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1.   Introduction. 

In recent years, one of the focuses in the study of the Ricci Flow on Rie- 
mannian manifolds has been on classifying the singularities that form in low 
dimensions. In particular, Hamilton has obtained partial classification the- 
orems in dimensions three and four. These classifications are in the sense 
of obtaining and classifying pointed limits, provided they exist, of dilations 
of a solution to the Ricci Flow about sequences of points and times tending 
to the singularity time, after passing to a suitable subsequence. In dimen- 
sion four, Hamilton's classification together with his geometric-topological 
surgery methods yield a classification of diffeomorphism types of those com- 
pact 4-manifolds with positive isotropic curvature that do not admit any 
incompressible 3-dimensional space form not diffeomorphic to either S3 or 
MP3 [H2]. (Note that [MM] obtained an earlier classification of homeomor- 
phism types of compact simply-connected n-manifolds with positive isotropic 
curvature by using harmonic maps.) In dimension three, Hamilton's classifi- 
cation of singularities in [HI] plays a major role in his program for approach- 
ing Thurston's Geometrization Conjecture [T] by Ricci Flow methods. It is 
conjectured by Hamilton that for the volume normalized Ricci flow on a 
compact 3-manifold, after a finite number of geometric-topological surgeries 
at some finite sequence of times, the solution will exist for all time and the 
curvature will remain uniformly bounded. If this is so, then the 3-manifold 
admits a geometric decomposition by [H3]. 

A fundamental tool used to obtain limits of sequences of solutions to 
the Ricci Flow is the Gromov-type compactness theorem of Hamilton [H4]. 
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(See [P] for a survey of compactness theorems in Riemannian geometry.) 
As is usual for compactness theorems, the main assumptions are bounded 
curvature (which by the Bernstein-Shi estimates [S] and §7 of [HI] implies 
bounds on all derivatives of curvature for solutions of the Ricci flow) and a 
lower bound for the injectivity radius at a point (which by [CLY] or [CGT] 
implies injectivity radii estimates at all points, depending on distance). For 
the sequences arising from dilations about a singularity, the curvature bound 
follows from the conditions imposed on the choice of points and times and 
choice of dilation factor. (See §16 of [HI].) This leaves one with the prob- 
lem of obtaining an injectivity radius bound. In fact, Hamilton's Little 
Loop Lemma (§15 of [HI]) asserts that for a solution of the Ricci Flow, a 
strengthened injectivity radius estimate should follow from a suitable differ- 
ential Harnack inequality of Li-Yau-Hamilton type. By [H5], a differential 
Harnack inequality holds for complete solutions of the Ricci flow with non- 
negative curvature operator. See [LY] for the seminal result of this type for 
solutions of the heat equation. For Type I singularities in dimension three, 
Hamilton proved an isoperimetric estimate that implies an injectivity radius 
estimate (§23 of [HI]). For Type II singularities in dimension three, Hamil- 
ton also conjectures that there is an injectivity radius estimate. In fact, the 
Little Loop Lemma, which is conjectured to be true for all solutions of the 
Ricci Flow on compact 3-manifolds, subsumes this conjecture. Similarly, for 
Kahler manifolds with positive bisectional curvature, there is an injectivity 
radius estimate useful for the study of the Kahler-Ricci flow (see [CT]). 

Although the above conjecture is still open, there is an important case 
where an injectivity radius estimate should be true. Namely, consider a 
sequence of complete (in practice, usually compact) solutions to the Ricci 
flow with bounded curvature on a common time interval such that: 

• The diameters are tending to infinity. Note that in the bounded diam- 
eter case, either there is an injectivity radius estimate for the sequence 
or the sequence collapses. In the former case, one can obtain a limit; 
and in the latter case, when the sequence of underlying topological 
manifolds is a fixed compact 3-dimensional manifold .M3, Cheeger- 
Gromov theory proves that .M3 is classified as a graph manifold. 

• The curvature operators are tending to nonnegative. (In dimension 
three, this follows by §24 of [HI] or §4 of [H3] for a sequence of solutions 
arising from dilations about a singularity.) 

• The curvatures at the origin are uniformly bounded from below by a 
positive constant.   (Otherwise we have the split case, which we hope 
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to address in a future article.) 

In this case, Hamilton has claimed an injectivity radius estimate after passing 
to a suitable subsequence. (See Theorem 25.1 in [HI] and Theorem 2.3, 
below.) One of the applications of Theorem 25.1 of [HI] is in the proof 
of the classification of 4-manifolds with positive isotropic curvature given 
in [H2]. (See all three subsections of the "Recovering the manifold from 
surgery" section of that paper.) 

The purpose of this paper is to give a complete proof of the aforemen- 
tioned injectivity radius estimate. The reason for giving this new proof is 
related to the possibility of collapse. In particular, there appears to be a gap 
in the argument in [HI]. We shall explain this in more detail in later sec- 
tions. (See the remarks before and after Example 2.4 and also Remark 3.6.) 
The main overall structure of our proof is the same as Hamilton's. However, 
our approach makes essential changes in the construction of Busemann-type 
sublevel sets, and relies on new arguments to establish the crucial fact that 
they are ultimately bounded. In particular, our proof does not rely on the 
continuity of the function t^ introduced in Lemma 25.3 of [HI]. The main 
technical innovations of our method are in sections 5 and 6. We summarize 
them here for the convenience of the reader: 

• In §25 of [HI], it is argued that the distances to the cut loci at the 
origins along any sequence of solutions to the Ricci flow satisfying 
Definition 2.2 converge to a continuous function l^ : S]2-1 —> [0,oo], 
where S1^1 is the standard (n - l)-sphere of radius 1. There are subtle 
difficulties with this approach relating to the possibility of collapse. 
(See Example 2.4 and the Remark that follows.) To get around these 
difficulties, we define an alternate function (Too : S™-1 -> [0, oo] in (3.1) 
by a lim sup, which obviates proving continuity. 

• In §25 of [HI], a set V of distinguished directions is defined as ^ (oo), 
"those [directions] in which we can go off to infinity without hitting 
the cut locus." We replace this by a set TZoo = a^1 (oo) of ray-like 
directions. The set Tloo is nonempty, and there exist arbitrarily long 
minimizing geodesies in directions arbitrarily close to each of its mem- 
bers. (See Remark 3.6.) 

• For robustness under the action of passing to subsequences, we find in 
UOQ for any e > 0 a finite subset {Va} such that no member of TZOQ 

lies more than distance e away from some V^, and (most importantly) 
such that the lim sup in Definition (3.1) is attained as a limit for each 
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• In §25 of [HI], sets Ni are defined that act as substitutes for the sublevel 
sets of a Busemann function, and properties of the function i^ are 
invoked to claim that they are uniformly bounded. We replace the 
Ni by sets Ni (L) = Ni (L, 1) that depend on a length scale L > 1. 
(See Definition (5.1) in §5.) We do not show that the sets Ni (L) are 
uniformly bounded. But the key innovation in our method is the proof 
of the boundedness property (Proposition 6.1), which states, roughly, 
that by going far enough out in the sequence, depending on L, one can 
bound the size of all remaining Ni (L) independently of L. 

Acknowledgment This paper was prepared while the authors enjoyed the 
hospitality provided during the summer of 2001 by the National Center for 
Theoretical Sciences in Hsinchu, Taiwan. We wish to thank the NCTS for 
providing partial support and a wonderful research environment. 

2. Hamilton's injectivity radius estimate. 

We now recall the setup from §25 of [HI]. Consider a sequence 

{.M?>#(*),0i,i'i:*eN} 

of complete solutions of the Ricci flow 

-gi(t) = -2Rc(gi(t)) 

defined for t G (a,a;), where a < 0 < LJ < oo. Each solution is marked by 
an origin Oi and a frame Fi = {e\,..., e^} at Oi which is orthonormal with 
respect to <# (0). 

Definition 2.1. We say such a sequence has uniformly bounded geom- 
etry if there exist constants Ck for all k G N U {0} such that 

(2.1) sup    sup      VfeRm(pj) 
zGN MiX(a,uj) 

<ck. 
9i 

We denote the eigenvalues of the curvature operator 

Rm,- (*, t) = Rm (#) (a, t) : K2TxMi -> k2TxMi 

by \j (Rmj) (#, t), where 1 < j < m = dimso (n), and Ai < • • • < Am. 
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Definition 2.2. We call {M^gi (t) ,Oi,Fi : i G N} a sequence with al- 
most nonnegative curvature operators if it has uniformly bounded ge- 
ometry and satisfies the following three assumptions: 

1. there exists a sequence 5i \ 0 such that 

-1 < -Si < Ai(Rmi)(a;,t) 

for all x e Mi and t E (a,a;); 

2. the manifolds (M^gi (0)) are growing without bound, 

lim [dia,m(M^gi (0))] = oo; 
i—>oo 

and 

3. there exists e > 0 such that Oi is an £-bumplike point at t = 0, 
namely 

Ai(Rmi)(Oz,0) >£. 

As stated in the introduction, the objective of this paper is to give a complete 
proof of: 

Theorem 2.3. For any sequence with almost nonnegative curvature oper- 
ators and sect(gi) (x,0) < 1 for all x G Mi and i G N, there exists a 
subsequence 

{M^giWtOuFi} 

such that for all i, 

'mlgi(0)(Oi) ^ l- 

This result is equivalent to Theorem 25.1 of [HI]. The basic strategy of 
our proof is the same as the one employed there, and comprises essentially 
three steps: 

(a) use conditions (1) and (2) to find arbitrarily long minimizing geodesies 
along which the curvature is arbitrarily close to nonnegative; 

(b) use condition (3) and the strong maximum principle to construct large 
uniform neighborhoods of the origins in which the curvature is uni- 
formly positive; and 

(c) rule out short geodesies in these neighborhoods by means of a second- 
variation argument along the long geodesies found in step (a). 
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However, our implementation of this strategy is distinct in a number 
of ways from the methods employed in [HI]. We could not follow one of 
the steps in the original proof. In particular, let a* denote the distance to 
the cut locus from the origin in (MJ1,^ (0)). In the original paper, it is 
argued that the (jz- converge to a continuous function ^ : S™'1 -► [0,oo]. 
However there appears to be a gap in the part of the argument in [HI] that 
deals with the construction of a Jacobi field in a geodesic tube for the case 
that exp0. (liVi) = exp0. (iiWi) for a sequence of distinct vectors such that 
\Vi - Wi\ -» 0. This is precisely because collapse for the sequence has not 
yet been ruled out at this point in the argument. 

Example 2.4. Consider a sequence {7^ : i = 1,2,... } of collapsing flat tori 
with fundamental domains 

f-M] x[-l/i,l/i] CE2. 

Take d = (0,0), and define constant-speed geodesies 

by 

0, 

Then length a,- = length # = 1 for all z, but their limit in the universal cover 
M2 is just the segment s H> (5,0) for 0 < s < 1. Since M2 is flat, there is no 
nontrivial Jacobi field which vanishes at its endpoints. 

Remark 2.5. This example does not contain bumplike points, so it is not 
a counterexample to the claim in [HI]. However, as mentioned above, it 
does illustrate difficulties that are due to the possibility of collapse (which 
is an issue before an injectivity radius estimate has been proved). One can 
also construct 'local counterexamples' with constant positive curvature by 
removing small neighborhoods of the cone points from <S2/Z; for i e N, and 
letting i -> 00. This construction does not produce global counterexamples, 
since gluing thin infinite cylinders Sl/{2i) x (0,00) to both ends and smoothing 
the metric will not result in metrics of almost nonnegative curvature. 

In order to overcome this difficulty, we were forced to make some modi- 
fications to both steps (a) and (b) of Hamilton's original proof. 



Hamilton's Injectivity Radius Estimate 1157 

3. Finding ray-like directions. 

For each member of the sequence {Mf, Qi (t), O;, F;}, the frame Fi defines 
a canonical isometry 

h'(^^c^^iTo.Mi,9(0^0))- 

Denote the unit sphere bundle of a Riemannian manifold {Mn,g) by 
Sn-1Mn. For each V G SQ^MU let pi{V) G (0,oo] denote the distance 
from Oi to the cut point of Oi along the geodesic s \-} expQ. (sV) in the met- 
ric ^(0). Denote by (5j2_1,^can) the unit sphere in W1 with its canonical 
metric, and define 

di = pi o Ii\sn-i : 5]2"1 -> (0, oo]. 

The set of directions V G S™"1 for which exp0. (s/^ (V)) is a ray is given 
by 

a'1 (oo) - {V e ^r1 : ft (Ji (F)) = 00} . 
There is no reason to expect a"1 (oo) to be nonempty. Indeed, typical appli- 
cations of Theorem 2.3 are when Mi = M is closed or when .M^ is obtained 
from a closed manifold M by finitely many surgeries. In either case we have 
a^1 (oo) = 0. Nonetheless, assumption (2) allows us to pick out directions 
along which there are arbitrarily long minimizing geodesies. 

If V G Sf"1, let 6 (V) denote the set of all sequences {V^} C S]1"1 such 
that lim^oo \Vi - V\       = 0. Define 

for all V G S?'1 by 

(3.1) cr^ (V) = supe(y) (limsup^oo ^ (VJ)) 

Remark 3.1. This definition is the point of departure of our proof from the 
argument in §25 of [HI]. 

Definition 3.2. If {M™, gi (0), O^, Fi} is a sequence of complete manifolds, 
its set of ray-like directions is 

^-oo = V^   (OO) . 

In  contrast  with  the  sets  a~l (oo),   the  set  cr^1 (oo)   will certainly  be 
nonempty. 
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Lemma 3.3. If {Mf, gi (0), O^, i^} is any sequence such that 

diam(A^f,^(0)) -)► oo 

as i —> oo, then TZQQ is nonempty. 

Proof It is a standard fact that each cr; is a continuous function on the 
compact set S™-1. For each i G N, choose Vi E S™"1 such that 

di (Vi) =    sup   cr; (V). 

Then because diam(.M£\#2 (0)) —)• oo, we have 

lim di (Vi) = oo. 
i—>oo 

A subsequence of Vi converges to some VOQ G 5]2-1. Clearly, (Too (VQQ) = oo, 
and hence V^ G T^oo- D 

Lemma 3.4. If {M™,gi (0), O^, i^} is any sequence such that 

diam(.Mf,#; (0)) -> oo 

as i —>• oo, tiien T^QQ is compact. 

Proof Since T^QQ C tSf-1, it will suffice to show that TZQQ is closed. So let 
{Va : a G N} be a sequence from Koo such that lim^oo Va = V00 G Sf-1 

exists. Then by definition of T^oo there is for every a a sequence {Vf* : i G N} 
of unit vectors such that 

lim V? = Va       and lim ^ (^a) = oo. 
z—>-oo i—>oo 

Observe that we can choose i (a) > a for all a such that 

% - v"    <7;    and    ai(-) (%) > «■ 

Then 
lim K? x = lim Va = V00 

rv—voo     *VU/ rv—voo 

and 

Hence F00 6 T^oo- □ 
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Remark 3.5. The reader may wish to contrast TZQQ with the set V of dis- 
tinguished directions defined in [HI] as 

V = ££(oo), 

where £00 : <5"_1 —> [0,00] is defined by 

^ {V) = lim at (Vj). 
2->00 

It is claimed there that this limit is independent of the sequence Vi —> V. 
In contrast, our proof does not rely on such a property of independence of 
sequence. 

Remark 3.6 (Tilting frames). Without the bump-like origins condition 
in Definition 2.2, it is not necessarily true that the distance with respect 
to gi (0) from Oi to the cut locus in a direction V E HQO 

can be made 
arbitrarily large by going far enough out in the sequence. This is illustrated 
by the following example: for i = 1,2,..., let 

(Mlgi)=Sl/ixR, 

where 
Sl/i = {(x,y)eR2:x2 + y2 = l/i2}. 

It is not important that the manifolds Mi are not compact, since once can 
replace the Mi by tori of various lengths. Regard each Mi as a submanifold 
of E3 with coordinates (rz;,y,^), and take the origins to be Oi = (0, l/i,0). 
(Actually, any sequence of points in Mi will do.) Given any positive real 
number A, define the tilted frame ^ = {e^e^} at Oi by rotating the stan- 
dard frame 

^={ei = (0,0,l),e2 = (1,0,0)} 

clockwise by an angle of arctan (n/iX). Using /; to identify R2 with T^Mi, 
we have Jr1 (ei) = (1,0) G M2. Hence 

so that 

ai ((1,0)) = at (/ri (ei)) = y/Xt + ny?, 

lim at ((1,0)) = A. 

On the other hand 

^ fo1 (ei)) = oo. 
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lambda 

Tilted frames in collapsing cylinders: the geodesic 
minimizes up to approximately distance lambda. 

lambda 

The geodesic lifted to the universal cover. 

Since lim^ooi^ 1 (ei) = (1,0), this implies that 

<Too((l,0))=OO. 

Observe in particular that 

lim^ ((1,0)) ^aoo ((1,0)) 

pi / i 

Remark 3.7. If V G fcoo, it is true that we can find arbitrarily long mini- 
mizing geodesies in directions arbitrarily close to V. In particular, V G S™" 
belongs to Koo if and only if there is a sequence {Vj} from S?~1 such that 
lim^oo \Vi - V\ 

Qc&n 
0 and lim^oo &{ (Vi) = oo. 

Remark 3.8. A priori, our definition allows TZoo to become smaller each 
time we pass to a subsequence. We shall deal with this issue carefully in the 
sequel. 

4. Finding large balls of positive curvature. 

Our proof of Theorem 2.3 requires us to show that the curvature can be made 
positive in arbitrarily large neighborhoods of the origin by going sufficiently 
far out in the sequence.    The key to this result is the strong maximum 
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principle of [H6], which lets us pass from purely local results to results that 
hold on arbitrarily large sets. Because this part of our argument is essentially 
the same as the construction in §25 of [HI], we shall omit or merely outline 
most proofs. 

4.1. Preconvergence in geodesic tubes. 

To begin, we recall the procedure of taking limits of the pullback metrics 
in geodesic tubes, where one can avoid the need for an injectivity radius 
estimate for the sequence {M™, gi (t), O^, Fi}. 

If 7 : (—L,L) -> (Mn^g) is a unit-speed geodesic, we denote its normal 
bundle by 

N7 = {Vej*(TM):(V,'y)=0}. 

Note that Nj is a rank n — 1 vector bundle over (—L, L). Define $ : Ny —> M 
by 

Now let F = {ei,..., en} be any orthonormal frame at 7 (0) with ei = 7. 
Taking the pullback of F and parallel translating it along 7, we obtain 
a orthonormal basis in each fiber of iV^, which we continue to denote by 
{e2,..., en}. Denoting the open ball of radius r > 0 centered at 0 G En-1 

by S(0,r), we define the cylinder T^ = (-L,L) x JB(0,r) and a map Lp : 
TL,r -> iV7 by 

iF : (t;1, ^2,...,^) ^ (TK) ,EL2^(^i)) , 

where (v1, v2,..., vn) are the natural Euclidean coordinates in T^. 
The following two results are well known; their proofs are virtually iden- 

tical to those of corresponding results for exponential coordinates. 

Lemma 4.1. If — 1 < sect (g) < 1, there exists p > 0 depending only on n 
such that the map 

is an immersion for every geodesic 7 : (—L,L) —> M, every orthonormal 
frame F = {7 = ei, 62,..., en} at 7 (0), and every L > 0. 

Lemma 4.2. Suppose -1 < sect (g) < 1. If 6 denotes the Euclidean metric 
on TL^P and h is the pullback metric 

h =F ^Lflpfr 
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then there exist constants 0 < c < C < oo depending only on n such that 

(4.1) cS<h<C5. 

Moreover, if there are constants Ck such that 

V^Rm <Ck 
9 

for all k e N, then there exist C'k = C^ (Co,..., Ck) such that 

Qk 
(4.2) „  .        „  .   ft S^ai . . . Qv<xk 

<c'k. 
6 

Now let {Mf iQi (t) ,Oi,Fi} be a sequence having uniformly bounded 
geometry.      For  each  A   G   O (n)   and  L   >   0,   there  is  a  sequence 

[TL,2P, ^AF^LfipiSii^))) 0f geodesic tubes extending in the direction de- 
termined by the frame AFi obtained from the natural action of Aon Fi. Let 
{Aa : a G N} be a countable dense set in the compact Lie group O (n), and 
let {Lp : (5 G N} be a sequence of positive real numbers with Lp /* oo as 
/? -> oo. 

Lemma 4.3. There exists a subsequence {M™, gi (t) ,Oi,Fi} such that for 
all a, ft G N, the geodesic tube 

\TLfi92p,   VXtFuLpfipiaiit))) 

converges as i -> oo uniformly in each Ck norm to a solution 

[TLP,2P, h^aiLpi2p(t)j 

of the Ricci Sow for t G (a, a;). 

Proof By Lemma 4.2, ^ajpf r* n (ft (£)) is a sequence of solutions of the 
Ricci flow on T^,^ such that the pullback metrics satisfy (4.1) and (4.2) 
uniformly in i G N and t G (a,a;). Thus the result follows from Arzela- 
Ascoli by consecutive diagonalization arguments. □ 

Since Lp —> oo, we have as an immediate consequence: 

Corollary 4.4. There exists a subsequence {Mf ,ft (i), O^i^} such that 
for aii a G N and all L > 0, the geodesic tube 

{TL,2/>,**AaFi,L&(9i(t))) 
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converges as i —> oo uniformiy in each Ck norm, to a solution 

(TL,2p,  ^Aa,L,2pW) 

of the Ricci flow for t G (a, a;). 

From this, one can obtain a subsequence that converges in any geodesic 
tube of any finite length. 

Definition 4.5. A sequence {M™,gi (t) ,0^,^} that has uniformly 
bounded geometry is said to be preconvergent in geodesic tubes if for 
all A G O (n) and L > 0, the geodesic tube 

converges as i —> oo uniformly in each Ck norm to a solution 

{TL,P, h%LtP(t)) 

of the Ricci flow for t G (a, u). 

Lemma 4.6. Any sequence having uniformly bounded geometry contains a 
subsequence that is preconvergent in geodesic tubes. 

Proof Given A G O (n) and L > 0, consider ^AFi,L,p ' TL,P -> {Mi.gi (t)). 
Choose a sequence Aa such that Aa —V A as a —> oo in some (hence any) 
norm on O (n). By standard covering-space theory, there exists a' = a' (L, p) 
independent of i such that for all a > ol there exists a smooth em- 
bedding f,ajLjp : TL^ -> T2L,2p such that ^AaFi^L^ 0 la^p = ^AF^L^- 

Note that all derivatives of ^a,L,/9 are bounded uniformly with respect to 
a. Note too that as a —> oo, the maps ^a,L,p converge uniformly in 
each Ck norm to the inclusion map ij,^ : T^p -* T2L,2p that is de- 
fined so that  *AFi,2L,2p 0 ^L,p   =   ^AF^L^.     So as a   -*   oo,  we have 

(^,p, ^^.L.pCaW)) "> (rL.p, ^AF^L.pCft (*))) uniformly in each Ck 

norm. Since this convergence is independent of i, a routine diagonalization 
argument completes the proof. □ 

Remark 4.7. The solutions \TL,P, ^A,L,p(*)) obtained by this construction 
are not complete. 
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4.2. Preconvergence in distance. 

The distance function in each geodesic tube gives an upper bound for the 
distance function in the original geometry. This fact ensures that any se- 
quence that is preconvergent in geodesic tubes contains a subsequence that 
is preconvergent in distance, namely a subsequence such that the limit 

doo (X, Y) = lim [di (exp0i {h (X)), exp0i (/,- {¥)))) 

exists for all X, Y G E, where di denotes the distance function induced on the 
manifold M^ by the Riemannian metric #i(0). Preconvergence in distance 
is a stability property; it ensures, for instance, that the distance to the cut 
locus in a particular direction is not going to infinity along one subsequence 
while remaining uniformly bounded along another subsequence. However, 
the methods we develop in § 6 — in particular, covering T^oo by a finite e-net 
of directions for which the lim sup in Definition (3.1) is attained as a limit — 
make it unnecessary to use this property. Consequently, we omit the proof. 

4.3. Preconvergence to positive curvature. 

Notation 4.8. If x G .Mf, we denote the open gi (O)-ball of radius r > 0 
centered at x by 

Bi {x,r) = {y G M% : * (a?,y) < r} 

and the corresponding closed ball by 

Bi(a;,r) = {yG^f?:di(a;,y)<r}- 

We denote by di the distance function induced on M^ by the metric gi (0). 

Definition 4.9. We say a sequence {.Mf ,gi (t) ,0;,^} with almost non- 
negative curvature operators is preconverging to positive curvature if 
for each L > 0 there are some rj (L) > 0 and L (L) G N such that 

Ai(Rmi)(a;,0) > TJ 

for alH > L and all x G Bi (Oj, L). 

Proposition 4.10. Any sequence with almost nonnegative curvature oper- 
ators contains a subsequence that is preconverging to positive curvature. 
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Proof Since the result is equivalent to Lemma 25.2 of [HI], we shall merely 
sketch the proof. By Lemma 4.6, we first pass to a subsequence that is 
preconvergent in geodesic tubes. If the proposition is false, there is some L G 
(0, oc) such that for all 77 > 0 and each io € N, we have Ai (Rm^) (a;, 0) < 77 
for some i > IQ and some x G Si (O^L). One can then argue that there 
exists a further subsequence such that 

Ai(Rmi)(expOi(^),0)->0 

as i -> 00, where If1 (Vj) converges to some V^ G W1 with 0 < (Fool < L. 
Now preconvergence in geodesic tubes ensures that the subsequence to which 
we have passed has the property that 

(T2L)P, ^,2^^ (*))) ">■ (T2L,P, h%2L}P(t)), 

where A £ O (n) is chosen such that the geodesic tube lies in the direction 
Voof IVool- It follows that 

A1(Rm(/lX2L>p(0)))(|^oc|,0)=0. 

Because assumption (1) implies that Rm (h^L^ (0)) - 0? we may then 
apply the strong maximum principle in the form proved in [H6] to conclude 
that 

Ai(lUn(/i2;2LjP(0)))(0,ff)=0. 

But this is possible only if Ai f Rm (^AFi^L.p (5* (0))) ) f0' ^j -> 0 as i -^ 00, 
which contradicts assumption (3), because 

Ai (Rm (nFii2LiP (9i (0)))) (0,0) = A! (Rnii) (O,, 0) > e > 0. 

The contradiction proves the proposition. □ 

5. Mimicking the sublevel sets of a Busemann function. 

If (Mn, g) is a complete noncompact manifold of positive sectional curvature 
bounded above by n < oo, then Gromoll and Meyer [GM] proved that its 
injectivity radius can be bounded below by Tr/y^. One way to prove this 
is to fix an origin O G Mn, use the rays emanating from O to construct a 
Busemann function associated to that origin, use that Busemann function 
to construct a totally convex neighborhood N of O, and then use a second 
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variation argument along rays to rule out short geodesies in the neighborhood 
N. (See Greene [G] for a survey of noncompact manifolds with nonnegative 
curvature.) 

Following Hamilton, we want to mimic this construction along a sequence 
{MfiQi (t) ,OiiFi} that is preconverging to positive curvature. Since we 
may only have ray-like directions in general, we need a substitute for the 
Busemann construction. 

Notation 5.1. We shall henceforth identify V G W1 with 1; (V) G To^M 
and vice versa, using the canonical isometrics 

li : (R^^can) -» (TotMugiOitO)). 

As a substitute for the sublevel sets of a Busemann function, we define 

(5.1) 

Ni(L,K) 

exp0. (tW) 

W e S?'1 and t G [0, a* (W)] \ {oo} are such that   > 

for every V G 5J1"1 with a* (V) > L, 

all r G [0, di (V)] \ {oo} , and all s G [0, t], we have 

di {exPOi (rV) 5 ^POi (sW)) >r-K 

The corresponding sets in §25 of [HI] are constructed using those V for which 
^oo (V) = oo. But for our proof, it is important to allow V such that cr; (V) 
is large but finite. 

Notice that each Ni(L,K) is weakly star shaped with respect to Of. 
namely, exp0. (tW) G Ni (L, K) implies that exp0. (sW) G Ni (L, K) for all 
0 < s < t. It will be useful to collect a few more elementary observations 
about the sets Ni (L, K). 

Lemma 5.2. Ni (L, K) contains the closed ball of radius min{7r, K}: 

Bi(Oi,mm{7r,K}) C Ni{L,K). 
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Proof By assumption (1), there are no conjugate points of O; in Bi (Oj,7r). 
So if x € Bi(Oi,imn{7r)JK'}), there exist W G S^1 and t € [0,<ri(W)] 
such that x = exp0. (tW). Then for any V G .S?-1 with ^ (V) > L, all 
r € [O.fft (V)] \ {oo},' and all 5 G [0,*], the triangle inequality yields 

r = di(Oi,exp0. (rV)) 

< di [Ouexpoi (sW)) + di (exPOi {sW),exp0. {rV)) 

= s + di (exp0. (aW), exp0. (rV)) 

< K + di (exp0. (sW) ,exp0. (rV)). 

The inequality on the last line holds because s < t = di (Oj, x) < min {vr, K}. 

a 

Lemma 5.3. If exp0. (tW) 6 JVi (L, JK"), then for aJi V G S?-1 such that 

cri (V) > L, all r G [0, at (F)] \ {oo}, and all s G [0, t], we have 

di (Ou exp0. (sW)) <K + 2-di (exp0. (aW), exp0. (rV)). 

Proo/ By the triangle inequality, 

di (0i,expo. (rV)) > dk (Oi,exp0i (sW)) - di (exp0. (rV) ,exp0. (aW)) . 

So because exp0. (tW) G ATj (L, K), we have 

^ (0i,expo. sW) - di (exp0. (rF) ,exp0. (aW)) 

<di(Oi,exp0.{rV))=r 

<K + di (exp0. (rV) ,exp0. (aW)) , 

and hence d* (Oi,exp0. (aW)) < K + 2 • di (exp0. (rV), exp0. (sW)).        D 

Corollary 5.4. AT, (L, K) is contained in the closed ball of radius 
maxjL, K}: 

Ni (L, K) C Bi (Oi, max {L, K}). 

Proof If exp0. (tW) G JVi (L.K") and di (Oi,exp0. {tW)) > L, apply Lemma 
5.3 with V = W and r = a = t to get dj (Oi, exp0. (tW)) <K. D 

Lemma 5.5. Each Ni (L, K) is compact. 

Proof By Corollary 5.4, it suffices to show that each iVj (L, K) is closed. Let 

{xa = exp0. (taWa) : a G N} C iVi (L, K) 
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be a sequence such that lima_>00 xa = x G M7-; exists. Then 

lim ta = t E [0, max {L, K}] 
a—>-oo 

and 
lim Wa = We S7?-1 

a—too 

exist also. Since t^ G [0, (Jj (WQ)] for all a, the continuity of o^ implies that 
^[07^(W)]. 

Now let V G 5J1"1 with ai {V) > L, r G [0, a* (F)] \ {oo}, and 5 G [0, t] 
be given. Choose sa G [0, ta] such that limo^oo 5a = 5. Then for any e > 0, 
there exists >1 < oo such that for all a > A we have 

|* (expo, {rV) ,exp0. (sW)) - dj (exp0. (rF) ,exp0. (5aWa))| < e. 

Since exp0. (taWQ) G Ni (L,K) for each a, this implies that 

di (exPOi (rV)»exPOi (5^)) > r - K - e. 

Since £ > 0 was arbitrary, we see that a; = exp0. (tW) G iVi (L, if). □ 

6. The boundedness property. 

What is not obvious is the fact that the Ni (L, K) can be uniformly bounded. 
That is the content of the following crucial result: 

Proposition 6.1 (Boundedness property). Any sequence preconverg- 
ing to positive curvature contains a subsequence for which there exists a 
constant C < oo depending on K such that for each L G (0, oo), there exists 
I(L) such that for alii > I(L), we have 

NiiL^CBiiOuC). 

The proof of the proposition has two main steps. The first step is to 
observe that by passing to a subsequence, we can in a sense replace TZQO by a 
finite £-net of directions for which the lim sup in Definition (3.1) is attained 
as a limit. We have already observed in Remark 3.8 that T^QQ can become 
smaller each time we pass to a subsequence. But the special subsequence 
we are about to construct has the property that the finitely many directions 
composing an e-net in T^oo are stable under the action of passing to further 
subsequences. 
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Lemma 6.2. Let e > 0 be given, and let {M^Qi (t) ,Oi,Fi : i £ N} be a 
sequence that is preconverging to positive curvature. Then there exists a 
finite set of directions from IZoo, say 

such that 
A 

KooC \jB9^(Va,e). 
a=l 

And there exists for each a = 1,..., A, a particular sequence < V!* : j G N^ 

witii lim^oo V? = Va such that along a subsequence 

{M?,,^(0),Oi,,i^ :jeN}, 

we have 
lim (Ti   (Vl?) = (Too (F") = oo 

for all a = 1,..., A. 

Proof   Denote by 7^^ the set of ray-like directions corresponding to the 
original sequence 

Then 7^ ^ 0 by Lemma 3.3. Choose V1 G 71^, and pass to a subsequence 

^i ^ {-Miiuysmd) (*) .^(uj.^dj): iG N} 

along which O-QO (V1) = oo is attained as the limit 

lim    ai(1 fiV} = croo (y1) = oo 

for some sequence Vj- —> V1. 
Denote by IZ^ C 72,^ the set of ray-like directions corresponding to the 

subsequence 9Jli. Then TZ^ ^ 0 by Lemma 3.3. If 

stop. Otherwise choose 
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and pass to a subsequence 

^2 4= {M^yg^j) (t) ,0,(2J>^(2J) : j e N} 

along which O-QO (V2) = oo is attained as the limit 

lim     (Ti(2j)V} = (Joo {V2) = oo 

for some sequence V? -+V2. 
In general, denote by ^ C K^1 C • • • C ^ the set of ray-like 

directions corresponding to the subsequence S[)Ta. Then Tt^ ^ 0 by Lemma 
3.3. If 

a 

^cU5flcan(^,e) 

stop. Otherwise choose 

v^en%\ U^can(^,£), 
3=1 

and pass to a subsequence 

2tta+l =? {^(a+ljj'^a+lj) (*) ' 0z(a+l,j)' ^(a+l,j) : J G N} 

along which O-QO (V0^1) = oo is attained as the limit 

lim      ai(Q+1)j)F/+1 = ^ (F^1) = oo 
z(a+l,j)->oo     v       ''/y   ^ 

for some sequence V^+1 -> yQ:+1. Since each TZ^ is contained in 7^ C S™'1 

and S™"   is compact, this process must eventually terminate. □ 

Notation 6.3. Henceforth we shall denote the subsequence whose existence 
is ensured by Lemma 6.2 simply by 

{A4?,«7i(*),0<,Fi:»6N}. 

To facilitate the final step of the proof of Proposition 6.1, we fix a length 
scale A at which to compare distance. To motivate our choice, consider an 
isosceles triangle A that is symmetric about an angle 9 < OQ < 7r/3. If 
A is embedded in Euclidean space and has side lengths k,l,l, then k < 
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^\/2(l - cosflo)- In particular, given K E (0,oo), we choose A depending 
only on K to be large enough that 

(6.1) A > 7== > 0. 
1 - 2^/2 (1 - cos |) 

Combined with the simple estimate in Lemma 5.3, this somewhat non- 
intuitive choice will let us argue to a contradiction below. 

Proof [Proof of the boundedness property] Suppose the statement is false. 
Then for every Cj = j G N, there exists some Lj G (0, oo) such that for 
every / (j) = / (Lj), there exists some i (j) > I (j) such that 

(Recall that Bi (a;,r) denotes the open ball with center x G Mf and radius 
r, measured with respect to the metric gi (0).) In particular, there exists for 
each j some Wj G 5^~1 such that 

(6-2) di(j) (0i(j)>exPoi(i) Uwi(j))) = i 

and 

(6.3) expo^O-W^eiV^)^,^). 

Notice that Wj G Mn is being identified with 

We may assume without loss of generality that 

Lj+i ^ Lj + 1 

for all j G N, since if L* < L* then 

NiiL^^CNiiL^K) 

for all i G N and K > 0. 
We now show how to choose the I {j). Let e G (0,7r/24) be given. Then 

by Lemma 6.2, there exists a finite set of ray-like directions 

{yQ:a = l,...,yl}C7eoo 
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such that 

ftooC [JBgcan(Va,e); 
a=l 

and there exist particular sequences {V®} such that for each a = 1,..., A 
we have 

(6.4) lim V" = Va 

i—>oo 

and 

(6.5) lim en {V?) = oo. 
i—>oo 

For each j G N, first choose /' (j) so large that if i > I' (j), we have 

for all a = 1,..., A- then choose / (j) > If (j) so large that if i > I (j), we 
have 

sect [gi (x, 0)] > 0 

for all x € Bi (O;, Sly). This is possible by Proposition 4.10. 
The construction just completed yields a subsequence 

{^0)>^)(0),Oi0);JPi0):iGN} 

along which (6.2) and (6.3) are satisfied for each i (j) > I {j). We next pass 
from this to a subsequence 

{Mi(m)>9iti(k)) (0), 0i(m)iFiti(k)) = fc € N| 

such that 

exists.   Denote by TZ^ the set of ray-like directions for this subsequence. 
Then it may be that IZ'^ C 71^. But by (6.4) and (6.5), we still have 

{Va:a = l,...,A}cn'(X>, 

and 
A 

KoCU^canO^e); 
a=l 
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moreover, for each a = 1,..., A, we also have 

nmF,?,W) = r> 

and 
fclhnai0W)(^W))=cx,. 

Observe that W^ € Tl'^, since we have 

ai{m) iWm) >3{k)^oo       as       k -»• oo 

by (6.2). In particular, there exists some a e I,...,A such that 

\Wo0-Va\gaa<e. 

To finish the proof, choose k so large that 

Lm > A 

and that 

and that 

and that 

Then we have 

Since 

and 

vium   v < e 
Pcan 

\wm-^\9c&a<e. 

<3e. wm - Vium 
9ca.n 

exPoi<Hk)) 0 (fc) • wm) G Ni(m) (Lj(khK) 

we may apply Lemma 5.3 with V = V^k)) an<i r = s = A to obtain the 
estimate 

A = di{m) (Oi(,-(fc)),expo.0(ib)) (AW^fc))) 

.< if + 2 • djy^)) (expoi0(fc)) (AWi(fc)) ,expo.0W) (A^.(fc)))) . 
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But since 

*tf(*)) (exPoi(jW) (AWJW) ,exPoiUW) (AV%m))) < 2A < 2ZrjW, 

any minimizing geodesic between 

expoium {A-Wm)     and    expo.0.(fc)) (A^.(fc))) 

must lie in B^j^)) (^i(i(fc)))3I'J(fc)), where the sectional curvature is non- 
negative. Hence the hinge version of the Toponogov comparison theorem 
(Theorem 2.2 (B) of [CE]) gives the estimate 

< Ay2(l-cos(3£)) < AW2 (l - cos |V 

Combining these two estimates yields A < K + 2Ay/2 (1 - cosvr/S), hence 

0 < A <     K < ^A 
1-^/8(1-0*1)      2 

by the choice we made in (6.1). This contradiction establishes the proposi- 
tion. □ 

7. Proof of the injectivity radius estimate. 

The remainder of our proof of Theorem 2.3 proceeds exactly like the analo- 
gous part of §25 of [HI]. But because the argument here uses our innovations 
(the sets Ni (L, if), for example) in an essential way, we shall give it in de- 
tail. To prepare for this, we introduce some notation and recall an important 
fact. 

Let (Mn^g) be any Riemannian manifold. 

Definition 7.1. If k G {1,2,... }, a proper geodesic fc-gon is a collection 

r = {7i:[0,4]->M:* = l,...,fc} 

of unit-speed geodesic paths between k pairwise distinct vertices pi £ M 
such that pi = ji (0) = ji-i (£i-i) for each z, where all indices are interpreted 
modulo k. The length of a proper geodesic fc-gon is L (T) = J2i=i L (7*)- We 



Hamilton's Injectivity Radius Estimate 1175 

say T is a nondegenerate proper geodesic ft-gon if Zp. (—71-1; 7*) 7^ 0 
for each i = 1,..., k; if k — 1, we interpret this to mean L (F) > 0. Finally, 
a (nondegenerate) geodesic fc-gon is a (nondegenerate) proper geodesic 
j-gon for some j = 1,..., A;. 

Now let iV C A'l71 be a nonempty subset, and let Q, denote the space 
of unit-speed nondegenerate geodesic 1-gons contained in N. Let L : fi —> 
[0,oo) denote the length function, and define A : fi -> Sn~1M\N x [0,00) 
for all unit-speed nondegenerate geodesic 1-gons a by A (a) = (a (0), L (a)). 
The map A is injective and induces a topology on fi from the topology on 
Sn~~1M\N x [0,00). If N is compact, the set L~1 [0, K] C O is compact for 
every if G (0,00). If K is large enough so that L_1 [0, if] is nonempty, then 
there exists a nondegenerate geodesic 1-gon (3 G I/-1 [0, if] C fi of minimal 
length. Clearly, /3 is of minimal length among all nondegenerate geodesic 
1-gons contained in iV; in particular, we have L (/?) = infae£-i[o,K] L (a) = 
infaGnL(a). 

Proo/ [Proof of Theorem 2.3] Pass to a subsequence {M^gi (t) ,Oi,Fi : 
i G N} that is preconverging to positive curvature and has the boundedness 
property guaranteed by Proposition 6.1. Then there exists C < 00 such that 
for any L > 2 to be chosen later, there exists I' (L) such that 

NifaVCBiiOuC) 

for all i > I' (L). By Proposition 4.10, there exist I (L) > I' (L) and 7/ > 0 
such that for alH > / (L), we have 

(7.1) inf{sect(&(z,0)) : x G Bi (Oi,C + 2)} > rj. 

Suppose the theorem is false. Then there exists io such that 
inj^.(o) (Oi) < 1 for all i > io. So there exists for each i > io a non- 
degenerate geodesic 2-gon c^ based at Oi and of length < 2, hence con- 
tained in Bi{Oi,l). By Lemma 5.2, Bi(Oi,l) C iVi(L,l). So by a 
standard shortening argument, there exists for each i > io a nondegener- 
ate geodesic 1-gon ai based at Oi, contained in JVj (L, 1), and such that 
lengthy(0) ®i < lengthy(0) «« < 2. By Lemma 5.5, Ni(L,l) is compact. So 
there exists for each i > io a shortest element /% in the set of all nondegener- 
ate geodesic 1-gons contained in Ni (L, 1). Each /% is smooth except perhaps 
at its base /% (0) = fa (4), where 

li = lengthp.(o) A < lengthp.(o) fit < 2. 
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We first consider the (easier) case that there exists a subsequence for 
which ^i is smooth at /% (0) = /% (^). By Lemma 3.3, the set TZoo for this 
subsequence is nonempty. Hence definition (3.1) implies that for every L 
and every J £ N, there exists some i (I (L), J) > max {/ (L), J} and some 
Vi e SJ1-1 such that ^ (VJ) > L. Let 

yi = exp0. (LVi), 

and define 

Si = di{yi,Pi)- 

Since ^ C iVf (L, 1) is compact, there are Wi E S™"1 and ti G 
[0, o-i (W^)] \ {oo} such that 

Xi = exp0. (iiWi) G Pi 

is the point on pi closest to y^, so that di {x^yy) = 5i. Since ^ G A^ (L, 1), 
the definition of iVj (L, 1) implies that 

Si = di (xi, yi) > L - 1 > 1. 

Let 72 be a minimal unit-speed geodesic from Xi to yi. Note in particular 
that lengthy.(o) Ji = Si > 1 and that 

(7-2) -nl^cBiiO^C + l). 

Since Pi is smooth, we can apply the first variation formula to conclude that 
Pi _L ji at Xi, where Pi^ji denote the unit tangent vectors of Pi^i respec- 
tively. Let Xi be the unit vector field that results from parallel translation 
of Pi along ji from x^ and define the cutoff function 

/«(«) = { 1 if   0 < s < 1 
(Si-s)/(Si-l)   if   KsKSi' 

Then the minimality of 7$ implies that the second-variation index form X in 
the direction f^Xi is nonnegative: 

0 < 1 = 1 (fiXi, fiXi) = I (lV^. {hXi)? - (R (% fiXt) (ftXi), 7<>) ds. 

But (7.1) and (7.2) imply that all sectional curvatures are bounded below by 
77 > 0 along 7i|ro i]- And assumption (1) implies that all sectional curvatures 
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are bounded below by — Si /* 0 throughout Mf. Hence we can estimate 

I = - J  (RiJi,Xi) Xi, ji) ds + j ' ((d/i (Ti))2 - /? {R(7i,^i) Jfi,7i>) ds 

Now choose L so large that Si > L — 1 satisfies 1/ (Si — 1) < 77/3. Then 
choose J so large that for all i > J, we have <^ (5 — 1) < 77. Thus for 
i = i (I (L), J), we get X < -r?/3 < 0. This contradicts the minimality of 7; 
and proves the theorem in this case. 

Now we consider the case that there exists h > io such that /% fails to 
be smooth at /Si (0) = /% (li) for all i > h. It is a standard fact that for any 
complete Riemannian manifold (Mn,g) with sectional curvatures bounded 
above by n > 0, any points p, g G .M™, any geodesic path 7 from p to g of 
length less than TT/^/K, and any points p, <? sufficiently near p, g respectively, 
there exists a unique geodesic 7 from pto q that is close to 7. Consider a vari- 
ation moving /% (4) in the direction fy (0) and observe that the first variation 

in this direction is strictly negative: //% (li), fa (0) \ - (/% (0), /% (0) y < 0. 

Now we have sect (gi (0)) < 1 by assumption (1), and lengthy^ fa = ^ < 1 
by hypothesis. It follows that there exists a nondegenerate geodesic 1-gon 
fa with 

lengthy(0) fa < lengthy(0) fa, 

and such that 
fa (0) efacNi (L, 1) 

and 

fa may not be smooth at its base fa (0) either, but it is smooth everywhere 
else. 

By our choice of fa, it must be that fa does not lie entirely in Ni (L, 1). 
Hence there must exist a point Zi on fa but not in Ni (L, 1). Choose Wi E 
Sf-1 and ti E [0,^ (Wi)] \ {00} such that 

Zi = exp0i (UWi) E fa\Ni (L, 1). 

By definition of Ni (L, 1), there exist some Vi E 5]2-1 with a^ (Vi) > L, some 
H £ [0, cr^ (Vi)] \ {00}, and some 5$ E [0, tj] such that 

(7.3) di (exp0. (nVi) ,exp0. (sjWi)) < n - 1. 
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Define 
yi == exp0. (LVi), 

and let Q denote the geodesic 

Ci : [0, U] -> M?, Ci'r^ exp0. (rWi). 

We claim that Zi = Q (U) 1S the point on Q closest to y^. To see this, first 
note that the closest point is not Oi = £2- (0), since (7.3) implies that 

di (yu d (si)) < di (yi, exp0. (n^)) + d* (exp0. (nVi), Ci (si)) 

(7.4) < (L - n) + {n -i) = di (w, Oi) - l. 

If the closest point is an interior point, say Cz (TZ) for some Tj E (0, tj), let ^ 
be a minimal geodesic from Ci (TJ) to j/j. Because Zi e fy C Bi (Oz-, C + 1), 
and all sectional curvatures are bounded below by rj > 0 in Bi (Oi, C + 2), 
a second variation argument (like the one above) along Ci will yield a con- 
traction. This proves that the closest point to yi on Ci cannot be an interior 
point. Hence the only possibility is that the closest point to yi along Ci is 
its other endpoint zi = Ci(^i)- This proves the claim. (Note that apply- 
ing this argument along segments proves the stronger fact that the function 
r »-> di (yi,Ci (T)) is monotone decreasing for r G [0,ij].) 

By the claim and (7.4), we have 

di (yu ^i) < di (yu Ci (si)) < L - 1. 

But since /% (0) G Ni (L, 1), we have 

*(w,A(0)) >L-1. 

Hence the closest point to yi on /% is not its base $i (0). In particular, /% is 
smooth at its closest point to yi. So we can construct a length-minimizing 
geodesic ji from /% to yi and apply a second variation argument along it, 
exactly as in the first case. Because TiLi] C Bi (Oi,C + 2), where the 
sectional curvatures are bounded from below by 77 > 0, this argument leads 
to a contradiction, just as before. This finishes the proof. □ 
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