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On the Resolvent of Differential Operators on Conic
Manifolds

PauL Loya

We describe the structure of the resolvent kernel of an elliptic cone
(or Fuchs type) differential operator and give a precise description
of the asymptotics of the kernel as the spectral parameter tends
to infinity. The structure of the resolvent is investigated through
a class of parameter-dependent pseudodifferential operators that
incorporate the particular degeneracies of cone operators and their
resolvents.

1. Introduction.
1.1. Parameter-Dependent Operators.

In this paper, we describe the structure of the resolvent of a cone differential
operator acting between weighted Sobolev spaces on a compact manifold
with boundary X, including a precise description of its asymptotics as the
spectral parameter tends to infinity. Here, an m-th order cone differential
operator is an operator A € £ ™Diff}*(X), where z is a boundary defining
function on X and where Diff]*(X) is the space of m-th order totally char-
acteristic (or b-) differential operators. Thus, A = £~ ™P, where on some
collar neighborhood of Y := 90X,

(1.1) P iPm_k(:p)(tz)k, sz%,ax,

k=0

where Pp,_r(z) is a smooth family of differential operators of order m — k
on Y. If A denotes the spectral parameter domain, then under certain con-
ditions on A (called “full-ellipticity”, see Section 1.3), we show that the
resolvent (A — \)~! exists on weighted Sobolev spaces and that its Schwartz
kernel can be realized as a polyhomogeneous distribution on a “blown-up”
manifold constructed from A x X2. The exponents of the polyhomogeneous
expansions at the boundary faces of the blown-up manifold are given explic-
itly in terms of the boundary spectrum of A. In order to capture the precise
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asymptotics of the resolvent kernel, we define a class of cone pseudodifferen-
tial operators that depend on the spectral parameter A in a certain way. We
then show that the resolvent is in this calculus. We will describe this calcu-
lus in Section 1.4. Throughout this paper, we confine ourselves to operators
acting on functions in order to simplify the presentation; however, all the
results in this paper have extensions to operators acting between sections of
vector bundles.

The development of parameter-dependent pseudodifferential operators
has a long history. Following Agmon’s ideas [1, 2] in treating A as a covari-
able, a systematic formulation of such operators was initiated by Seeley [44]
to investigate the structure of the complex powers of differential operators
on manifolds without boundary. Closely related operators can be found in
Gilkey [17], McOwen [32], Shubin [45], and undoubtedly others. Parameter-
dependent operators have been developed in other contexts. For instance,
Gil [15] for cone differential operators, Grubb and Seeley [18, 19] and Rempel
and Schulze [39] for boundary value problems, and Schrohe [41] for certain
types of noncompact manifolds. The work of Gil is the closest to that of this
paper, but it uses a very different methodology. It relies on techniques from
the “edge theory” initiated by Schulze for the study of operators on mani-
folds with edge singularities, while our methods are based on the geometric
“blow-up” techniques of Melrose. Further developments in the edge theory
can be found in [31, 43], and a comparison of the methods of Schulze and
Melrose can be found in [25].

There are two central reasons for defining parameter-dependent pseu-
dodifferential operators. The first reason is that these operators provide a
framework that allows one to understand the precise structure of operators
defined using the classical functional calculus [40, 13, 12]. For example, us-
ing parameter-dependent operators, one can show that the complex powers
of differential operators are entire families of pseudodifferential operators.
See [44] for differential operators on closed manifolds, [41] on certain non-
compact manifolds, [39, 18] on manifolds with boundary, and [27] on conic
manifolds. The second, and perhaps the most important reason to study
parameter-dependent operators is to understand the trace expansion of the
resolvent: Tr(A — A)™% as the spectral parameter X tends to infinity. Here,
N is taken large enough to ensure that (4 — \)~% is of trace class. As the
resolvent and heat operators are related by the Laplace and inverse Laplace
transforms, the trace asymptotics of the resolvent are directly related to
the small time heat trace asymptotics. The heat trace asymptotics generate
many applications in noncommutative geometry, spectral asymptotics, and
index theory to name a few, cf. Gilkey’s book [17], especially the references
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in Ch. 5. In Section 1.2, we will discuss more on trace expansions.

Besides the work of Gil [15] already mentioned, other related works in-
clude that of Briining and Seeley [6, 4], Cheeger (8], Lesch [26], and Mooers
[38]. However, these authors analyze resolvents and heat operators without
the formal development of parameter-dependent operators. Cheeger was
the first to analyze the heat operator of the Laplacian on a conic manifold.
The methods of Mooers are the closest to those of this paper: she also uses
blow-up techniques, cf. [35, Ch. 7], to construct the Schwartz kernel of the
heat operator for the cone Laplacian as a polyhomogeneous function on a
blown-up manifold.

As an application of the methods of this paper, we show that the com-
plex powers of a cone operator define an entire family of b-pseudodifferential
operators [27]. In [28], we analyze the small time heat trace asymptotics
of cone operators. We also attain (principle) asymptotic estimates for the
eigenvalue counting function and the spectral function for arbitrary order
self-adjoint cone operators. A possible future application of this paper in-
cludes sharpening these asymptotic formulas following Agmon and Kannai
(2], Hérmander [20], Grubb [18], among others. The asymptotic formulas in
[28] generalize those for the cone Laplacian obtained by Ivrii [21], Kalka and
Ménikoff [22], and Pham The Lai and Petkov [24]. Finally, in [16], we iden-
tify the noncommutative residues for pseudodifferential operators on conic
manifolds, cf. [36, 42], via heat traces.

We note that in this paper, we focus on parabolic techniques for cone
operators. See for instance, Cheeger and Taylor [10] and Melrose and Wunsch
[37], for treatments of hyperbolic methods.

1.2. Trace Expansions.

Let B € m—ﬂDiff{,"' (X), where 8 € R, m’ € Ny. Then given a fully elliptic
cone differential operator A of order m (see Section 1.3), we will prove the
following trace expansion, see Theorem 8.4:

FuLL TRACE EXPANSION. If m' — mN < —n where n = dim X and if
B < m, then B(A—X)" is trace class, and as A — oo in A, we have

Iy oo _
metp=hoN +Z{bklog)\ +C]g})\ﬂm_k_N,
k=0

(1.2) TtB(A-N"N~ iak)\
k=0

where by =0 unlessk € B—m' —n + Ny.

Once the asymptotics of the kernel of B(A — A\)™" are understood, this
trace expansion follows from Melrose’s pushforward theorem (see Lemma 1.1
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in the Appendix). If A is the complement of a sector in the right-half plane,
then (1.2) implies the following heat trace expansion: As t |0,

oo - o _
(13)  TrBe A~ ot ™n +Z{,Bklogt +7k}tk_mé.
k=0 k=0

In [28], we give a formula for the constant term, and explicit local formulas
for all the singular and log coefficients in the expansion (1.3). In joint work
with Gil [16], we treat the case when B is an arbitrary order cone pseudodif-
ferential operator. In this case, the expansion contains log? terms, and using
the techniques and results of [28], we give explicit formulas for all the log
and log? coefficients in terms of residue trace functionals.

With B = Id, the heat trace expansion has been proved in various con-
texts. In particular, Gil [15] was the first to prove such a heat trace expansion
for arbitrary order fully elliptic cone operators. For second order operators,
Briining and Seeley [6, 4], Callias [7], Cheeger [8, 9], Chou [11], and Moo-
ers [38] also obtain a full heat trace expansion. Cheeger was the first to
obtain a full trace expansion for the cone Laplacian. Briining and Seeley
obtain the expansion for second order regular singular operators using the
“Singular Asymptotics Lemma” of [5]. Lesch [26] generalizes the techniques
of Briining and Seeley to obtain the heat trace expansion for arbitrary or-
der self-adjoint, constant coefficient cone operators; but in this case, all the
log terms for £ > 0 vanish. Finally, under ellipticity conditions similar to
ours, Karol’ [23] obtains the heat expansion for arbitrary even order cone
operators.

1.3. Full-Ellipticity.

Let A C C be a closed angle, a € R, and let A be an m-th order cone
differential operator. We review a condition introduced by Gil [15] that
ensures the invertibility of A— )\ on weighted Sobolev spaces. Let A = z™™P
where P is an m-th order b-differential operator. Now for A sufficiently large
in A, we want to determine when we can invert

(1.4) A—X=g"™P —z™\): z*H (X) — «* "H ™(X),

for any p € R, where H; denotes the b-Sobolev spaces. There are three
“degeneracies” of (1.4): 1) A near infinity with z bounded away from zero;
2) z = 0 with A bounded away from infinity; and 3) z = 0 and A = oc.
Consider A near infinity with £ bounded away from zero. Then disre-
garding the z factors, our first requirment is that the parameter-dependent
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symbol of P — A be invertible. That is, if %, (P)(¢) represents the totally
characteristic (or b-) principal symbol of P, see [35], then we require that

(1.5) % m(P)(€) — X be invertible for all £ # 0 and X € A.

Here, ¢ is an element of the b-cotangent bundle. In fact, we require that the
condition (1.5) hold up to and including the boundary Y of X.

We now deal with the singularity at £ = 0 with A bounded away from
infinity. Then disregarding the term 2™\, we need to handle the boundary
degeneracy of ™™ P. To do so, write P as in (1.1), and define I(A) :=
ST o Pm—k(0)(sD;s)* for s € [0,00). Then I(A) models the behavior of
A near £ = 0. Our second requirement is that

(1.6) I(A): s*HP(Y") — s@™HP™ (V")

be invertible, where Y” := [0,00) X Y. Note that (1.5) and (1.6) imply that
A—Xin (1.4) is Fredholm for all A € A (see Theorem 3.2). Taking the Mellin
transform of s™I(A) in s, our second condition can be stated in terms of the
invertibility of the conormal symbol (or normal operator) of P.

To ensure that A — ) is invertible for A sufficiently large, we need to deal
with our third and final singularity: £ = 0, A = co. To do so, we introduce
“blow-ups”. Let A = r~™a(r,w)w, where w = A/|\| and where a(r,w) > 0
is a smooth positive function of r € [0, 00) and w (smooth and positive even
down to 7 = 0). Then A = co corresponds to r = 0. We now blow-up z = 0,
r = 0; that is, we introduce polar coordinates at x = 0, r = 0. Convenient
coordinates to work with are projective coordinates. Thus, consider the
coordinates r, s = z/r. Then z = sr and D, = sD;. Hence,

A-X = gMp™™ Z Pr_i(sT)(sDs)* — r™a(r, w)w
k=0

m
(1.7) = r‘m{s_m Z Pr_k(sr)(sDs)* — a(r, w)w}.
k=0
Note that r = 0 in (r, s) coordinates corresponds to z = 0, r = 0 in the orig-

inal coordinates. Thus, as a(r,w) > 0, (1.7) suggests our third requirement
for full-ellipticity:

(1.8) I(A) — X Dbe invertible for all X € A sufficiently large.

Invertibility will be on certain “cone” Sobolev spaces, see Section 6.

An operator A is fully elliptic with respect to a on A if the three “sym-
bols” of A — X are invertible in the sense that conditions (1.5), (1.6), and
(1.8) are satisfied.
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1.4. Statement of Results and Outline of Paper.

In Sections 2 and 3, we review some aspects of analysis on manifolds with
corners, including asymptotic expansions, blow-ups, and b-pseudodifferential
operators. We also review the Fredholm properties of cone differential op-
erators. In Sections 4 and 5, we introduce our parameter-dependent spaces
that allow A — X to be inverted for A fully elliptic. We now describe these
spaces by explaining how we plan to invert 4 — .

First, writing A — A = z7™(P — z™\), we want to invert (that is,
find a parametrix for) the “b-part”: P — z™\. Observe that z and \
are coupled into the one parameter z™A. In Section 4, we consider b-
pseudodifferential operators which have local symbols that depend on the
“parameter” p := z™\. Thus, roughly speaking, we consider parameter-
dependent b-pseudodifferential operators B(\) such that if I is a coordinate
patch on X, then the local totally characteristic (or b-) symbol of B(}) is of
the form b(z™\, w, §) where w = (wy,...,wy,) are the coordinates on . We
call this space of operators the “small calculus” of tempered operators. We
use the word “tempered” because we require that the local symbols b(u, w, £)
satisfy certain growth conditions in p and (. We also discuss the mapping
and composition properties of the small calculus. The proofs of the mapping
and composition properties (Proposition 4.2, Lemma 4.3, and Theorem 4.4)
are written in careful detail for those readers interested in how b-operators
are manipulated. Unfortunately, they are quite technical as they involve an-
alyzing pushforwards and pullbacks of conormal distributions on blown-up
manifolds. The proofs may be skipped over at a first reading.

Second, we invert A ~ I(A) near the boundary. This can be done within
the usual calculus of b-pseudodifferential operators.

Finally, we want to invert the operator I(A) — A found in (1.8). In order
to do this we introduce a blown-up manifold 7 connected to the arguments
used to derive condition (1.8). Let z and z' denote the boundary defining
functions for the left and right factors of X2. The first step is to blow-
up z = 2’ = 0 in X2, which constructs the manifold X,?, the b-stretched
product. Let p be a boundary defining function for the blown-up face in Xf
(e.g. p = z + 7' is such a function). The second step is to blow-up p = 0,
r = 0, where for X large, A ~ »~™ for r near 0. This creates the manifold
with corners 7. In Section 5, we define a space of parameter-dependent
operators whose Schwartz kernels are polyhomogeneous functions on the
blown-up manifold 7.

The “full calculus” of tempered operators consists of a sum of parameter
dependent operators: B(A)+C(\)+D()\) where B(]) is in the small calculus
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of tempered operators, where C()) is described in the previous paragraph,
and where D()) is a parameter-dependent operator whose Schwartz kernel
is a polyhomogeneous function on A x X2, vanishing to infinite order at
A = 00. In Section 5, we discuss the mapping and composition properties of
the full calculus.

In Section 6, we prove the main result of this paper (see Theorem 6.1):
For X sufficiently large, the resolvent (A — \)~! exists and is an element of
the full calculus of tempered operators. We emphasize that the composition
properties of our calculus of parameter-dependent operators make the con-
struction of (A — A)~! very similar to the construction of a parametrix for
an elliptic (non parameter-dependent) b-differential operator.

In Section 7, we show precisely how the singularities of the Schwartz
kernel of (A—))~! accumulate near the diagonal as A\ — oo. This is expressed
by showing that the kernel of (A—\)~! can be realized as a polyhomogeneous
distribution on a blown-up manifold constructed from A x X2. The exponents
of the polyhomogeneous expansions at the boundary faces of the blown-up
manifold are given in terms of the boundary spectrum of A.

In Section 8, we prove the trace expansion (1.2), and finally, in the Ap-
pendix we collect various results about asymptotic expansions and about
b-pseudodifferential operators.

In conclusion, I thank Juan Gil and the referee for helpful comments in
improving this paper.

2. Manifolds with corners.

The main references for this section are [14] and [35]. Other references are
[29] and [30]. We define Ny := {0,1,2,...} and N:= {1,2,...}.

2.1. Manifolds with corners and conormal functions.

An n dimensional manifold with corners X is a paracompact topological
space with local models of the form R™* := [0,00), x ]RZ_’“, where & can
run between 0 and n, such that X has only finitely many boundary hyper-
surfaces, say {Hj,...,H,} for some r € Ny, where each H; is imbedded. In
our applications, the main source of manifolds with corners will come from
the process of blow-up (see Section 2.2). By definition, it follows that each
boundary hypersurface H; is itself a manifold with corners, and that if X is
compact, then near H; there exists a local diffeomorphism X = [0,1) x H;.
The set of boundary hypersurfaces is denoted by M;(X). A total bound-
ary defining function is a function of the form p = []I_, p;, where p; is a
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boundary defining function for H;.

The b-density bundle, €2, is the trivial line bundle with sections of the
form p~!u, where u is a smooth density on X, and where p is a total bound-
ary defining function on X. ‘

From now on, X will always be compact. The space of b-differential
operators of order m, Diffj*(X), is the space of operators P on C*°(X), such
that locally on a patch R%F = [0, oo)ﬁ X IR;’}’"“, we can write

P= Z ao p(z, y)(xDz)o‘Dg, where a, 5(z,y) € C®(RYF).
lal+|B|<m

We now define various classes of conormal functions. A multi-inder o
on X is a map a : M;(X) — R, or equivalently, an r-tuple (ai,...,a;)
of real numbers. Let p be a total boundary defining function for X and «
a multi-index. Then the space of symbols of order o, S*(X), consists of
functions u such that Diffj (X)u C p~®L%°(X), where p~@ := [[;_; p; *.
The Sobolev lemma implies that symbols are smooth on the interior of X;
they may however, have singularities at dX. For example, given a € C and
k € Ny, z%(log z)* € $%([0,1)) for all @ > —Rea.

An indez set (or C* indez set) is a discrete subset £ C Cx Ny satisfying
the following conditions: if (z,k) € E, then (z + ¢,j) € E for all £ € Ny and
0 <j<k,and given any N € Ny, {(2,k) € E|Rez < N} is a finite set.

Given a multi-index & and a hypersurface H, we define a multi-index ag
on H as follows. If G € M;(H), then G = HN H' for some H' € M;(X).
We define ag(G) := a(H'). Let F be an index set. A function u € §%(X)
(for some «) is said to have an asymptotic (or classical) ezpansion at H with
indez set E, if given any product decomposition X = [0, 1), x Hy of X near
H, for each (z,k) € E, there exists a u(, ) € S*#(H) such that for each
N € N, there exists an M € N with

2.1) u(z,y) — z*(log z)F u(, p (v) € zV SOH)([0,1) x H).
(2,k)
(z,k)EE,Rez<M

We then write u ~ Z(z,k)e g *%(log m)ku(z,k). Thus, an asymptotic expansion
is just a generalized “Taylor expansion”. In the appendix of [29], it is shown
that the expansion (2.1) is defined independent of the choice of product
decomposition of X near H. Note that if £ = &, then (2.1) holds for all N
if and only if w vanishes to infinite order at H. Also, if E = Ny, then (2.1)
holds for all NV if and only if u is smooth up to H.

An indez family associated to a subset A C My(X)isaset & = {Eg|H €
A}, where each Eg is an index set. We define A®(X) to be the space of
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([0, 00)?; (0,0)]
Ib A,

rh

Figure 1: The manifold [[0,0)?%;(0,0)], along with two sets of projective
coordinates.

functions that have an expansion at each H € A with index set Fgy. If
A= M;(X), we denote A (X) by Aghg(X).

2.2. Blow-ups.

Let X =[0,00); % [0,00), and ¥ = (0,0). Then we define “X blown-up at
Y” as the set [X;Y] = [0,00), x S;g, where S12 = S1N[0,00)2, and where
r = |(z,2')| and @ = tan"'(2'/z) are polar coordinates about Y. See Figure
1 for a picture of [X;Y]. Thus, blow-up of Y is just the introduction of polar
coordinates about Y. The blow-down map S: [X;Y] — X is by definition the
usual polar coordinates map: [(r,0) = (rcos@,rsinf). The left boundary,
Ib, is where 6 = 7/2, the right boundary, rb, is where § = 0, and the front
face, ff, is where r = 0. The b-diagonal, A, is the set where § = w/4. Other
useful coordinates are the coordinates (z,z), where z = log(z/z'), which
give the decomposition:

(2.2)  [X;Y]\ {lb, b} = [0,00); X R,, where Ay =[0,00); x {0},.
Projective polar coordinates are also useful:
[X;Y]\ {rb} =2[0,00)s x [0,00),, where s=z/z'.

Here, b, rb, ff, and A, are the sets where s =0, s = +o00, ' =0, and s = 1
respectively. Reversing the roles of z and z’ gives another set of projective
coordinates. See Figure 1 for a description of these coordinates.

In general, given a manifold with corners X and a p- (or imbedded)
submanifold Y of X, one can define “X blown-up at Y”, [X;Y], by taking
polar coordinates about Y. The boundary face created in the blow-up is
called the front face, denoted by ff[X;Y], and the polar coordinates map
B: [X;Y] — X is called the blow-down map. See [14] for a precise definition
of the mathematical process of blow-up. If Z C X is a closed subset of X,
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then we define the lift of Z into [X;Y], B*Z C [X;Y], as B*Z := p~1(2) if
ZCVY;orasBZ:=p"Y(Y\Z)if Z=Z\Y. For example, if X = [0,00)?
and Y = (0,0), then Ib, rb, ff, and Ay shown in Figure 1 are the lifts of
{0} x [0, 00), [0, 00) x {0}, (0,0), and {z = z'} respectively. If 5*Z is defined
and if in addition, 8*Z is a p-submanifold of [X;Y], then [X;Y] blown-up
along B*Z is defined, and we denote it by [X;Y; Z] = [[X;Y]; 8*Z].

Assume now that X is a compact manifold with connected boundary
Y. Then we define the b-stretched product, Xf, by X? = [X%Y xY]. If
B : X2 — X2 is the blow-down map, we set Ib := B*(Y x X), rb :=
B*(X xY),and ff := f*(Y xY). The b-diagonal is defined by A, := 5*(A),
where A is the diagonal in X2. Locally, Figure 1 describes X?. Indeed,
let U = [0,1); X RE~! be a coordinate patch on X near Y. Then, X? =
[0, 1)%2,2,) xR~ x R’;,_l, where (', y') are the coordinates on the right factor
of U?. Tt follows that locally

X7 =1[0,1)%(0,0)] x Rp~' x RI~L.

By (2.2), coordinates on X f away from /b and rb, are given by

(2.3) X2 =UxR, where z = (log(z/z'),y — ¥).

Observe that in these coordinates, A, = U x {0}.
3. Calculi of pseudodifferential operators.
3.1. b-pseudodifferential operators.

More on b-pseudodifferential operators can be found in the Appendix. For
the rest of the paper, we will assume that X is a compact manifold with
connected boundary. We will denote 0X by Y.

Let 0 < v € C*(X, Q) be any trivialization of Q; (see Section 2.1). We
denote by ¢/ the lift of v to X? under the projection X2 3 (y,') — ¢’ € X.

Definition 1. The space of b-pseudodifferential operators of order m € R,
U'(X), consists of operators A on C°°(X) that have a Schwartz kernel K4
satisfying the following two conditions:

(1) Given ¢ € C(X?\ Ayp), the kernel Ky is of the form ko', where
k € C*°(X?) and vanishes in Taylor series at the sets Ib and rb.

(2) Given a coordinate patch of X2 near Ay of the form U, x R} such that
Ap =U x {0} (cf. (2.3)), and given ¢ € CZ(U x R*), we have
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1

6D eKa= [ ey, d=p

dg

where a(y, £) is a classical symbol of order m.

Gluing together the principal symbols of the local operators (3.1) gives
a (principal) symbol map, Y%om(A4): YM(X) — gf)’m(m)(l’l"*X ), where

}?gm(m) (T*X) is the space of smooth homogeneous functions of degree m
on T* X \ {0}, where "T* X is the b-cotangent bundle (see [35]). If b, (A) is

invertible, then A is called elliptic. The symbol map gives an exact sequence
m—1 m h 0 bf* X
0 = T (X) <= TF(X) = Cigm(m) (T*X) = 0.

The space L%(X ) consists of those functions which are square integrable
with respect to v. For each m € R, the b-Sobolev space of order m, H*(X),
is the space of distributions u such that ¥7*(X)u C LZ(X). If A € ¥*(X),
then A: H}(X) — H; ™(X) continuously for any s € R.

Fiz a boundary defining function z on X and assume that X = [0,1),xY
near Y. In the coordinate patch (2.3) on X2, let A € U*(X) be given locally
by (3.1) with v/ = |(dz'/z')dy'|. Let ¢ = (7,¢') where &' = (£,...,&,). Then
the normal operator of A, A\(T) € ¥™(Y), is the operator defined locally by

-~ 1 i(y—y')-€
A(r) = W/*?(y VI a(0,y,7,¢)de" - |dy'|.

For example, if P = 1", Pk (x)(zDg)*, where P, _(z) is a smooth
family of differential operators of order m — k on Y and D, = %Bx, then

(3.2) P(r) =" Pnk(0)7": H(Y) — H*™™(Y).

Recall that given a smooth b-density 0 < v € C*(X, ), ' denotes the
lift of v to X2 under the projection X2 3 (y,y') = ¢’ € X. If £ = (Eyy, Enp)
is an index family on X?, then ¥~°¢(X) consists of those operators with
integral kernels of the form kv’ where k € Aghg(XZ). Here, the space of
polyhomogeneous functions “App,” is defined at the end of Section 2.1. Thus,

(3.3) AU ®4X) = EKu=kv, ke (X?).
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Since the kernels of operators in ¥~°¢(X) are polyhomogeneous functions
on X2, it follow that for @ € R with E,, > —a, any operator A € ¥~°¢(X)
defines a continuous linear map

(3.4) A: g Hy (X) — AD®(X), forany s € R

If £ = (Ew, Erp, E) is an index family on X,?, then we define

(3.5) AT, ®%X) <= Ka=kt, ke A

phg (Xl?)a

and the full calculus is the sum:
\i?)g(X) = ‘I,z;n(X) + q]b_ooyg(X) + \Ij_°o7Elb7E7‘b(X).

Remark 1. This is not the same as the original definition of the full calculus
as presented in [35, Def. 5.51]. Melrose always sets Ef = Ny. The definition
we use is the one that is most suitable for this paper.

Given a¢ € R and an index set E, we write F > a if (2,k) € E = Rez > a
and (a,k) ¢ E for any k > 0. We write E > a if (2,k) € E = Rez > a.

If By > B, Erp > —a, and o+ Eg > 3, then (see [31, Th. 3.25]) any
operator A € @T’S(X ) defines a continuous linear map

A:z*Hy (X)) — xﬂHg"m(X), for any s € R.
3.2. Cone differential operators.

Throughout the rest of this paper (unless stated otherwise), z will denote
a fixed boundary defining function on X which gives a decomposition X =
[0,1); XY near Y = 9X.

A cone differential operator of order m € Ny is an operator of the form
A =z ™P, where P € Diffj*(X). The cone operator A is said to be elliptic
if P is an elliptic b-differential operator. The boundary spectrum of an elliptic
cone operator A, spec,(A) C C, is the set of points 7 € C where the normal
operator ﬁ(T) (see (3.2)) fails to be invertible.

Theorem 3.1. If A € z~™Diff}*(X) is elliptic and o ¢ —Imspec,(A), then
for any s € R, A: z*HJ(X) — z* ™H,"™(X) is Fredholm, and its gener-
alized inverse, G, is in the full calculus: G, € xm‘i;m’g(a)(X ). The index
family E(a) is defined in (3.8) below. Here, a b-density 0 < v € C®(X, )
is fized, and the generalized inverse is defined by the equations

AGy =1d—T;, GuA=1d - II,,
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where Iy and II; are the orthogonal projections (with respect to v) onto the
null space and off the range in z*H;(X) and z* ™ H, ™ (X) respectively.
Moreover, I € \Il_°°’E+(°‘)+m’E—(a)_m(X) and II; € \I’_OO’EJr(a)’E_(a)(X),
where the index sets E* () are defined in (3.7) below.

Proof. (Outline) Let B = Az™ € Diffj*(X). Note that % (z™A) = % (B).
Thus, B is an elliptic b-differential operator. Also note that :?"71(7’) =
B(r + im). It follows that §(T) is invertible for all 7 € C with —Im7 =
a — m. Hence, by [31, Th. 4.4], B: z*"™H}(X) — 2z ™H; ™(X) is
Fredholm having a generalized inverse H, € \Ifb_m’g(a)(X ). Using the fact
that B = Az™ finishes the proof. O

The index family £(«) is defined as follows. We first define

(3.6) E*(a):={(z,k)|r=TFize spec.(A) + im,

1 <k+1<ord(r —im), and Rez > £(a — m)}.
Here, ord(7) denotes the order of the pole of 37“71(7)‘1 at 7 € spec,(A).
The extended union of two index sets F and F is the index set EUF :=

EUFU{(z,k+£+1)|(z,k) € E, (2,£) € F}. Let B*(a) := UTGNO(Ei(a)Jrr);
that is, explicitly

(B.TE*(a) = {(z+1,k) |r € Ny, T = Fiz € spec,(A) + im,

,
1<k+1< Zord(7’—im$i£), and Rez > £(a — m)}.
£=0

We define

E(a) : NU(E"’(a) + E‘(a));

C8) " gla) i= (B*(0), B (0), B()), where B¥(a) = B*(a)UB(a).

The next theorem describes the behavior of the resolvent for finite \.

Theorem 3.2 (Analytic Fredholm Theory). Let A € z-™Diff]*(X) be
elliptic and assume that oo ¢ —Imspec,(A). Then for any s € R,

A—XzHi(X) — " "H ™(X)

is either never invertible or else, C 3 X\ — (A — N1 is meromorphic with
values in :cm\I’b_m’g(a)(X ) having only finite rank singularities.
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Proof. If A is elliptic and o ¢ —Imspec,(A), then as o(z™(A — \)) =
% (z™A) and spec,(A—)) = spec,(A), A— ) is elliptic and a ¢ —Im spec,(A—
A). Now following the proof of Theorem 3.1 and using the standard argu-
ments for analytic Fredholm theory for pseudodifferential operators on closed
manifolds completes the proof. a

Example: The Cone Laplacian. A Riemannian metric g on the interior
of X is called a conic metric if on the decomposition X = [0,1), XY near Y,
we can write g = dz?+1%h(z), where h(z) is a family of Riemannian metrics
on Y depending smoothly on z. Note that the Riemannian measure dg is a
smooth density in z"C*°(X, ). A computation shows that on [0,1), X Y,
the Laplacian A, associated to such a metric is of the form

(3.9) A=z ?[(zDs)? —i(n—2)zDy+Ap— —$2—(8m/ det h(z)) - Ox],

\/det h(z)

where A, = Ay, is the Laplacian on Y associated to the metric A(z). In
particular, A, € z2Diff2(X). Note that as dg € z"C®°(X, ), we have
" 2L2(X) = L?*(X,dg), the square integrable functions with respect to
dg. It follows that Ag: z7™?*2H2(X) — 2 ™/2L}(X) is symmetric and
non-negative (with respect to the b-measure z7"dyg).

Let 0 < A\ < A2 < --- be the eigenvalues of Ay € Diff?(Y). Then
from (3.9), it follows that spec,(A¢) = - {1} j=+1,42,..., where

n—2%/(n—2)2+4);
2

Ptj = , where 7 €N,

One can check that (0,7 — 2) Nspec,(A;) = @. Fix n > 5. Then, this gap
in spec,(A.) implies that —n/2 + 2 ¢ —Imspec,(A.). Moreover, using the
generalized inverse of Theorem 3.1 and the gap in spec,(A.), it is straight-
forward to show that A, z~22H2(X) — z™2L2(X) is self-adjoint.
Hence, by Theorem 3.2, for any s € R,

A — X gT"PY2EY(X) — T2 H™(X)

is invertible for A ¢ R+, and C 3 X\ = (A, — A\)~! is meromorphic with
values in :1:2{17;2’8(0‘) (X) with @ = —n/2 + 2, having only finite rank singu-
larities. Here, the index family £(c) is defined in terms of spec,(A.), see
(3.8). Theorem 6.1 describes (A, —))~! as an element of a parameter depen-
dent space of operators, and Theorem 8.2 describes how the singularities of
the Schwartz kernel of (A. — A\)~! accumulate near the diagonal as A — co.
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4. The small tempered calculus.
4.1. The small calculus.

Before defining our basic space of parameter-dependent operators, see Def-
inition 2 below, we review their corresponding symbols. These symbols are
found throughout the literature, cf. [29] or Gilkey’s book [17].

Let A C C be a closed sector (closed angle with vertex at 0) and let
d € N. The space Sf\n’d(]R"), where m € R, consists of those functions
a(A, &) € C™(A x R™) satisfying the following estimates: for each «, B, there
exists a C' > 0 such that

(4.1) |858Fa(X, )| < C (1 + NV + gy diel=1Al,

The “classical” subspace SXf’c‘z(]R") consists of symbols a(,§) € SX”d(R")
such that

oo
(42) a(A,€) ~ Y X6 am-k(X,8),

k=0
where x (), &) € C®°(A x R*) with x(\, &) = 0 near (A\,¢) =0and x(A,¢§) =1
outside a neighborhood of 0, and where a;,—k (A, &) € C®(A X R™\ (0,0)) is
anisotropic homogeneous of degree m — k:

am—r (69X, 66) = 6™ Fan,_x() €), forall § > 0.

The asymptotic sum (4.2) means that for each N € N, we have a(A,§) —
Yrso X(A€) am_k(A,€) € SENURY),

Of course, the “canonical” example of a classical symbol is the local
symbol for the resolvent. The following lemma, is straightforward to verify.

Lemma 4.1. Let a(§) be a homogeneous polynomial of degree m € N such
that a(¢) never takes values in A for & # 0, and let x(\, &) be a cut-off
function as defined above. Then, x()\, &) (a(€) —A)~L € SX,Te’m(]R").

Throughout this paper, p will always denote a boundary defining function
for ff(X2). Let 0 < v € C®(X, ). Recall that v/ denotes the lift of v to
X2 under the projection X2 5 (y,7') — ¢ € X.

Definition 2. (cf. Definition 1) Let m € R. Then the small calculus of tem-

pered cone pseudodifferential operators of degree m,d, denoted by \I/Z’j’\d (X),
consists of those parameter-dependent operators A(\) with a Schwartz kernel
K 5 satisfying the following two conditions:
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(1) Given ¢ € C(X?\ Ap), the kernel @K 5(y) is of the form k(o) p) v/,
where k(\,p) € C®(A x X?) and vanishes to infinite order at A = oo
(that is, with all derivatives as |A\| — oo in A), and at p € b and p € rb.

(2) Given a coordinate patch of X2 near A, of the form U, x R? such that
Ap = U x {0} (cf. (2.3)), and given ¢ € CX(U x R*), we have
oKaoy = [ € alphp, )¢,
Rn

where y — a(\,y, &) € C®(U; SX?’C‘Z(]R”)).

One can check that this space of operators is defined independent of the
choice of p. We define \I!;XO’d(X ) = Nmer \I/Z’\d(X ). Observe that Lemma
4.1 suggests that (A — \)~! € z™U "™ (X) if A € z~™Diff}*(X). This
is almost true, except for some “smoothing” type operators introduced in
Section 5.

4.2. Properties of the small calculus.

Let A C C be a closed sector and let d € N. Recall that z represents a fixed
boundary defining function on X.

Proposition 4.2. Let m € R. Then,
(A) for any k € N, \Ilzl/’\d(X) Cc \IIZXk’d(X);
(B) for any &, BYUT(X) C alold 7T (x);

(C) Let f: A x X — A x X be the map f(\,p) = (z(p)?\,p). Then given
an indez set F', any operator A € \I/Z?/’Xd(X) defines a continuous map

A AL (X) — ST A5 AL, (X)),

Here, SZZ/ d(A; Aghy(X )) denotes the classical symbols of degree m/d on
A with values in the Fréchet space Aghg(X).

Proof. Properties (A) and (B) follow directly from Definition 2. We now

prove (C). Let A € U7%(X) and u € AZ, (X). Then following the discus-

sion around (1.3) in the Appendix, to prove (C), we must show that pAu =
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(ﬂL,b)*(ﬂ}:’buﬂ}’buKA) € f*Scnz/d(A;Afhg(X, Q)), where p € C®(X, Q).
To prove this, we will use local coordinates, and for simplicity, we assume
that K4 is supported near ff(X?). In what follows, we will rely heavily on
the properties of K4 as described in Definition 2.

Let V & R*! be a coordinate patch on Y. Then X = [0,1); x V near
Y, and X? 2 [0,1)2 x V2 near ff. Moreover, cf. Figure 1 in Section 2.2 and
Equation (2.3), (s,2’,y,y'), where s = z/z’, are coordinates on [0,1)? x V2
near lb; (z,t,y,y'), where ¢t = 2'/z, are coordinates near rb; and (z,y, 2),
where z = (log(z/z'), y — y'), are coordinates near A, with A, = {z = 0}.

Assume first that the Schwartz kernel K, is supported near [b. Then
according to Definition 2, in the coordinates (s, z',y,y') we can write

/

T b Ty Ka = Bu((@) 5,03, S 2 dydy |,
where B;(A,s,7',y,1y') vanishes to infinite order at s = 0, A = 0o, and has
an expansion at £’ = 0 with index set F. Observe that mp (s, 2’,v,y') =
(sz',y). Hence, by (1.1) of Lemma, 1.1 in the Appendix, we have

ds

* dz
(mLp)« (7L pbmr pu Ka) =/Bl(A/Sd,S,w/S,y,y')dy'; -yl

Since Bi(A,s,2',y,y’) vanishes identically at A = co and s = 0, and at

z' = 0 has an asymptotic expansion with index set F, it follows that
(mr)a (5 ypem u K a) € S™(A; AL (X, ) C f*S5/ (A, Ao (X, ).

Assume now that K, is supported near rb. Then in the coordinates
(z,t,y,y'), we can write

dz dt
T‘-z,blj’ W:z,b“ KA = B2 (wd>H z,t,y, y,) I ? Tdydy,L

where Ba()\,z,t,y,y’') vanishes to infinite order at A = oo and ¢t = 0,
and has an expansion at x = 0 with index set F. In these coordinates,
mrp(2,t,y,y') = (z,y) is a fibration. Hence,

" dt dzx
(L)« (T ot TR pu Ka) = /Bz(mdk,m,t, v, y’)dy'T : l—x—dyl-

The asymptotic properties of By imply that (mp ). (7} TR uK,) €
- d

Fr870(A; AL, (X, ) C F250 (A5 AL, (X, Q).
Now assume that K4 is supported near A,. Then we can write

; d
T, phb ﬂ}},bu Ky = /e”'{a(md)\,:v,y, &)d¢ - |—w£dzdy|,
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where a()\, z,y,£) has an expansion at £ = 0 with index set F', and where
A8~ a(A z,y,8) € SX?’&(R?). Since 7y, p(x,y, 2) = (2,9), it follows that

x . x dz
(L) (TLptt TR pu Ka) = a(z%), z,y,0) I?dyl-
Thus, (17,5)«(7] yp T pu Ka) € FX8™e(A; Aghg(X, Q) ) here as well. O
4.3. Composition.
We begin by proving composition for the —oo operators.

Lemma 4.3. We have \I/C_’X°’d(X) o \Ifc_f’d(X) - \I/C_,Xo’d(X).

Proof. Let A € U;2%(X), B € U;2%(X), and fix 0 < pp € C®(X, ). To
show that AB € \Ilc_,xo’d(X ), we will use the formula

(4.3) pKap = (mcp)«(nGpb TpKa 75, Kp).

See (1.6) in the Appendix for the definitions of 7¢p, mFp, and mgp; and see
the derivation of Equation (1.7) in the Appendix for the proof of (4.3).

We will use local coordinates to analyze (4.3), and for simplicity, we
assume that the Schwartz kernels of A and B are supported near ff(X?).
Thus, if V = R*~! is a coordinate patch on Y = X, we can decompose X =
[0,1)z x V. Note that X2 = [0,1)2 x V2 near ff(X?2) and X = [0,1)3 x V3
near ff(X}). (See the middle picture in Figure 2 for a picture of X3.)

We will use the following coordinates on [0,1)2 x V2 (see Figure 1):

(4.4) (s,z',y,y'), where s = z/z', are coordinates near lb;

(4.5) (z,t,9,y'), where t = z'/z, are coordinates near rb.

Let z, 2, 2" be the coordinates on the left, middle, and right factors of
[0,1)3 and y, ¥', ¥" be the coordinates on the left, middle, and right factors
of V3. Assume that p = |‘i—”dy|.

Step 1: We analyze uK 4p near the intersection of mb, ff, and fs of Xb3
Here, we may use the coordinates (s,t,z",y,y',y"), where s = z/z" and
t = 2’ /z (see the left-hand picture in Figure 3). Near the intersection of mb,
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Figure 2: X,;°’ and the projections 7gp, 75y, and mcp.

z" .'I:" t
s t s z!
bid 5 f sf ¢S
Figure 3: Various coordinate patches on X f.

ff, and fs, mcp and mgy map near b in X? and 7r, maps near rb in XZ.
Moreover, in the coordinates (4.4) on X? near lb, we have
(4.6)

7TS',b(Sa ta .'L‘”, Y, y,7 y”) = (Sta xﬂa yl’ y”); WC,b(s’ ta 2“"7 Y, y,7 y”) = (Sa xll, Y, y”)7

and in the coordinates (4.5) on X ,? near rb, we have
(47) WF,b(Sa t, 11,‘”, Y, y’a y”) = (Szlla t,y, y,)'

Near rb in X2, Ka = A(z\, z,t,y,1) dx—z,,dy’|, where A(\, z,t,y,y') is
smooth in all variables, and vanishes identically at A\ = oo and ¢t = 0. Near Ib
in X2, Kg = B((z')%\, s,2',9,9) dm—m,ldy’|, where B(\,s,z',y,y') is smooth
in all variables, and vanishes identically at A = co and s = 0. Using the for-

mulas for w5 and 7gp in (4.6) and (4.7), it follows that near the intersection
of mb, ff, and fs of Xb3,

ol Ty Kams Kp =

dsdtdx"
A((sz")\, 52", t,y,y) B((z")4), st, 2"y sy — S dydy'dy”|.



896 Paul Loya

Hence, as mc (s, t, 2", y,9',y") = (s,2",y,y") is a fibration,

pKaB = (7o p)« (e pp Thp Ka sy Kp)
dt dsdzx’
= [ Ay 50,5V BU N st o) Gy 1

=C((z")N, s,2',y,9 )Idew dydy'|,

dydy'|

where C(\, s,2',y,9") = [ A(s®),s7',t,y,9y")B(A, st, x',y",y')%dy”. Now,
since A(), z,t,y,y’) is smooth in all variables, vanishing identically at A = oo
and t = 0, and since B()\,s,z’,y,y’) is smooth in all variables, vanishing
identically at A = co and s = 0, it follows that C(}, s, ', y,y’) is smooth in
all variables, vanishing identically at A = oo and s = 0.

Step 2: We analyze uK 4p near the intersection of fs, ff, and Ib of Xg.
Here, we may use the coordinates (s, s’,z",y,y',y"), where s = z/z' and
s' = z'/z" (see the middle picture in Figure 3). Near the intersection of
fs, ff, and Ib, gy, wsp, and mop all map near (b in Xf. Moreover, in the
coordinates (4.4) on X2 near lb, we have

7"'F,b('sa 5,7 iL'”, Y, yl7 y”) = (37 s,xl,a Y, yl)7
(48) 7".S,b(‘sa 3,7 $,’7 Y, yla y”) = (8,7 $”7 y,a y”);
7"'C,b('sa 5l, mlla Y, y,’ y”) = (38,’ 33”’ Y, y”)'

Near lb in XZ, we can write K4 = A((z ’)d)\ s,z y,y) dz/dy’l, and Kg =
B((z')\, 5,7, y,y ) 92 go!|, where A()\,s,z',y,y') and B()\,s,2',y,y) are
both smooth in all varlables and vanish identically at A = co and s = 0.

Using the formulas in (4.8), it follows that near the intersection of fs, ff, and
Ib of X3,

7T*c,m“ Wf«“ » KA 7T§,bKB =
dsds'dz"

SSI "

A((s'z") "\ 5, 5'a",y,9/) B((2")*X, ', 2",y ") dydy'dy’"|.

Hence, as mcy(s, s, 2", y,¢', ") = (ss',2",y,9"), by (1.1) in the Appendix,
pEap = (mcp)s(TEpp Th Ka 75, Kp)
=/A((8'$’)d>\,8/8’,8’x’,y,y”)B(( )N ',y )

dsdz’
= O((.’D’)dA, S, mla Y, yl)l_sdeydylla

ds ! |dsdwd dy|
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where C(\, s,2',9,9') = [¢(), 8/8', 8,2 y,y") &~ s, , with

c(\ 8,8 2y, y /A )N s, s’z y, ") B S 7,y o )dy"

Now, as A(A, s,2',y,y') and B(\, s,2',y,y') are smooth in all variables, van-
ishing identically at A = oo and s = 0, by Lemma 1.1 in the Appendix, it
follows that C(A,s,2’,y,%’) is smooth in all variables, vanishing identically
at A=o00 and s = 0.

Step 3: We analyze puK4p near the intersection of ff, cs, and Ib of Xg‘.
Here, we may use the coordinates (s,z’,t,y,y,y"), where s = z/z” and
t = 2" /2’ (see the right-hand picture in Figure 3). Near the intersection of
[ s, and Ib, mcp and mpp map near Ib in Xf and mg, maps near rb in Xg.
Moreover, in the coordinates (4.4) on XZ near Ib, we have
(4.9)

71—F,b(sa Zla 1252 ylv y”) = ('St’ .’L", Y, yl); 7"‘C,b(s’ xlv iy, y’a y”) = (S, z’t’ Y, y”)a

and in the coordinates (4.5) on X? near rb, we have
(410) '/TS,b(S’ mla t7 Y, yl7 y”) = (1"’7 ta Y, yl)'

Near b in X2, Ka = A((z)%\, 5,2, y,9) %dy'[, where A\, s,7',y,1) is
smooth in all variables, and vanishes identically at A = co and s = 0. Near rb
in X2, Kp = B(z%)\, z,t,9,v) dw—“”,,dy’l, where B()\, z,t,y,y') is smooth in all
variables, and vanishes identically at A = oo and ¢ = 0. Using the formulas

for mpp and gy in (4.9) and (4.10), it follows that near the intersection of
I, cs, and Ib of X3,

* * *
Toph TryKamgyKp =

A((a;')d)\, st, iL'/, v, yl)B((iL',)d)\, .’L'I,t, y/ y )ldetd.’L‘

d d Id lll
Hence, as mcp(s, 2, t,y,y',y") = (s,2't,y,y"), by (1.1) in the Appendix,

nKap = (mcp)(nGpp mpp Ka 75, Kp)

dt dsdz’

= / A((@' [6)*\ st, o [t,y, 4" ) B((& /1) 2N, &' /4, 8,1, o) = dy” | = vl
= (@) 5,00, B8 ayay
where C()\,s,2',y,y f (A/td, st 2’ y, o) BNt &' [t, ¢, 9" ) Ldy.

Now since A(\, s,z ,y,y) is smooth in all variables, vanishing identically
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at A = oo and s = 0, and since B()\,z,t,y,y') is smooth in all variables,
vanishing identically at A = oo and ¢t = 0, it follows that C'(A,s,2',y,v') is
smooth in all variables, vanishing identically at A = co and s = 0.

In summary, away from the faces ss and rb, Wabu ﬂ}’bK A ﬂg’bK B pushes

forward under mcp to define the kernel of an element in p - \Ifc"’f’d’g(X )-
Similar arguments show the same thing away from fs and b. It follows
that K4p defines the kernel of an element in \I/c_’f’d(X ), and hence, AB €

T 24X). O

Theorem 4.4. If m,m',a,d’ € R, then

sUT(X) 0 2 UTA(X) C 2o+ U4 (X)),

Proof. Let A € ¥T34(X), B € ¥Ty(X). We will first show that AB €

@Z’}X‘m"d(x )- To do so, we first write A = A; + A3 and B = B; + Bs, where
Aj, B are both supported away from /b and rb, and where Ay, By are both

supported away from A and thus are elements of \I’C—’Xo’d(X ). Then,

(4.11) AB = A1B1 + AsB1 + A1 By + A Bs.

By Lemma 4.3, A;B; € ¥ 3%(X). Let 0 < p € C*(X, ;). Then as in
Lemma 4.3, the first three terms can be analyzed using local coordinates
and the formula

pKag = (mcp)«(MC ok TrpKa 75, KB).

Let X U =[0,1); X V, where V = R""! is a coordinate patch on Y = §X.
Then, X2 = [0,1)? x V2 near ff(X?) and X 2[0,1)3 x V3 near ff(XJ). Let
z, ' be the coordinates on left and right factors of [0,1)2 and vy, ¥’ be the
coordinates on the left and right factors of V2. Similarly, let z, 2/, " be the
coordinates on the left, middle, and right factors of [0,1)% and y, ¢/, ¥" be
the coordinates on the left, middle, and right factors of V3.

Step 1: First consider A; B;. Near A, we have (see (2.3)),

X2 2UXRY, 2= (2,2, where z; = log(z'/z), 2/ =y — v,

(412) with Ay =2 U x {z = 0}.

Thus, in the coordinates (4.12), we can write

(4.13) Ka= so(z)/ e a(z?N, z,y,€)de - y'; Kp,= / e“4b(z\, 7, y, £)dE - 1,



Resolvent of Differential Operators 899

——775(85) N 754 (As)

(Do)

Figure 4: The manifold X} and the submanifolds ﬂFb(Ab) N ﬂ’Sb(Ab) and
7"F b(Ab)

where a(X) € C®U; SP4(RM), b(A) € C®WU; STLHR™)), ¢(2) € CR(R),
and where we may assume that p = Id;dyl. Near T (Ab) N FSb(Ab)

in X2 (see Figure 4), we can use the coordinates (z, y,z w), where z =
(log(z'/z),y' — y) and w = (log(z"/z),y"” — y). In these coordinates on Xg’
and the coordinates (4.12) on X2, we have

4.14 7"-C,b(xaywz”w) = (CE,y, w)7 WF,b(IB,y,Z,’UJ) = (m’y’z);
( . ) — 21 ! —
7"'S",b(ma Y, 2, w) - (1126 yyt+z,w Z)

Using (4.13) and (4.14), a short computation shows that
pKa B, = (mcp)s(nGpp TrpKa, 53 Kb, ) = /eiz'gc(md%x, y,€)dE - pp,

Whepe c\z,y,8) = [a(\ z,y,& — 77) (A z,9,&, )d'n, with E(A,a;, y,&,m) =
[ e #Mp(2)b(ed*1 X, ze*,y + 2',€)dz where z = (21,7'). Another com-

putation shows that c(\, z,y,&) € C®U; Sm+m 4(R")). Thus, 41B; €
I,d
U™ 4(X).
Step 2: Now we work on the middle two terms of (4.11). Consider A; Bs.
Observe that w;’})(Ab) >~ X2 x {0}, in a decomposition (cf. Figure 4)

(4.15) X3 = X2 xR, where mcp(p,u) = p, p € X7

Let pbe a boundary defining function for ff(X?2). Then in the decomposition
(4.15) near mp b(Ab) we have (see Figure 4), },p = ppp and TSP = P
where pj, is a boundary defining function for [b in Xg. Hence, as A; €
\I!ZL]\d (X) and B; € \If;?\o’d(X), it follows that in the decomposition (4.15),
we can write

Wé’,bﬂ 7T;‘,bI{Al 7l-;32',1)'}'{32 = /eiu.gc(pdpﬁx}H Pd)\,p, §)d§ ' Id’UI iu')u’,7
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where X2 2 p — ¢\, X, p, &) € A/\ d (RE) )®S~*(Ay) is smooth and van-
ishes to infinite order at p €lb and p €rb of X;. 2 Thus, as 7ep(pyu) = p,

BK B, = (tep)e (T Ty Ka, 75, KB,) = c(poh, pX, p,0) - ppi'.

The properties of c(\, X, p,&) imply that A;Bs € \If_°° 4(X). A similar

argument shows that A2 B; € \I/_°° Yx ). Thus, AB € \Ifm+m 4(X).
Now let o, @’ € R. Then,

! / ! / !
Aoz B =2 (37 Az® ) o B =z A' 0 B,

where A' = (7% A'z®). Observe that A’ € ¥J3}(X). Thus, Aoz B €
gecte! gl x), O

The following lemma is proved the same as the usual “asymptotic sum-
mation lemma” for pseudodifferential operators on a closed manifold.

Lemma 4.5. Given a sequence Ay € \I'm—k d(X) k=0,1,2,..., there ex-

ists an A € lIIZ”Ad(X) such that for all N € N, A — Z,ICV A€ \Ifm N x);
in which case, we write A~y 22 Ag.

5. The full calculus.
5.1. The full tempered calculus.

In order to complete the definition of our parameter-dependent cone opera-
tors, we first need to define a blown-up manifold.

Let d € N. Henceforth, we will assume that A # C. Thus, we can fiz a
branch of A1/ for A € A. We define Ay := {\/?| X € A}. Then Ay is also a
closed sector in C and if ¢ € Ay, then ¢¢ € A.

We will denote by A4, the manifold Ad radially compactified. We denote
by Osolg, the boundary “at Al/¢ = 00”. Some convenient coordinates near
0o\ are given by r := |u| and w := u/|u| where 1 = 1/AY¢ for A € A.

We define

(5.1) Ta = [Ag X XZ; 000y X ff],

see Figure 5. If 8: Ty — Aq x X? is the blow-down map, then we set Ib :=
B*(Ag x Ib(X2)), left boundary; rb := B*(Ag4 x rb(X?2)), right boundary;
=B (Aax fF(X?)), front face; fi := B* (ool X [F(X7) ), face at infinity;
and bi := B*(8o0Ay X X? ), boundary at infinity.
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) Ta

bi

Figure 5: The manifold 7y. Here, p = 1/X/4 for X € A where r = |u| = 0
defines O5Ag.

Let 0 < v € C*®(X, ). Recall that v/ denotes the lift of v to X? under
the projection X2 3 (y,4') — o' € X.

Definition 3. Let £ = (Ep, En, Eg, Ef) be an index family for 74 associ-

ated to the faces (Ib, rb, ff, fi). Then we define \If;jio’d’g (X) as those operators
A(X) depending smoothly on A € A, that have a Schwartz kernel K 4y) of the

form k- v/, where k € A;if)(ﬂl) with & associated to bi. Thus, k depends
smoothly on A € A, and defines a function on 7; such that

1. At the hypersurface bi, k vanishes to infinite order;

2. At any remaining hypersurface H = lb, rb, ff, or fi, k has an expansion
with index set Ey.

By definition, we have A € ¥, %(X) = A € C®(A, ¥, ™ (X)), where

&' = (Ew, Er, Eg) (see (3.5) for the definition of the space \Il;m’gl(X)).
Thus, only near fi, where A = co and p = 0, where p (as always) is a boundary
defining function for ff(X2), does K4 differ from just a parameter-dependent
kernel of a b-pseudodifferential operator.

We now define the “residual operators”: If £ = (Ep, Eyp) is an index
family on X2, then we define

(5.2) T (X) = (A T~ (X)).

See (3.3) for the definition of the space ¥~°¢(X). We may also define this
space as

(5.3) AU ™4(X) < Ka=kv, ke AZS(Kx X2),4

where @ is associated to 9o A.
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The full calculus of tempered cone pseudodifferential operators is the sum
(4) TR = W00 + U R0 + wp e Ee(),

The following lemma relates the small calculus and the residual operators
to Definition 3.

Lemma 5.1. We have
—00,d —00,d,F
\Ifc,xo’ (X) C \IIC,XC’ (X)),

where F is the index family on Ty given by F = (&,9,Ny,Ny). For any
indez set € = (Eyp, Ep), we have

IIIXOO’g(X) C \I,c—’xo,d,& (X),
where &' is the index family on Tq given by &' = (Ew, Eyy, Ep + Erp, D).

Proof. Let A € ¥_*(X). Then by (1) of Definition 2, K4 = R(p%\),
where R(A) € S™®°(A;¥;°(X)). Near ff(X2), we may assume that
X2 =2 [0,1), x [-1,1]y x Y2, where {w = -1} = lb and {w = 1} = rb
(see Figure 1 for a picture of X2). Writing R in these coordinates, we
have R = R(p%\, p,w,y,y')V', where R(\, p,w,y,y') is a smooth function,
vanishing to infinite order at A = oo, and at w = £1. If r = |u| and
v = p/r, where p = 1/AY/4 for X € A, then lifting R to 7y, we find that
R = R(v%w™% rv,w,y,y')v', where w = p/|p|. Now the asymptotic prop-
erties of R(\, p,w,y,y') imply that R(v¢w™% v, w,y,y') has expansions at
b, rb, v = 0, r = 0, and v = oo, with index sets @, @, Ny, Ny, and &,
respectively. Thus, the first statement of this lemma is proved.

Observe that the second statement follows from the definition (5.3). O

5.2. Mapping properties.

We now describe some mapping properties of the full calculus. We define
(55) Xd = [Kd X X;BOOL X Y]

Figure 6 gives a pictorial representation of Xy If 8: Xy — Ag x X
is the blow-down map, then we define the following faces in X;: bz :=
B*(Ag x Y'), boundary of X; fi := B*(8oAg X Y'), face at infinity; and
bi := B*(0xoAg x X ), boundary at infinity. Before presenting the follow-
ing two propositions, recall that if £ and F are index sets, then EUF :=
EUFU{(z,k+£+1)|(2,k) € E,(2,¢) € F}.
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Xd x X bz Xd
Aq

X bi

Figure 6: The manifold X,;. The arrow represents the blow-down map

Proposition 5.2.

(A) If f: A x X — A x X is the map f(\,p) = (z(p)®A,p) and F is any
indez set, then any A € \Ilef (X) defines a continuous map

A AL (X)) — frS A AL (X)) € AG, (),
where G = (Gpg, G, Gi) = (F, F, —m).

(B) If A € U, (X) and F is an index set with Ep, + F > 0, then A
defines a continuous map

A: Agyg(X) — AZy o (Xa),
where G = (sza Gﬁa Gbl) = (ElbU(Eﬁ + F)’ Eﬁ + F, @)

(C) If A€ U °>FwEt(X) and By + F > 0, then

A ADL (X)) — ST AR (X)) C AT, (Xa),
where G = (Gog, G, Goi) = (Ep, @, D).

Proof. One can check that f*Sz/d(A;Aghg(X)) - Aghg(Xd), where G =
(F, F, —m). Thus, (A) follows from (C) of Proposition 4.2. The proof
of (B) is similar to the proof of (C) of Proposition 4.2 with only more
complicated notation due to the slightly more complicated structure of the
kernels in ¥ °°’d’£(X ). As the proofs are so similar, we omit the details of
(B). Finally, if A € U, P (X) then (C) follows from the definition
(5.2) of the space \IIX°°’E””E”’(X ) and the mapping property (3.4). O

Combining (4), (B), and (C) of Proposition 5.2 imply the following
mapping property of the full calculus.
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Proposition 5.3. If A € @Z’Ad’g(X) and F is an indez set, then provided
that Ep, + F > 0, A defines a continuous map

A: AL,

phg(X) — ‘Agh,g(Xd)v

P

where G = (Gyz, G, Gyi) = (EpU(Eg + F), Eg + F, —m).

5.3. Composition.

Given € = (Ey, Ery, Eg, Eg) and F = (Fiy, Frp, Fg, Ff), we define the index
family £6F as follows: if G = £6F, then

- G = EpU(Eg + Fip); Gry = (Erp + F)UFp;
Gy = (Eﬁr + Fﬁ)U(Elb + Fp), and Gp=Ef+ Fg.

(5.6)
We begin with the following composition result.
Proposition 5.4. Provided that E,, + Fj, > 0, we have

—00,d,E —o00,d,F —00,d,E6F

\IIC’XC’ (X) o\Ilcj&o (X) C \I/C,I‘io (X).

If m,a € R, then

s UTHX) 0 UM (X) C U049 (X),
where G = (a4 Fiy, Fry, 0 + Fp,a + Fz); and

TR (X) 0 2 U(X) C W4 (X),
where G = (Ep, Erp + o, Egg + o, Ef + @).
Proof. The proof of this proposition is similar to the proofs of Lemma 4.3
and Theorem 4.4 with only more complicated notation due to the slightly

more complicated structure of the kernels in \Ilgf’d’g(X )- As the proofs are
so similar, we omit the details of this proof. O

We now prove composition involving the residual operators.
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Proposition 5.5.
(A) If m,a € R, then
2T (X) 0 W37 (X) C U 9(X),
where G = (a + Fy, Frp); and
T (X) 0 a® U (X) C U (X),
where G = (Ey, Epp + ).
(B) Provided that E., + Fyp > 0,
T2 (X) 0 U™ (X) € U9 (X),

where Glb = ElbU(Eﬁ + Flb), Grb = Frb-
Provided that F.y + Eyp, > 0,

T (X) 0 o (X) € U3™I(X),
where Gy, = Fip, Grp = (Frp + Eg)UE.
(C) Finally, provided that E., + Fy > 0,
WL (X) 0 U7 (X) € U9 (X),

where Gy, = Epy, Grpy = Frp.

Proof. Statement (C) follows from the definition (5.2) and the mapping prop-
erty (3.4). By taking adjoints, it suffices to prove only the first statements
in properties (A) and (B).

Consider the first statement in (A). Let A = £*B, where B € \I'ZI’\d(X )-
Then by (A) of Proposition 5.2, if f: A x X — A X X is the map f()\,p) =
(z(p)¢\,p) and E is any index set on X, then B defines a continuous linear
map

(5.7) B: A (X) — f*ST/4 ;AR (X)),

Let C € \IIXOO’}-(X). Then the kernel of C is a function C'(A, p,q) on A x X x
X that vanishes to infinite order as A — oo in A, and has expansions as p and
g approach the boundary of X with index sets Ej, and E,;, respectively. Thus,
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as the kernel of AC is just z*B actmg on the variable p of C (), p, q), by (5.7),
it follows that AC € 22U ;™7 (X) = ¥;°9(X), where G = (o + Fy, Fy).
The first statement is thus proved.

The proof of the first statement in (B) is proved similarly, but here we
use the mapping property (B) of Proposition 5.2. O

For any index set G = (G, Grp, Ggr, G ), we define
(58) T (X)) = 0M(X) + U0 (X), G = (G, Gn).

Thus, T73(X) = 734(X) + ¥72%*(X). Then Propositions 5.4 and 5.5
yield the following result.

Proposition 5.6. We have
2T (X) o cx"“or) Vo (X);
\Il_°° i, S(X) o :zta\Il

where G, = (F}b+a,Frb,Fﬁ+a,Fﬁ+a r
Moreover, R R R
\I!—oo dE(X) ° \P;Xo’d’f(X) C \I’;XO’d’SOT(X),

where E6F is defined in (5.6).

The following theorem combines the previous propositions.
Theorem 5.7. If m,m' € R, then provided that E.;, + Fy, > 0,
I )d)g Jr I’d7‘? /7d
VI (X) 0 Toy™ (X) S UT™A(X) +
I >d7£ - ,d;]'- i d EOF
\Ilc,Jo\o (X) + \I}c,/o\o (X) \I, oo (X)’
where ESF is defined in (5.6).

Proof. If A € \Ilmds(X) and B € \I!m "7 (X), then we can decompose
A=Ay + A and B = By + By, where 41 € U3(X), 4y € T 2% (X),
By € ¥4 (X), and By € T;3%%(X). Thus,

AB = A1B; + (Ale + AzBl) + A Bs.

By Theorem 4.4, A1B; € \I!m+ml “4(X). By Proposition 5.6, it follows that

ABy+ Ay By € T3 df(X)+\Ir°°” (X) and that Ay By € T 247 (X).
Thus, our theorem is proved. (]
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6. The Resolvent as a Tempered operator.

We begin by defining “cone” Sobolev spaces based on polar coordinates on
R*. Thus, let (S* 1" := [0,00)s x S™"! be the usual polar coordinates
decomposition of R*, with the “blow-down map”, cf. Section 2.2, (SPHr >
(s,w) — sw € R identifying the interior of (S"~!)" with R* \ {0}. Let
x € C2([0,00)) with x(s) = 1 near s = 0. Given p € R, we define the
Sobolev space HZ((S""1)") as those distributions u on (S™ )" such that

_ s)u € HP((S™H)N),

The statement that (1 — x(s))u € HP(R™) uses the identification of R™ \ {0}
with the interior of (S" 1. Thus, H}((S" !)") interpolates between b-
Sobolev spaces near s = 0 and the usual Sobolev spaces outside of s = 0.

Let Y” :=[0,00)s X Y, where Y = 0X. Then appealing to local coordi-
nates on Y, we can define HE(Y") for any p € R If A € z ™Diff}*(X) is
written A = 7™ 37" o Pm—k(z)(zD;)F near Y, where Pr_i(z) is a differ-
ential operator on Y of degree m — k, then we define -

m

I(A) := "™ Pui(0)(sDy)".
k=0

Let o € C*°([0,00)), with go(s) = sfors < 1,0 >0for 1 < s <2, and g(s) =
1 for s > 2. Then for any a, p € R, I(A): o*HE(Y") — o> ™HE ™(Y")
continuously. The operator I(A) is called the indicial operator of A.

Definition 4. An operator A € z~™Diffj"(X) is said to be fully elliptic
with respect to o € R on a closed sector A if

1. %, (z™A)(€) — X is invertible for all £ # 0 and X € A;
2. o ¢ —Imspec,(A);

3. for any p € R, I(A) — X: o*HE(Y") — 0* ™HE™™(Y") is invertible
for all A € A sufficiently large.

Remark 2. In [15], full-ellipticity is called “parameter-ellipticity”, and the
space p®HE(Y") is denoted by KPo+n/2(y 1),

The following is the main result of this paper (cf. Theorem 3.2).
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Theorem 6.1. Let A € ™ ™"Diff]"(X) be fully elliptic with respect to a € R
on a closed sector A. Then, C > X+ (A — \)"! is meromorphic with values
in mmlflb_m’g(a)(X ) having only finite rank singularities. Here, £(a) is given
in (3.8). Moreover, for all A € A sufficiently large,

(A= N1 eamT P x),
To prove this theorem, we first take a closer look at I(A).
6.1. Scaling properties of I(A).

Henceforth, we will use the letter “z” to denote both the boundary defining
function on X and the coordinate variable on [0,00) in Y. However, it will
always be clear which z we are referring to in any given context.

For each ¢ > 0, define f;: A x YA — A x Y by fi(\z,y) =
(t~™M\,tz,y). Then, f; is a diffeomorphism on A x Y for each ¢ > 0 with
inverse £, 1(\, z,y) = (™), t 71z, ).

Let C°(A x Y) be the space of smooth functions on A x Y that vanish
to infinite order as A — oo in A, as z — oo, and at (A x Y"). Let
C~*°(A x Y") be its dual. Then given any operator T' on C~®°(A x Y"),
we can define the pullback f¥T via (ffT)u = fF(T(f;')*u) for all u €
C~®(A x Y"). Observe that if T and S are operators on C~®°(A x Y"),
then ff(T o S) = f{T o ffS. In particular,

(6.1) fATY = (7)1 if T7! exists.

Let T: C®°(Y") — C~%°(A x Y") be continuous. Then recall that the
(Schwartz) kernel of T', Kz € C~°(A x (Y")?), satisfies

< Kr, R >=<Tp,9 >, forallpeC®Y"), e C®AxY"),

where ¢ K o(), z,2',y,9") = ¥ (A, z,y)p(z', ¢).
Define
(6.2) 5
fe Ax (YN — Ax (Y") by i\ z,2,5,9) i= (77N ta, 2, y,7)).

Given any continuous linear map T: C®°(Y") — C~%°(AxY™), a definition
chase shows:

(6.3) If K7 is the kernel of T', then the kernel of f;T is f; Kr.
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Proposition 6.2. Let A € z7™Diffj*(X) be fully elliptic with respect to
a € R on a closed sector A. Then, identifying (I(A) — X\)™! with its kernel
on A x (Y™)?2, we have

fEI(A) = XN~ =™(1(4) - )7L

Proof. Let ¢ € C*°(A x Y). Then observe that
eDy(f )*e = 2D (p(t™ A\t 2,y)) = z/t(Dap) (™At 'z, y)).

Thus, zD,(f; 1)* = (f71)*zD,. Since ff(z™™) =t ™z~™ and the indicial
operator of A is of the form I(A) = z7™ > | Py, k(zD;)F, where the
P,k are differential operators on Y, it follows that f}I(A4) =¢~™I(A). In
particular, f7(I(A) — \) = ¢t ™(I(A) — \), and thus, formula (6.1) yields

FEUI(A) =N~ =t™I(A) - N
Then (6.3) finishes the proof of this proposition. d

If p = 1/AY/™, then observe that fy(u, z,2', y, y') = (tw, tz,tx',y,y'). Let
Tm(Y") be the manifold (5.1) for X = Y. Consider now the map f; as a
map on T, (Y?). Thus, let p = |(z,7')|, and § = (z,2')/|(z,2')]. Then,

(4, p,0,y,y') are coordinates on Xm X (Y/\)g, and

(6.4) Felws p0,9,0) = (i, 0, 0,9, 9/).
Let r = |:u’|7 w= /,L/I/.LI, o= '(Tap)|7 and ¢ = (r,,o)/l(r,p)l. Thena
(6.5) (0,¢,w,0,y,y') are coordinates on T,,(Y"),

and by (6.4), fi(o,¢,w,0,y,y) = (to, ,w,0,y,v'). Thus, f; scales in the
defining function for the face fi. ~
Combining this property of f; with Proposition 6.2 gives the following.

Corollary 6.3. Let A € z~™Diff}*(X) be fully elliptic with respect to o € R
on a closed sector A. Then, identifying (I(A) — X\)~! with its kernel on
Tm(Y™), in the coordinates (6.5), we have

(I(A) - )‘)_1(07 ¢7 w, 07 Y, y/) = (U/UO)m(I(A) - )‘)_1(007 ¢7 w, 9) Y, yl)7
for o9 > 0 sufficiently small.

This corollary is important because it states that to determine (I(A) —
A)~! at any point (0, ¢, w,0,y,y') in Tm(Y), we just need to know it at the
submanifold {o = o¢}.
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6.2. Proof of Theorem 6.1.

As already mentioned, we will use the letter “z” to denote both the boundary
defining function on X and the coordinate variable on [0, c0) in Y. However,
it will always be clear which x we are referring to in any given context.

Before presenting the proof of Theorem 6.1, we review its outline de-
scribed in Section 1.4 of the introduction. First, writing A — A = z™™(P —
z™)\) where P is a b-differential operator, we invert the “b-part”: P —z™A.
This is done in Lemma 6.4 using the small tempered calculus. Second, we
invert A at the boundary. This is done in Lemma 6.5. Finally, we invert the
operator I(A) — X in Lemmas 6.7 and 6.8. As mentioned in the introduc-
tion, we want to emphasize that the composition properties of our calculus
of parameter-dependent operators make the construction of (A — X)~! very
similar to the construction of a parametrix for an elliptic b-differential op-
erator. The proofs in this section are quite technical and may be omitted
without loss of continuity.

Lemma 6.4. Let A € z~™Diff]*(X) be fully elliptic with respect to a € R
on a closed sector A. Then there exist operators B € \Ifc_’j\n’m(X ) and R €
U ™(X) such that (A—N)z™B =1d - R.

Proof. Let a = %(Az™), and let U = [0, 1), x RI~! be a coordinate patch on
X near Y, where R*! is a coordinate patch on Y. Then, (z',9',2), where
z = (log(z/z'),y —y') is a coordinate patch on X? near A,. Let ¢ € C(U)
and let ¥(z) € C°(R") be such that ¥(z) = 1 on a neighborhood of z = 0.
Finally, let x(),¢) € C®(A x R*) with x(\, &) = 0 near (A,§) = 0 and
Xx(A, &) = 1 outside a neighborhood of 0. Define

Kp:= (p(.CL‘,, yl) "p(z) / eiz{ b((xl)mAa xla y,, f) df : V,’

where b\, 2/,9/,€) = x(\ ) (a(@',y/,€) — \)~! and »' = |€dy/|. Then,
B € ¥ {"™(X) by Lemma 4.1. Observe that since %o (Az™) = a,

(6.6) (A= Nz™B=¢—8, whereS¢€ ¥, ™(X).

If U is a coordinate patch on the interior of X, a similar argument shows
that given ¢ € C°(U), there is a B € ¥, "™ (X) such that (6.6) holds.
Let {t4;}N | be coordinate patches covering X such that as in (6.6), there

—-m,m

exists a B; € ¥_, (X) satisfying (A — N\)z™B; = @; — S;, where S; €
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\II-1 »™(X), and where g; is a smooth function supported in 4. Setting
B := Zfil B; and assuming that the ¢; form a partition of unity of X,
we then have (4 — X\)z™B = Id — S, where § € ¥ V™ (X). By Theorem
4.4, 87 € \Il_f\’m(X ) for each j, and thus by Lemma 4.5, we can choose an
S’ € W, ™ (X) such that §' ~ 3252, 87. It follows that if B' := B(Id+S") €
II!;:\"m(X), then (A — X\)z™B' — Id € \If'°° ™(X). O

Lemma 6.5. Let A € z~™Diff]*(X) be fully elliptic with respect to o € R on
a closed sector A. Then given R € \D;f’m’g(X), there isa B € \I!c_’f’m’]:(X),
where F = (E*(«)UEy, @, Eg, Eg) with E*(a) the index set defined in
(3.7), such that (A~)\)a™B~R € ¥, ™9(X), where G = (&, Er, Eg, Ey).

Proof. On the decomposition X = [0,1), XY near the boundary Y = 9X, we
can write Az™ = Y " By(z)(xDz)*, where By(z) is a differential operator
on Y depending smoothly on z. Observe that (r,w,v,s,y,y’) where r = |y]
(where g = 1/AY/™ for A € A), w = /||, v = a:’/r, and s = z/z, are
coordinates near Ib in 7,,. Hence, as £ = sz’ = srv and A = r—™w™™, for
any function K on 7,,, we have

(6.7)

m
(A= Na™K = (3 By(srv)(sDy) — s™umw ™) K (r, w,0,5,5,9/) = AK,
k=0

where A = Y keo By (7, w, v, 5)(sDs)*, where By(r,w,v,s) is the following
differential operator on Y depending smoothly on (r,w, v, s):

~ | Bo(srv) = s™v™w™™ if k=0;
Bi(r,w,v,5) = { By (srv) if k> 0.

Now given R € \Il—°°mg(X), Kr = f(r,w,v,s,y,9') v has an expan-
sion as s | 0 with index set Ey. Hgnce by [35, Lem. 5.44], there ex-
ists a B € ¥, ™7 (X) where F = (E*()UEw, @, Eg, Ef), such that if
Kg =gV, then Ag — f is the kernel of an operator in \Il;Xo’m’g(X ) where
G = (@, Ew, Egy, E). Since the kernel of (A — \)z™B is Ag1' by (6.7), our
lemma, is proved. a

Our next lemma deals with functions that have only partial expansions.
Thus, let E' be an index set, r € R, Z be a manifold with corners, and
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H € My(Z). Then a function u € §%(Z) (for some «) has a partial ezpansion
at H with indez set E of order r, if u satisfies the expansion condition (2.1)
with M = N =r. If A C M;1(Z) and € is an index family associated to A,
then A£(Z) is the space of functions u such that for each H € A, u has a
partial expansion at H with index set Ex of order r.

Lemma 6.6. Let R € U, ™°(Y") with Ey = @ and Eg > 0. Then
writing K = | dy| for any N € Ny and for A away from 0, we have
u€ 52N+1( A(Etb, rb)((Y/\) )).

Proof. By the definition of \Ifc_ff’m’g, we may assume that u is supported

near fi. Let r = |u| with g = 1/AY™ and let p be a boundary defin-
ing function for ff((Y")2). Then, p/r is a boundary defining function
for ff(Tm(Y")). Hence, as u vanishes to infinite order at ff(Tn(Y")) (by
assumption) and at bi(7,(Y")) (by definition), for any k we can write
u = r~Fpkyy, = |A|¥/mpky, where uy, has the same polyhomogeneous prop-
erties as u on T, (Y").

Choosing k = 2mN + m, it suffices to prove that p>™V T YomN+m €
SO(A; Agf,’v"’E"’)((Y’\)Q) ). Denote ugmn4m by w. For simplicity, we assume
that w is supported near [b; the proof is similar if it is supported near rb.
Thus, in the coordinates (r,w,v,s,y,y'), where w = p/|u|, v = z'/r, and
s =z/2, near Ib in T,,(Y"), we have

mN

w= Z Sz(lOg S)k’(l:(z,k)(’f',w,’l), Y, y,) +s 'U,N(’I',w,’U,S, Y, yl)7

Re z<mN,(z,k)EEy

where since Ey = @ and Ef > 0, u(, 1), un € S%(Tm(Y")). Since s =
x/xz', we have (logs)* = k ()(logm) (—logz')*~3. Thus, as p = z' is a

boundary defining function for near [b, we have

pEmN My, — Z Z( ) log z) U(z]k)(r w,z',y,y")

Re z<mN,(z,k)EEy;, j=0

+ mNumN(T)w z,T 7y,y))
with T, ;) (r,w, @', 4,9') = ()22 (< log 2 )T ug, by (r,w, ' 1, 9,),
and with U, N (r,w, z,7',9,7') = (&)™ u,n(r,w, 2’ /r,z/2',y,y'). Since
Rez < mN and u(, ), Umn € SO(Tm(Y™)), it follows that U(z,5,k)» UmN €
(z")™VSO(A x (Y")?) away from ) = 0. a
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Let A € z~™Diff}*(X) be fully elliptic with respect to & € R on a closed
sector A. For the next two lemmas, we will denote

a(X) = (I(4) = \).

Lemma 6.7. There exists B € \If Ao £(Y"N) and R € \Il_°° ™ (y M), where
E =E&(A,a) is of the form (Eu,,Erb,Eﬁ,No) with By > a—m, Eyp > —(a—
m), Eg > 0, and where F = (@, E~(c), @,Ng), such that a(\)z™B = Id—R.

Proof. By Lemma 6.4, there is a By € ¥_ "™ (Y") and an Rg € ¥_*"™(Y")
such that
a()\):cmBO =1Id - Ro.

Let Bj be the b-pseudodifferential operator with kernel

68 K= [y ) o Rl 1y

2m r=—(a—m)

where ¢ € C°([0,00)2) with ¢ = 1 near (0,0). Then, see [35, Sec. 5.7],
By €T, %080 (Y'R) with £ — (Bo s, Eors, No) = (B (), E~ (), Ny), where
E*(a) are given in (3.6). Let ¢()\) € C°(C) be such that w(\) = 1 near
A = 0 and set By := Bj + 9(p™\)B(, where p = |(z,z)| is a boundary
defining function for ff((Y")2). Then by Lemma 5.1, B; € \Il_mmg1 (Y™,
where £ is of the form & = (Eg 1, Eo 5, No, No), and it satlsﬁes

a(X\)z™B; =1d — Ry,
where by the composition properties of tempered operators (Proposition
5.4), Ri = Ry — a(\)z™(p™\) B} € T_™7(Y"), where Fi=&. By

(6.8), the normal operator of a(A\)z™ o 1,[)( P A) By is Az™ o B’ = Ro, and

hence, R; = 0. Thus, R; vanishes to first order a b (Tm(Y/‘)) and so in
fact, 71 = (Eo.w, Eo,rp, N, No).
o0,m,&]

By Lemma 6.5, there is a B € ¥ """ (Y"), where & =
(E*(a)UEq 1, @, N, Ny) with B+ (c) the index set (3.7), such that

(6.9) a(Na™B] — Ry € U ™2 (Y1),

where Fp = (&, Eo,,N,No). Let By := By + Bj € W™ (Y"), where
& =& UE]. Then by (6.9),

a(\)z™B, = Id — Ry,
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where Ry € ¥_ mF2 (Y.
Observe that for each j, R} € L 723 (YN), where the F ; are defined
inductively using Proposition 5.4 and the fact that R;”1 =Ryo R2

Faq = Fa, Foji1:= (D, (Eors + J)UF2 b, Njr1,No),

where N; = {j, j +1,j+2,...}. Since E-(a) = UreNo(E_(a) + 7‘2 and
Eyr = E~ (), it follows that FQ’j,r\b C E~ () for each j and Fy j,p — £ ()
as j — +oo in the sense that ¢ € E~ () if and only if for some j, c € F2’J’rb
Hence, we can find an asymptotic sum Rf ~ RJ € \If_oo m]L-"’(Y/‘)
where F} := (@, E~(a),N,Ng), such that for each N,

oom]-'2N

R2 Z R] € \Il (YA)7 é,N = (gaﬁ_(a),NN,NO)'

j=1
Thus, setting B3 := By(Id + R}) € @;X”m’83(YA), where (see Theorem 5.7)
&3 = E3 U Fy U E28F,, it follows that

a(/\)meg =1Id - R3,

where R3 € \I/”°°m}-3(YA), where F3 = (@, B (@), @,Ny). Following the
construction of B3, one can see that & = (Esu, B34, B3 4,Ny), where
E3p > a—m, E3qp > —(a—m), and E3 5 > 0. O

Lemma 6.8. For ) sufficiently large in A, a(\)~! € wmﬁf;Xl’m’g(YA), where
& =E&(A, a) is an index set of the form (Ey, Erp, Eg,No), with Ejp > a—m,
E.p > —(a—m), and Eg > 0.

Proof. By Lemma 6.7, there is a B € \i';:\"’m’g (Y"), where £ = £(A, a) is an
index set of the form (Ey, Ep, Ey,No), with Ejp > a —m, Ep > —(a—m),
Eg >0,andan R € \P;Xo’m’f(YA), where F = (&, E~(a), 9, Ny), such that

(6.10) a(\)z™B =1d — R.

Let A = z7™P, where P € Diffy’(X). Then, At = z7™P', where
P' = zmPtz~™. Note that P/(r) = Pt('r +im) = P(—7 — im). Thus,
as —a ¢ Imspec,(A), it follows that —a + m ¢ —Imspec,(A?). Also, since
for any s € R, I(A) — \: o*HS(Y") — 0* ™HS~™(Y") is an isomorphism
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for all A € A large, it follows that for all s € R, I(A4Y) — X = (I(4) —
Nt Tt H St (YA) — pm*H5(Y") is an isomorphism for all A € A
large. Thus, A? is fully elliptic with respect to —a+m on A. Thus, applying
(6.10) to a(\)! gives N _

a(\)'z™B =1d - R,
where B € ‘T!;X"m’g(Y’\) with £ = (Elb,E’rb,Eﬁ,No), where Ep > —a,
Eu > a, E'ﬁ > 0, and where R € \Ifc_’xo’m’f(YA) with F = (2, 1’7'\“"(01), 2,Ny),
where ﬁ+(a) > « is the set E‘(—a +m) for A®. Taking the transpose of
the above equation gives
(6.11) z™B'a(\) =1d - R

where B' = z~™B'z™ € @;X"m’gl(Y’\), R =R'e \If;j’f’m’f,(Y’\), where
£ = (B, By, By, Ny), with Ej, = Ei’"’ -m>a-m, B, =Ey+m>
~(a—m), Ef >0, and where F' = (F*(a), 2,2, Np).

From (6.10) and (6.11) it follows that a(\)~! = z™B + a(\)"'R and
a(A)~! = z™B' + R'a()\)~!. Plugging the second equation into the first
gives

(6.12) a(\)"'=2mB+z™B'R+ R'a(\)"'R.

Let ¢ € C®(A x [0,00); x Y) have bounded derivatives and vanish for
|A|=2 + z? small. Then, applying ¢ to the right-hand side of (6.12) yields

(6.13) a(A)"lp = 2™Bp + 2™ B'Rp + R'a(\) ! Re.

Since when ¢ is lifted to the right in 7,,(Y"), it vanishes near the hyper-
surface fi, it follows that Ry € \Ifc_’f’m’(g’E_(a)’g’z)(Y"). Also, by Lemma
6.6, omitting density factors, R’ € S2N+1(A; Agf;(a)’g)((Y’\)z)) for any N.
Thus, by (6.13), for any N,

a(N) "ty € g™ B BB (y Ay
mm\I,c—’Xo,m,(E;b,E%a),z,z) (YM) + §7(A; ATHE @) (a2,
Since N is arbitrary, it follows that
(6.14) a(N)lp € T P EREREDD) ()

m —oo,m,(El’b,E_(a),@,G) A _Oo,ﬁ-i-(a):ﬁ_(a) A
o OERA (™).
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A similar argument multiplying ¢ to the left-hand side of (6.12) yields

(6.15) QDa(A)_l c mm@;rymy(Elb’Erb’Eﬂyg) (Y/\) +

xmql;xo;m’(E;byE— (a)’Ellb‘*'E_ (@),2) (Y/\) + \PXOO,F“'(a),E‘ (a) (Y/\) )

Thus, if ®(\,z,2',4,4') = p(\,2,9) + ¢(A,',¢/), then adding (6.14) and
(6.15) gives

@a(A)—l 6 xm‘i;T’m,(Elb,Erb,Eﬂ’g) (Y/\) +

wmw;XO,m,(E{b,E_(a),E{b+E‘(a),Z) (Y/\) + \IIXOO,ﬁ+(a),E_(Ot) (Y/\)
Let Fiy = Ejp U Ej U (Ft () — m), Frp = Ep U Ely U E~(a), and let
Fg = EgU(E), +E~ (a)). Then observe that Fj, > a—m, Fry > —(a—m),
and F > 0; and that

(6.16) @ a()\)—l c xm{f,c_’:\n,m?(FlbyFrb’Fﬂ’g) (YA)-

Now we may choose ¢ such that in the coordinates (6.5), ® > 0 for ¢/2 <
o < 2¢ where ¢ is sufficiently small so that a(\)~! exists for all X such that
o < 2. Thus, with og = ¢ in Corollary 6.3, formula (6.16) implies that
a(N)~! € zmT ™7 (YM), where F = (Fiy, Frs, Fg, No). O

We need one more lemma before proving our main theorem.

Lemma 6.9. Let R € \I!X°°’5(X). Then given s € R, and v € R with
Ep > v and By, > —v, Id — R is invertible on z7HJ(X) for A sufficiently
large. Moreover, (Id — R)™! =1d+ S, where S € \Pxoo’g(X).

Proof. Since Ey, > <y and E,, > —v, by the mapping property (3.4) and the
definition of ;% (X), R € §~°(A; T~£(X)) C §~°(A; B(z"Hf(X))),
where B(z"H; (X)) is the space of bounded operators on z7H;(X). The
usual geometric series argument now completes the proof. g

Proof of Theorem 6.1: By Lemma 6.4, there is a By € \I'C_X”n(X ) and
Ry € U™ (X) such that
(A - \)z™By = Id — R.

By Lemma 6.8, (I(4) —\)~! € :vm(Iv!;Xl’m’g(YA) for X € A sufficiently large,
where £ = £(A, a) is an index set of the form (Ey, Erp, Fg,Ny), with Ey, >
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a—m, Ep, > —(a —m), and Eg > 0. Let 4,9’ € C*°(X) be such that
1,9’ =1 near Y and such that ¢' =1 on supp¢. Let

B =z ™p(I(A) — A\) "' Ry.

Then, By € ¥, 3™(X). Since near Y, A = I(4) mod z~™*'Diff}"(X),
and since 9’ = 1 on supp %, it follows that

(A~ N)z™Bj = YRy mod z¥, "™ (X).
Thus, if By := By + B € ¥ "™ (X), where £ = £, then
(A - )\)SﬂmBl =1Id - Rl,

where Ry € x\I!_°° mE(X) Cu F1(X) with Fip = Eip+ 1, Fipp = Erp,
F, gy =NU (Eﬂ‘ + 1)U(Ep+ E'Tb +1), and Fy 5 = N, where we used Lemma,
5.1, and the fact that z vanishes at b, ff, and fi of 7,,. By Lemma 6.5, there

isa B} € \Ilc—f\o mér 1(X), where & = (E*(a)UF 5,2, F1 5, N), such that

(A= Nz™B} = R, mod ¥, & el 5y

Thus, if By = By + B} € ¥, "™ (X), where & = £ U £}, we have,
(A= X)z™By =1d — Ry,
where Ry € ¥ 00 m]:"’(X) where Fp = (@, F1 1, F1,5,N). Observe that for
each 7, R2 € \If_oo T (X), where the F; ; are defined inductively using
Proposition 5.4 and the facts that R%H =Ryo R% and Fi 5 > L
Fop = Fo, Fojrr:= (D, (Frep + ) UF2 506 Fo ji1,5, Njv1),

where N; = {3, j+1,...} and Fy j 5 = {(21, k1) + - -+ (25, k)| (25, ki) € Frg}.
Set Fy ., := Ureng (Fl,rb-i-r) Fy g = U521 P j , and Fy = (9, F3 0 F3 55 N).
Then, Fo; C F, for each j and Fp; — Fj as j — +oo in the sense that
c € Fy if and only if for some j, c € ;. Hence, we can find an asymptotic

sum R), ~ RJ € \Il_oo T (X) such that for each N,
oomf
R2 ZR] 2N( )a fé,N = (gaFé,rbaFé,N,ﬂ7NN)'

Set By := By(Id + Ry) € U™ (X), where (see Theorem 5.7) & =
E U Fy U E8F,. Then, followmg through the construction of Bjs, one can
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see that &3 = (E3 5, E3r, E3.5,No), where E3 3 > a—m, E3p > —(a—m),
and Ej3 g > 0; and
(A — A)il,‘mB3 =1Id - R3,

where R3 € \I/;Xo’m’fa(X) with 73 = (2, F, 4, 9,9). Since Fy ;, > —(a —
—OO,Q,Fé’rb

m), and since ¥_3>™7%(X) C ¥, (X), by Lemma 6.9, Id — R3(\)

is invertible on z*~™H;~™(X) for A € A sufficiently large, with inverse of
—OO,Z,fé’rb

the form Id — R3, where R; € ¥, (X). Hence, A — X: z*H}(X) —
z®~™H,~™(X) is invertible for all A\ € A large, with inverse,

(A= = a"By(ld— ) = 5By — ™ BuRh € ST (X)
+$m\IfX°°’E3’lb’F2’Tb (X) g mm{i’,;:\n,m,g(x),
where G = (E3, E3,5 U le,rb,Es,ﬁ,NO)- By Theorem 3.2, for finite A,

(A— N1 e gmF;f@)(X). Now, the expansions at Ib, rb, and ff of X2
must of course, be the same as the expansions at /b, rb, and ff of 7, given
by G; thus, (A — A)7! € 2T PN (),

7. The Structure Theorem.

In this section, we describe the Schwartz kernels of operators in \I/Z‘Ad(X )
as polyhomogeneous functions on certain blown-up manifolds. We begin by
describing the polyhomogeneity of the Schwartz kernel when restricted to
the diagonal. The blown-up manifold in this case is just Xy (see Figure 6
for a picture of Xg) already studied in Section 5.2. This result reduces trace
computations to a simple pushforward theorem of Melrose (Lemma 1.1 in
the Appendix), see Proposition 8.3. We next describe the whole Schwartz
kernel as a polyhomogeneous function, see Theorem 7.2. In this case, we
need to introduce a new blown-up manifold tailored to fit the particular
homogeneities of our parameter-dependent operators.

Throughout this section, we fix a smooth positive b-density on X. This
trivialization of the b-density bundle allows us to omit density factors that
are inherent in Schwartz kernels (cf. Definition 2).

Theorem 7.1. Let A € U3 (X) where m < —n. Then Kala, is defined,
and moreover,

KAIAI; € A.;;Lg(Xd%
where F is the index family on X4 defined by

Fpp = Np; Fﬁ =Ny; Fpii=—m—n+Ny.
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In words, K4|a, when lifted to X, defines a function which is smooth up
to bz and fi, and has an expansion at bi with index set Fj;. The proof of
this theorem is straightforward: we just write K4| A, in the coordinates on
X4 and show that it has the desired polyhomogeneity.

Proof. For simplicity, we will assume that K4 is supported near ff(X?). Let
[0,00), X R;_l x R? be a coordinate patch on X? with p defining ff(X?)
and with Ay = {z = 0}. Then by definition of W:Ad(X ), for any N € N we
can express K4 as a sum:

N-1

(7.1) Kp=Y Am_x+ Ry,
k=0

where , 4
At = [ 7 x(0M €) am—k (%), 0,9, €) d;
RN = f ezz-f TN(Qd)\, o, Y, f) df,

where a,_1(0%), 0,y,06) = 6™ *an,_r(X, 0,1,€) for all § > 0, (o,y) —
rN(A, 0,y,§) takes values in STA_N’d(]Rg), and where x(),€) € C®(A x R*)
with x(X,€) = 0 near (A, €) = 0 and x(A, &) = 1 outside of (), &) = 0. Note
that since m < —n, these symbols are integrable in £ over R™ (see the symbol
estimates (4.1)). In particular, K4|a, is defined.

We now consider local coordinates on X,. Since [0,00), X Rg_l x R is
a coordinate patch on X? with o defining ff(X2) and A, = {z = 0}, and
since X = Ay, we can consider [0, 00), X ]RZ‘1 a coordinate patch on X with
o defining 0X. Let r = |u| where u = 1/A!/4 for A € A. Then, cf. Figure
6, near bz, r is a defining function for fi and v = g/r is a defining function
for bz; and near bi,  is a defining function for fi and w = r/p is a defining
function for bs.

We now show that Ap,_i|a, € A;‘;Lg(Xd). To do so, we write A,,_k|a,
in the coordinates on X4. Consider first the coordinates r and v = g/r near
bz. Thus, as ¢\ = v%w~¢ where w = /||, we have

Am—klAb = /X( ’wa_d, 6) a'm—k( ,wa—d, ™, Yy, 6) d€

It follows that A,,_k|a, is smooth in v and r.

Now consider the coordinates ¢ and w = 1/v near bi. In this case,
Am—ila, = [ x(w™%w™%€) am_r(w™%w ™4, 0,y,€) d€. Since x(),€) = 1 out-
side a neighborhood of (),£) = 0, for w small, x(w™%w=%¢) = 1. Hence,
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we may just as well replace x with 1. Doing this, and making the change of
variables £ — w~1¢ then yields

Ap_ils, = wh=m" / (™, 0,7, ) dE.

It follows that A,,_i|a, is smooth in p and has an expansion at w = 0 with
index set k — m — n.

In summary, we have shown that A, _g|la, € Az‘fhg(Xd), but with
Apm—k|a, actually vanishing to the higher order —m — n + k at bi instead of

—m — n. By (7.1), we have

N-1

(7.2) Kalay, =Y Am—la, + By
k=0

Ap-

A similar analysis as we did with A,,_x|a, shows that Ry| A, 1s smooth up
to bz and fi. Moreover, using the symbol estimates (4.1) for ST_N’d(]R"), it
is straightforward to verify that Ry|a, vanishes to higher and higher order

at bi as NV is chosen larger and larger. It follows that K4|a, € Aﬁg(Xd). a

We now describe the whole Schwartz kernel K4 of an operator A €
\I’Zl]\d(X ) as a polyhomogeneous function on a blown-up manifold. We begin
by defining the blown-up manifold:

X3 = [Ta; 0colha X Dp; Ag x Ay.

Here, 7, is defined in (5.1), and recall that (see Section 5.1) A4 := AY¢ and
that A4 denotes the radial compactification of Ay with OsoAg denoting the
boundary at “\'/¢ = o0”. Figure 7 shows how Xg is constructed. Thus, Xg
is constructed as follows: First, in A4 x X2, we blow-up {\/¢ = oo} x ff to
form 75 If Ay (the “diagonal at \/4 = 00”) is the lift of O Ag x A into
Ta, then blowing it up in 73, we form [7g; Ao]. The lift of Ag x A, in this
new blown-up space is denoted by A;. Finally, blowing-up Ay in [7g; Aso)
creates X‘%.

If g: Xg — Ag x X,? is the blow-down map, then the new faces from
T4 that we create in X3 are di := $*(0ooly X Ay ), diagonal at infinity; and
df := B*(Ag x A ), diagonal face.

Theorem 7.2. The Schwartz kernel of an operator A € \Ifzj’\d(X ) lifts into
Xﬁ to define a polyhomogeneous function:

Ky € Aghg(Xc% )a
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Ta [7211 Aoo]
l l

Figure 7: The manifold Xg. The arrows represent blow-down maps.

where € is the index family on Xg defined by

Eg = Ef :=No; Eyp = Epp = By :=
Ey = (—m —n+No)UNy; Ey; := —m —n+Np.

In words, K4 when lifted to Xg defines a function which is smooth up to
ff and fi, vanishes to infinite order at b, rb, and bi, and has expansions at
the diagonal face df and the diagonal at infinity di, with index sets E4 and
E4; respectively. The proof of Theorem 7.2 is simple in principle: we write
K 4 in local coordinates on Xg and prove that it has the claimed asymptotic
properties. However, as its proof is a bit technical, the proof may be skipped
without loss of continuity.

Proof. Our first order of business is to describe the local coordinates on Xﬁ.
As usual, let p = 1/AY4 for A € A, r := |u|, and w := p/|y| € S}, where
SL={w = p/lu| : p = 1/A? for X € A}. Let [0,00), x R?~1 x R? be a
coordinate patch on X? with ¢ defining ff(X?) and Ay & {z = 0}. Then
near ff(X?3), we have

X3 = Vs, with Vg:=[0,00), x S x [0,00)y x [RF;{0}] x RZ~1,
where r and v = p/r define fi and [f respectively. Away from ff (Xfl),

X32W,,  with Wy = [0,00), x S x © x B2,
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where if w =r/p, then
6 = [[0,00)u X B33 [0,00) X {z = 0}; {w = 0} x {z = 0}],

Note that o and w define fi and bi respectively, and that df and di are
those faces in V; created from the blow-ups of [0, 00), X {z =0} and {w =
0} x {z = 0} respectively.

Before analyzing the asymptotics of K 4, we remark that if 0% is replaced
with A, then the asymptotics of K4 are analyzed in [29]. Thus, in the
arguments that follow, we will rely heavily on the results of [29]. Now write
K4 as in (7.1) in the proof of Theorem 7.1. We will now analyze each term
of (7.1) separately.

We first show that A, € A%(X32). We begin in the coordinates of W.
Indeed, if w = r/p, then as g\ = o%r~%w™? = w™%w™¢, we can write

A = / 7 x(w4w?, ) am_i (w4w?, 0,1, £) dE.

Now A,,_ is an operator of the form considered in [29]. Then Lemmas 4.39,
4.41, and 4.43 of [29] show that A,,_j € A5(W).
Consider now the coordinates V;. Thus, observe that since g%\ =

0%r~4w=? = v%w~? where v = g/r, we can write

Ay = / &7 x(v4%, €) am_i(viw ™4, £) d.

Also observe that outside a neighborhood of { =0, x(vw4 &) — x(0,€) =
0. Thus, [e**¢ (x(viw™2, &) — x(0,€)) am—k(viw™9, &) d¢ is smooth in the
variables z and v%. Hence, it suffices to show that

/ 7€ X(€) amoi (v, €) dE € AE(V),

where x(§) := x(0,&). The proof of this statement follows from the proof of
[29, Lem. 4.40]. It follows that A,,_; € A%(X3).

We now focus on the remainder term Rp. Suppose that m — N <
—2M — n — 1 where M € N. Then, we claim that Ry € o™ S%(W;), where
o is a total boundary defining function for the hypersurfaces df, di, and b1,
of W,. Also, we claim that Ry € C?M (V).

Indeed, if w = 7/, then Ry = [e*4ry(w™ w4, 0,y,£)d¢. We can
now apply [29, Lem. 4.45] to prove that Ry € o™ SO(W,).

To see that Ry € C*M(V;), we first recall the following fact: let a(¢) €
SP(R™) with p < —n — £, where £ € Ny, and let u = [ e**€a(¢)d¢. Then,
u € C{R?) N L=®(R™).
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Now, Ry = fei""g rn(viw™, 0,y,€) d¢, where ¢\ = v3w™? From the
estimates (4.1), S} ~Nd(gry C C°(A; S~~M-1(R")). Thus, the fact men-
tioned in the previous paragraph implies that Ry € C?M (V).

The fact that A,k € A°(X2) for each k, and the above analysis of Ry
together with the fact that N € N can be made arbitrarily large, complete
the proof of Theorem 7.2. O

8. Applications.

Throughout this section, A € z7™Diff}*(X) will be fully elliptic with respect
to @ € R on a closed sector A. In Theorems 8.1 and 8.2, we realize the
Schwartz kernel of (A — \)~! as polyhomogeneous distributions on blown-up
manifolds. In Theorem 8.4 we prove a trace expansion for the resolvent.
Finally, in Section 8.3 we investigate the heat trace expansion.

8.1. The resolvent kernel.

By Theorem 6.1, for A € A sufficiently large, we have
(A= N1 e ™ e (x) € gmy T (X) + B0 (x),

where the “U space” is defined in (5.8), and where & (a) = (ET(a) +
m, E~(a), E(a) + m,Ny,) with N, = {m,m +1,...}. Thus, for any N € N
and A sufficiently large,

(A= 0)7N e Ny Fmm(X) + B0 (x),

where the index family Ex(a) = (Enuw(a), Enro(@), Eng(a),Npy) is a
combination of, and defined inductively from, the index sets of £; () using
Proposition 5.6. In Theorems 8.1 and 8.2 below, we fix a smooth positive
b-density on X so that we can omit density factors in Schwartz kernels. Our
first result involves the manifold X in Figure 6 with d = m.

Theorem 8.1. Let B € Difff* (X), m' € Ny, and let A € z~™Diff[*(X) be
fully elliptic with respect to « € R on A. If m' — mN < —n, then for A € A
sufficiently large, identifying B(A — \)~" with its kernel, we have

B(A - )‘)—NlAb € Aghg(Xm),
where G = (G, G i, Gy;) is an index family on Xy, such that
(8.1) Gy > m; Gg:=Npy; Gy := —m' +mN —n+N.
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The exact form of Gy, is not important; this is why we don’t explicitly state
it (it is however, given in the proof).

Proof. As Diff{,”l (X) C \IfZ’km(X ) (this is easily verified), the composition
results of the full calculus (see Section 5.3) imply that

(8.2) B(A-X\"N=C+D,

where C € :L'Nm\IfZ}/ICNm’m(X) and D € (I\';Ko’m’g’v @) (X). By Theorem
7.1, Kc|a, is a polyhomogeneous function on X,, with expansions given by
an index family satisfying (8.1). (In this case, K¢|a, has an expansion at

bz with index set Npn.) Since operators in @;Xo’m’gN (a)(X ) are defined
directly in terms of the polyhomogeneity of their kernels, see Definition 3,
the definition (5.8), and the second statement in Lemma 5.1, it immediately
follows that Kp|a, is a polyhomogeneous function on X, with expansions
given by an index family satisfying (8.1). (In this case, Kp|a, vanishes
to infinite order at b7 and has an expansion at bz with index set G =
Nunv U Eng(a) U (Enp(a) + Enge(a)). One can check that G > m.)
O

We now consider the asymptotics of the whole Schwartz kernel. To un-
derstand exactly what the following result means, we refer the reader to
Section 7 and Section 5.1 for the definitions of the manifolds X2, and 7;,
respectively. Each of these manifolds is designed to capture the singularities
of the resolvent at A\ = oo, at Ay, and at 6X.

Theorem 8.2. Let B € Difff* (X), m' € Ny, let A € z~™Diff"(X) be
fully elliptic with respect to a € R on A, and let N € N. Then for A\ € A
sufficiently large, identifying B(A — X\)~N with its kernel, we have

B(A—= XN € UGy (X2) + Apyo(Tm) + AG, (A x X,

where F = (En(a), @) with & associated to bi, G = (D, En (), En ()
with @ associated to Oxo A, and where
Ew = Erp = By :=0; Ef = Ef := Nyy;
Ej = (—m'+ mN —n+ No)UNp; Ey := (—m' + mN — n+Ny).

Proof. We can decompose B(A — A\)™ = C + D as in (8.2) of Theorem
8.1. Then Theorem 7.2 implies that Ko € .Af,hg(X,zn). Since operators
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in @;Xo’m’gN (@) (X) are defined directly in terms of the polyhomogeneity of
their kernels, see Definition 3, the definition (5. 8) and the definition (5.3),
it follows automatically that Kp € .Aphg('Tm) + Aph g(A x X?). O

8.2. Trace expansion of the resolvent.

Recall that Xy is Ay x X blown-up at {\/¢ = 0o} x Y, where Ay is Ag
(= AY%) radially compactified, see (5.5) and Figure 6. Also recall that
r = |u| and w = p/|p|, where p = 1/A1/? with X € A, are coordinates on Ay,
with r defining {\'/¢ = co}. Let u € Aphg( 4)- Then for fixed r > 0, we
can consider u(r,w) € .AE’”’( X). In particular, given 0 < v € C*®°(X,Qy), if
Ep; > 0, then u(r,w) v is 1ntegrable over X. The following result, which is
really just an application of Melrose’s pushforward theorem (see Lemma 1.1
in the Appendix), states how [ u(r,w)v behaves as r | 0.

Proposition 8.3. Let u € .Aphg( Xg4) with Epy > 0. Then, as r | 0,
f X u(r,w) v has an asymptotic expansion

(83) [urwv~ 3 g ug ),

(2,k)€ERUEY,;

where u(, k) (w) are smooth functions of w.

Proof. We can write u as a sum of three functions u = u; + ug + uz, where
up is supported near bz and away from bi, ug is supported near fi N bi and
away from bz, and where u3 is supported away from both bz and fi. (See
Figure 6 for a pictorial representation of X,;.) Then,

/Xu(r,w)uz/Xul(r,w)u+/Xu2(r,w)1/+/xu?,(r,w)1/.

Since for any (r,w), uz(r,w) is uniformly supported in the interior of X,
it follows that [y u3(r,w)v has an expansion as in (8.3) but with only the
index set Fy;.

Now we work on [y u;(r,w) v. Decompose X 2[0,1); xY near Y = 9X.
Then near bz and away from bi, X; = [0,00), X [0,00), X Y, where
v = z/r. Let wyv = vi(r,w,v,y)|%Ldy|, where v (r,w,v,y) has an expan-
sion at 7 = 0 and v = 0 with index sets Ef and Ej, respectively. Thus,
Jxw(rw)v = [vi(r,w,z/r, y) < 9 dy. Changing coordinates z — rz, we
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find that [y ui(r,w)v = [vi(r,w,z,y)Ldy. It follows that [, ui(r,w)v
has an expansion as in (8.3) but with only the index set Eg.

Finally, we work on [ x U2(r,w)v. Near fi N bi and away from bz,
we can decompose Xy = [0,1); x [0,00), X Y, where w = r/z. Let
ug v = vg(z,w,w, y)|d7“"dy|, where v9(z,w,w,y) has an expansion at £ = 0
and w = 0 with index sets Es and Ej; respectively. Then, [ x U2(r,w)v =
[ va(z, /2, w, y)%”dy. Hence, by Lemma, 1.1 in the Appendix, it follows that
[ u2(r,w) v has an expansion as in (8.3). a

Theorem 8.4. Let A € z~™Diff;*(X) be fully elliptic with respect to a €

R on A and let B € x‘ﬁDiﬁ'},"l(X), B € R and m' € Ny. Suppose that
m' — mN < —n and that B < m. Then B(A — N\~ is trace class on
z* ™L2(X) and as A — oo in A, we have

e !y °° —
(84) TrB(A-A)"N~Y aa™n=N 43 {b,c log A + ck} AEEE-N
k=0 k=0

where b, =0 unless k € B—m' —n+Ny. In particular, as A — oo in A,

o oo
Tr(A - A ~ AT Ny + 3 AN 1og ) g,

Proof. First of all, decomposing B(A—X)~" as in (8.2) of Theorem 8.1 (now
with an extra factor of z=7), and using standard facts about the b-calculus
(see for instance, [35, Ch. 4.18]), it follows that B(A— )~ is trace class on
z*~™L2(X) with Tr BLA— )™ = [, {B(A—X)""}|a,. Now, by Theorem
8.2, B(A—X)~"|,, is of the form uv, where 0 < v € C®(X, ), and where
u € ‘A;g;h g (Xm), where G is an index family satisfying

Goe 2 —B+m; Gg:=—B+Nyn; Gy := —m' +mN —n+N.
Since Gy > 0, and since

GfUG = (—m' —n+mN +Ny) U (=8 + mN + No)u
{(k=B+mN,1)|keNy, ke B—m —n+NyJ},

Proposition 8.3 implies the trace expansion (8.4), but with A/™ replaced
with r~1 and with the coefficients functions of w. Since B(A — A\)~ is
holomorphic in A, [29, Prop. 5.49] implies that the expansion holds as given
in (8.4). \ O
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8.3. Trace expansion of the heat kernel.

In this section, we will assume that A is of the form {\ € C|go < arg()) <
27 — go} for some 0 < g9 < /2. The heat operator of A, e~ t4, is defined by
the Cauchy integral

—tA U —tA -1
. = = A—XN)""d)
(8.5) tim o [ AN

where I is an anti-clockwise contour in A of the forn_l
P=a+{XeC|arg()) =d or arg(\) =27 — 4}, a<0, g < < 7/2.

Since e — 0 exponentially as A — oo on I', the definition of the
full calculus (5.4) implies that the integral (8.5) converges uniformly in
xm\ib_m’g(a)(X) for t > 0.

Integrating by parts N — 1 times, we can rewrite (8.5) as

i (—t)~N+1
_ 5}—((1\?- o /F e (A — 2N ax;

4 is actually of order —mN rather than N. Thus, in fact,
is of order —oo. Hence, if B is any b-differential operator, the kernel of
Be 4 restricted to Ay is defined. The proof of the following corollary follows
from the results of [3, Sec. 4.6] applied to B times the Laplace transform
(8.6), together with the asymptotic expansion (8.4).

(8.6) e t4

and hence, et

e—tA

Corollary 8.5. Let A € x~™Diff}"(X) be fully elliptic with respect to o € R
on A and let B € m‘ﬂDiff,',nl(X) where f < m and m' € Ny. Then, ast |0,

o0 o0

k=m/—n k-8

TrBe ™~ gt ™ + ) {ﬂklogt +'yk}t m
k=0 k=0

where B, =0 unless k € 8 —m' —n+ Ny. In particular, ast |0,

—tA > k-n = k/m !
Tre ™~ tom G+ tH/™ logt (.

1. Appendix: Pushforwards and the b-calculus.

The following lemma is the basic version of Melrose’s pushforward theorem,
see [34]. We will use the notation of Section 2.1.
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Lemma 1.1. Let f: [0,1)2 — [0,1) be the map f(z,y) = zy. Then given
any compactly supported b-density u = u(z, y)ldx—yl, where u(z,y) has an
expansion at £ = 0 with some index set Ey and an expansion at y = 0 with
some indez set E.p, then

1 1 _
1) fale) = [ uwa/n = [ utorn )Y e AT o, 1),

where EpUE := Ep U By U{(2,k+£+1)|(2,k) € Ep, (2,£) € Epp}.

Proof. Let ¢ € C3°((0,1)). Then,

1 1
< fruyp > =<u, ffp> = /O/OU(w,y)sO(wy)——

Thus, fiu( fo x/ Y,y Changing variables y — z/y gives the other
representatlon fau( fo y, z/y) y . That f.u has an expansion at x =0
with index set ElbUE' » can be found in, for instance, [34]. a

We now show how to express the composition of b-pseudodifferential
operators, and their action on functions, in terms of the pushforward of a
b-density involving their Schwartz kernels.

We will use the notation of Section 3.1. First we start with the mapping
properties. Let A € U}*(X). Let K denote the Schwartz kernel of A as a
distribution on X2, and let K4 := *K be Schwartz kernel on Xf, as given
in Definition 1. Here, 8: X2 — X? is the blow-down map. Let ¢ € C®(X).
We will write Ay as a pushforward of a b-density. Thus, let u € C°(X, Q)
be any b-density, and let 77, mp: X2 — X be the projections onto the left
and right factors of X2 respectively. Then a definition chase shows that as
distributions,

(1.2) pAp = (rp)«(rpp mLp K).
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We will now write this formula in terms of K4. To do so, we first define
mrp =m0 f and Ry := mp o . Then (1.2) takes the form

pAp = (rp)(mpeminK) = (70)«(Be(B*(mre mL1) Ka))
= (mpoB)«((mr o B) ¢ (mL 0 B)* 1 Ka)

= (WL,b)* (WE,W Wz,bﬂ Ka).
Thus,
(1.3) pAp = (mpp)(Trpp 7L ot Ka).
Thus,

(14) A: C®(X) — C®(X) <> (mpp)e(mhpe )i Ka) € C®(X, Q).

A similar argument shows that if C (X) is the space of smooth functions
vanishing to infinite order at Y = X, then

(1.5) A: C®(X) — C®(X) <= (mpp)s(Thpo ) ouKa) € CP(X, Q)

for all ¢ € C®(X). The proofs of (1.4) and (1.5) use Lemma 1.1, and
are very similar to (but much simpler than) the proof of statement (C) in
Lemma 4.2. Note that the role of the auxiliary b-density u is only to ensure
that we are pushing forward b-densities in (1.4) and (1.5).

We now consider the composition of two b-pseudodifferential opera-
tors A; and Ay. To do so, we will write the composition using pullbacks
and pushforwards. But first, we must define the b-triple product. Define
R, s, Tc: X3 — X2 by

7TF("”7 Y, Z) = (ZB, 'y)a WS(mayaz) = (ya Z)a ﬂc(m,y,Z) = (117,2),

and define T:=Y xY XY, Bp =Y xY x X = (7p) (Y XY), Bs :=
XxYxY = (mg)"W(Y xY),and Bc ==Y Xx X xY = (ng)" (Y x Y).
We define the triple b-stretched product, Xg’, as the iterated blow-up, Xg’ =
[X3;,T;{Br,Bs,Bc}]. Figure 8 illustrates how X,:;’ is defined.

Let 8®): X} — X3 be the blow-down map. We define b := (83))*(Y x
X x X), b= (B (X x X x Y), mb := (BO)(X xY x X), fs =
(BEY*(Y x X x X), 85 := (BO)*(X x X xY), es := (BO)*(X x Y x X),
and ff := (B®))*(Y x Y xY). (These faces are called the left boundary, right
boundary, middle boundary, first side, second side, composite side, and front
face respectively.)
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X3 p*Bp [X%7]
Br

T— Be

A
=)
*

o]

Q

B*Bs

Figure 8: How X,‘? is defined. The arrows represent blow-down maps.

Let 3: XZ — X? be the blow-down map of X,? onto X2. Then, see
[33], there exist (unique) functions 7o p: X2 — X2, where O = F, S, or C,
such that

(1.6) mo o BB = Bomop.

Pictures of these functions are given in Figure 2, and these functions ex-
pressed in local coordinates are given in the proof of Lemma 4.3.

We now can show how to write the composition of b-pseudodifferential
operators in terms of pullbacks and pushforwards. To do so, we first let
A, Ay € ¥, °(X) have Schwartz kernels K;, K> on X? vanishing to infinite
order at 9X?2. These are true smoothing operators. Then denoting the kernel
of AjA; on X2 by K, observe that

(uKi2)(2,2) = p(z) s (z,y)K2(y, 2) = (ro)« (mon Ky m5K>),
y

where we continue to denote by y, the lift of 4 to X2 under 7y Let K4, =
B*K; and K4, = *K; be the kernels of A; and A; on Xf, and continuing
to abuse notation, we denote 5*u by p. Then by (1.6),

pKiz = (mo)u(ropnp Ky nsKa)
= (1) (BO) (mppp Ky mhKo)
= Bu(mep)« (M pB* 1 TE 8" K1 5 18" Ka)
= Bu(mep)« (o pu s Ka; 75 s Ka,).

Thus, the kernel of uA; Ay on Xf is

(1.7) BEK a4, = (WC,b)*(ﬂ'é',b:“ 7"';",bf{x‘he W.g',bKBz)'

To derive this equation, we assumed that A; and Ay were smoothing op-
erators. But, using the properties of the maps mcy, 7rp, 7gp, and the
pullback, product, and pushforward theorems of [14], one can show that
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this formula holds for 4; € ¥;*(X) and A4 € 7" (X), and moreover, that

A1As € \IIZ"‘“”/ (X). The proof uses Lemma 1.1 and is similar to, but much
simpler than, the proof of Theorem 4.4.
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