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The Relative Yamabe Invariant 
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We define the relative Yamabe invariant of a compact smooth man- 
ifold with given conformal class on its boundary. In the case of 
empty boundary the invariant coincides with the Yamabe invari- 
ant. We develop approximation techniques which lead to gluing 
theorems of two manifolds along their boundaries for the relative 
Yamabe invariant. We show that there are many examples of man- 
ifolds with both positive and non-positive relative Yamabe invari- 
ants. In particular, we construct families of four-manifolds with 
strictly negative relative Yamabe invariant and give an exact com- 
putation of the invariant. 

1. Introduction. 

1.1. General setting. Let W be a compact smooth manifold with bound- 
ary dW = M ^ 0, and n = dim W > 3. Let TZiem(W) be the space of all 
Riemannian metrics on W. For a metric g G 7^iem(V^) we denote by Hg the 
mean curvature along the boundary dW = M, and g = g\M- We also denote 
by [g] and [g] the corresponding conformal classes, and by C(M) and C{W) 
the space of conformal classes on M and W respectively. Let C and C be 
conformal classes of metrics on W and M respectively. We write dC = C 
if C\M_ = C. Let C(W, M) be the space of pairs ((7, C) with dC = C. De- 
note C0 = {g ^ C \ Hg — 0}. We call C0 C C the normalized conformal 
class. Let C0(W,M) be the space of pairs (C0,C) such that C0 C C and 
(<7, C) 6 C(W,M). It is easy to observe (see [7, formula (1.4)]) that for any 
conformal class C 6 C(W) the subclass (7° is not empty. Thus there is a 
natural bijection between the spaces C0(VF, M) and C(W, M). Let g e 0° be 
a metric. Then C0 could be described as follows: 

C0 = {u^g | u e C?(W) such that   d^u = 0  along M } . 
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Here v is the normal unit (inward) vector field along the boundary, and 
C^0(W) is the space of positive smooth functions on W. 

1.2. The Einstein-Hilbert functional. Let C G C(M) be given. We 
define the following subspaces of metrics: 

Kvemc{W, M)   =   {g E ^iem(PF) | d[g} = C} , 

nieuPc(W, M)    =    {g £ IZiemdW) \ H-g = 0} . 

We consider the normalized Einstein-Hilbert functional 

I: niem^W, M) -+ R,   I® = Jw3^L_^ 
Vol^(W)    n 

where Rg is the scalar curvature and dag is the volume element. As in the 
case of closed manifolds, we have the following result. 

Theorem 1.1. Critical points of the functional I on the space T^iem^W^M) 
coincide with the set of Einstein metrics gonW with d[g] = C and Hg — 0. 

Remark 1. One can restrict the Einstein-Hilbert functional / on some other 
subspaces of metrics in 7^iem(W/r). However, we claim that the subspace 
7^iem^(VF,M) is indeed a suitable one for the Einstein-Hilbert functional. 
For instance, the sets of critical points of the functionals /|7eiem(w) and 
^l7£iemc(W,M) are empty- Furthermore, consider the subspace 

ftiemg?nst(^, M) := {g G ^iemc(W, M) \ dHg = c for some constant c} . 

Then the set of critical points of the functional ^|^iemconst(Ty5M) IS also empty. 
These facts easily follow from the proof of Theorem 1.1. 

1.3. Relative Yamabe invariants. Similarly to the case of closed 
manifolds, the functional / is not bounded. It is easy to prove that for 
any manifold W of dim^F > 3 with dW = M, and any conformal class 
C G C{M): 

inf 1(g) = —oo, sup 1(g) = oo. 
geniem0

c(W,M) geniem0
c{W,M) 

Let (C^C) G C(W,M). We define the relative Yamabe constant of (C,C) as 

Yc{W,M;C)= M 1(g). 
g€C° 
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Remark 2. We notice that the relative Yamabe constant Y^(W,M] C) co- 
incides with the constant Q(W) (up to a universal positive factor depending 
only on the dimension of W) defined by J. Escobar [7] for each pair of con- 

formal classes (C, C) G C(W, M). 

The relative Yamabe constant YgiW, M; C) is related to the Yamabe prob- 
lem on a compact manifold with boundary which was solved by P. Cherrier 
[6] and J. Escobar [7] under some restrictions. Indeed, P. Cherrier proved 
the existence of a minimizer for the Yamabe functional I\QO provided 

(1.1) YC(W,M;C) < Y^S^S^M). 

Here 5+ is a round hemisphere with the standard metric ^o, and 5n~1 C 5+ 
is the equator with go = 0o|s»-i- More generally, J. Escobar [7] solved the 
Yamabe problem under the restrictions we list below. The Escobar's result 
includes the case when the inequality (1.1) is satisfied. Here is the list of 

conditions given in [7]: 

(a) n = 3,4 or 5, 
(b) W has a nonumbilic point on M — dW, 

^ ' ' (c)  M is umbilic in W and W is locally conformally flat, 
(d) n > 6, and M is umbilic in W and the Weyl tensor Wg^O on M. 

Notice that the conditions (1.2) are conformally invariant. We denote 

CEsc{W, M) = | (C, C) e C{W, M) 
at least one of the conditions 

(a)-(d) in (1.2) is satisfied 

Remark 3. It is easy to see that CEsc{W, M) C C(W, M) is open dense. 

We state the Escobar's result using the terms introduced above. 

Theorem 1.2. ([7, Theorem 6.1]) Let W be a compact manifold with bound- 
ary dW = M + % and (C,C) G CEsc(W,M). Then there exists a metric 
g e C0 such that YQ(W,M]C) — 1(g). Such metric g is called a relative 
Yamabe metric. 

Remark 4. A relative Yamabe metric g E C0 has constant scalar curvature 

Rs = YC(W, M- C) • Vol^^-n. 

We define the relative Yamabe invariants Y(W,M,C) and Y(W, M) (see 
[13], [25] for the Yamabe invariant of a closed manifold): 

■Y(W;M,C)=    sup   YC(W,M]C),     Y(W,M)=    sup   Y{W,M]C). 
c,dc=c cec(M) 
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The invariant Y(W, M; C) has clear geometric meaning in terms of positive 
scalar curvature (abbreviated as psc). We call a conformal class C G C(M) 
positive if the Yamabe constant Yc(M) > 0. Of course, it means that the 
conformal class C contains a psc-metric. The following statement follows 
from the above definitions. 

Claim 1.3. (1) Let C G C(M) be a positive conformal class. Then 
Y(W) M; C) > 0 if and only if any psc-metric g G C can be extended 
conformally to a psc-metric g on W with Hg = 0 along M. 

(2) The invariant Y(W, M) is a diffeomorphism invariant. Furthermore, 
Y(W, M) > 0 if and and only if there exists a psc-metric gonW with 
Hg = 0 along M. 

We present our main results on the relative Yamabe invariants in the next 
section. 

1.4. Acknowledgments. Both authors would like to acknowledge par- 
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University of Oregon, SFB 478 - Geometrische Strukturen in der Mathe- 
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like also to thank Mitsuhiro Itoh and Thomas Schick for useful discussions 
and their hospitality while we visited the University of Tsukuba and dur- 
ing our visit at Miinster. The second author would like to thank Michael 
Joachim, Wolfgang Liick, and the members of the geometry-topology in 
Miinster for very interesting mathematical discussions. This work was also 
partially supported by IHES, and the second author would like to thank 
IHES for hospitality. Both authors are grateful to the referee for valuable 
remarks, and to Masashi Ishida for useful discussions. 

2. Overview of the results. 

2.1.    Minimal boundary condition and approximation theorems. 
First, one can notice that the minimal boundary condition Hg = 0 is rather 
weak for applications. For instance, to apply the Atiyah-Patodi-Singer index 
theory, one needs much stronger condition that a metric g is a product metric 
near the boundary. The closest geometric approximation to a product metric 
near the boundary is when this boundary is totally geodesic. In more detail, 
let g e T&em^VFjM), g = QIM- Clearly any metric from the normalized 
conformal class [g]0 is totally geodesic on M if g is. We call the conformal 
class [g] of such metric g umbilic. We denote by C£m(W, M) C Cc(W, M) := 
{C G C(W) | dC = C} the subspace of umbilic conformal classes. 
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Our first aim is to prove a generalization (Proposition 4.5) of the approx- 
imation theorem due to Kobayashi [13]. We show that any metric g with 
totally geodesic boundary is C1-close to a metric g which is conformally 
equivalent to a product metric near the boundary. Moreover, we show that 
the scalar curvature Rg is C0-close to Rg of g. 

Next, we prove the approximation Theorem 4.6 under the minimal 
boundary condition. Theorem 4.6 gives us a fundamental tool on the relative 
Yamabe invariants. In particular, we prove the following result. 

Theorem 2.1. For any C e Cc(VF,M); g G C and any e > 0 there exist a 

conformal class C E C£m(W, M) and a metric g £ C0 such that 

C and C are C®-close conformal classes, 
(2.1) I   \YC;{W,M]C)-Yc(W,M;C)\<e, 

9 ~ 9 + dr2   (conformally equivalent near M), 

where g = g\M- More precisely, 
)4 

n"2 (g + dr2)    near M, where 

f(x) = -^(R9\M-R9)    onM. 

We define the "umbilic Yamabe invariant" Yurn{W, M; C) as 

Yum(W, M; C) =       sup       Yd{W, M; C). 
C£C%m(W,M) 

Theorem 2.1 leads to the following conclusion. 

Corollary 2.2. Yum(W, M; C) = Y(W, M; C). 

2.2. Gluing Theorem. We analyze a gluing procedure for manifolds 
equipped with conformal structures. Let Wi, W2 be two compact manifolds 
of dimWi = dimW^ > 3 with boundaries 

dWi =M1 = MoUM,    and   dW2 = M2 = MQ U M' 

endowed with conformal classes Ci = CQUC € C(Afi), C2 = CQUC' G C(M2), 
where Co G C(Mo), C G C(M), C" G CCM7). Let W = Wi UMO (-^2) be the 
union of Wi and W^ along common boundary MQ. 

We study the case when the conformal class Co G C(MQ) is positive, and 
the relative Yamabe invariants Y(Wj, Mj\ Cj), j = 1,2, are positive as well. 
We essentially use the approximation Theorem 4.6 to prove the following 
result (Theorem 5.1): 
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Theorem 2.3. Let Co E C(Mo) be a positive conformal class, and 
Y{Wj, Mj- Cj) > 0 for j = 1,2.  Then Y(W, dW] CUC')> 0. 

Thus new examples of manifolds with positive Yamabe invariant may be 
easily constructed by gluing two manifolds with positive relative Yamabe 
invariant. 

2.3.    Yamabe invariant of the double.   Let W be a compact n- 
manifold with boundary dW = M ^ 0, and M = MQ U MI. (Here Mi may 
be empty.) Let (C, C = Co U Ci) be a pair of conformal classes on (W, M), 
where Co E C(Mo), Ci E C(Mi). Let X = VFUMQ (-W) be the double of W 
along MQ. Then, the boundary of X is dX = Mi U (-Mi). We prove the 
following result (Theorem 5.3). 

Theorem 2.4. Let W, X be manifolds as above, and C = CQUCI E C(CW), 

wftere Co E C(Mo), Ci E C(Mi).  TAerc 

(1) Y(X7 Mi U (-Mi); Ci U Ci) > { ^^ M; ^ 
C)       if Y(W,M;C)>0, 

C) if y(W, M; C) < 0. 

(2) y(*lM1u(-M1))>(y,<w;M> /W^>o. w v >   i   v    ^-\ 2»y(pv;Af) */y(w;M)<o. 

When the manifolds ^TF = M = M0, and Mi is empty (in this case, the 
boundary of X — W UM (—W) is empty), the following holds (Corollary 
5.4): 

Corollary 2.5. Let dW = M, and let X = W UM (-W) be the double of 
W, dX = 0. Then 

Y(X)>( y^'M)        ^ nW,M)>0, 
^   ^ - \ 2ny(W,M)    */ Y(W,M) < 0. 

/n particular, ifY(X) < 0, then Y(W,M) < 2-$Y(X) < 0. 

We use these results to give examples of manifolds with non-positive Yamabe 
invariant. 

Corollary 2.6. Let N be an enlargeable closed manifold.  Then 

2iY(N\mt{Dn),Sn-1) < Y(N#(-N)) < 0. 

In particular, Y(N \ int(£»n), 5n-1) < 0. 
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2.4.   Four-manifolds with negative relative Yamabe invariant. 
Let X be a minimal closed symplectic 4-manifold of general type with an 
involution L. Assume that the fixed point set Fix(^) of L is an oriented closed 
3-manifold M (possibly disconnected). We notice that in this situation the 
manifold X = W UM (—W) is the double of the closure W of a connected 
component of X\M (Lemma 6.2). We use our technique combining with the 
estimates given in [16], [21] (cf. [27]) to prove that Y(W#l{Sl xS3), M) < 0, 
see Theorem 6.3. To evaluate the relative Yamabe invariant, we specify this 
construction as follows. 

Let N be a product E^1 x Efc2 of closed Riemann surfaces of genus ki, &2 > 
2, and g the product metric g\ x #2 of gi on E^ and 32 on E^2, respectively, 
with constant negative curvature —1. Let (j) : (E^gi) —>» (E^pi) be an 
involutive isometry such that Fix(0) consists of ki + 1 disjoint simple closed 
geodesies (such (j) always exists for an appropriate gi if ki > 2). Then the 
map L := (f) x Id : N = E/Cl x Efc2 —>- iV is also an involutive isometry with 
Fix(^) = Fix(</>) x Efc2 consisting of ki + 1 disjoint closed totally geodesic 
3-submanifolds. Then it follows that N — W VJdW {-W), where W is the 
closure of a connected components of N \ Fix(/,). We obtain the following 
result (see Corollary 6.4). 

Corollary 2.7. For all £ > 0 the relative Yamabe invariant of the manifold 
WftliS1 x S3) is given by 

YiWftliS1 x S3),dW) = -^=Y(N) = -8V27r^(k1-l){k2-l) < 0. 
v2 

The rest of the paper is organized as follows. We prove Theorem 1.1 in 
Section 3. Then we prove the approximation theorems in Section 4. We give 
a gluing construction in Section 5. In Section 6, we analyze the Yamabe 
invariant for a double and give examples of manifolds with non-positive or 
negative relative Yamabe invariant. In the last Section 7 we define and study 
the moduli space of positive conformal classes and introduce the notions of 
conformal concordance and conformal cobordism. 

3. Proof of Theorem 1.1. 

Let g € 1liemc{W, M) be a metric and {g{t)} a smooth variation of g in the 
space 7£iemc(W,M), where ^(0) = g. We consider first a general variation, 
i.e. {g(t)} is not necessarily contained in the subspace 7£iem[l(W, M) C 
7^iemc(W/, M). Now we need the following notations. Let h = ^|t:=o5(*) 
be a variational vector and g(t) = 3(*)|MJ where g(0) = g. 
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Remark 5. We observe that the condition g(t) G C implies that h = fg on 
M, where / G C^M). 

Let r = r(t) be the distance function to the boundary M in W with respect 
to the metric g(t). Let u = -^ be the unit normal (inward) vector field 
along the boundary dW = M. Let p G M, and {r, a;1,..., x71'1} be a Fermi 
coordinate system near p. We use indices a,/J = 0,1,... ,n — 1, where 0 
corresponds to the normal direction, and i,j,A; = 1,... ,n — 1 are indices 
corresponding to the tangent directions (only on the boundary dW = M). 
We denote by (•)' = ;!§(•) I^o ^e Ya:ria'^lona^ derivative evaluated at t = 0. 
In order to prove Theorem 1.1, it is enough to prove the following formula. 

Claim 3.1. Let {g(t)} be a variation as above.  Then 

( f R-9{t)dam)  =- f {KK-g-\R-gg,h)-gdG-g- [   {2H'-g +fHg)dag, 
\JW / JW L JM 

where Ric^ is the Ricci curvature ofg. 

Proof. We denote by V and V corresponding Levi-Civita connections with 
respect to the metrics g and g. Standard calculation gives: 

(Rg{t)y     =    -VaVa(Trgh) + V^hap - (Ricg, h)g, 
(3.1) 

{dxTmy   =   (\R-gg,h)gdGg. 

The formula (3.1) together with Gauss' divergence formula gives 

(j   Rg(t)d(7g(t))     =    -/   (^cg--Rgg,h)gd(Tg 

+ /   {V{Trgh),u)-gdag-       Y](Veah)(ea^)d(Tg. 
JM jMa=0 

Here {ea} = {v, ei,..., en_i} is a local orthonormal field. We denote 

n-l 

B! = (V(Tr-gh),is)-g,       Bn = - ^(V^/i)^,!/). 
a=0 

Let p G M be an arbitrary point of the boundary.  As before, let u be the 
unit vector field normal (inward) to the boundary such that V^ — 0, and 
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let {e^} be an orthonormal frame near p in W such that V^ej = 0 at p and 
t = 0. We notice that, in general, Veiej does not vanish at p. We have the 
second fundamental form of M: 

Aij = A(ei,ej) = g^e^j.v) = -g^^v.ej). 

Then we have H = g^Aij the mean curvature of the boundary M. We have: 

n-l Tl-1 

H=- E sty*"* *) = E sty**"'e-)= -V^Q = - (a^a+r^^) 
i=0 a=0 

Here {a;a} = {r, rr1,... ,a;n  1} is a Fermi coordinate system near p in W, 

and 3a = —— (and da — ea at p). We have: 
ox01 

H' daVr+TZpW + F)^ 

1 « 
Va^T + ^ (Va^l + VphZ - Wahap) V? 

=   -Va(z/r - \ve(Tr-9hy = -VaCi/)" - \(V(Tr-gh),u)-g. 

Thus we obtain 

(3.2) Bj = (V(T:^), i/>^ = - (2#' + 2Va(i/,)a) ■ 

Now we compute the term Bn. We have 

n-l 71-1 

^(VeaWea,")    =    E^71^'^ -MV^Cft,!/) -/i(ea,Veaz/)) 
a=0 ^=0 

71-1 

=   VMv,") + E ^e^(et, ^) - /ioo^ + ^A i k 
t=l 

since 
71-1 n-l 

EVc«i/ = V|/i/+EVe«i/' v^ = 0' and 
Q!=0 t=l 

n—1 n—1 n-l 

^e^ = ~ E Aike^      E ^e^a = VvV + E ^e* = jffi/- 
A;=l a=0 t=l 
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Notice that hlk = fglk and Ve.h(ej,v) = Veih(ej,v). Thus we have 
(3.3) 

n-l n-1 

Bn = - ^(Ve0/i)(ea9 v) = -V„h(v, ^-J^ ^eMeu v) + hooH - fH. 
a=0 z=l 

To continue, we notice that g(u^ v) = 1 implies 

0 = £'(*,, u) + 2g{v', v) = h(is, is) + 2g(isf, u). 

Also we have 

0 = Vuh{v, v) + 2^(VI/I/^ i/) + 2£(i/, Vuv) = Vvh{v, u) + 2^(Vl/i/
/, v) 

since V^is — 0. Thus we have that 

(3.4) 22(V,z/,i/) = -V^(^)- 

Then the identity g(y,ei) = 0 implies 

0 = g'iv, ei) + g(vf, a) + g(i/, ej). 

Notice that e- G TpM since g(t) G C. Thus 

0 = S/(^ei)+g(i/,,ei). 

Now it follows that 

n-l 

z=l 

Notice that X^=i ^e^i = Hv, and Hg(v',v) — —^h(v,v). Thus we obtain 

n—1 n—1 

(3.5) 2 51 S(Vcy, ei) = -^Y^ VeM", et) + hooH. 

We combine (3.4) and (3.5) to obtain 

n-l 

2VQ(z/)Q    =   2^5(Vea^,ea) = 2 

(3.6) 
a=0 

n-l 

^V^^ + ^^VeV,^) 
i=l 

n-l 

=    -Vvh(v, v) - 2 ^ Vciftfo e2) + ^oo^- 
t=i 
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Now it follows from (3.2), (3.3) and (3.6) that 

n-l 

n-l 

= ■   -2H'-Y^VeMv,ei)-fH. 
i=l 

Denote 0(v) = h{v,v) for v G TXM, so 6 is a 1-form on M. We notice that 

Vfij.e(eO = (Ve.0)(eJ-)+fl(VCieJ-) = (Vc.0)(eJ-)    since  Ve-e^ - 0  at p. 

Thus we have that 

5/ + Bu = -2Hf -fH- ViO1    on M. 

This proves Claim 3.1 and concludes the proof of Theorem 1.1. □ 

4. Approximation Theorems. 

4.1. Kobayashi approximation lemma. First we reformulate several 
known facts in our terms. The following fact follows from a modification of 
the continuity property of the Yamabe constant due to Berard Bergery. 

Lemma 4.1. (cf. [3, Proposition 4.31]) Let gi, g G 7^iem^(VF,M) be Rie- 
mannian metrics, and Ci — [gi], C = [g\. Assume that 

/ 9i —* 9 in the C0-topology on W, and 
\ Rgi —t Rg    in the C0-topology on W. 

Then Yc. (W, Af, C) -> Yc(W, M, C). 

Now we recall the results due to O. Kobayashi [13]. 

Lemma 4.2. (O. Kobayashi [13]) For any 5 > 0 there exist a smooth non- 
negative function ws and a positive constant £(8) (0 < s(S) < 8) such that 

y 
/jx   f ws(t) = 1    on [0,e(6)], 

\w6(t)=0    07z[(S,oo), 1|_^    y = LJ6(r) 

(ii)     \tws(t)\ <8 fort>0, 

(iii)     \t2ws{t)\ <8 fort>0. - 

(see Fig. 4.1.) 
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Lemma 4.3. (0. Kobayashi [13]) Letg.g e 7£iem(W); and h = g — g. Then 

Rg - Rg = Pg(h) + Qg(h),   where 

P-g(h)      =   -Ag{Trgh) + ^V^hij - (h, Ricg)g, 

IQ-gWl   <   C{\Vh\2q" + \h\-\V2h\q^ + (\h\-\V2h\ + \Ri^ 

where the constant C > 0 depends only on n = dimW; and q £ C+(W) is 
a function satisfying q • g > g. 

Proposition 4.4. Let W be a compact manifold with boundary dW — M, 
and let metrics g,g G 7^iemc(W/, M) such that jj^g = j^g (i.e. g coincides 
with g up to their first derivatives on M), and Rg = Rg on M. Then the 
family of metrics 

g5=g + w6(r)(g - g) G ftiemc(W, M) 

satisfies the following properties: 

(i) gs -± g in the ^-topology on W (as 6 —> 0), 

(ii) Rgs —> Rg in the C0-topology on W (as S -> 0); 

(iii) g$ = g on the collar Ue^(M,g) = {x G W \ distg(x,M) < £(6)}, 

(iv) gs = g onW\Us(M,g). 

Proof The statements (iii), (iv) are obvious. We prove (i) and (ii). 
(i) The function ws satisfies supp(^) C [0,5]. Then it follows 

95-9 = ws(r)(g - g) = 0(r2), 

thus gd —> g in the C0-topology on W. Furthermore, 

d(gs -9)= ^8(r)(95 -g)+ m(r)d(g - g). 

By the condition on the metrics <7J, <?, 

5<J-5 = 0(r2),    d{gs-g) = 0{r). 

We use Lemma 4.2 to estimate 

\d~9s - dg\ < \ws{r)r\ • ^^ + ws[r) ■ 0{r) < 50{5) + 0{5). 
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Thus dgs -4 dg in the C0-topology, and hence gs -4 g in the C1-topology on 
W. 

(ii) We use Lemma 4.3 to write 

Rgs - R-g    =   Pg(w5(r){gs - g)) + Qg(w5(r)(gs - g)), 
< 

K ws{r)(R-gs - Rg)   =   ws(r)Pg(g5 - g) + ws(r)Qg(gs - g). 

We use again Lemma 4.3: 

Ipg{wt(r)(9S -9))- W5(r)Pg{gs - g)\ 

< C (\ws(r)\-\ws{r)\-\gs-g\M^6{r)\2^gs-9\+ \ws(r)\-\wd(r)\-\d(g5-g)\) 

< C ((|^(r)r2| + H(r)7f) ^ + |^(r)r| • ^1) < CiS. 

Similarly we obtain 

r \Qa{Mr)(g6-g))\<C28, 
< 

,  \^d(r)Qg{96 - 9))\ < C3S. 

Notice that \ws(r)(Rgs — Rg)\ < C^S since Rg = Rg on M. Thus we obtain: 

\Rg6 - Rg\ < \Pg(ws(r)(gs - g)) - ws(r)Pg(g5 - g)\ + 

\QAws(r)(9d-9))\ + \w6{r)Qg(g6-9))\ + \^d(r){Rgs - Rg)\ 

< (Ci + C2 + C3 + CJS. 

Here Cj (j = 1,...,4) are positive constants independent of S.   Thus we 
have that Rg6 -* Rg in the C0-topology on W. D 

Proposition 4.5. (Kobayashi Approximation Theorem [13, Lemma 3.2]) 
Let W be a compact manifold with boundary dW = M, and C E C{M). Let 
g G 7^iemc(M/,M) be a metric {respectively g G T&em^W, M)). Let g = 
9\M7 and let Ag be the second fundamental form of M = dW. There exists a 
family of metrics gs G TZiemc{W, M) (respectively gs G 7^iem^(W^M)) such 
that 

(i) gs —¥ g in the Cl-topology on W (as 5 -> 0), 

(ii) Rgs —t Rg in the C0-topology on W (as 5 —> 0); 
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(iii) gs is conformally equivalent to (g — 2rAg) + dr2 on Ue^{M,g), 

(iv) gt = g onW\U5{M,g). 

Proof. First, we note that the exponential map exp : T^M —> W sends 
(x, r - v) G TLM to expa.(r • i/) = (x, r) £W. On M we have 

goo = g(dr,dr) = 1, goo = drg(dr,dr) = 2g(Vdrdr,dr) = 0, 

goi=g(dr, 9i) = 0,   g'0i = drg(dr, di)=g{Vdrdr, di) + g{dr, Vdrdi) = 0, 

9ij = 9(di, dj)=gij, g'ij = drg(di, dj)=g(Vdrdi, dj) + g{di, Vdrfy) = -2^. 

Here we used that 

Vdrdr — 0, Vdrdi = —A^d^^ which implies 

g(dr, Vdrdi) = ff(ar, -AUfdh) = 0,   and 

gi^drdi, dj) + #(<%, Var^j) 

= m, -Apk) + »(-A' h, dj) = -lAiy _.     , 0 ^ Fig. 4.2. 

We define new metrics g and G near M as follows: 

g{x, r)     =    (gij(x) - 2rAij{x) + 0(r2))^^ + 0{r2)drdxi + dr2, 

^(x, r)     :=    (gij(x) — 2rAij(x))dx'ldx^ + dr2, 

G(x, r)    :=    gij(x)dxldxi 4- dr2. 

Clearly j^c? = j^g and, in general, j^^ ^ j^G. We notice 

^|M = ^+2Ric^(i/,^) + |^|2-^2-^+2Ric^(^^) + |^|2-^^^ 

We define a metric g = (gij) := {gij{x) — 2rAij(x)) on each hypersuface 
M x {r} C W (for small r). Then we have 

3 1 
R9     =     R9 + ^l^rffiill - ^ ' d2gij - -\gij • drffyl2 

=   Rg + 3\Ag\2g-H?+ 0(r)    near M, and 

Rg Rg + 3\Ag\2g - H?    OliM. 
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4 

We choose the conformal metric g(x, r) = u(x, r)"^ • g so that j^g = jj^g 
by giving u the boundary conditions: 

u(x,Q) = 1,     dr^x.O) = 0  on M. 

We have 

-^AdW + i^u = i25«^l,   or  A^ = -3^(i25«^l-i^u). 

We specify A^u on M: 

A^ = Vadau = ^ (0afyti - f ^^u) 

= d?u + (/yai^-ti - fgocU - fjo^t^ - ^ (tijdru + f^fcu) - ar
2^ 

since didjU = 0, 5r^ = 0 and 9^ = 0 on M.  Here we use the u(x,0) = 1, 
dru(x, 0) = 0 on M. Thus we obtain that on M 

d^u   =   AsU = -^(R-g-R§) = -^(R~9-(Rg + 3\A-g\l-Hl)). 

We let u(x,r) := 1 + ^r2^(rr) near M, where 

^)   =   -4^)(^lM-(^ + 3|A,|2-i?|)) 

(4.1) 
=    ~4(n-2i) (^IM - Rg\M) • 

Then the metric 

§ = u^ ■ £ = (1 + ir20(rz;)) ^^ [(g - 2rA) + dr2] 

is such that j^g = jlMg and Rg = i?^ on M.   We use Proposition 4.4 to 
define a family of metrics g$\ 

95 = 9 + ws(r) '(g-g)G ^iema(W, M). 

We also notice that C = \jg\M] = [g\M] = [g\M] = [gs\M] and 

Hg = 0=>Hs = 0=>H§ = 0=>Hg5=0 

since Ag = A^ dru = 0 on M, and p = & near Af. Then £ e ^iem^(W, M) 
implies that g$ G 7^iem^(T;F, M). □ 

4.2. The approximation trick under minimal boundary condi- 
tion. One notices that the above results do not allow to use a metric which 
is conformally equivalent to a product metric near the boundary to approxi- 
mate the relative Yamabe constant YQ{W, M; C). This is the problem which 
we address and solve here. 
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Theorem 4.6. (Approximation Trick) Let W be a compact manifold with 
boundary dW = M, C G C(M). Let g E 7&em^(W,M) be a metric. Let 
g = g\M, and let Ag be the second fundamental form of M — dW. Then 
there exists a family of metrics gs E 72iem£,(W, M) such that 

(i) gs —> g in the C0-topology onW (as S —> 0), 

(ii) Rgs -> Rg in the C0-topology onW (as 6 —>► 0), 

(iii) gs is conformally equivalent to the metric g + dr2 on Ue^(M,g), 

(iv) -gs^gonWXU^M.g). 

Remark 6. In order to control the scalar curvature without the minimal 
boundary condition, one needs the Cl-convergence of metrics as in Proposi- 
tion 4.5. Furthermore, when g is not totally geodesic on M, the metric g can 
never be approximated in the C1 -topology to a metric which conformally is 
a product metric near the boundary. However, we emphasize that the con- 
vergence in (i) of Theorem 4.6 is the (70-convergence only. The minimal 
boundary condition plays a crucial role to achieve the C0-convergence for 
scalar curvatures in (ii). 

Proof. There are two steps in the proof. 
Step 1. First, Proposition 4.5 allows us to assume that the metric g is 

such that 

g = (l + £<i>{x)) ^ [{g(x) - 2rA-g(x)) + dr2] 

on a collar Us0(M,g), where {x,r} = {x1,... ^x71'1^} denotes a Fermi 
coordinate system near each point of M, and (j)(x) is the smooth function 
on M defined by (4.1). For each positive 6 < do, let Gs E 1liem0

c(W, M) be 
a metric defined by 

Gs(x, r)    =   g(x, r) + ws(r) • (G(x,r) - g(x, r)) 

=    g(x) - 2r(l - ws(r)) • Ag + dr2. 

Here g(x,r) and G(x, r) are given by 

g(x,r)    =    (g(x)-2rAg(x)) + dr2, y 

}    onUs(M,g). 
G(x,r)    —   g(x)+dr2 
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We also let gd{x,r) = g(x) - 2r(l - ^(r)) • Ag(x) on U5(M,g). It then 
follows from Lemma 4.2 that near M the scalar curvature of the metric G$ 
satisfies 

RG6    =   Rt + Wdrfa)^- $ ■d?(gs)ij-\\9ij-dr(gs)ij\
2 

=   Rg + 3(1 - wsittflAtl* - (1 - wb{t)f^l 

-(4ti;5(r) + 2r • ws{r))H-g + 0(5). 

We use the minimal boundary condition Hg = 0 to obtain 

■RG« = i^ + 3(1 - ws{r))2\Ag\2g + 0(6)     near M. 

Step 2. We now define the metric g$ € 7^iemp(W, M) as follows: 

(4.2) ^ r) = (l + ^Mx, r)) ^ • Gtfz, r) 

on Us{M,g) with 

(4.3) ^(x,r) = ^(ar) - ^(2 - ws(r))ws(r)\As\l. 

We obtain that the assertions (iii) and (iv) hold since G5 = g + dr2 on the 
collar Ue(fy(M,g), and Gs = g, and fa — (j) outside of the collar U^M^g). 
By construction 

2 2 

G5 —► g,    and    —^(x.r) —> -j<f)(x) 

in the C0-topology on W as S —> 0. Thus the assertion (i) holds. 
Finally, the scalar curvature Rgs is given by 

R-gs = (1 + ±Mx,r))-& [-42#A0,(1 + ±M*,r)) 

+i?G,(l + ^(x,r))] 

= (1 + 0(62)) [-^Er1^ + 3(2 - w,(r)) • 10,(0 • l^g + Rat + 0(6)] 

= RGs + (R3 -Rg- 3\Ag\2g) + 3(2 - w5(r)) ■ ws(r) ■ \A-g\
2

g + 0(6) 

= Rg + 3(1 - ^(r))2|^|2 + (R-g -Rg- 3\Ag\2g) 

+3(2-ws(r))ws(r)\Ag\2g + 0(6) 

= Rg + 0(6)    on W as 6 —► 0. 
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This implies the assertion (ii) and completes the proof of Theorem 4.6.     □ 

5. Gluing Theorems. 

5.1. Setting. Here we would like to analyze the gluing procedure for 
manifolds equipped with conformal structures. Let Wi, W2 be two compact 
manifolds of dim Wi = dim W2 > 3 with boundaries 

dWi = Mi = Mo U M,    and   dW2 = M2 = MQ U M' 

endowed with conformal classes Ci = CQUC G C(MI), C2 = CQUC' G C(M2), 
where Co G C(MQ), C G C(M), C G C(M/). Let W = W1 UMQ (-^2) be the 
union of of Wi and W2 along MQ (see Fig. 5.1). 

Remark 7. The boundary of the manifold W is dW = M U M' with ap- 
propriate orientation. We consider both cases when dW = 0 and 9^ 7^ 0. 

Recall that a conformal class C G C(M) is positive if lc(M) > 0. 

Theorem 5.1. Let Co G C(MQ) be a positive conformal class, and 
Y(Wj, My, Cj) > 0 for j = 1,2.  T/ien Y(W, dW; C U C7) > 0. 

Remark 8. We do not assume that the conformal classes C G C(M), C' G 
C(M/) are positive. 

Fig. 5.1. Manifold W = W1 UMQ (-W2). 

Proof of Theorem 5.1.   There are four steps in the proof. 
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Step 1. First we notice that since Co e C(Mo) is a positive conformal 
class, there exists a metric h G CQ on MQ with R^ > 0. The metric h 
do not have to be a Yamabe metric. We fix the metric h. The condition 
Y(Wj,Mj]Cj) > 0 (for j = 1,2) implies that there exist conformal classes 
Cj on Wj.such that dCj = Cj, i.e. (Cj,Cj) € C(Wj,Mj). We denote 

yci=^(Wi.^;Ci)>o,   i = l,2. 

Choose metrics gj G Cj with 5J|MO — h.   Moreover, we may assume that 
gj e Cj (i.e. H-9j =0on Mj). 

Remark 9.  (1) The metrics gj G C^ do not have to be relative Yamabe 
metrics. Moreover, their scalar curvature Rgj is not positive, in general. 

(2) The union C® Uc C® does not make sense as a conformal class on W 
since this union, in general, fails to be smooth along MQ. 

Step 2. Theorem 4.6 and (4.2), (4.3) imply that for any e > 0 there 
exist conformal classes Cj on Wj and metrics cjj G Cj (j — 1,2) such that 

dCj — Cj, 

gj> ~ *o       \   C^-close on Wh   which implies \Y^ - Y?. I < e. 
4 

^ = (l + ^/j) 'l~2 ■ (/» + dr2)   near M,- in Wj. 

Here the function /^ is defined by 

fj = -4^% (R9j \M0 - Rh)   on MQ in each Wj. 

Prom now on we only need the conditions Yg > 0 (j — 1,2). Therefore we 
may assume that fj < 0 on MQ since the relative Yamabe constant Yg. is 
invariant under pointwise conformal change. 

;    Mox[0,l]p 

Fig. 5.2. Manifold X = Wi UM0 (MQ X [0,€]) UMO (-W2). 
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Let i be a positive constant. We define the manifold X which is diffeomorphic 
to W as follows (see Fig. 5.2): 

X = Wl UMO (MO x [0,fl) UMO (-W2) 

Now we need the cut-off function w^ defined in Lemma 4.2. Then for each 
J, 0 < 8 < |, we define a metric g on X as follows. 

9i on Wi, 
52 on W2, 

^=<   (1 + ^(r)/i)^(/i + dr2) on Mo x [0,5], 
/i + dr2 on Mo x [8,1-8], 

^ {l + it^ws(e-r)f2)^(h + dr2) on MQ x[e-6,e\. 

Clearly g is a smooth metric on X = W. Let C = [g] G C(W). 

Remark 10. The metric g does not have positive scalar curvature. 

Step 3. Let j — 1,2.  Denote by Uj the first eigenvalue of the Yamabe 
operator on Wj for the Neumann boundary condition. Then 

Vj =   inf   ——r-^^—— • 

The relative Yamabe constants Yg. > 0 since Y^m > YQ. — e, j = 1,2. Thus 
it follows that i/j > 0. Notice that the conditions R^ > 0 on M and /j < 0 
(j = 1, 2) imply that i?^ > 0 on the cylinder MQ X [0,1] for small 8 > 0. 

Let z/C2/z be the first eigenvalue of the Yamabe operator on MQ X [0, £] for 
the Neumann boundary condition. We have 

wec~(Mox[o,€]) JMOX[(M] 
u2d(J9 

It follows that uCyi > 0 since Rg > 0. 
Step 4. Let v be the first eigenvalue of the Yamabe operator on X = W 

for the Neumann boundary condition, which is equal to 

inf       Ix^lMj + R^da, 

„ec~(x) fxu2d°9 

vCyi - inf 
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We conclude that v > min{z/i, 1/2, ^cyl} > 0 by [5, pp. 18-19]. The condition 
v > 0 is equivalent that there exists a metric g € [g\ such that Rg > 0 on 
X ^ W and Hg = 0 on dX = dW. Thus Y^pT, dX; CUC')> 0, and this 
implies Y(W, M U M'; C U C) > 0. □ 

Remark 11. Notice that £ > 0 could be chosen to be small under appro- 
priate choice of S > 0. 

5.3. Manifolds with positive relative Yamabe invariant. Here 
we show that there are many examples of manifolds with positive relative 
Yamabe invariant. We start with a closed manifold iV of dim AT > 3 with 
Y(N) > 0. We choose an embedded small disk Dn C N centered at XQ 6 iV, 
then d(iV\int(jDn)) = S71'1. Let Ccan € C(S,n~1) be the standard conformal 
class. 

Theorem 5.2. Let N be a closed manifold of dim N > 3 with Y(N) > 0. 
Then Y(N \ int(Dn), S71"1; Ccan) > 0. 

Proof. We use [13, Corollary 3.5.] to choose a conformal class C G C(N) 
with the Yamabe constant Y^(iV) > 0 and a metric g E C such that 

• g is conformally flat near XQ E iV, 

• Rg > 0 on N. 

Thus (as it was observed by Gromov-Lawson [9]), there exists a metric g on 
the manifold N \ int(Dn) such that 

• d[g] = Ccan E CiS"-1), 

• Rg > 0 oniV\int(jDn), 

• 9 = 9sn-i + dr2 near Sn-1 = d(N \ mt{Dn)), [gSn-i} = Ccan. 

Thus Ym(N \ mt(Dn), S^1- Ccan) > 0 and Y(N \ mt{Dn), S71"1; Ccan) > 0. 
D 

5.4. The double. Let W be a compact manifold with dW = M = 
Mo U Mi. We consider the manifold X = W UMQ (-W) which is the double 
of W along MQ (see Fig. 5.3). 

Remark 12. The other boundary component Mi of <9VF may be empty or 
not. 
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Mn       Mo 

Fig. 5.3. 

Theorem 5.3. Let W, X be manifolds as above, and C = CQUCI G C{dW), 
where CQ 6 C(Afo), Ci G C(Afi).- Then 

(1) Y(X, M1 U (-Mi); Ci U Ci) > ^ 0i 
f y(W, Af; C)       */ y(W, M; C) > 0, 

y(W, M; C)  «/ y(W, Af; C) < 0. 

(2) rpr.MxuHifx)) > (2iyWM)  ^ y(^M) <0. 

Proof. Let (7 be a conformal class on W with <9C = C. It is enough to prove 
the following inequality: 

(5.1) Y^MM-M^uC^f^C] C)     ifYc{W:M-C) >05 

C)KYc(W,MiC) <0. 

We choose a metric g G (7°, and let ^ = g|jvf • We notice that, for a generic 
conformal class C, any metric g G C0 could not be extended smoothly to X. 
It then follows from Theorem 4.6 that, for any small e > 0, there exists a 
metric g G C such that g\M = 9 = 9\M and 

£ ~ ^  C0-close on VT, 
|i2§-iJp| <^  on W, 

5(0;,r) = (1 + ^f{x))^{g(x) +dr2)   near Af C W. 

Thus we obtain that 

\Yd(W,M;C) - Yc(W,M;C)\< Ke, 

Yd{W, M; C) > 0  if ye(W; M; C) > 0, 
(5.2) 

where K > 0 is a constant independent of e.   We define ^ := g U ^ on 
X = W UMO (—WO-   The metric ^ is smooth by construction.   Let C := 
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CUC eC{X). Now for any u G C00^), u ^ 0, we define Q(x,g)(u) ** 

Q(x,-g)(
u)   =    /     

g^(,,) ^,    where 
-2d<7§ 

2n 2n 
We denote a = jw \u\n-2da^, /3 = J_lv |u|"-2dag. It is enough to consider 
the case a, /3 > 0 and a + f3 = 1. Then 

Q(X,g){u)     -      " —iEI  
{a + P) » 

=   <*" KH-+ ^ n 7S3— 

>    (a^ + (l-a)^Yd{W,M;C) 

for any a 6 (0,1). Let Y := Yd(X, Mi U (-Mi); Ci U Ci). Prom (5.2), this 
implies that 

y    >      inf   (a^r+ {\-a)r^r\Y6{W,M-,C) 

>    f y^(W, M; C)        if y6(W, M; C) > 0, 
-    1 2nYd(W,M;C)    if Yd(W,M;C)<0, 

/ ^(W, Af; C) - Ke if yc(W, Af; C) > 0, f yc(W; Af; C) - Ke if 

1 2n(yc(W,M-tC)-Ke)   if yc(iy;M;C)<o. 

We let e ->• 0 to obtain (5.1). D 

In the case of double manifolds, we obtain the following generalization of 
Kobayashi's inequality [13, Theorem 2]. 

Corollary 5.4. Let dW = M, and let X = W UM (-W) be the double of 
W, dX = 0. Then 

Y{X)-\2lY{W,M)    if 

In particular, ifY(X) < 0, then y(W, Af) < 2-»y(X) < 0 

Y(W, M) > 0, 
Y(W, M) < 0. 

2 . 
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6. Non-positive and negative relative Yamabe invariant. 

6.1. Enlargeable manifolds. Let N be a closed manifold of dimiV = n 
and Dn C N an embedded disk. We define the manifold W = N \ mt(Dn) 
with dW = S71-1. 

Remark 13. Let N be an enlargeable closed manifold (see [10]). Then 
the manifold N#(-N) = W USn-i (-W) is also enlargeable. Thus 
Y(N#(-N)) < 0. 

Corollary 6.1. Let N be an enlargeable closed manifold.  Then 

2nY{N\mt{Dn),Sn-1) < Y{N#{-N)). 

In particular, Y{N \ mt{Dn), S71'1) < 0. 

Example. Let Tn be a torus, and let H71 be a hyperbolic space and F a 
discrete group acting freely on H71 such that Hn/T is a compact manifold. 
Then we have Y(Tn \ mt(Dn), S71-1) < 0,  y((Hn/r) \ mt(Dn), S71-1) < 0. 

Remark 14. Let Wj be a compact smooth n-manifold with boundary 
dWj = Mj, for j = 1,2. Let (W, M) = {Wu Mi) U (W2, M2) be the disjoint 
union of Wi and W2. Let C = Ci U C2 be a conformal class on Mi U M2. 
Similarly to the case of closed manifolds, we can show that the same equal- 
ity as that of [13, Corollary 1.11] holds for the relative Yamabe invariants 
Y{W, Af; C) and YiWj, My, Cj) {j = 1,2). 

6.2.   Pour-manifolds with negative relative Yamabe invariant. 
Now we would like to construct a family of 4-manifolds with strictly negative 
relative Yamabe invariant. Let X be a minimal closed symplectic A-manifold 
of general type (see [16]) with an involution L. Assume that the fixed point 
set Fix(L) of L is an oriented closed 3-manifold M (possibly disconnected). 
First, we notice the following fact. 

Lemma 6.2. The complement X\M consists of two connected components. 
Moreover7 the manifold X = W UM {—W) is the double of the closure W of 
a connected component of X \ M. 

Proof. Since X is oriented and M is an oriented submanifold of codimension 
one, the normal bundle u(M) of M in X is trivial, and the differential di 
of the involution L satisfies G^ITM = Id,     ^|I/(M) 

= —Id. In particular, L is 
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orientation-reversing. Now we choose a metric g such that L is an isometry 
of (X,g). Then, it follows from [14, Theorem 5.1] that M is totally geodesic. 
Let X denote the canonical compactification of the complement X \ M with 
the boundary dX = M U (-M) (see Fig. 6.1). Notice that the metric g can 
be extended to X naturally. 

Fig. 6.1. 
Suppose that X \ M is connected. Let Mi be a connected component of 
M. Then there exists a shortest geodesic c : [0,1] —>• X joining Mi and 
-Mi. Note that c((0,1)) C X \ M, and the tangent vectors c'(0) and c!(l) 
are perpendicular to Mi and -Mi, respectively. Since L is an involutive 
isometry, the curve t o c : [0,1] -> X is also a geodesic from c(l) G (—Mi) 
to c(0) E Mi such that the tangent vectors (L O ^'(0) = -^(1) and 
(L O c)'(l) = —^(0) are respectively perpendicular to —Mi and Mi. Hence, 
(L O C)([0, 1]) = c([0,1]), and then L(C(%)) = c(i) G X \ M. This contradicts 
to the fact that Fix(6) = M. Therefore, X \ M is disconnected. Let W be 
the closure of a connected component Xi of X \ M satisfying dW — M. 
Then L{W) is also the closure of a connected component t(Xi) of X \ M. 
The conditions GJ^TM = Id, db\^M) — ~Id imply that Xi r\i{Xi) = 0. Then 
we have that X = W UM (-I>(W)) = W UM (-W), and X \ M consists of 
two connected components Xi and —L(XI). D 

Let W#£(Sl x 53) be the connected sum of W with £ copies of S1 x S3 

(where £ > 0). We combine the estimates given in [16], [21] (cf. [27]) of 
the Yamabe invariant in dimension four with Corollary 5.4 to obtain the 
following result. 

Theorem 6.3. Let X and W be the 4-manifolds as above. Then the relative 
Yamabe invariant YCWft^S1 x 5'3),M) is strictly negative. Moreover, 

Y{W#£{Sl x S3), M)   <    -^y(X#2£(51 x S3)) = -^Y{X) 
v2 v2 

<    -4ny/2x{X) + 3<7(X) < 0, 
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where x(X) and o-(X) are respectively the Euler characteristic and the sig- 
nature of X. 

Proof. Since there is an orientation-reversing difFeomorphism of SlxS2>
1 then 

there is a diffeomorphism 

X#2i(Sl x S3) 9* XftliS1 x 53)#^(-(51 x S3)). 

Prom [16, Theorem 4], [21, Proposition 3], Corollary 5.4 and Lemma 6.2, 
one has 

YiWfteiS1 x S3), M)    <    ^y(X#£(51 x 53)#£(-(51 x 53))) 
v2 

=   -^y(X#2£(51 x S3)) = ^Y(X) 

<    -A7r^/2x{X) + 3a{X) < 0. 

This completes the proof of Theorem 6.3. □ 

Let N be a product E/Cl x E/^ of closed Riemann surfaces of genus ki, A;2 > 
2 with a product metric g = gi x #2 of #1 on E^ and ^2 on Efc2, respectively, 
of constant negative curvature —1. Assume that the hyperbolic metric gi 
admits an involutive isometry 0 of (2^,^) such that Fix(0) consists of 
fci + 1 disjoint simple closed geodesies (see Fig. 6.2). We remark that such 
hyperbolic metric always exists on E/Cl provided ki > 2. 

Efci tj 

Fig. 6.2. 
Then the map L := $ x Id : N = S^ x Efc2 -> JV is also an involutive 
isometry with Fix(^) = Fix(0) x Efc2 consisting of ki + 1 disjoint closed 
totally geodesic 3-submanifolds. Let W denote the closure of a connected 
components of N\ Fix(L) satisfying N = W UQW (—W). We rewrite 

WmiS1 x S3) = I W \ \Jmt(Dfi j ud £ ((S1 x S3) \ int(D4)) , 
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where Dp j — !,...,£, are disjoint small 4-disks inside int(VF), and d — 
U^^dDj. Then there is an involution t of the manifold 

N#2t{Sl x S3) = {W#t{Sl x 53)) \Jdw {-{W#(,{Sl x 53))) 

with Fix(^) = Fix(6) = dW', and L = t on 

W \ \j mt(D*) \udw(-lw\(J mt(D*) 

With these understood, we obtain the following result. 

Corollary 6.4. For any £ > 0 the relative Yamabe invariant of the manifold 
W#e,(Sl x S3) is given by 

Y(W#l{Sl x S*),dW) = -^=Y{N) = -8V27r^{k1-l){k2-l) < 0. 
v2 

Proof. The above manifold iV is a minimal complex surface of general type, 
and the metric g is an ^-invariant Kahler-Einstein metric with constant nega- 
tive scalar curvature. Hence g is a Yamabe metric and g attains the Yamabe 
invariant Y.(iV). It means that Y^](N) = Y(N), where Y^](N) stands for 
the Yamabe constant of (iV, [g]). Then it follows from [17, Theorem 2] and 
the fact that g\w is a relative Yamabe metric that 

Ymw](W,dW)   =    ^fm(N) = -j=Y(N) = -4^2X(N)+3a(N) 

=     -SV2lTy/(ki - l)(fc2 - 1) < 0. 

Then Corollary 5.4 gives 

Y(W,dW) = -^=Y(N). 
v2 

Let £ > 1. Then by a modification of the arguments given in [22, Section 2] 
and [21, Theorem 1], there exists a sequence of t-invariant metrics {ffj}0^1 

on iV#2^(51 x S3) such that 

(\ V2 

liminf/ {R-gfdaA        =    y(iV#2^(51 x 53)) 

=   Y(N) < 0. 
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Recall that dW = Fix(£) is totally geodesic in the manifold N#2£{Sl x S3) 
with respect to each metric gj, and then we have 

(6.2) 

F(W#£(51 x S3),dW)  > - I liminf f {R, VjfdOn 

-=     liminf / \R^A2da^ 
s/2 \3^oo      JN#2HSixS*) , 

1/2 

y/2 

Combining (6.1), (6.2) with Corollary 5.4, we obtain that 

Y(W#(>{Sl x S3),dW) = -^Y(N) = -Sy/2iry/(ki-l)(k2-l) < 0. 
v2 

This completes the proof of Corollary 6.4. □ 

6.3. One more family of four-manifolds with negative relative 
Yamabe invariant. Let M be a Mumford's fake projective planej that is, 
a closed complex-hyperbolic surface with Betti numbers &i = 0 and 62 = 
6^ = 1, see [2, Chapter V]. From the results of [15], it follows that the 
manifold X := M#(-M) has a Spmc-structure with non-trivial Seiberg- 
Witten invariant (however X does not have any symplectic structure). By 
modifying the technique from [16, Theorem 2] combined with the above 
fact, it is proved in [12] that Y(X) < -Yl-Jl-K < 0. It follows from [21] that 
Y{X#l(Sl x S3)) = Y{X) for l>l. With this understood, the following 
assertion follows from Corollary 5.4. 

Corollary 6.5. Let M be a Mumford's fake projective plane and D4 C M 
an embedded disk with Ss = dD4.  Then 

Y((Af \ mtCD4))^^1 x S3), S3) < -127r < 0    for    I > 0. 

Remark 15. The authors are grateful to the referee who brought this ex- 
ample to our attention. 

7. Notes on moduli spaces. 

7.1. Moduli space of positive scalar curvature metrics. Let M be a 
closed manifold admitting a positive scalar curvature metric. Consider the 
space of psc-metrics 

ftiem+(M) = {g e ftiem(M) | Rg > 0} . 
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It is known that TZiem+(M) has, in general, many connected components, 
and that its homotopy groups are nontrivial. For simplicity we assume that 
M is an oriented manifold. We denote by Diff+(M) the group of diffeo- 
morphisms preserving the orientation. Then the group Diff_l_(M) naturally 
acts on the space of metrics by pulling back a metric via a diffeomorphism. 
Clearly this action preserves the space 7^iem+(M). Then the moduli space 
of psc-metrics is defined as .M+(M) = 7£iem+(M)/Diff+(M). 

It is very challenging problem to describe (in any reasonable terms) the 
topology of the moduli space .M+(M). We suggest here to give an alternative 
model of the moduli space of psc-metrics. First, we start with the space 
C+(M) of positive conformal classes. There is a canonical projection map 
p : 7^iem+(M) —> C+(M), which sends a metric g to its conformal class [g]. 
We prove the following fact. 

Theorem 7.1. Let M be a closed manifold of dim M > 3. Then the canoni- 
cal projection map p : 7£iem+(M) —> C+(M) is weak homotopy equivalence. 

Proof We start with the following easy observation. 

Lemma 7.2. Let C E C+(M); and let go^gi € G be psc-metrics. Then go 
and gi are psc-homotopic, i.e. there exists a smooth family {y(^)}^€ro i\€-C 
of psc-metrics with g(Q) = g^, g(l) = gi. 

Proof. Indeed, we have that Rg0 > 0, and gi = un-2go for u G C7~(M) with 
the scalar curvature 

n+2 /    4(n- 1) \ 
R9l=u  »-* [- ^_2)

JAu + R90u) >0. 

4 
Then the curve of metrics g(t) — u(t) n-2go G C with u(t) = ut + (1 -1) > 0 
satisfies 

Rg(t)    =   u(t)-^ (-4^~^Au(t) + RgMt)^ 

=   «(*)-£§ ^|-^f^A« + i^ti] + (1 - t)R90} 

=   u(ty^ (tRgiu^ + (1 - tiRgo) > 0 

n+2 
since both functions Rg^™-2 and RgQ are positive. D 
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Now let P(C) = {g e C \ Rg > 0 }. Clearly C ^ C^(M) is a convex set. 
One can easily modify Lemma 7.2 to prove the following assertion. 

Lemma 7.3.  The subset P(C) C C is a convex and contractible set. 

Then we notice that both spaces 7&em+(M) and C+(M) have homotopy 
types of CW-complexes. Thus we can assume (up to homotopy equivalence) 
that p : 7£iem+(M) —> C+(M) is a fibration. Since p-1(C) is contractible 
for any conformal class C, we obtain that p induces isomorphism in homotopy 
groups p* : 7Tk(niem+(M)) £* ick(C+(M)). □ 

Thus in the homotopy category one does not loose any information by replac- 
ing the space 7£iem+(M) by the space of positive conformal classes C+(M). 

The space C(M) is the orbit space of the action (left multiplication) of the 
group C+^M) on the space of metrics 7^iem(M). It is convenient to refine 
this construction (as it is done in [19]) for manifolds with a base point. Let 
XQ G M be a base point. We consider the following subspace of C^(M): 

C?iXo{M) = {u€C?(M)\u(xo) = l}. 

We denote by CXo (M) the orbit space of the induced (left) action of C+Xo (M) 
on 7^iem(M). There is a canonical map pi : CXo(M) —> C(M) which is a 
homotopy equivalence since p^iC) = R. Let C+0(M) = p^1 (C+(M)). To 
construct an appropriate moduli space, we assume that M is a connected 
manifold, and consider the following subgroup of the diffeomorphism group 
Diff+(M): 

Difrx05+(M) = {(/> e DifMM) | Mxo) = xv,   d</>X0 = Id : TMXo -+ TMXo} . 

The group DiffXo?+(M) inherits the action on the spaces C(M) and CXo(M). 
It turns out that this action is free for all manifolds except the sphere Sn. 

Theorem 7.4. Let M be a closed, connected oriented manifold of dim M = 
n > 3, and XQ G M. 

(1) If M is not diffeomorphic to the sphere Sn, then the group DifEE0)+(M) 
acts freely on the space CXo(M). 

(2) If M = Sn, then the group Diffr0)+(M) acts freely on the space 
CXo{S

n) \Pi1{CcaLn)j where (7Can is the conformal class of the stan- 
dard metric on Sn. Each class CXQ G Pi (Ccan) has an isotropy 
group %cx — R-71 (here Rn is the group of parallel translations of 
R" ^ Sn \0{xo}). 
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Proof. Let (M,C) ^ (Sn,Cc^n) and CXo G p^iC). Assume that ^*(CXo) = 
C^Q. It follows from [20] and [18] that there exists a metric g € C^Q such that 
</>*# = g, i.e. ^ is an isometry of (M,g). Then the conditions 0(#o) — ^o, 
(i^Q = /d imply that </> = /d. 

Let (M,C) = (5n,Ccan) and C^ G p^Ccan). We choose a coordinate 
system on Sn = RnU{oo} via the stereographic projection from XQ such that 
^0 = oo. Let (j)*{CXo) — CXo. Then the conditions <f)(xo) = XQ, rf0a;o = /d 
imply that (j)(x) = x + 6, where 6 G Rn. □ 

Remark 16. We are grateful to the referee for pointing out that the above 
action is not free for the standard sphere. 

Clearly the space C+0(M) of positive conformal classes is invariant under 
this action. We define the moduli space M^ conf(-W) of positive conformal 
structures as the orbit space of the action of Diffj;0)H_(M) on C+0(M). Let M 
be not diffeomorphic to the sphere Sn. Then we have the following diagram 
of Serre fiber bundles 

C+0(M)  '- .- CX0(M) 

•<,confW ^— BDi&X0,+ (M) 

Here J3DiffXOj+(M) is the classifying space of the group Diffa;0j+(M), which 
we identify with the orbit space Ca;0(M)/Diffa;0j+(M) (since the action is free, 
and the space CXo(M) is contractible). 

Remark 17. In the case M = Sn, the action DiSXo^(Sn) on C+0(S
n) is not 

free. However the orbit space has the same homotopy type as the classifying 
space BDi&XOi+(Sn) since the isotropy groups are contractible. 

We address the following problem. 

Problem 1. What is the rational homotopy type of the space M* conf(^0? 

7.2. Conformal isotopy and concordance. It is well-known that 
isotopic psc-metrics are concordant, see [9] and [8]. It is still not known if 
the converse is true for dimM > 5. (Recently, Ruberman [24] proved that, 
in the 4-dimensional case, concordance of psc-metrics does not imply isotopy 
of such metrics.) We would like to address the "conformal analogue" of this 
problem. 
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Let Co,Ci G C+(M) be two positive conformal classes. One defines an 
isotopy of positive conformal classes in the obvious way. We say that the 
conformal classes CQ and Ci are conformally concordant if 

Y(M x [0,1], M x {0,1} ; Co U Ci) > 0. 

Theorem 5.1 implies the following result: 

Corollary 7.5. Conformal concordance is an equivalence relation on 
C+(M). 

We would like to spell out the following conjecture: 

Conjecture 7.6. Let M be a closed manifold o/dimM > 5 admitting a 
psc-metric. IfCo,Ci E C+(M) are conformally concordant, then the classes 
Co,Ci are isotopic in C+(M). 

7.3. Conformal cobordism. Two manifolds (Mo,<7o)? (-^ijffi) with 
psc-metrics go,gi are said to be psc-cobordant if there exists a compact 
manifold (W, <j) with dW = MQ U (—MI) and a psc-metric g such that: 

glMj = Oj,   3 = 1,2,   and  g = gj + dr2   near  Mj. 

These psc-cobordism groups have been studied in [4], [8], [11], [23], [26]. 
We define the conformal analogue of the psc-cobordism relation in terms 

of the relative Yamabe invariant. Let (MQ, CQ), (MI, CI) be two closed man- 
ifolds equipped with positive conformal classes. We call such manifolds pos- 
itive conformal manifolds. Then (Mo,Co), (Mi,Ci) are conformally cobor- 
dant if there exists a compact manifold W with dW = MQ U (—MI) such 
that the relative Yamabe invariant 

Y{W, MQ U (-Mi); Co U Ci) > 0. 

Theorem 5.1 also implies the following result: 

Corollary 7.7. Conformal cobordism is an equivalence relation on the cat- 
egory of positive conformal manifolds. 

Remark 18. The definition of the conformal cobordism may be essentially 
refined in the way suggested by S. Stolz [26]. This leads to the conformal 
cobordism groups. We have studied these cobordism groups in [1]. 
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