions is made according to the 
desired causal character of 7. It is easily checked that the Christoffel symbols 
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of the Levi-Civita connection of g in the canonical basis vanish along 7; this 
implies that 7 is a geodesic and that (-£r)™=1 gives a parallel trivialization 

of the normal bundle 7-L. □ 

Setting a = gvf the Morse-Sturm equation v" = Rv is written as the follow- 
ing first order linear system of differential equations: 

{vf = Q    a, 

a = gRv. 

The coefficient matrix ( j of (2.1) is easily seen to be a curve in 

the Lie algebra sp(2n, M) of the symplectic group Sp(2n, M) of JRn © lRn* 
endowed with the canonical symplectic form: 

(2.2) ^((vi, ai), (V2, a2)) = aiivi) - a^). 

Recall indeed that the Lie algebra sp(2n, M) consists of all the matrices of 
the form: 

where A e Un(lRn), B e Bsym(iRri*) and C G Bsym(iRri). The considera- 
tions above motivate the following: 

Definition 2.2. Let X : [a, 6] —>- sp(2n,iR) be a smooth curve in sp(2n7lR) 
and denote by A, S, C the n x n blocks of X as in (2.3). The system 

la = (7^ - A a, 

is called a symplectic differential system in iRn. With little abuse of termi- 
nology we identify the coefficient matrix X with the system (2.4) and call X 
a symplectic differential system in M71. We call the system X nondegenerate 
if the matrix B(t) is invertible for every t € [a, 6]; in this case, the index of 
X is defined as the index of B(t) (which does not depend on t). 

An instant t E ]a,6] is said to be conjugate for X if there exists a non 
zero solution (^, a) of X with v(a) = v(t) = 0. 

The fundamental matrix of X is the curve [a, b] 3 t H* $(£) in the general 
linear group of Mn characterized by the matrix differential equation 

(2.5) & = X$, 



Conjugate Points Along Semi-Riemannian Geodesies 37 

with initial condition <I>(a) = Id; if (v,a) is a solution of X we have 
$(t)(v(a),a(a)) = (v(t),a(t)) for all t E [a,6]. The fact that X takes val- 
ues in sp(2n, iR) implies that $ is actually a curve in the symplectic group 
Sp(2n, 1R). We will denote by LQ the subspace: 

LQ = {0} 0 iRn* CM71® JRn*; 

clearly, t G ]a, 6] is conjugate for X iff £(t) Ci LQ ^ {0} where ^(t) is the 
subspace: 

(2.6) e(t) = ${t)(Lo) CM
71
®mn*. 

We now define the following notion of isomorphism for symplectic differ- 
ential systems. 

Definition 2.3. Let X and X be symplectic differential systems in IRn. An 
isomorphism from X to X is a smooth curve (/> : [a, b] —» Sp(2n, iR) with 
(/>(£) (LQ) = LQ for all t e [a, 6] satisfying either one of the following equivalent 
conditions: 

1. $(t)(f)(a) = 0(t)$(t) for all t E [a, 6], where $ and $ denote respectively 
the fundamental matrices of X and X; 

2. !(*) = <i)(t)X{t)(l)(t)-1 + ^(tMt)-1 for all t E [a, 6]. 

If 0 is an isomorphism from X to X we write (f): X = X and we say that X 
and X are isomorphic. 

It follows easily from condition (1) above that isomorphic symplectic systems 
have the same conjugate instants. Observe that an isomorphism cf) : X = X 
can be written in block matrix notation as: 

Z 0 
z*-iw   z* r*        \  rrx — ljxr     17* —\ 

with Z{t) E Un(lRn) invertible and W(t) € Bsym(iRn) symmetric for all 
t € [a, b]. A straightforward computation shows that condition (2) above is 
equivalent to: 

(2.7) A = ZAZ'1 - ZBWZ-1 + Z'Z'1, 

(2.8) B = ZBZ*, 

(2.9) C = Z*-l(WA + C - WBW + A*W + W^Z'1, 
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where * denotes transposition. It follows immediately that, if X is isomorphic 
to X then X is nondegenerate iff X is nondegenerate and that the indexes 
of X and X coincide. 

Observe that we have a category £ whose objects are symplectic differen- 
tial systems and whose set of morphisms from X to X are the isomorphisms 
(/) : X = X; composition of morphisms is defined in the obvious way. Observe 
also that in this category every morphism is an isomorphism. 

The study of symplectic differential systems has an interest on its own, 
due to the fact that such systems are naturally in connection with solutions 
of Hamiltonian systems in symplectic manifolds (see [11]); the notion of sym- 
plectic differential system also appears in the theory of mechanical systems 
subject to non holonomic constraints and in sub-Riemannian geometry (see 
Section 4). In this article we are interested in the subcategory of C consisting 
of Morse-Sturm systems; we say that a nondegenerate symplectic differen- 
tial system X with n x n blocks A, £?, C is a Morse-Sturm system if B is 
constant and A = 0. As we have observed in the beginning of the section, 
such systems always arise from the Jacobi equation along a non lightlike 
semi-Riemannian geodesic by a parallel trivialization of the normal bundle. 
In the following lemma we show that the category of symplectic differen- 
tial systems is not "essentially larger" than the subcategory of Morse-Sturm 
systems: 

Lemma 2.4. Every nondegenerate symplectic differential system X is iso- 
morphic to a Morse-Sturm system. 

Proof. It follows easily from (2.8) that every nondegenerate symplectic dif- 
ferential system is isomorphic to one whose component B is constant. We 
may thus assume without loss of generality that B is constant (and nonde- 
generate). To conclude the proof we must exhibit a smooth curve Z in the 
Lie group 

G = {Z e GL(n, JR) : ZBZ* = B] 

and a smooth curve W of symmetric n x n matrices such that the righthand 
side of (2.7) vanishes. It suffices to take W = ^{B^A + A^B'1) and Z to 
be the solution of Z' = Z(BW - A) with Z(a) = Id. In order to see that Z 
takes values in G simply observe that BW — A is in the Lie algebra g of G 
given by: 

g = {Y e gl(n,IR):YB + BY* = 0}. 
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Recall that a symplectic space is a real finite dimensional vector space 
V endowed with a symplectic form u, i.e., u is an antisymmetric nondegen- 
erate bilinear form on V. A Lagrangian subspace of V is a n-dimensional 
subspace L C V with CI/|LXL = 0, where n = ^dim(y). We denote by A(V,- a;) 
the Lagrangian Grassmannian of (V,a;), i.e., the set of all Lagrangian sub- 
spaces of V. The Lagrangian Grassmannian is a real-analytic compact con- 
nected 7>n(n + 1)-dimensional embedded submanifold of the Grassmannian 
of all n-dimensional subspaces of V. We denote by A(2n, M) the Lagrangian 
Grassmannian of the symplectic space lRn ® IR71* endowed with its canonical 
symplectic form (2.2). 

Clearly, the subspace LQ is Lagrangian in IRn ffi lRn* and therefore (2.6) 
defines a smooth curve £ in A(2n, JR); such curve is used in [8] to study the 
conjugate points along a semi-Riemannian geodesic. We now introduce the 
smooth curve £ : [a, b] —> A(2n, iR) given by: 

(2.io) m = m-HLoY, 

obviously t G ]a, b] is conjugate for X iff £(t) is not transversal to £(a) = LQ- 

This motivates the following: 

Definition 2.5. An abstract symplectic system is a triple (V, £*;,£) where 
(V,a;) is a symplectic space and £ : [a, b] -> A(V,u>) is a smooth curve in 
the Lagrangian Grassmannian of (V,(JJ). An isomorphism from (V,a;,£) to 
(y, a), £) is a symplectomorphism a : (V, a;) -> (V", a;) such that cr(£(£)) = £(t) 
for all t G [a, 6]; we write a : (V, CJ, £) = (F, a), £). An instant t G ]a, b] is said 
to be conjugate for (V, a;,£) if £(£) n£(a) / {0}. 

It is clear that isomorphic abstract symplectic systems have the same con- 
jugate instants. Observe that abstract symplectic systems and their isomor- 
phisms form a category 2) with composition of morphisms defined in the ob- 
vious way; as in £, all morphisms of 2) are isomorphisms. If X is a symplectic 
differential system and if £ is defined in (2.10) then 2L(X) = {IRn®Mn\uj, £) 
is an abstract symplectic system; moreover, if (f) : X = X is an isomorphism 
then a = (j)(a) is an isomorphism from 2L(X) to 2L{X). The rule T is a 
functor from the category C to the category S; in addition we have the 
following: 

Lemma 2.6.  The functor F_ is an equivalence from C to X), i.e.; 

1. T is full and faithful, i.e., given symplectic differential systems X and 
X then T_ induces a bijection from the morphisms (/> : X = X to the 
morphisms a : F{X) = JL{X); 



40 P. Piccione and D. Tausk 

2. T_ is surjective on isomorphism classes, i.e., given an abstract symplec- 
tic system (V, CJ, £) there exists a symplectic differential system X such 
that T{X) is isomorphic to (V, a;, £)• 

Proof. Part (1) is obtained by straightforward verification. For part (2), 
we describe how to construct the symplectic differential system X from the 
abstract symplectic system (V, a/, £). Choose a smooth curve [a, b] 3 t »-> ^(t) 
where each ^(t) is a symplectomorphism from (V, u) to ]Rn®Mn* (endowed 
with the canonical symplectic form) such that V(*)(f (*)) = £o = {0} ®Mn* 
for all t. Define X to be the unique symplectic differential system whose 
fundamental matrix $ is given by $(t) = ^{t)^(a)~l\ more explicitly, take 
-X"(t) = ^(^^(t)-1. It is easy to check that a = ipia)'1 is an isomorphism 
iromZ{X) to (V,a;,f)- □ 

We now want to characterize which abstract symplectic systems corre- 
spond to nondegenerate symplectic differential systems. To this aim, we 
recall a couple of simple facts about the geometry of the Lagrangian Grass- 
mannian (see for instance [3, 8]). Let (V,u) be a symplectic space. A 
Lagrangian decomposition of V is a pair (£o?£i) of Lagrangian subspaces of 
V such that V — fo'© fi; to each Lagrangian decomposition (£o5£i) there 
corresponds a chart (p^^ defined in the open subset A0(£i) of A(V,a;) con- 
sisting of those Lagrangians that are transverse to £i. The chart ¥>f0 ^ takes 
values in the space BSym(£o) of symmetric bilinear forms in £o and is defined 
by: 

v&,eiW = ^(rv)l&xeoJ   £eA0(£i), 

where T : £o -> £i is the unique linear map whose graph Gr(T) = {v + Tv : 
v e ^o} equals L. The differential dy^^fo) of the chart ^0^1 at ^o gives 
an isomorphism from the tangent space Tf0A(V,a;) to the space Bsym(^o); 
such isomorphism does not depend on the complementary Lagrangian £i to 
£o and therefore for every L e A(V, w) there is a natural identification of the 
tangent space TLA(V,UJ) with the space Bsym(X). 

Let  L   e   A(y,a;)   be given and consider the  evaluation  map  /3L   - 
Sp(V,a;) -+ A(Vy(jj) given by /3L(A) = A(L)i using local coordinates the 
differential of /?£ is easily computed as: 
(2.11) 
dpL(A) ■ Y = a;(y^-1

v)U(L)xA(i),    A e Sp(2n,iR), Y 6 TASp(2n,iR). 

Let now X be a symplectic differential system and define £ as in (2.10); 
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obviously £ = f3Lo o $"1. By (2.11) and (2.5) we have: 

since a;(-X"(t)-, OUoxLo = -B(*)J 
we see that ^C*) is the push-forward of -B(t) 

by the isomorphism ^(t)"1 : LQ -►£(*). This motivates the following: 

Definition 2.7. An abstract symplectic system (V, a;, ^) is called nondegen- 
erate when ^(i) is a nondegenerate symmetric bilinear form on f (i) for all 
£. In this case, theindea? of (V,a;,f) is defined as the index of -^'(t) (which 
does not depend on t). 

Clearly, nondegeneracy and indexes of abstract symplectic systems are pre- 
served by isomorphisms; moreover, a symplectic differential system X is 
nondegenerate with index fc iff Z.{X) is nondegenerate with index k as an 
abstract symplectic system. 

Summarizing the results of this section, we have proven the following 
theorem: 

Theorem 2.8 (abstract characterization of semi-Riemannian geodesies). 
Let (V, LJ, £) be a nondegenerate abstract symplectic system of index k, with 
dim(V) = 2n. Then, there exists a (n + 1)-dimensional semi-Riemannian 
manifold (M, g) and a non lightlike geodesic 7 : [a, b] -> M such that T_{X) 
is isomorphic to (V, u, f), where X is the Morse-Sturm system obtained from 
the Jacobi equation along 7 by a parallel trivialization of the normal bundle 
0/7 (see (2.1)J. A point y(t), t e ]a,6] is conjugate to 7(a) along 7 ifft 
is a conjugate instant for (V,£«;,£). Moreover, 7 can be chosen to be either 
timelike or spacelike; the index ofg is equal to k + 1 in the first case and to 
k in the latter case. 

Clearly, from a strictly technical point of view, the categorical terminology 
adopted in this section is unnecessary. Nevertheless, the authors believe that 
the employment of this language helps the reader in perceiving the analogies 
between this theory and other situations in Mathematics2 where categorical 
equivalences occur. 

2Here are some examples. The category of simply connected Lie groups is equiv- 
alent to the category of real, finite-dimensional Lie algebras. The same holds for 
the categories of geometric simplicial complexes and abstract simplicial complexes. 
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3. Distribution of conjugate points along a geodesic. 

In this section we want to construct examples of conjugate points using the 
characterization given in Theorem 2.8. The idea is to construct smooth 
curves £ of Lagrangians of a fixed symplectic space having everywhere non- 
degenerate derivative, and such that £(t) is not transversal to a fixed La- 
grangian £o at a prescribed set of values of the parameter t. Such con- 
struction is performed using local charts y^,^ in the Lagrangian Grassman- 
nian; in these coordinates curves of Lagrangians are identified with curves 
of symmetric bilinear forms. The main technical problem to complete the 
construction is to connect smoothly £ with £o without violating the non- 
degeneracy condition on the derivative and without creating new conjugate 
instants (see Proposition 3.3). The proof of Proposition 3.3 takes inspiration 
from the proof of some elementary versions of the so-called H-principle of 
Gromov [5] by the method of convex integration; roughly speaking, we con- 
struct a curve satisfying a certain open differential relation by first searching 
for its derivative. 

We start with two technical results: 

Lemma 3.1. Let U C IRk be a connected open set, u G U a fixed point, 
f : [c, b] -> U a smooth curve and a € M, a < c. Then there exists M > 0 
sucli that for all 77,77' > 0 there exists a smooth extension r : [a, b] —> U of f 
with the following properties: 

• faT = u(c-a); 
# IMMIIOO 

= SUPiG[a,c] Mt)\\ <M; 

• T|[ajC_7?] is constant. 

Proof. Let r > 0 be such that the open ball B(u\r) of center u and radius 
r is contained in U and choose a smooth curve 7 : [c — 1,6] —> U such that 
7(c - I) — u and ^{[^b] = T. Set M = \\u\\ + 1 + HTIIOO and choose e > 0 
small enough such that e < rj and 

(34) c-l-e^ ~ ^ < mill{r'1}- 

Now, let 7 : [c — e, b] —> U be a smooth non decreasing reparameterization 
of 7 such that 7|[C)6] = f and j\[c_£^_£] = u. Choose smooth functions 
01, (f>2 : [a, b] —> [0,1] with fa + ^2 = 1 and such that the support of fa is 
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contained in [a, c - § [ and the support of 02 is contained in ]c - e,b]. Finally 
Set: re   i   / x 

/>! ' 

and define r = <f>i(u + S) + fal- To check that such r works observe that 
p|| is less than or equal to the left hand side of (3.1). □ 

Corollary 3.2. Let a : [c, b] -> Bsym(2Rn) be a smooth map such that a(c) is 
nondegenerate, a'{t) is nondegenerate for allt G [c, b] and such that a(c) and 
af(c) have the same index. Then, given a < c there exists a smooth extension 
a : [a, 6] -> Bsym(IRn) of a such that a (a) = 0, a(t) is nondegenerate for all 
t e ]a, c] and a'(t) is nondegenerate for all t e [a, 6]. 

Proof. Simply apply Lemma 3.1 to the following objects: 

• JJ = {B e Bsym(iRn) :  B is nondegenerate and it has the same index 
as a(c)}; 

a(c) 
• u =  

T = a>; 

• rj > 0 is chosen small enough so that rjM < r, where r > 0 is such that 
the open ball B(a(c)]r) is contained in U. 

Finally, define a{t) = J* r for t e [a, 6]. □ 

Proposition 3.3. Let (V, u) be a symplectic space, £o C V be a Lagrangian 
subspace and f : [c, b] -* A(V, u) be a smooth curve such that ^(c) n£o = {0} 
and €'(ty € Bsym (£(<)) is nondegenerate for all t G [c, 6]. Then, given a < c 
there exists a smooth extension £ : [a, b] -> A(V, u) of £ such tiiat £(a) = £o? 
£(t) n £o = {0} for all t G ]a,c] and ^(t) G Bsym(£(£)) is nondegenerate for 
allt G [a,6]. 

Proo/. Let £i be a Lagrangian complementary to both £o and £(c); it's 
easy to see that'll can be chosen such that <££o,Ci(£(c)) e(luals any Pre" 
scribed nondegenerate bilinear form on £o- In particular, we may assume 
that ^o,fi(f(c)) and Z'i0) have the same index. Let b' G ]c,6] be such 
that £([c, b']) is contained in the domain of the chart ^fo^i  and define 



44 P. Piccione and D. Tausk 

cr : [c,bf] -> Bsym(£o) = Bsym(iRn) by a = cp^^ o^|[C)6/]. The conclusion 
follows by an application of Corollary 3.2 to a, keeping in mind that if 

v = ^fcfi 0 ^ then: 

(a) f (a) = ^o ^ (T(a) = 0; 

(b) €(t) n£o = {0} ^ a(t) nondegenerate; 

(c) {'(t) e Bsym(f(t)).is just a push-forward of ^(t) G Bsym(£o) by an 
isomorphism between £o and €(t). 

D 

We are now ready to prove the main result of the section: 

Theorem 3.4. Let F c Ja, 6] be any compact subset; then there exists a 3- 
dimensional Lorentzian manifold (M, g) and a spacelike geodesic j : [a, b] -> 
M such that j(t) is conjugate to 7(a) along 7 iff t e F. 

Proo/. By Theorem 2.8, it suffices to find an abstract symplectic system 
(V, u/, 0 of index 1 with dim(F) = 4 whose set of conjugate instants is F. 
Consider the space V = JR2 0 JR2* endowed with the canonical symplectic 
form and set £0 = {0} 0 iR2*; given c G ]a, inf F[, we'll construct a smooth 
curve f : [c,6] -> A(F,a;) such that ^(t) is nondegenerate for all t and 
f (*) n ^o 7^ {0} iff t € F. The desired curve f : [a, &]_-> A(Vi a;) will then be 
obtained by applying Proposition 3.3. The curve \ will take values in the 
domain of the chart <^0j6 where £1 = R2 © {0}; we define £ = y?"1^ o p, 
where p : [c, 6] -> Bsym(£o) = Bsym(iR2) is defined3 by: 

o(t)-(l + m<*8(t)       R(t)sm(t)    \   ■ 
m-{   R(t)sm(t)       l-R(t)coB(t))>    te[c^ 

and R : [c,6] -> ]0,+oo[ is a smooth map such that JR"1^) = F. The 
condition R(t) > 0 implies that f/(t) is always nondegenerate and therefore 
also €'(t) is nondegenerate; moreover, £(i) n & 7^ {0} iff /2(t) = 1. The 
existence of the required function R follows by taking R = 1-/ in Lemma 3.5 
below. Q 

identifying Bsym(JK
2) with iR3, then the set of degenerate bilinear forms corre- 

sponds to a double cone C. The curve p(t) defined above takes values in a plane TT 
orthogonal to the axis of the cone, and 1 - R(t) is the distance between p(t) and 
the circle CD IT. 
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Lemma 3.5. Given a closed subset F C M, there exists a smooth map 
/ : JR -> [0,1[ such that f-l(0) = F. 

Proof. Write M \ F = U^i Ir as a disjoint union of open intervals Ir. For 
each r > 1 let fr : iR -> M be a smooth map such that: 

• fr is zero outside Jr; 

• fr is positive on Z^; 

• 11 f® I loo < 2~r for i = 0'''' 'r' where /^ denotes tJie i-th derivative 
of fr- 

To conclude the proof set / = Sjt^i /r- ^ 

Examples of non lightlike geodesies with a prescribed set of conjugate 
points in higher dimensional semi-Riemannian manifolds with metric of ar- 
bitrary index can be trivially obtained from Theorem 3.4 by considering 
orthogonal products with a flat manifold. On the other hand, if 7 is a 
spacelike geodesic in a 2-dimensional Lorentzian manifold (M,^), then 7 is 
a timelike geodesic in the Lorentzian manifold (M, —g) with the same con- 
jugate points. This implies that the conjugate points along a geodesic in a 
2-dimensional semi-Riemannian manifold are always isolated. 

4. Final remarks. 

Remark 4.1. If 7 : [a, b] -> M is any geodesic (of arbitrary causal character) 
in a semi-Riemannian manifold (M,g)r then a Morse-Sturm system can be 
obtained from the Jacobi equation along 7 by a parallel trivialization of the 
tangent bundle TM along 7. At the beginning of Section 2 we have defined 
a Morse-Sturm system from the Jacobi equation by means of a parallel 
trivialization of the normal bundle j1 of 7. The advantage of the latter 
construction is that one has a converse to the above construction, i.e., every 
Morse-Sturm system arises from the Jacobi equation along a non light like 
semi-Riemannian geodesic (Lemma 2.1). 

Symplectic differential systems are more generally associated to solutions 
of Hamiltonian systems in a symplectic manifold endowed with a Lagrangian 
distribution (details of this construction can be found in [11, 13]). To each 
symplectic differential system is naturally associated the notion of Maslov 
index; this formalism is used in [11] to prove a Morse index theorem for 
non convex Hamiltonian systems and for semi-Riemannian geometry (see 
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also [8, 10]). In [11] it is also defined the notions of multiplicity and of 
signature of a conjugate instant of a symplectic differential system; these 
notions, as well as that of Maslov index, can be defined directly in the 
context of abstract symplectic systems. In the proof of Theorem 3.4 we have 
constructed examples containing only conjugate instants of multiplicity one 
and signature zero. However, Theorem 2.8 and Proposition 3.3 make it an 
easy task to produce more exotic examples of geodesies of arbitrary Maslov 
index and having a complicated distribution of conjugate points of several 
types. 

Remark 4.2. As mentioned in the Introduction, abstract symplectic systems 
are canonically associated to semi-Riemannian geodesies, or more generally, 
to solutions of Hamiltonian systems in a symplectic manifold endowed with 
a Lagrangian distribution. This is done as follows. Let (M,ui) be a sym- 
plectic manifold (in the geodesic case, M = TM* is the cotangent bundle of 
a semi-Riemannian manifold (M, g)), H a possibly time dependent Hamil- 
tonian function on M (in the geodesic case H(p) = ^5~

1
{PTP)), £ C TM a 

Lagrangian distribution on M (in the geodesic case, £ is the vertical subbun- 
dle of TTM*) and T : [a, b] -> M a solution of the Hamilton equations of H. 
An abstract symplectic system is then obtained by considering V = Tr^M 
and £(t) to be the inverse image of £r(t) m 2r(a)-M by the Hamiltonian flow. 

Remark 4.3. By minor modifications of the theory presented in this paper 
it is also possible to treat the case of focal points to submanifolds along an 
orthogonal geodesic. To this aim, one should introduce a category of pairs 
(X,£o) where X is a symplectic differential system and IQ is a Lagrangian 
subspace of IRn@lRn*. The Lagrangian subspace £o encodes the information 
about the tangent space and the second fundamental form of the initial 
submanifold: an instant t £ ]a, b] is focal for (X,lo) if there exists a non 
zero solution (v,a) of X with (v(a),a(a)) G IQ and v(t) = 0. Accordingly, 
abstract symplectic systems should be replaced by quadruples (V, a;, £,£0)7 
where £0 is a Lagrangian subspace of (V, a;). Details of this construction can 
be found in [11]. 

Remark 4.4. Degenerate symplectic systems (systems (2.4) with coefficient 
B degenerate) can be used to study stationary points of constrained La- 
grangian problems (see [12]). An important class of examples of these sta- 
tionary points are the so-called sub-Riemannian geodesies, i.e., geodesies in 
manifolds endowed with a partially defined metric tensor. Also in this case, 
conjugate points may accumulate along a geodesic, however, the set of con- 
jugate points along a sub-Riemannian geodesic is always a finite union of 
isolated points and closed intervals (see [14, Subsection 4.3]). 



Conjugate Points Along Semi-Riemannian Geodesies 47 

References. 

[1] J. K. Beem, P. E. Ehrlich, A Morse Index Theorem for Null Geodesies, 
Duke Math. J. 46 (1979), 561-569. 

[2] J. K. Beem, P. E. Ehrlich, K. L. Easley, Global Lorentzian Geometry, 
Marcel Dekker, Inc., New York and Basel, 1996. 

[3] J. J. Duistermaat, On the Morse Index in Variational Calculus, Adv. 
in Math. 21 (1976), 173-195. 

[4] F. Giannoni, A. Masiello, P. Piccione, D. Tausk, A Generalized In- 
dex Theorem for Morse-Sturm Systems and Applications to semi- 
Riemannian Geometry, Asian J. Math. 5 (2001), no. 3, 441-472. 

[5] M. Gromov, Partial Differential Relations, Springer-Verlag, 1986. 

[6] A. D. Heifer, Conjugate Points on Spacelike Geodesies or Pseudo-Self- 
Adjoint Morse-Sturm-Liouville Systems, Pacific J. Math. 164, n. 2 
(1994), 321-340. 

[7] A. Masiello, Variational Methods in Lorentzian Geometry, Pitman Re- 
search Notes in Mathematics Series 59, 1994. 

[8] F. Mercuri, P. Piccione, D. Tausk, Stability of the Conjugate Index, 
Degenerate Conjugate Points and the Maslov Index in semi-Riemannian 
Geometry, Pacific Journal of Mathematics 206 (2002), no. 2, 375-400. 

[9] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, 
Academic Press, New York, 1983. 

[10] P. Piccione, D. Tausk, The Morse Index Theorem in semi-Riemannian 
Geometry, Topology 41 (2002), no. 6, 1123-1159. 

[11] P. Piccione, D. V. Tausk, An Index Theorem for Non Periodic Solutions 
of Hamiltonian Systems, Proc. London Math. Soc. (3) 83 (2001), no. 2, 
351-389. 

[12] P. Piccione, D. V. Tausk, Constrained Lagrangians and Degenerate 
Hamiltonians on Manifolds: an Index Theorem, Differential equations 
and dynamical systems (Lisbon, 2000), 309-324, Fields Inst. Commun., 
31, Amer. Math. Soc, Providence, RI, 2002. 



48 P. Piccione and D. Tausk 

[13] P. Piccione, D. Tausk, Index Theorems for Symplectic Systems, Pro- 
ceedings of WCNA2000, Third World Conference of Nonlinear Ana- 
lysts, Catania, Italy, July 19th-26th 2000, Nonlinear Analysis 47 (2001), 
3031-3046. 

[14] P. Piccione, D. Tausk, On the Maslov and the Morse Index for Con- 
strained Variational Problems, Journal des Mathematiques Pures et 
Appliquees 81 (2002), 403-437. 

DEPARTAMENTO DE MATEMATICA 
UNIVERSIDADE DE SAO PAULO, BRAZIL 
E-mail addrees: piccione@ime.usp.br 
URL: http://www.ime.usp.br/~piccione 

DEPARTAMENTO DE MATEMATICA 
UNIVERSIDADE DE SAO PAULO, BRAZIL 
E-mail addrees: tausk®ime.usp.br 
URL: http://www.ime.usp.br/"tausk 


