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We consider an asymptotically flat Riemannian spin manifold of 
positive scalar curvature. An inequality is derived which bounds 
the Riemann tensor in terms of the total mass and quantifies in 
which sense curvature must become small when the total mass 
tends to zero. 

1. Introduction. 

Suppose that (Mn,g) is an asymptotically flat Riemannian spin manifold of 
positive scalar curvature. The positive mass theorem [1, 2, 3] states that 
the total mass of the manifold is always positive, and is zero if and only if 
the manifold is flat. This result suggests that there should be an inequality 
which bounds the Riemann tensor in terms of the total mass and implies 
that curvature must become small when the total mass tends to zero. In [4] 
such curvature estimates were derived in the context of General Relativity 
for 3-manifolds being hypersurfaces in a Lorentzian manifold. In the present 
paper, we study the problem more generally on a Riemannian manifold of 
dimension n > 3. Our curvature estimates then give a quantitative relation 
between the local geometry and global properties of the manifold. 

The main difficulty in higher dimensions is to bound the Weyl tensor 
(which for n = 3 vanishes identically). Our basic strategy for controlling the 
Weyl tensor can be understood from the following simple consideration. The 
existence of a parallel spinor in an open set U C M implies that the manifold 
is Ricci flat in U. Thus it is reasonable that by getting suitable estimates for 
the derivatives of a spinor, one can bound all components of the Ricci tensor. 
This method is used in [4], where a solution of the Dirac equation is analyzed 
using the Weitzenbock formula. But the local existence of a parallel spinor 
does not imply that the Weyl tensor vanishes. This is the underlying reason 
why in dimension n > 3, our estimates cannot be obtained by looking at 
one spinor, but we must consider a family (V*2)^! 2^/2] 0^ solutions of the 
Dirac equation. Out of these solutions we form the so-called spinor operator 
Px.  The curvature tensor can be bounded in terms of suitable derivatives 
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of Px, and an integration-by-parts argument, the Weitzenbock formula, and 
a-priori estimates for the spinor operator give the desired result. 

We now give the precise statement of our result. For simplicity, we con- 
sider only one asymptotically flat end. The following definition immediately 
generalizes that used in [4]; for a slightly more general definition see [3]. 

Definition 1.1. A Riemannian manifold (Mn^g)) n > 37 is said to be 
asymptotically flat if there is a compact set K C M and a diffeomorphism 
$ which maps M \ K to the region R71 \ Bro(0) outside a ball of radius TQ. 

Under this diffeomorphism, the metric should be of the form 

(**g)ij = Sij + 0(r2-n) ,    a*(**0)y = Oir1-71) ,    du^ij = Oir-") . 

Furthermore, scalar curvature should be in L1(M). 

For an asymptotically flat manifold the total mass m is defined by 

(1.1) m =  -/- lim  f (dji^ghj-dii^^dW, 
c(n) P^OO JSp 

where c(n) > 0 is a normalization constant (which can be chosen arbitrarily), 
dfi is the volume form on the sphere Sp C Mn of radius p, and dSl1 denotes the 
product of dfi by the i-th component of the normal vector of Sp. As shown 
in [3], this definition is independent of the choice of $. For our estimates, 
we also need the isoperimetric constant k given by 

A 
k = inf 

v^ ' 
where the infimum is taken over all smooth regions D, V is the n-volume of 
D, and A is the (n — l)-volume of the boundary of D. 

Theorem 1.2. Let Mn be an asymptotically Hat Riemannian spin manifold 
of positive scalar curvature. Then there are positive constants ci, C2, and cs 
depending only on n as well as a set D with 

(«) m s (*?)* 
such that for all positive 77 £ C00{M) with supM(|r/| + iVr/j) < 00 the fol- 
lowing inequality holds, 

I       r)\R\2diJL < mci sup{\r)R\ + |Ar/|) + Vmc2 \\v Vi2||2 . 
JM\D M 

Here R is the Riemann tensor, m the total mass, and k the isoperimetric 
constant, \\ • ||2 denotes the L2-Norm on M. 
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One application of the above theorem is to a continuous family (MX)A>O 

of manifolds (e.g. obtained by a flow of the metric). If \imx^00m(X) = 0, 
supM \R\ and || VJR||2 are uniformly bounded, and the isoperimetric constant 
is bounded away from zero, then our theorem implies that the Riemann 
tensor converges to zero pointwise almost everywhere, and thus the manifold 
becomes flat. For other applications see [4]. 

2. Spinors, the Dirac Equation. 

In this section we recall some basic facts concerning spinors and the Dirac 
equation; for details see [6, 7, 3]. Let (Mn,g) be an n-dimensional (oriented) 
Riemannian spin manifold with spin structure Q and spinor bundle 

S = Q Xspin(n) ^n ? 

which is associated with Q by the spinor representation An. As a vector 
space, An is equal to C^, iV — 2^n/2^. The canonical Hermitian product on 
An defines a complex scalar product (•, •) on S. We denote the real part 
of this scalar product by (•,•). The Levi-Civita connection V on (Mn,g) 
induces a covariant derivative in S called spinor derivative, which we denote 
again by V. The spinor derivative is compatible with (■,■), i.e. 

X(<P,1>) = (Vx<P,il>) + (<P,Vxil>) 

for all sections (p,ijj in S and all vector fields X on M. Its curvature tensor 

(2.1) RS(X, Y) = VXVY - Vy Vx - V[XtY] 

is given locally by 

(2.2) RS{X, Y) $ = i J2 R(X' ^ s"' SP)S<* ■ SP ■ ^ 
a,/3=l 

where si,..., sn is a local orthonormal frame on (Mn, #), i? is the Rieman- 
nian curvature tensor of (Mn,g) and "•" denotes Clifford multiplication of a 
spinor by a vector. The Clifford multiplication satisfies the anti-commutation 
relations 

(2.3) X-Y-^ + Y-X'^ = -2g(X, Y) ijj 

and is anti-Hermitian, 

{X'ip^) + (iP,X^) = Q. 
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The Dirac operator D on (Mn, g) is the composition of the spinor deriva- 
tive V : r(5) —> T(TM ® S) and the Clifford multiplication, i.e. locally 

n 
D = Yl s<* •v^ • 

The square D2 of the Dirac operator satisfies the Weitzenbock formula 

(2.4) D2 = As + - , 
4 

where As = - Yla=i(VsaVSa + (divsa)VSa) denotes the Bochner-Laplace 
operator with respect to the spinor derivative and r is the scalar curvature 
of(Mn,g). 

Now assume furthermore that M is asymptotically flat and has positive 
scalar curvature. In the coordinates induced by the diffeomorphism $ of 
Definition 1.1, we choose a constant spinor ^o and consider the boundary 
problem 

(2.5) DV = 0   , lim  il>(x) = Vo • 
|x|^oo 

It is shown in [3] that this boundary problem has a unique weak solution 
I/J. Using the asymptotic form of the metric in Definition 1.1 and elliptic 
regularity theory, it follows that ip is even smooth and decays at infinity like 

(2.6) V = V-o + 0(r2-n)   ,      dfeV = 0(rl-n)   ,      dk^ = ©(r"") . 

This solution of the Dirac equation can be used to prove the positive mass 
theorem [2, 3], as we now briefly outline. Consider the vector field 

(2.7) X = ^gradh/f. 

Using the Weitzenbock formula and the positivity of scalar curvature, we 
can estimate the divergence of X as follows, 

n 

divX  =  Y,sa(vSai,, v) = -(A5^, v) + |vvf 
a=l 

(2.8) =   I M2 + |VV|2 > |VV|2 • 

We introduce the balls Bp and spheres Sp of radius p > ro by p  aiiKx opiici. C;D  kjp 

^l Q     _   an (2.9) Dp = KU*-1(Bp(0)\Brom   , Sp = dD, 
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with $, ro, and K as in Definition 1.1, p > ro, and denote the outer normal 
on Sp by v. We integrate over Dp and apply Gauss' theorem, 

(2.10)        f g{X,v)dSp =   [   diY-Xdn >   [   |VV>N/i . 
JSp JDp JDp 

An asymptotic expansion near infinity [3] shows that as p —> oo, the left 
side of (2.10) can up to a constant be identified with the boundary integral 
in (1.1); more precisely, 

lim 4 /   g(X,v) dSp = c(n) |V>o|2 m 
P-*00   Js0 
p-^oo 

Hence in (2.10) we can take the limit p -^ oo to obtain 

(2.11) c(n)|^o|2m > 4 ||V^||! . 

This inequality shows that m > 0. If m = 0, (2.11) yields that for any ^o, 
there is a parallel spinor with lim^i^oo ^(x) = tpo, and this implies that the 
manifold is flat. 

The inequality (2.8) immediately gives an a-priori bound for the spinor, 
which will be very useful later on. Namely, (2.7) and (2.8) imply that 

A|V>|2 = -2 divX < 0. 

Thus l^l2 is sub-harmonic, and the maximum principle yields that for every 
solution of the boundary problem (2.5), 

(2.12) sup|^| <|^o|. 
M 

3. The Integration-by-Parts Argument. 

In this section we derive an L2-bo\ind for the second derivative of a solution 
of the Dirac equation (2.5). The argument is similar to that in dimension 
three [4]. We give it in some detail, using the formalism of orthonormal 
frames [6]. 

We define a vector field Y on M by 

y=igrad|VV|2. 
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Lemma 3.1. For any local orthonormal frame si,..., sn on M, 

divY   =   -(VA5V;,VV>) + |V2V>|2 

n 

+ ^  (2(Rs{sais0)VSa^Ws^) + ((VSaR
s)(sa,s^7Vs^) 

Proof: With respect to si,..., sn, the vector field Y is 
.. 71 71 

Let x be a point in M. For simplicity we choose si,..., sn such that V^Q, = 0 
in x for all a = 1,..., n. Then at sc, 

divY 
71 

71 

+(VSoV,jS^,VaaV,/9V)) 
n 

= Z ((VSa(V^VSttV + V[SQ,S/3]^ + ^(sa,ap)^),Vt^) 

71 

+(VSaJRi)(5Q,s/3)V + ^(sa,s^)VSaV-VSQVv,a^V',Vs^) 

71 

0=i 
71 

+ Z ((-V^(div5Q • VSaV) + 2Rs{s0l,sl})VSai> 
a,P 
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Therefore it remains to show that at x, 

n n 

(3.1)  Y, ( - V^divsa • V,^) - VSaVv^QV) = 2Ric(Sa,^)V,aV ■ 

Since the sa are orthonormal, 

-sp(dxvsa) 
n n n 

7=1 7=1 7=1 

and thus 

n n n 

a=l a,7=l /3,7=1 

On the other hand, using that Vs^sa(a;) = 0, 

Hence at a;, 

n 

2 (- v^(div5a • v5avO - V^Vv^Sa^) 
a=l 

n n 

a=l 
71 

53Ric(Sa,S/3)V5a'0 

Q;=l a=l 

a=l 

Corollary 3.2. For ^ a solution of (2.5) with \if)Q\ = 1 and r/ a positive 
smooth function with supM(|7?| + |Vr/|) < oo; 

/   77|V2V>|2d/i < mCi(n) sup(|f/iJ| + lAryl) + VmC2(n) ||f/ViJ||2 . 
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Proof: We multiply the result of Lemma 3.1 by 77 and integrate over the ball 
Dp, (2.9). Using Gauss' theorem and the definition of Y, 

J Dp J Sp   \ / 

-\ I   |V^|2-A77d/i +   I   r)(VAs<il;,Vijj)dfi 
2 JDp JDp 

-       vJ2  (2(i?5(5a,^)VSa^V5^) + ((V5ai?5)(5a,5/3)^Vs^) 

(3.2) +Ric(5a,^)(V5a^ V5/^)) dn . 

Taking the limit p —» 00, the integral over 5p tends to zero because of the 
asymptotic behavior of ^ (2.6). Furthermore, we can estimate the remaining 
terms in (3.2) according to 

n 

Y^ |2(JR
5(5a,5/3)VSQ^V5^)l 

1 n 

n 

J] |((VSQJRS)(SQ,^)V,VS/3V)I 

1 ^ 

<c2(n)|Vi?||V||V^| 

Y^ Ric(5Q,S/3)(VSaV,VS/3V) <C3(n)|JR||VV'|2 

|(VA5V,VV)|  =  £(vSa(Jv),v^)| 

<   C4(n)|ViJ| |V| |VV| + C5(n)|iJ| |VV|2. 
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with suitable constants ci,..., £4. We conclude that 

12 dDr 

^Z"   |vV|2|A»7|dI>r 

■+Ci(n) f   \vR\\^\2dDr + C2{n) [   ri\VR\\tl>\\Vil>\dDr 
JDr JDr 

^^llV^lllsuplAr?! 

+Ci(n)||W||i sup|T/fl|+ 02(^11^/2112 1^^12 sup |^| , 
M M 

and the assertion follows from (2.11) and (2.12). 

4. A-Priori Estimates for the Spinor Operator. 

We choose an orthonormal basis of constant spinors (^0)1=1,...,^? N = 2^2\ 
(^0) ^0) — ^'J 

and denote the corresponding solutions of the boundary prob- 
lem (2.5) by (V>*)i=i,...,jv- We define the spinor operator Px by 

N 

(4.1) Px :  SxJtf —> 5XM :  ^ «-»' J^^i, V-) V4 • 

Since at infinity the ^ go over to an orthonormal basis, 

lim  Px = 1 . 
|rr|—>co 

This section is concerned with a-priori estimates for the operator Px. In the 
following lemma, we use the maximum principle to derive upper bounds for 
I Px I, where | . | denotes the sup-norm. 

Lemma 4.1. \PX\ < 1 for all x e M. 

Proof: We define the matrix H by 

H = (/iy)t-=i>...,Ari=i,...,jv with hij = (^l
x^

J
x) . 

By definition, H is Hermitian and all eigenvalues of H are real and non- 
negative. Consider the spinor ip = X^ a^ with a = (au ..., aN)T e CN. 
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Then ^ is a solution of the boundary problem (2.5) with ^o = ]Ci=i at^o- 
By (2.12), 

AT iV 

Y^aiajhij  =  \^x\2  <  l^ol2  = X^ail2 

i,j=l z=l 

for all a; G M. Since a is arbitrary, all eigenvalues of H must be < 1. 
Let (f) be an arbitrary spinor at x and ^ its orthogonal projection to 
span {^* | i = 1,..., N}. Then ^ = Xlili ^^ and 

N 

IPxtl2   =    E^^)^5^)(^^)  = (Ha)TH(Ha) 

<    aTHa =  |V>x|2  -  |^|2 , 

where the first inequality uses that there is an orthonormal basis of C^ of 
eigenvectors of H and that all eigenvalues of if are non-negative and < 1. 
■ 

We next derive Sobolev estimates for the Hilbert-Schmidt norm || ■ || of the 
operator 1 — Px. 

Lemma 4.2.  There is a constant c depending only on the dimension n such 
that for any e > 0, 

(4.2) l|l-^||2  < e 

except on a set D(e) with 

(4.3) ,(«)  <  {^f 
Proof:   We set h(x) = \\1—PX\\

2. Choosing an orthonormal basis (0J
')J=I,...JJV 

of 5XM, the trace of Sx is computed as follows, 

N N N 

j=l ij=l i=l 

Similarly we obtain for /i, 

N N 

h(x)  = Tr(l-2PX + P2)  = N - 2^14) +  ^ |(4, ^>|2 , 
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and the gradient of h is computed to be 

N     n N     n 

i=l a=l i=l Q:=1 

The Schwarz inequality combined with Lemma 4.1 yield that 

\Vh\  < 8n^|V^| , 

and applying Holder's inequality, 

AT 

|V/i|2  < 64n2iV ^|V^| I vy ' 
2=1 

We now integrate over M and substitute in (2.11) to obtain 

\\Vh\\l  <  16n2N2c{n)m. 

The Sobolev inequality yields for some constant C(n), 

(4.4) k2 \\h\\2q < C ||Vfc||i with 9 = -^ , 

where fc is the isoperimetric constant of M (see Lemma 4.3 for the derivation 
of this inequality). Hence h < e except on a set D of small measure (4.3). 

For the reader not familiar with Sobolev inequalitities in non-compact 
Riemannian manifolds we now give the proof of inequality (4.4). 

Lemma 4.3. Let 0 < h E C00(M) with lim^^oo h(x) = 0 and q = 2n/(n - 
2). Then 

Q 

k q   <   I l|V/i||2 

Proof:   We define for u > 0 the sets 

Nu  = {x E M | /i(z) > u}    , 5W = aArw =' /i"1^) . 

Since lim^i^oo /i(a;) = 0, these sets are compact. Sard's lemma yields that, 
with the exception of u in a set of measure zero, Vh does not vanish on 
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Su, and so Su is a compact submanifold of M of codimension one. We 
denote the volume of Nu by Vu and the area of Su by Au. Also, ^5^ denotes 
the measure on 5^ corresponding to the induced Riemannian metric. The 
co-area formula yields that for any p > 0, 

r roo r poo 

(4.5) /   hp\Vh\dn = du       hpdSu = upAudu. 
JM JO        JSU JO 

Furthermore, we have the following estimates, 

(4-6) Vu   =    f   du <  i-   /   h« du < «-« ||^||9 
JNU ui JNU 

\\h\\«    =     f  hi du = q [   I ^ X v?-1 du] d^x 
JM JM \JO J 

(4.7) =   q [ diix f    duuq-l6(h(x)-u) , 
JM       JO 

where © is the Heaviside function Q(x) = 1 for x > 0 and @(x) = 0 oth- 
erwise. The integrand in (4.7) is positive, and thus we may commute the 
integrals according to Fubini's theorem, 

=    q /     duuQ Q(h{x) — u) diJLx 
Jo JM 

=    Q /     v?'1 Vudu = q        u**-1 Vu
n Vu 

n 

Jo Jo 
du 

The isoperimetric inequality bounds the factor Vu 
n from above by Au/k. 

The factor Vn, on the other hand, can be estimated with (4.6). We thus 
obtain the inequality 

a       9.   r00 
q
q  <  I \\hU J    ul Au du   . 

We finally substitute in (4.5) and apply the Schwarz inequality, 

m* < iml J hi\x?h\d» < iii/iiir1 iiv/iib . ■ 

5. Proof of the Curvature Estimates. 

We derive a pointwise estimate of the curvature tensor in terms of the spinors 
ipl and their second derivatives. 
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Lemma 5.1. 

N 

(N-V8N\\1-PX\\]\R\2 < 32^|VV|2. 
i=l 

Proof: For convenience we again choose an orthonormal frame si,..., sn 

with Vsa(x) = 0. The definition of curvature (2.1) and the Schwarz inequal- 
ity give the following relation between curvature and the second derivatives 
of ^ 

a,/3=l a,/3=l 

n 

n 

(5.1) <    2 J2 (|VL5S^|2 + |V^j5^|2)   =  4|VV| • 

Using (2.2) and (2.3), the square of spinor curvature is computed to be 

n 

■t        n n 

a,/?=l  7,J,£:,/9=:1 

(5.2) 

= ~8^2+16    ^ ^ R(S'Y>85,Sa,Sp)R(Se,SprSaySp)SiSsSeSp. 
a,/3=l 7,J,e,p all different 

In dimension n < 3, the second term in (5.2) clearly vanishes, and so (5.2) is 
a multiple of the identity matrix, making it possible to proceed as in [4]. In 
order to control the second term in (5.2), we consider the expectation value 
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with respect to all ^*s and take their sum, 

N       n n 

"E   E <^> R'iSa,^)2^)   =   -   E  T*(RS(8a,3p)2Px) 
i=l a,P=l 01,15=1 

n n 

=    - ^ Tr(RS(sa,sp)2) +   ^2Tr{Rs(8ai8p)2(l-Px)) 
a,0=l a,P=l 

n n 

(5.3)     >    - Y. Tr(i?5(5Q5^)2) - || Y, RS(sa,sp)2\\ \\1-PX\\. 
a,/3=l a,/3=l 

A straightforward calculation using (5.2) shows that 

- Y ?t{Rsisa,sp?)  = ^|i?|2,     || Y RS^s,f\\  <  /f l^l2. 
a,/9=l a,i8=l 

Substituting these formulas into (5.3) and using (5.1) gives the result.       ■ 

Our main result follows by combining Lemma 4.2,   Corollary 3.2,   and 
Lemma 5.1. 

Proof of Theorem 1.2: We choose the set D as in Lemma 4.2 corresponding 
to e — JV/32. Then according to (4.2) and Lemma 5.1, 

N N 

f   v m2 & < [   vQ4J2 I
V
VI

2
 ^ < IE f v ivVi2 **' 

JM\D JM\D    ^ ~i N ~[JM 

where in the last step we used the positivity of the integrand.  Now apply 
Corollary 3.2. ■ 
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