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1. Introduction. 

In this paper we prove a nonlinear property of superharmonic function in 
Rn which is closely related to the Penrose Inequality [1] in general relativ- 
ity. The Penrose inequality is the statement that the total ADM mass of an 
asymptotically flat, space-like slice of a spacetime is at least the mass of the 
black holes which it contains, assuming nonnegative energy density every- 
where in the spacetime. This statement is a generalization of the positive 
mass theorem, which states that the total ADM mass of a space-like slice 
of a spacetime is nonnegative, again assuming nonnegative energy density 
globally. 

The Riemannian cases of the Penrose inequality and the positive mass 
theorem occur when the space-like slice (M71,^), n > 3, is assumed to have 
zero second fundamental form in the (n+1)-dimensional spacetime. Then 
the assumption of nonnegative energy density implies that (Mn,g) has non- 
negative scalar curvature, and apparent horizons of black holes correspond to 
outermost minimal surfaces in (Mn, #). The total ADM mass of the asymp- 
totically flat Riemannian manifold (Mn,^) is then related to how quickly 
the manifold becomes flat at infinity. 

After considering spherically symmetric manifolds, the next simplest 
special case to consider are manifolds which are conformal to the stan- 
dard flat metric (Rn,<^). Hence, let's assume that (Mn,g) is isometric 
to (R™,!^)4/^-2)^-), n > 3, where u(x) is positive and goes to a constant 
at infinity. Conveniently, the assumption of nonnegative scalar curvature is 
then equivalent to u(x) being superharmonic in (Rn,^j). Hence, it is nat- 
ural to try to prove the positive mass theorem and the Penrose inequality, 
in this conformally flat case, using only known properties of superharmonic 
functions. 
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As it turns out, the n-dimensional positive mass theorem in this case 
follows from the maximum principle applied to superharmonic functions in 
Rn. However, the story is not nearly as simple for the Penrose inequality, 
as we will see later. In fact, we are only able to treat the n — 3 case for the 
Penrose inequality in this special case so far. However, in this paper we are 
able to show that the 3-dimensional Penrose inequality (but with suboptimal 
constant) follows from a new nonlinear property of superharmonic function 
in R3. We also generalize this property to superharmonic functions in Rn, 
n > 3, although the property does not imply the Penrose inequality in the 
conformally flat case in these dimensions, even with suboptimal constants. 

The reason that the Penrose inequality is more difficult than the positive 
mass theorem in the above mentioned conformally flat case can be seen by 
the following definition, theorem, and conjecture. 

Definition 1. Suppose   that   (Mn,g),   n    >    3,   is   isometric   to   (Rn, 
4 

u(x)n-25ij), where u(x) is positive and superharmonic in (R71,^) and con- 
verges to a constant a > 0 at infinity. Suppose also that u(x) is harmonic 
outside a compact set K, so that we may expand u(x) using spherical har- 
monics to get 

(L1) u(x) = a + J^2+0(j^ri)- 

Then we define the total mass of (Mn
:g) to be 

(1.2) m = 2ab, 

also known as the ADM mass of (Mn,g). 

For the rest of the paper we will restrict our attention to the manifolds 
(Mn,g) described in the above definition. We can then state the positive 
mass theorem for such manifolds: 

Theorem 1.1. Suppose (Mn,g) is as described in definition 1. Then m > 
0, and m = 0 if and only if u(x) = 1. 

The above theorem can be proved using either the maximum principle or 
the divergence theorem, and we leave this as an exercise for the reader. This 
next conjecture (which has been proven in the case n=3 in much more general 
settings by Huisken and Ilmanen [2] and the first author [3]) is equivalent to 
the Penrose inequality in our conformally flat setting: 
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Conjecture 1.2. Suppose (Mn
7g) is as described in definition 1 and con- 

tains an outer-minimizing horizon S (see below) of area A.  Then 

n-2 

(1-3) -^U^) ■ 
with equality if and only if u(x) = a + \x_J}\n-2 outside S, /or some a, 6 > 0 

and /or some XQ G R3. 

In the above conjecture, a;n is defined to be the volume of the unit n- 
sphere in R71"*"1. Also, let S be the set of all hypersurfaces in (M71, g) which 
are smooth, compact boundaries of open sets. Then in the above conjecture, 
we define horizons to be hypersurfaces G S with zero mean curvature and 
outer-minimizing hypersurfaces to be hypersurfaces which are not enclosed 
by hypersurfaces G S of less area. 

Even in dimension three where the above conjecture is known to be 
true, there does not exist a proof of this conjecture using only properties 
of superharmonic functions in R3. One reason the above conjecture is so 
challenging is that it is difficult to figure out how to use the fact that E is 
outer-minimizing. Also, without this assumption, the conjecture is not true. 

In the next section, using only a new nonlinear property of superharmonic 
functions, we will prove a modified version of conjecture 1.2 for n = 3 (theo- 
rem 2.2), but with suboptimal constant in inequality 1.3 and, consequently, 
without the case of equality. We point out that this nonlinear property of 
superharmonic functions is also used in the first author's proof of the Rie- 
mannian Penrose inequality in [3]. Hence, the main result of this paper is 
really theorem 3.1 of section 3, with a very nice application of this result 
being theorem 2.2 of the next section. 

2. Proof of a Special Case of the Penrose Conjecture Using 
Superharmonic Functions in R3. 

As mentioned in the previous section, one of the difficulties is dealing with 
conjecture 1.2 is understanding how to use the fact that the surface S is 
outer-minimizing. Going back to the very general Riemannian Penrose in- 
equality, it happens that it is possible to reflect the manifold through its 
outer-minimizing horizon to get a manifold with two asymptotically flat 
ends. (The details of this reflection procedure are carried out in section 6 of 
[3].) The benefit is that the Penrose inequality for the reflected manifold can 
be shown to be equivalent to the Penrose inequality for the original manifold. 
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Then translating this modified Penrose inequality to our setting, we get the 
following conjecture: 

Conjecture 2.1. Suppose (Mn,g) is as described in definition 1. Suppose 
also that u(x) has a pole at x = 0, and that every surface S 6 S which 
encloses the origin has area in (Mn,g) greater than or equal to A.  Then 

A   \ ^i 

sd ■ 
with equality if and only ifu(x) = a+i _ b\n-2 outside the outermost horizon x—xo\ 

3 of (Mn
yg), for some a, b > 0 and for some XQ G R' 

As mentioned previously, the above conjecture is known to be true for 
n = 3, although an "elementary" proof using only facts about superharmonic 
functions is not known. However, we do have an elementary proof of the 
following theorem, which relies on theorem 3.1 from the next section. 

Theorem 2.2. Suppose (M3, #) is as described in definition 1. Suppose also 
that u(x) has a pole at x — 0, and that every surface S G S which encloses 
the origin has area in (M3,^) greater than or equal to A.  Then 

(2.2) m > AA1/2, 

for some universal constant A > 0. 

Proof. Since u(x) is a superharmonic function, we will bound the mass m 
from below by contructing a harmonic barrier function </>(#) which bounds 
u(x) from below. 

By the hypothesis of the theorem, the area of the sphere of radius r 
around the origin with respect to the metric g is at least A. Thus, we have 

(2.3) f      u{x)*dA{x) > A 
JSr(0) 

for all r > 0. By theorem 3.1 of the next section, we therefore can conclude 
that 

(2.4) u(x) > CA^lxl-1'2 

for all x 7^ 0, where C = (7(3,4) from theorem 3.1. 
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Now consider the sphere of radius R, where R1/2 = Cj^a , where we 
recall that the constants a and b are defined in definition 1. Thus, 

(2.5) u{x) > 2a 

for x e SR(0). Hence, if we let (j)(x) = a + l3/\x\, where p = aR, it follows 
from applying the maximum principle to the difference of the superharmonic 
function u(x) and the harmonic function (j)(x) that u(x) > <j){x) for all x 
outside BR(X). Then by comparing the spherical harmonic expansions of 
u(x) and (j)(x) at infinity, we conclude that b > j5. Hence, 

C2 

(2.6) m = 2ab>2af3 = 2a2R= — A1/2, 

proving the theorem. □ 

One reason we are not able to prove conjecture 2.1 using the above tech- 
nique is that we have not used all of the hypotheses of the conjecture. In 
fact, we have only used the fact that the area of all of the spheres centered 
around the origin have area in (M3, g) at least A, which is of course a much 
weaker restriction than requiring this area bound for all surfaces enclosing 
the origin. 

3. Superharmonic functions in Rn. 

In this section we prove theorem 3.1, which is at the heart of the proof of 
theorem 2.2. Theorem 3.1 is also of independent interest, since it is a new 
nonlinear property of superharmonic functions in Rn. 

Theorem 3.1. Let TQ > 0 be a fixed positive constant. Suppose that u : 
Rn —> [0, oo] for n > 3 is a continuous superharmonic function with 

(3.1) f      u(x)P 
JSr(O) Sr(0) 

for all r > ro, where Sr(0) is the sphere of radius r centered at the origin, 
and 1 < p < (n — l)/(n - 3) (if n = 3, then take p > 1).  Then 

(3.2) u{x) > CA^lx]-^-1^^ 

for all x and for some positive constant C(n,p). 
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Proof. Fix a particular radius |a;| = r at which we verify 

u{x) > CA^Pr'^-^P. 

We first claim that without loss of generality, u is harmonic outside a 
compact set, and converges to zero as \x\ goes to oo. This is true because 
we can define (given any positive constants e and K) the function 

u = min {u + e, K\x\2~n} . 

Fix any e > 0. Because u is continuous, u + e attains a maximum on the 
closed ball of radius r around the origin. By choosing K appropriately, we 
can ensure Kr2~n is larger than u + e on this ball. On the other hand, for 
\x\ large enough, u = K\x\2~n which is harmonic. 

The theorem, applied to this function u, would then prove that u(x)-{-e > 
C for all e > 0, and thus, u(x) > C. 

We can thus assume without loss of generality that u is harmonic outside 
a compact set, and converges to zero as \x\ goes to oo. The consequence of 
this is that / = Aw, which is defined as a distribution, has compact support, 
and u = f(x) * ^ (^_2)l^l2~n- Since u was super harmonic, / is a positive 
measure. 

We next mollify u so that it is smooth: let i/jj : Rn —> R be a sequence 
of spherically symmetric smooth functions supported in balls of radius 1/j 
around the origin, with /Rn ipj = 1. Then Uj = u * (^ * ijjj) is a smooth 
function. 

Since a continuous function defined on a compact set is uniformly contin- 
uous (see baby Rudin, theorem 4.19), u is uniformly continuous over compact 
subsets of Rn. Therefore, as j goes to infinity, Uj converges to u uniformly 
on compact sets. 

Furthermore, if we let fj = f* ipj, and gj = z^)7"2"71 * VJJ then 
Uj = fj * ^j, by associativity of convolutions. 

Since Uj converges to u uniformly on compact sets, we know that for j 
large enough, 

/      < > A/2 
JSr(0) 

for all r > ro- Thus if we can prove the theorem for Uj smooth, then we will 
know that for all x 

(3.3) ujix) > 2-1/pCAl/P\x\-(n-1VP. 

Furthermore, by dividing u by A1^, we see that the statement of the 
theorem scales correctly, and hence it suffices to prove the theorem for A = 1. 
Thus, we need to prove the following: 
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Theorem 3.2. Suppose that u : Rn —» [0, oo] for n > 3 is a smooth super- 
harmonic function 

u = f *g 

with f positive, continuous and of compact support, and g(z) a spherically 
symmetric decreasing function of\z\, and 

(3.4) f      u(x)p>l 
JSr(0) 

for r G [a, 6], where Sr(0) is the sphere of radius r centered at the origin, 
[a, b] is a closed interval in (0, oo), and 1 < p < (n — l)/(n — 3) (if n = 3, 
then take p > 1). Then 

(3.5) u{x) > C 

for all unit vectors x, for some positive constant C(n,p,a,b). 

By the spherical symmetry of the problem, it suffices to prove that 
u(—ei) > C, where ei is the basis vector in the xi direction. 

The equation u = f * g can be written 

ui *(£) = /   f(y)g(x-y)dny. 

Let /(*) = 4(0) f(y)dn-ly for t > 0 and let 

roo 

u(x) = /     f{t)g{x-tei)dt. 
Jo 

We view this procedure of moving from / to / as that of concentrating 
the source of u to the positive xi axis. Then as the following lemma will 
demonstrate, this will increase fSr(0\ uv but decrease its value at —ei, thus 
reducing us to the axially symmetric case. 

If v is a unit vector in Rn, then we define a reflection 

Re{x) = x - 2-rz^-v 
\v\2 

as the reflection through the hyperplane perpendicular to v. Define the 
corresponding "fold" map: 

(-+\ — / ^ if x • v >0 
otherwise 
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If f(x) is a real-valued function on Rn, we will denote by fAv (or fA if v is 
understood), the "folded" function as follows: 

For convenience we will define the following functions: 

rw = { 
f{x),   x ■ v < 0 

J    K*) = ^ 

so that 

J    {X>~^ 0, x-v<$ 

0,      x-v<Q 

1 W-\    0,     f.t?>0 

/(f)=/+(5) + /-(f) 
and 

/A(5) = /+(f) + /-(JR„(5)). 

Lemma 3.3. Let 0(5) 6e o bounded continuous real-valued function on Rn
; 

spherically symmetric around the origin, and decreasing as a function of\x\. 
For any f(x) a non-negative integrable function on Rn with compact support, 
define Uf = </>* f be the convolution of (j) with f, and let 

UJ Af=f      lu/l'if-1 

where p > 1.  Then 
Af<AfA. 

for any unit vector v E Sn~1. 

Proof. Let x G Rn be an arbitrary point with x • v > 0, and let xr = RJ;{X). 

Now ?zj+ (5') < ^j+ (5) since 0 is a decreasing function of distance, and for 
any y with x • y > 0, we have that 5 is at least as close to y as xf is. 

Similarly, t^- (5) < IA^- (5'), since for any y with x • y < 0, we have that 
5 is at least as far from y as x' is. 

If we let a = Uf+(x'), b = ^+(5), c = Uf- (5), d = Uf- (x'), then we have 
so far concluded that a < b and c < d. We will next prove that when a < b 
and c < d, 

(a + df + (6 + cY <{a + cf + (6 + df. 
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First, without loss of generality, assume b — a > d — c. Then note that 
[a + c, b + d] and [a + rf, 6 + c] are nonempty intervals centered on the same 
average point, but [a+cf, 6+c] C [a+c, fe+d], as can be verified by comparing 
the lengths. 

By convexity of the function g(x) = xp for p > 1, we have that the graph 
of xp on [a + c, b + d\ lies below the secant line on the same interval. Since 
[a + d, b + c] C [a + c, b + d], the secant line for [a + d, 6 + c] lies below the 
secant line on [a + c, b + d]. Thus, the midpoints of these secant line segments 
compare as follows: 

(a + d)P + {b + c)P      (a + c)P + {b + d)P 
2-2 

which gives us 

(a + d)p + {b + c)p < (a + c)P + (b + d)P 

as claimed above. 
Applied to our case, we have 

{uf+(x,) + ur(x,))Y+(uf+(x) + uf-(x))Y < 

< {uf+ (a?) + uf- (x)))p+ (ii/+ (x) + uf- (xf))y . 

Since f = f+ + f~ and u depends linearly on /, u = Uf+ + Uf-. Similarly, 
from fA = f+ + f- o Rtf, we get u = i^+ + ^- o i?^. This gives us 

(uf(x')r + (Uf(x)r < (ufA(x')y + (uf4x)y. 

This holds whenever x • v > 0, but by symmetry under interchanging x and 
xf = Rij(x) in the formula, it also holds for all x E /S71-1. 

Integrating this formula over all x E 5,n~1 we get 

/      (uf(x'))Pdn-1x+ f      {uf{x))P^-lx< 
JS71-1 JS71-1 

< f      (ufA(x'))Pdn-1x+ [      (ufA{x))Pdn-lx. 
J sn-1 JS71-1 

By changing variables from x to x' in the first and third integrals, we obtain 
the second and fourth integrals, respectively, and, dividing by two, we have 

/      {uf(x))Pdn-lx< [     (ufAix^Pd71-1^ 
JS"-1 JS"-1 
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Lemma 3.4. Let (f>(x), f{x), anduj be as in the previous lemma. As before, 
define 

Af=f      lutfd"-1* 
JS71-1 

where p>l. Similarly, define f as above: 

m = [    f{y)dn-ly 
lSt(Q) 

and 

Af= [      \uf\pdn-luj. 
Jsn-i 

Then 
Af < Aj. 

Proof. We will generate a sequence /n, where /o = /, and 

A}n <Afn+1. 

This is obtained by choosing a sequence of unit vectors vn, and setting 
fn — (fn-i)^71'1, applying the previous lemma. 

The vn will be chosen to make the domain of / concentrate on the positive 
xi axis. In order to keep track of this, we define inductively the maximal 
possible domain of / as follows: 

Let ^o(^) be the constant function 1, and recursively define gn = 
(ffn-i)^71-1- Then for each n, the support of /n will be a subset of the 
support of gn. Let Wn = supp(gn) fl Sn~1. The vn should be chosen so that 
Wn D Wn+i? which means that the reflection p$n should send Wn into itself. 
We should choose the vn satisfying this restraint, in order to get a nested 
sequence of Wn that converges to the point ei. 

Let a be an angle between 0 and 7r/2. Consider the set of vectors of the 
form 

^a,j,± — S*11 Ot&i i: COS a Cj 

where j ranges over all the basis vectors that are not ei. Let Ca be the 
"hypercube" set centered at ei: 

Ca = {x G 5n~1|x • Ua,j,± > 0 for all j and choices of ±} 
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We take VQ = ei, and thus Wi is the right hemisphere with xi > 0. We 
then have that Wi is the hypercube set C^/2 centered at ei. 

Inductively, whenever Wk lies in the hypercube C2a centered at ei, we 
will choose i/fc+i, ...,^+271-2 to be the 2n — 2 vectors uaj^±. We will then 
prove that Wk+2n-2 lies in the hypercube Ca centered at ei. 

It is clear that each fold map will make sure X'Uaj^± > 0 for the particular 
choice of a, j, and ±. But we need to show that we are not at the same 
time making x-upjf^ < 0 for some previous choice of /?, /, and =fc. We will 
in fact show that the sequence of Wm's is a nested sequence: 

W1DW2D'" . 

To verify this, suppose some Vk+i sent a vector x in some Wk+i to some- 
thing outside Wk+i- Since Wk+i was formed by "folding" using the iTs, we 
know that for some {fm, we have that x • v.m > 0 but p$k+i{x) - vm < 0. 
Furthermore, since x was in Wk+i to begin with, x • Vk+i < 0. 

We have that Vk+i = Uaji^ for some ji and choice of ±, and that 
Vm = ^/3,j2,± for some other similar choices. If ji ^ J2, then Vk+i - Vm > 0, 
and therefore 

Wfc+i (x) • Vm     = Rvk+i {x) • Vm 

= (f - 2i;fc+i • 54+i) ' Vm 

= X-Vm- 2(Vk+i ' X){Vk+i ' Vm) 

> -2(vk+i 'X)(Vk+i -Vm) 

>   0 

which gives the contradiction. We therefore consider ji = J2. If the choices 
of ± for Vk+i and vm are the same, then again Vk+i 'Vm>0 and by the same 
argument arrive at the contradiction. So we know that the choices of it are 
different, and without loss of generality 

Vk+i   =   V'OL,3,+ — sin aei + cos aej 

Vm   =   v>p,j- — sin/3ei - cos/3ej. 

If we write x = aei + bej+y, then by induction (that all the Wk are in W\) we 
know that a > 0. Furthermore, since by assumption x-Vk+i < 0, we have that 
b < 0. Also since x e Wk C C2a, we know that asin(2a) - 6cos(2a) > 0, 
which together with a? + b2 + \y\2 = 1, implies that b >  -sin(2a) and 



1010 Hubert L. Bray and Kevin Iga 

a > cos(2a). Then since x • Vk+i < 0, 

Pvk+i (5) • ej    = (x- 2vk+i • xvk+i) - Sj 

= b — 2(a sin a + b cos a) cos a 

< - sin(2a) - 2(cos(2a) sin a — sin(2a) cos a) cos a 

= 0 

and similarly 

Pvk+i [x) • ei    =    (x - 2vk+i - xvk+i) • ei 

=   a — 2('yJfc_j^ • 5) sin a 

> ,.a > 0. 

Thus 

Pirfc+i(5) ■ Vm = Pvk+i(x)' (sin(/3) ei - cos(/3) e^) > 0, 

which is, again, a contradiction. 
In this way, we see that we have a nested sequence Wk D Wit+i? each of 

which is contained in the hypercubes Ca centered at ei, with a decreasing to 
zero, so that f] W^ = {^i}, and fn converges in measure to a delta function 
concentrated on the positive xi axis. 

By the previous lemma, we have that 

Afn<Afn+1. 

By the uniform convergence of un to u, we have that Afn converges to Aj. 

D 

Thus, if fs ,0N up is greater than or equal to one, then so is fs ,Qs vP. 

Also, note that ^(-ei) > n(-ei), since of all the points on 5V(0), the 
point farthest away from — ei is rei. 

We have thus reduced our situation to the case where the source function 
/ is supported on the positive x axis, that is, using /. So we will have to 
show u{—ei) > C. 

To accomplish this, we interpret our inequality 

/      u{xYdn-lx> 1 
JSrW 
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which holds for 1 < r < 2.   Using the notation an for the area of an n- 
dimensional sphere of radius 1, we have: 

1    <     /      uixYcT^x 
JSr{0) 

=    /   crn_2(rsin0)n~2rd<9 (u(rcos9ei + rsm9e2))p 

Jo \Jo    \(rcos9-t)ei+rsmee2\n-2J 
rw /   poo  _ \P 

=   Gn-2rn-1       sm-^ddell    f(t)Qt,r(6)dt) 

where 
n-2+l-e 

n   (ft- sin    P     e 
^W       (i2 + r2_2ircos0)(n-2)/2' 

and e > 0 is any positive constant. 
Let 

Sr(t) =   sup Qttr(9) 
0<e<7r 

Then we have that 

IP 
1 < 

so that 

rn        r   POO  _ 1J 

on-2r
n-1 J dell   msr(t)dt 

rOO 

/     /(t)5r(t)rft>(7rafl-.2rn-1)" 
Jo 

Furthermore, since kn~2Skr(kt) = Sr(t), setting k = 1/r gives 

-i/p 

0 

for a < r < b. 

W) = ^4). 
Hence, 

so that 
poo  _       1   f + 

/    m—S^-) dt > {ira^rV'rW-WP 
Jo trz      r 

Now integrate with respect to r from a to b: 

roo   _ i      nb   J. . nb 

/   mat1-    Lsl{l)dr>     (^^-^^-^-(n-D/p^ 
^0 t Ja   r r Ja 
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Let y = t/r, and substitute for r. Then 

roo _ 1     rt/a 
/    mdt-        Si(y)<ij,> 

Jo * Jt/b 

\(n-3)-(n-l)/p/ « 

= (TTan-a)"1^ —± —- (6(n-S)-(n-l)/p _ a(„-3)-(n-l)/p\ . 
(n — 3) — (n — l)/p \ / 

The possibility that (n—3) —(ra—l)/p = 0 is excluded sincep < (n—l)/(n-3). 
Define 

k=   sup   —— /      Si(y)dy. 
0<t<oo      t      Jt/b 

We will next prove that k < oo. Then our theorem will be proved since 

u{-ei) > 

>*{-!!!) = J™ Ma 

> l (no^)-1'' j —^  (6(»-3)-(»-l)/|. _ a(n-3)-(n-l)M 
k (n - 3) - (n - l)/p \ / 

= a 
Lemma 3.5.  T/ie constant k = supo<i<00 ^p /t/6

a ^(y) dy Z5 finite. 

Proof. We will bound Si (y) from above. Recall that 

Si(t) =   sup Qt,i(0) =   sup 
o<e<7r o<e<7r (t2 + 1 - 2t cos 5)(n-2)/2 

Our first estimate involves the fact that by sin0 < 1 and cos0 < 1, we have 

(3-6) m < ^z^=2- 

Using this estimate, we see that 

t + i rt/a 

*     Jt/b 

nt/a 

/      5i(y) 
Jt/b 

dy 
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is continuous in t in {0 < t < a} U {t > 6}, so that we will have a bound on 
this function of t as long as we can control it when t is between a and 6, 
when t goes to 0, and when t goes to oo. 

For t going to oo, we use the above estimate (3.6) to compute the follow- 
ing supremum: 

t + l   ftla 

sup    —— /      Si(y)dy 
2b<t<oo      z      Jt/b 

This is done in a straighforward way when n > 3: 

sup    —— /      5i(y)dy    <       sup    —— / 
2b<t<oo      t      Jt/h 2b<t<oo      t      Jt/b     |y-l|" 

t+1    ft/a        1 

rt/a „ t+1    f1/0, 

Jt/ 

o    ,     1      f1 

<      sup     / — dy 
Jt/ 

dy 

2b<t<oo     t     Jt/b    \y - l\ 

t/a-1 

t/b-1 

Now consider 

t + 1 
=      sup    log 

2b<t<oo      t 

t + 1       (       t/a-t/b 
=      sup   ——login-—-—— 

2b<t<oo      t \ t/O - 1 

t + lt{l/a-l/b) 
<       sup ~^Z  

2b<t<oo      t t/b-1 

=      sup   J±l  (i/a-1/6) 
2b<t<oo t/O- 1 

-    (26+l)(l/a-l/6) 

t/o 

^0     *     Jt/b ft/b 

The same estimate (3.6) gives us, with L'hopitaPs rule, 

^t/a / 4- 1     rt/a 

lim  /      ^i (y) dy    <    lim  / ■—- dy 
™    t    Jt/b       Ky)        -   t^o    t    Jt/b   |y-l|-2   y 

id_ r*/*      i 

idiJt/b \v-i\n-2 y =   lim- 
t->0 l Ui Jt/b 

=   lim — 
t->o a \t/a - l\n-2      b \t/b - l\n-2 

=   liml/a-l/&= 1/a-l/b 
t^o 

Thus, the function of which we are taking the supremum is bounded as 
t —> oo and as t -> 0. 
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To estimate 
t + 1   /•'/" rl/a 

/      5i(y)dy 
Jt/b n/b 

in the interval (a — e, 6 + e), for some 6, we will need a better estimate than 
(3.6). Now 

2   == (l-cos^)^-2^-^ 
Wt,U ^ (t2 + l-2t + 2i(l-cose))n-2 

[(l-cosg)(l + cose)](n"1"g)/p 

((t-l)2 + 2^(l-cose))n-2 

(2^)(n-1-£)/p 
Hence 

If we define 

Si{tY <  sup 
o<*<2((£-l)2 + 2^)n-2, 

(2z)(ri-1-£)/^ 
((t - I)2 + 2^)^-2 

then we wish to find the maximum value of h{z). 
First, h(z) is defined for all z > 0, unless the denominator is zero. This 

can only happen if t = 1, in which case h(z) = (2z)(n~l~£^p~(n~2\ and 
we see that h(z) is still defined and smooth (except at z = 0). In this 
circumstance h(z) grows without bound as z approaches zero. But we can 
ignore S'i(l) since {1} is only a single point and is thus of measure zero in 
the integral. 

So suppose t ^ 1. Since h(z) is a positive differentiable function that 
goes to 0 as z goes to 0 or to oo, we see that any maximum occurs at a 
critical point. To find critical points, we solve: 

0 = —logh(z)    = ^--(n-2)- 
dz    &   v ; p z     v J (t - I)2 + 2tz 

(n-l-e) ((t - I)2 + (2t)z)    =    (n - 2)(2t)pz 

{n-l-e){t-l)2    =   2t((n-2)p-(n-l-e))z 

(n-l-e){t-l)2 

ZCRIT 2t((n-2)p- (n-l-e)) 

When p > n~^2£ •> we always have a unique positive critical point. Otherwise, 
there is no critical point, and hence h takes on its maximum value on the 
boundary. We consider these two cases: 

Case I: p < ^^: 
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Under this circumstance, h(z) has no critical points, and so attains its 
maximum at z = 2. 

4(n-l-e)/p 
s\iph(z)    = 

((t-l)2 + 4t)"-2 

Thus Si(t) is continuous in 0 < t < oo, and 

t + i rt/a 

It/b 

rt/a 
/      Si{y)dy 

Jt/b 

is continuous in t. Hence it is bounded in any compact set, and since it is 
bounded near t = 0 and t —t oo, we have that this function is bounded, and 
k is finite. 

Case II: p > ^^: 
Then as discussed above, h(z) must attain its maximum at this unique 

critical point: 

sup   h(z)    =   h{zcRiT) 
(K2K00 

it((n-2)p-0 
(TO-l-e)(t--l)2      v(n-l-C)/P 

W((n-2)p-(n-l-e))^ 

^V1'       i/    ^ (n-2)p-(n-l-e)^ 

It 

-2)p-(n 

/ ^-X-. \(n-l-e)/p 

=     ,-(n-l-e)/pu      H^ST^ V(^-2)p-(n-l-g); 
n—1—£  

(n-2)p-(n-l-e)> V1 ^ (n-2)p-(n-l-e)/ 

Hence we have improved the estimate (3.6) to the following: 

(3.7) Si(t) < Const.   |t - l|(n-l-e)/p-(n-2)r(n-l-e)/2p 

Now recall that we are trying to show k is finite, which is to find a 
universal bound for 

t _L 1    rt/a 
^T Sl{y)dy, 

1    Jt/b 

We have already investigated the behavior of this function as t approaches 
zero and as t grows without bound, so we are left with the circumstance 
when the integral involves y = 1, because that is where (3.7) is unbounded. 

The above bound shows that 

Si{t) < bounded parts \t - i\^-^-^/p-(n-2) 
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and an integral over t involving t = 1 will be bounded whenever the exponent 
(n — 1 — e)/p — (n — 2) is greater than —1; i.e. whenever 

p< (n-l-e)/(n-3). 

But we know that if n > 3, then p < (n — l)/(n - 3), so we can achieve this 
simply by choosing e small enough (when n = 3, (n — 1 — e)/p — (n — 2) will 
automatically be greater than — 1, for e small). 

Therefore the integral is bounded, and the resulting function 

f 4.1    rt/a 

-^- Si(y)dy 
*    Jt/b 

is a continuous function of t. Thus, there is a finite supremum, and k is 
finite. □ 
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