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Area-minimizing Surfaces in Cones 

FRANK MORGAN 

We show that a fc-dimensional area-minimizing surface can pass 
through an acute conical singularity if and only if k > 3. The 
larger fc, the more acute the conical singularity can be. 

1. Introduction. 

We consider ^-dimensional area-minimizing surfaces in Rn with metric in 
polar coordinates 

(1) ds2 = dr2 + 62r2d&2        (0 < 5 < 1) 

where dQ is the standard metric on the unit sphere Sn_1.   This ambient 
space MQ is isometric to the cone 

{y = 6-1(l-62)l2\x\} 

in Euclidean (n + l)-space. 
It is easy to show (see [IT, Chapt. 9, Cor. 1.1], [CFG]) that a length- 

minimizing curve avoids the vertex. We show (Corollary 3.2) that a two- 
dimensional area-minimizing surface avoids the vertex. For k > 3, k- 
dimensional area-minimizing surfaces can in general pass through the vertex. 

1.1 Theorem (see Theorem 3.1). A k-dimensional plane through the 
vertex is area-minimizing if and only if 

k>3   and   (52>4(^-l) 

One can compute after Simons [Sns] that this is the precise condition for 
stability as well (see Remark 3.1(6)). Our proofs after Lawlor [L] include a 
short proof of this stability result too. Every nonplanar regular stationary 
cone is unstable for S2 < 8(k — l)/k2. One may consider 6 > 1 as well as 
0 < 8 < 1. Of course the collection of stationary cones is the same for all 5, 
and the larger 5, the more likely a cone is to be stable or area-minimizing. 

Every regular stationary cone is area minimizing for 5 sufficiently large 
(Remark 3.1(4)).   For example, Proposition 3.3 proves that the cone over 
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gra x gm ^n R2m+2^m > ^ ^ area minimizing if an(J only if J2 > 16m/(2m + 

I)2. Our approach provides a convenient alternative definition of "strictly 
minimizing" for a cone in Euclidean space as "minimizing for some 5 < 1" 
(Section 3.6). 

These results have applications to more general ambients with conical 
singularities (see Corollary 3.2). 

Theorem 3.7 considers the product M of a Euclidean line or m-space with 
the cone MQ (1), which has a line or m-plane of conical singularities. A two- 
dimensional area-minimizing cone at a singular point in M, for example, 
must be a sum of "horizontal" planes contained in the singular set and 
possibly (when dimMo = 2) a single "vertical" plane equal to MQ. 

1.2 Proofs. The proof of Theorems 1.1 and 3.1 adapts the methods of 
Lawlor [L] for deciding whether a cone in Euclidean space is area minimiz- 
ing. Lawlor proves cones minimizing by constructing an area-nonincreasing 
retraction onto the cone, equivalent to a calibration. For an isoparametric 
hypercone (over a manifold with constant curvature), if the retraction does 
not exist in any wedge about the cone, then the cone is not stable. The exis- 
tence of the retraction is equivalent to the existence of a solution to a certain 
initial value problem. In general this problem can be analyzed numerically. 
Fortunately in our cases it is amenable to rather easy exact analysis by hand, 
using test functions suggested by Lawson [Ls]. 

1.3 Acknowledgment. This work was inspired by the work of the 2000 
Williams College NSF "SMALL" undergraduate research Geometry Group 
[CFG], consisting of Andrew Cotton, David Freeman, and John Spivack. 

This work is partially supported by a National Science Foundation grant. 

2. Singular ambient, rectifiable currents, 
area minimization, tangent cones. 

In this chapter we consider the nature and regularity of area-minimizing 
surfaces in ambients MQ with a conical singularity. 

Let MQ be Rn with metric ds2 = dr2 + 52r2d@2 {5 > 0), where dQ is 
the standard metric on the unit sphere. Since this metric remains within 
a bounded factor of the Euclidean metric, the topology on the spaces of 
rectifiable and integral currents remains unchanged. Suppose that S < 1. 

Then MQ is isometric to the cone I y = ^lJs \x\ > in Euclidean (n + 1)- 

space; hence area is lowersemicontinuous, and the Compactness Theorem 
[Ml, 5.5] for compact Lipschitz neighborhood retracts, such as a large initial 
segment of MQ, guarantees the existence of an area-minimizing surface with 
a given boundary. 
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Let T be a A;-dimensional area-minimizing rectifiable current through the 
origin of MQ. Inside MQ, the ratio of the area inside a ball B(0,r) to rk is 
monotonically increasing function of r, by the same proof as in Euclidean 
space [Ml, Thm. 9.3]. It follows that T has an area-minimizing tangent 
cone at the origin (see [Ml, Thm. 9.8]). 

More generally consider an n-dimensional submanifold M of Euclidean 
R^, with a conical singularity P, where M is locally smoothly diffeomor- 
phic to its tangent cone, which is a round spherical cone MQ as previously 
considered. Let T be a fc-dimensional area-minimizing rectifiable current 
through P. Inside M, for distance r from p small, er times the ratio of the 
area f(r) inside an intrinsic ball .0(0, r) to rk is a monotonically increasing 
function of r, by a slight variation on the Euclidean proof [Ml, Thm. 9.3]. 
(The estimate / < ^ff is replaced by the estimate (1 — ^)/ < ^f, which 
holds because M is well approximated by MQ.) It follows that T has an 
area-minimizing tangent cone at p in MQ. 

In all of these results, MQ may be replaced by a product of Euclidean 
space with MQ. 

3. Minimal cones at conical singularities. 

Our main Theorem 3.1 characterizes area-minimizing and stable planes 
at a conical singularity. Theorem 3.7 considers lines and planes of conical 
singularities. 

3.1 Theorem. In Rn with conical metric 

(1) ds2 = dr2 + 82r2dQ2        (0 < 5 < 1) 

a k-dimensional plane P (1   <  k  <  n — 1)  through the origin is area- 
minimizing if 

(2) k > 3 and S2 > 4(jfc - l)/k2 

and is not stable otherwise, i.e. if 

(3) k<3 orS2 <4{k-l)/k2. 

(4)Remark. Similarly each of Lawlor's numerous examples of area- 
minimizing cones in Euclidean space remains area-minimizing under our 
singular metric (1) for S near 1. This is because each satisfies Lawlor's 
criterion strictly ([L, p. 88]; see Sect. 3.6). For example, Proposition 3.3 
proves that for m > 3 the cone over Sm x Sm remains area-minimizing if and 
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only if 52 > 16m/(2m+l)2. It is even true that the cone over S2 x S2 is area- 
minimizing if S2 > 32/25 > 1. Any regular minimal cone is area-minimizing 
for S sufficiently large, as our extension of Lawlor's method shows. 

(5)Remark. For k > 2, the asserted instability holds in the strongest 
sense: there is a variation fixing the origin with negative second variation 
of area. (For k — 1, P is not stationary for any 5 < 1, though you have to 
move the origin to reduce length; cf. [IT, Chapt. 9, Cor. 1.1], [CFG]. For 
k = 2, we mention that we have found variations moving the origin with 
second variation -oo.) For k > 3 and 82 = 4(fc - l)/fc2, the planes P of 
Theorem 3.1 give the first examples (beyond the 2-plane in Euclidean space) 
of what Lawlor [L, Thm. 3.3.4] calls "marginally stable" cones, which are, 
as he asserts, stable (indeed, in these cases, area minimizing; see also [L, 1.4 
(7)]). 

(6)Remark. Let C be a hypercone over a submanifold 5 of the unit 
sphere. Let a(p)2 denote the sum of the squares of the principal curvatures 
of S in the standard metric. Our proof shows more generally that C has 
nonnegative second variation under the conical ambient metric (1) if 

62 > 4{k - 1 + a2)/k2 

and negative second variation if 

d2 <4,{k-l + a2)/k2, 

providing a necessary and sufficient condition for stability for a constant, 
as shown when S = 1 by Lawlor [L, Cor. 4.4.6, Sect. 3.3] and earlier by 
Simons [Sns, Lemma 6.1.6], with a very short proof of sufficiency by Simon 
[Sn, Rmk. B.3]. Theorem 6.1.1 of Simons [Sns, mislabeled "Lemma" 6.1.1, 
p. 102] generalizes to show that a nonplanar regular minimal hypercone has 
negative second variation if 

52 < 8(k - I)/k2. 

(Note that this is sharp for the cone over Sm x Sm of Proposition 3.3.) The 
only change in the proof is that in the computation of a certain eigenvalue 
Ai, previously at most — {k — 1) (which Simons calls —p), there is a scaling 
by £~2, and an additional contribution of -{8~2 — l)(k — 1) because the 
relevant Ricci curvature of our ambient is r~2{5~2 — 1) [Pet, p.71]. (The 
shorter proof of [SSY, Sect. 3], [Sn, Appendix B], and [G, Chapt. 10] does 
not generalize immediately because the radial and tangential effects are not 
decoupled.)  This result probably holds for singular minimal cones too.  It 
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would be nice to have a general proof that if a plane is not minimizing or 
stable then no cone is minimizing or stable. 

Proof of Theorem 3.1. We may assume that n = k + 1, because the map 
P x Rn_/c —y P x R which maps (x,y) to (x, \y\) is distance nonincreasing. 

We adapt the methods of Lawlor [L] for deciding whether a cone in 
Euclidean space is area-minimizing. Lawlor proves cones minimizing by 
constructing an area-nonincreasing retraction onto the cone, equivalent to a 
calibration. If the retraction does not exist in any wedge about the cone, 
then the cone is not stable. 

Lawlor [L, Chapter 3] shows that the existence of the retraction in Eu- 
clidean space is equivalent to the existence of a solution g(t) to the initial 
value problem 

g2 + (-tg + ^s')2 < (i + t2)p(t)2, 9(0) - 1, 

or equivalently the equality. The retraction is globally defined if g hits 0 
soon enough. 

The function p(t) is a polynomial depending on the curvature of the cone. 
For us, p(t) = 1. For an isoparametric hypercone, p(t) = 1 — ^a2t2 + ..., 
where a2 is the sum of the squares of the principal curvatures. 

The variable t represents the tangent tan cp of the angular distance from 
the cone; for planes P, we just need g to hit 0 before t = oo. 

For our metric (1) the differential inequality takes the form 

(7) ff
2 + s-2(-tg + —^g')2 < (1 + t2)p(t)2, 5(0) = 1, 

with p(t) = 1.   The only change in the derivation occurs in the middle of 
page 27 of [L]. Replacing Cartesian coordinates r, z by polar coordinates p, (p 
transforms 

/       tan<z>  . g' 

to 

(8) cos(p g dp + (-sin<p g + seccp —) p dtp, 
k 

which has norm at most 1 in our singular metric precisely when (7) holds. 
Our expression (8) suggests the convenient substitution g = cos /3/ cos </?, 

under which (7) becomes 

f + ik-i)1^ 
dip tan /3 

< 5k,        0(0) = 0. 
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If we take j5 > 0, the operative inequality is 

More generally, without taking p(t) — 1, the substitution g = p cos/?/cosy? 
yields 

/    x rf/5      c.,      /,       Aaxap       sec2 cp 
10 -f-<6k-(k- 1 —^ + ^T-^. 

dip tan/3        tan/3 

where g = pf(t)/p(t) <0. If 5 is large, ^ can hit 7r/2 very fast, proving area 
minimization for any regular minimal cone as asserted in Remark (4). 

First we assume that k > 3 and S2 > 4(k - l)/k2 and prove P area 
minimizing. Fortunately, instead of solving (7) numerically after Lawlor, we 
can guess an excellent solution after Lawson [Ls, p.245] 

cos /3 = cos(1+7) <£,        (7 > 0) 

df3/d(p = (1 + 7) tan <p/ tan /3. 

Condition (9) becomes 

(1 + 7/fc) tan (p < S tan /3. 

Squaring both sides and letting z = sec2 cp > 1, so that sec2 /3 = z1+1, yields 

(1 + i/k)2{z - 1) < J2(^1+7 - 1)        (^ > 1). 

Since (^1+7 - l)/(^ - 1) is increasing, it suffices to check the inequality in 
the limit as z —> 1: 

(l + 7A)2<£2(l+7). 
Plugging in the optimal 7 = 52k2/2 — k yields 

52 > 4(A; - I)/k2, 

as asserted. Note that this implies that 7> k — 2 >0forA:> 3. We conclude 
that P is area minimizing if k > 3 and 52 > 4(A; - l)/k2. 

Second we assume that 52 < 4(A; - l)/k2 or k < 3 and show that P is 
not stable. As in [L, Sect. 4.3], a smaller competitor can be constructed in 
a wedge of angular radius (po < 7r/2 about P if there is a solution to 
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with f3(0) > 0 and /3(<£o) = 0, as occurs for any small (po if the Jacobian of 
the associated system 

dfi/ds = 5k tan a — (k — 1) tan (p 

d(p/ds = tan /? 

has imaginary eigenvalues, i.e. when the discriminant 

(12) {5k)2 - 4{k - 1) < 0, 

as desired. When k = 2, this inequality holds for all 0 < 6 < 1. When k = 1, 
this whole argument does not apply, but the case k = 1 is trivial: a line P 
through the vertex of a circular cone is not even stationary although, unlike 
the cases k > 1, to do better you have to move it off the singular point. 

The only difference in the construction from Lawlor [L, pp. 58-59] is that 
in our coordinates, —a is the angle that the competing integral curve makes 
with the radial direction. 

To verify that P has negative second variation, note that by Lawlor's 
construction [L, p. 59] the resulting smooth family of smaller competitors 
reduces area at least by a factor #(0) = cos/3(0). Meanwhile /3(0), the angle 
the competitor makes with P at their common boundary, is asymptotically 
proportional to the size of the variation (in any norm). Therefore the second 
variation of area is negative. 

To obtain the instability condition for more general isoparametric hyper- 
cones asserted in Remark (6), we include the extra term of (10) involving 
q = — a2t + ..., so that the instability condition (12) becomes 

{5kf - 4(fc - 1 + a2) < 0, 

as asserted in Remark (6). 

3.2 Corollary. Let M be an n-dimensional submanifold of IlN with a 
conical singularity p, where the tangent cone MQ is Rn with metric ds2 = 
dr2 + 52r2dQ2 (0 < 5 < 1). // A; < 2 or if 3 < k = n - 1 < 7 and 52 < 
4:(k — l)/k2, then no k-dimensional area-minimizing hypersurface (rectifiable 
current) passes through the singularity (unless of course its given boundary 
does). 

Remarks. The hypothesis 52 < 4(fc - l)/k2 is sharp, even for M = MQ, 

since otherwise by Theorem 3.1, planes through p are area minimizing. 
The hypothesis k < 7 is probably unnecessary. One would have to elim- 

inate for example a cone over a singular hypersurface in S8 C MQ; here S8 

has (a multiple of) the standard metric. 
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Proof. To obtain a contradiction, suppose that there is such an area- 
minimizing hypersurface. A tangent cone C at p is area minimizing for the 
given metric on Rn and hence by comparison for the Euclidean metric too, 
since a competitor would be less radial and hence more tangential than C. 

By standard regularity [Ml, Chapter 8], C must be a plane (possibly 
with multiplicity) or (only if k = 2 and n > 4) a sum of planes or (only if 
k = 7) a regular minimal cone. 

If C is a plane, by Theorem 3.1, k > 3 and S2 > A(k-l)/k2, the described 
contradiction. If C is a nonplanar regular minimal cone, work of Simons (see 
Remark 3.1(6)) implies that S2 > 8(k — l)/fc2, a stronger contradiction. 

3.3 Proposition. In R^771*1) (m > 1) with metric ds2 = dr2 + 
52r2dQ2 (S > 0), the cone C over Sm x Sm is area minimizing if 82 > 
16m/(2m + I)2 and unstable ifS2 < 16m/(2m + I)2. 

Remarks. Theorem 3.1 and Proposition 3.3 are special cases: in general, 
minimal cones remain stable longer than area minimizing. Even in Euclidean 
space, the cone over S1 x S5 in R8 is stable but not area minimizing [Se], as 
verified by rigorous numerical analysis [L, Sect. 5.1]. The hand estimates of 
Lawson [Ls, Thm. 5] are not sharp enough even to prove that the cone over 
S2 x S4 is area minimizing in Euclidean R8. 

Proposition 3.4 treats the easier special case of the cone over S0 x S0. 

Proof. The proof is essentially the same as the proof of Theorem 3.1 after 
Lawlor. For Sm x Sm, the sum of the squares of the principal curvatures 
a2 = 2m [L, Table 5.5.1]. By Remark 3.1(6), the cone C has a negative 
second variation leaving the origin fixed if 52 < 16m/(2m + I)2. Conversely, 
to prove the cone C area minimizing, it suffices to find a nonnegative solution 
of 3.1(10) with /?(0) = 0 which vanishes by 7r/4 (^cos-^l - 2m/2m) of 
[L, p. 68]). For this example, p(t) = (1 - t2)m [L, Table 5.5.1] and hence 
q(t) = p'(t)/p(t) = -2mt/(l - t2). After Lawson we try 

cos /? = cos1+7 2(p        (7 > 0) 

with t = tan (p. Condition 3.1(10) becomes 

(1 + (27 + l)/k) tan 2cp < St^n/3 

with k = 2m + 1. As before, this holds with 7 = S2k2/8 - k/2 - 1/2 if 

82 > 8(k - l)/k2 = 16m/(2m + I)2 

as asserted. Note that 
7 = k/2 -3/2 
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is positive if m > 2 (k > 5) while a limit argument with 7 increased by s is 
required for m = 1 (k = 3). 

3.4 Proposition. In R2 with metric ds2 = dr2 + S2r2d©2 (S > 0), tfie 
X or cone over S0 x S0 is length minimizing if and only if 5 > 2, ancf ii /ms 
nonnegative second variation if and only if S > 1. 

Proof. The ambient manifold is just a cone with vertex angle 2/7r5. It is 
trivial that the X has nonnegative second variation if and only if 8 > 1. 

The X is minimizing if and only if there is a solution to equality 3.1(9) 
such that /3 hits 7r/2 by the time (p hits 7r/4. In this case 3.1(9) becomes 
simply d^/dip = 5, so that X is minimizing if and only if S > 2. 

3.5 Remark. Of course, by comparison, results 3.1-3.4 apply in R71 

with metric of the form 

(1) ds2 = dr2 + f(r,6)2r2dQ2. 

3.6 Strict minimization. As a possibly convenient alternative to the 
definition of Hardt and Simon [HS, §3], one could define a cone C in Eu- 
clidean space, the 5 — 1 case of our metric 

ds2 = dr2 + S2r2de2, 

to be "strictly minimizing" if it remains minimizing for some 5 < 1. From 
this definition it follows immediately that any smooth variation of compact 
support has strictly positive second variation of area. Indeed, any variation 
must somewhere turn radial toward tangential, introducing a second order 
effect in S. Since the second variation of area is nonnegative for some 5 < 1, 
it must be strictly positive for 6 = 1. 

Such strict minimization holds whenever Lawlor's criterion holds strictly 
[L, Sect. 6.1], and conversely for regular isoparametric hypercones. Likewise 
the Hardt-Simon definition holds wherever Lawlor's criterion holds strictly 
([L, Chapt. 7, (3)], [HS, Thm. 3.2(v)]). It is not known whether the Hardt- 
Simon definition implies even strict stability [HS, Rmk. 3.3(3)]. 

The Hardt-Simon definition for a fc-dimensional cone says roughly that 
the extra cost of avoiding the e-ball about its vertex is at least proportional 
to ek. 

The following theorem considers for example ambients with a line of 
conical singularities. 

3.7 Theorem.  Consider Rm x Rn with metric 

(1)       ds2 = dsx2 + {dr2 + 52r2dQ2)        (0 < 5 < 1, m > 0, n > 2) 
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and a k-dimensional area-minimizing cone C at the origin not contained in 
Rm x {0} . 

For k = 1, there is no such C. 
For k = 2, one must have n = 2, and C z"s {0} x R2, possibly plus an 

area-minimizing sum of planes in Rm x {0} . 
For k > 3, /or J near i; e?;en/ p/ane of the form Pi x P2 with dimP2 > 3 

is area minimizing, and in general there are others, such as the cone over 
S3 x S3 in {0} x R8. 

Remark. The classification of area-minimizing cones for the metric (1) 
is open even for 3-dimensional cones in R1 x R3 or R2 x R2. An area- 
minimizing 3-plane in R2 x R2 must have a factor in the first R2 and hence 
be of the form R x R2 by the k = 2 case of Theorem 3.5. As far as I know, 
known examples of stationary cones in Rm x Rn with metric (1) are products 
Ci x C2 of stationary cones Ci C Rm, C2 C Rn. 

Proof. For k = 1, C must be a line. C lies in C x (Rn f| C1), an Rn 

with metric ds2 = dr2 + 5{x)<2r<2dQ<1 with ^0 — niax(5(rz;) < 1. By Theorem 
3.1, C is not minimizing in Rn with metric ds2 = dr2 + 5o2r2d@2. Since C 
is entirely radial, C is certainly not minimizing in Rn with metric ds2 = 
dr2 + (5(rz;)2r2d62, the desired contradiction. 

For k = 2, C is a cone over a system of simple closed geodesies in the unit 
sphere S with coordinates (61, 62, p), ®i G S771"1^ 02 G S71-1, 0 < <p < 7r/2, 
typical point ((cos ^)0i, (sin(^)G2), and metric ds2 — dtp2 + (cos2 ip)dQi2 + 
^2(sin2 ip)d@22' (One example to think of is the 2-sphere with metric ds2 = 
dtp2 + 52 sin2 ip dQ2.) Any geodesic 7 with cp constant lies in Rm x {0} or 
{0} x Kn. If 7 lies in Rm x {0}, the cone over it is a plane in Rm x {0}. 
If 7 lies in {0} x Rn, then the cone over 7 is area-minimizing if and only 
if n = 2 by Theorem 3.1. If (p is not constant, consider the point p on 7 
where ip is smallest. If (p(p) = 0, then 7 lies in Sn C (R1 x Rn), which 
has an isolated singularity at p of the type of Theorem 3.1, so the tangent 
cone Ci to 7 at p is not minimizing. Hence the tangent cone R x Ci to the 
cone over 7 at p is not minimizing and the cone over 7 is not minimizing, 
a contradiction. Therefore (p(p) > 0. By comparison with the round sphere, 
we see that 7, extended in both directions from p, meets itself on the other 
side of 5 at some angle less than 180 degrees, a contradiction. We conclude 
that n = 2 and C = {0} x R2, possibly plus an area-minimizing sum of 
planes in Rm x {0} (characterized in [M2, Cor. 4] as all complex for some 
orthogonal complex structure on their span). Note that any such C is area 
minimizing, because projection onto Rm x {0} plus projection onto {0} x Rn 

is area nonincreasing ([M3, Lemma 5.2]; the metric is irrelevant, since at the 
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infinitesimal level all metrics are equivalent). 

The following proposition provides some trivial but interesting examples. 

3.8 Proposition. Let Mi, M2 be smooth submanifolds of the unit sphere 
in Rmi xRm2. Letp G M2. Then the cone Ci over Mi xp is area minimizing 
in the cone C over Mi x M2. 

Proof. The distance-nonincreasing retraction from C to Ci, which carries 
(txi,tx2) to (tei,ip), maps any competitor to Ci, which must therefore be 
area minimizing. 

Example. Inside the 13-dimenisonal cone C over S4 x S4 x S4 in R15, 
there are the following two 9-dimensional area-minimizing cones: 

Ci : the cone over S4 x S4 x p, 

C2 : the cone over S3 x S3 x S2. 

The first cone Ci is area minimizing by Proposition 3.8. The second cone 
C2 is minimizing even in R15 [L, Thm. 5.1.1]. 

Other interesting examples are provided by Kerckhove and Lawlor [KL]. 

3.9 Unoriented surfaces. All of the results of this paper (and of 
[L]) apply as well in the larger context of unoriented surfaces or rectifiable 
currents modulo two (including orientable as well as nonorientable surfaces; 
see [Ml, §11.1]). 

3.10 Soap films. One may consider the context of soap films, technically 
(M,0, d)-minimal sets (see [Ml, Sect. 11.3]). Which soap film hypercones, 
such as the cone over the regular simplex [LM], remain minimal under the 
metric 1(1) for some 5 < 1? Perhaps a fc-dimensional hyper cone over a 
regular simplex remains minimal for some S < 1 if and only if k > 3. It is 
easy to see that the 1-dimensional cone over the vertices of an equilateral 
triangle (the "Y" over the 2-simplex) does not even remain stable; indeed, 
has negative first variation. Computation after Simons [Sns, Lemma 6.1.6], 
generalized as in 3.1(6) above, shows that the 2-dimensional cone over the 
regular tetrahedron or 3-simplex is unstable. The singular points on the link 
in the sphere do not interfere (cf. [HMRR, Prop. 3.3]). 

fc-dimensional hypercones over cubes are known to be minimal if and 
only if k > 3 [B]. Brakke's calibrations [B], which prove them minimal for 
k > 3 with some leeway, imply that they remain minimal for some S < 1. 
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