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We describe the structure of the resolvent kernel of an elliptic cone 
(or Fuchs type) differential operator and give a precise description 
of the asymptotics of the kernel as the spectral parameter tends 
to infinity. The structure of the resolvent is investigated through 
a class of parameter-dependent pseudodifferential operators that 
incorporate the particular degeneracies of cone operators and their 
resolvents. 

1. Introduction. 

1.1. Parameter-Dependent Operators. 

In this paper, we describe the structure of the resolvent of a cone differential 
operator acting between weighted Sobolev spaces on a compact manifold 
with boundary X, including a precise description of its asymptotics as the 
spectral parameter tends to infinity. Here, an ra-th order cone differential 
operator is an operator A 6 x~mDi&™(X), where x is a boundary defining 
function on X and where Diff^(X) is the space of ra-th order totally char- 
acteristic (or b-) differential operators. Thus, A = x~rnP, where on some 
collar neighborhood of Y ~ dX, 

m . 

(1.1) P = YtPm-k(x)(xDx)k,    Dx = ^dx, 

where Pm-k(x) is a smooth family of differential operators of order m — k 
on Y. If A denotes the spectral parameter domain, then under certain con- 
ditions on A (called "full-ellipticity", see Section 1.3), we show that the 
resolvent (A — A)-1 exists on weighted Sobolev spaces and that its Schwartz 
kernel can be realized as a polyhomogeneous distribution on a ablown-up" 
manifold constructed from A x X2. The exponents of the polyhomogeneous 
expansions at the boundary faces of the blown-up manifold are given explic- 
itly in terms of the boundary spectrum of A. In order to capture the precise 
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asymptotics of the resolvent kernel, we define a class of cone pseudodifferen- 
tial operators that depend on the spectral parameter A in a certain way. We 
then show that the resolvent is in this calculus. We will describe this calcu- 
lus in Section 1.4. Throughout this paper, we confine ourselves to operators 
acting on functions in order to simplify the presentation; however, all the 
results in this paper have extensions to operators acting between sections of 
vector bundles. 

The development of parameter-dependent pseudodifferential operators 
has a long history. Following Agmon's ideas [1, 2] in treating A as a covari- 
able, a systematic formulation of such operators was initiated by Seeley [44] 
to investigate the structure of the complex powers of differential operators 
on manifolds without boundary. Closely related operators can be found in 
Gilkey [17], McOwen [32], Shubin [45], and undoubtedly others. Parameter- 
dependent operators have been developed in other contexts. For instance, 
Gil [15] for cone differential operators, Grubb and Seeley [18, 19] and Rempel 
and Schulze [39] for boundary value problems, and Schrohe [41] for certain 
types of noncompact manifolds. The work of Gil is the closest to that of this 
paper, but it uses a very different methodology. It relies on techniques from 
the "edge theory" initiated by Schulze for the study of operators on mani- 
folds with edge singularities, while our methods are based on the geometric 
"blow-up" techniques of Melrose. Further developments in the edge theory 
can be found in [31, 43], and a comparison of the methods of Schulze and 
Melrose can be found in [25]. 

There are two central reasons for defining parameter-dependent pseu- 
dodifferential operators. The first reason is that these operators provide a 
framework that allows one to understand the precise structure of operators 
defined using the classical functional calculus [40, 13, 12]. For example, us- 
ing parameter-dependent operators, one can show that the complex powers 
of differential operators are entire families of pseudodifferential operators. 
See [44] for differential operators on closed manifolds, [41] on certain non- 
compact manifolds, [39, 18] on manifolds with boundary, and [27] on conic 
manifolds. The second, and perhaps the most important reason to study 
parameter-dependent operators is to understand the trace expansion of the 
resolvent: Tr(A — X)~N as the spectral parameter A tends to infinity. Here, 
N is taken large enough to ensure that (A — X)~N is of trace class. As the 
resolvent and heat operators are related by the Laplace and inverse Laplace 
transforms, the trace asymptotics of the resolvent are directly related to 
the small time heat trace asymptotics. The heat trace asymptotics generate 
many applications in noncommutative geometry, spectral asymptotics, and 
index theory to name a few, cf. Gilkey's book [17], especially the references 
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in Ch. 5. In Section 1.2, we will discuss more on trace expansions. 
Besides the work of Gil [15] already mentioned, other related works in- 

clude that of Briining and Seeley [6, 4], Cheeger [8], Lesch [26], and Mooers 
[38]. However, these authors analyze resolvents and heat operators without 
the formal development of parameter-dependent operators. Cheeger was 
the first to analyze the heat operator of the Laplacian on a conic manifold. 
The methods of Mooers are the closest to those of this paper: she also uses 
blow-up techniques, cf. [35, Ch. 7], to construct the Schwartz kernel of the 
heat operator for the cone Laplacian as a polyhomogeneous function on a 
blown-up manifold. 

As an application of the methods of this paper, we show that the com- 
plex powers of a cone operator define an entire family of 6-pseudodifferential 
operators [27]. In [28], we analyze the small time heat trace asymptotics 
of cone operators. We also attain (principle) asymptotic estimates for the 
eigenvalue counting function and the spectral function for arbitrary order 
self-adjoint cone operators. A possible future application of this paper in- 
cludes sharpening these asymptotic formulas following Agmon and Kannai 
[2], Hormander [20], Grubb [18], among others. The asymptotic formulas in 
[28] generalize those for the cone Laplacian obtained by Ivrii [21], Kalka and 
Menikoff [22], and Pham The Lai and Petkov [24]. Finally, in [16], we iden- 
tify the noncommutative residues for pseudodifferential operators on conic 
manifolds, cf. [36, 42], via heat traces. 

We note that in this paper, we focus on parabolic techniques for cone 
operators. See for instance, Cheeger and Taylor [10] and Melrose and Wunsch 
[37], for treatments of hyperbolic methods. 

1.2. Trace Expansions. 

Let B e x-PDi&fiX), where /3 G R, m' £ NQ. Then given a fully elliptic 
cone differential operator A of order m (see Section 1.3), we will prove the 
following trace expansion, see Theorem 8.4: 

FULL TRACE EXPANSION. If m' - mN < -n where n = dimX and if 
P < m, then B(A — \)~N is trace class, and as A —>• oo in A, we have 

u<J / oo 

(1.2)   TrS^-Ar^-^A2^-" +y£{bk]0gX+ck}x
e^-ff

t 
-N       V^       \ m +n-k -M 

~2_^akA      rn 

k=0 k=0 

where bk = 0 unless k £ ft - m' - U + NQ. 

Once the asymptotics of the kernel of B(A - X)~N are understood, this 
trace expansion follows from Melrose's pushforward theorem (see Lemma 1.1 
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in the Appendix). If A is the complement of a sector in the right-half plane, 
then (1.2) implies the following heat trace expansion: As 11 0, 

oo / oo 

(1.3) TrBe-tA^J2aktk^^ + J2 {falogt +7fc} *" 
k-0 

k=0 k=0 

In [28], we give a formula for the constant term, and explicit local formulas 
for all the singular and log coefficients in the expansion (1.3). In joint work 
with Gil [16], we treat the case when B is an arbitrary order cone pseudodif- 
ferential operator. In this case, the expansion contains log2 terms, and using 
the techniques and results of [28], we give explicit formulas for all the log 
and log2 coefficients in terms of residue trace functionals. 

With B = Id, the heat trace expansion has been proved in various con- 
texts. In particular, Gil [15] was the first to prove such a heat trace expansion 
for arbitrary order fully elliptic cone operators. For second order operators, 
Briining and Seeley [6, 4], Callias [7], Cheeger [8, 9], Chou [11], and Moo- 
ers [38] also obtain a full heat trace expansion. Cheeger was the first to 
obtain a full trace expansion for the cone Laplacian. Briining and Seeley 
obtain the expansion for second order regular singular operators using the 
"Singular Asymptotics Lemma" of [5]. Lesch [26] generalizes the techniques 
of Briining and Seeley to obtain the heat trace expansion for arbitrary or- 
der self-adjoint, constant coefficient cone operators; but in this case, all the 
log terms for k > 0 vanish. Finally, under ellipticity conditions similar to 
ours, Karol' [23] obtains the heat expansion for arbitrary even order cone 
operators. 

1.3. Pull-Ellipticity. 

Let A C C be a closed angle, a G M, and let A be an ra-th order cone 
differential operator. We review a condition introduced by Gil [15] that 
ensures the invertibility of A — A on weighted Sobolev spaces. Let A = x~mP 
where P is an m-th order ^-differential operator. Now for A sufficiently large 
in A, we want to determine when we can invert 

(1.4) A - A = x-m(P - xm\): xaHl(X) —» xa-mHl-m{X), 

for any p G M, where H^ denotes the 6-Sobolev spaces. There are three 
"degeneracies" of (1.4): 1) A near infinity with x bounded away from zero; 
2) x = 0 with A bounded away from infinity; and 3) x = 0 and A = oo. 

Consider A near infinity with x bounded away from zero. Then disre- 
garding the x factors, our first requirment is that the parameter-dependent 
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symbol of P - A be invertible. That is, if bam(P)(£) represents the totally 
characteristic (or b-) principal symbol of P, see [35], then we require that 

(1.5) 6am(P)(£)-A    be invertible for all f^ 0 and A G A. 

Here, £ is an element of the 6-cotangent bundle. In fact, we require that the 
condition (1.5) hold up to and including the boundary Y of X. 

We now deal with the singularity at x = 0 with A bounded away from 
infinity. Then disregarding the term xmA, we need to handle the boundary 
degeneracy of x~mP. To do so, write P as in (1.1), and define 1(A) := 
s-m Y^T=o Pm-k(0){sDs)

k for s e [0, oo). Then 1(A) models the behavior of 
A near x = 0. Our second requirement is that 

(1.6) 1(A): saHP(YA) —► 5a-m#£-m(yA) 

be invertible, where yA := [0, oo) x Y. Note that (1.5) and (1.6) imply that 
A- A in (1.4) is Fredholm for all A E A (see Theorem 3.2). Taking the Mellin 
transform of srnI(A) in 5, our second condition can be stated in terms of the 
invertibility of the conormal symbol (or normal operator) of P. 

To ensure that A - A is invertible for A sufficiently large, we need to deal 
with our third and final singularity: x = 0, A = oo. To do so, we introduce 
"blow-ups". Let A = r~ma(r1Cjj)uj, where u = A/|A| and where a(r,uj) > 0 
is a smooth positive function of r G [0, oo) and u (smooth and positive even 
down to r = 0). Then A = oo corresponds to r = 0. We now blow-up x = 0, 
r = 0; that is, we introduce polar coordinates at x = 0, r = 0. Convenient 
coordinates to work with are projective coordinates. Thus, consider the 
coordinates r, s — x/r. Then x = sr and xDx = sDs. Hence, 

m 

A-X   =    8-mr-mYsPrn-k{sr)(sDs)
k -r-™a(r,u)uj 

k=0 
m 

(1-7) =   r-m{s-mJ2Pm-k(sr)(sDs)
k -air,^}. 

k=0 

Note that r = 0 in (r, s) coordinates corresponds to x = 0, r = 0 in the orig- 
inal coordinates. Thus, as a(r,uj) > 0, (1.7) suggests our third requirement 
for full-ellipticity: 

(1.8) 1(A) - A    be invertible for all A G A sufficiently large. 

Invertibility will be on certain "cone" Sobolev spaces, see Section 6. 
An operator A is fully elliptic with respect to a on A if the three "sym- 

bols" of A - A are invertible in the sense that conditions (1.5), (1.6), and 
(1.8) are satisfied. 
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1.4. Statement of Results and Outline of Paper. 

In Sections 2 and 3, we review some aspects of analysis on manifolds with 
corners, including asymptotic expansions, blow-ups, and 6-pseudodifferential 
operators. We also review the Predholm properties of cone differential op- 
erators. In Sections 4 and 5, we introduce our parameter-dependent spaces 
that allow A — A to be inverted for A fully elliptic. We now describe these 
spaces by explaining how we plan to invert A — A. 

First, writing A — A = x~m(P — xmX), we want to invert (that is, 
find a parametrix for) the "6-part": P — xm\. Observe that x and A 
are coupled into the one parameter xm\. In Section 4, we consider b- 
pseudodifferential operators which have local symbols that depend on the 
"parameter" /z := xm\. Thus, roughly speaking, we consider parameter- 
dependent 6-pseudodifferential operators 5(A) such that if U is a coordinate 
patch on X, then the local totally characteristic (or b-) symbol of B{\) is of 
the form 6(n;mA, w, £) where w = (wi,..., wn) are the coordinates on U. We 
call this space of operators the "small calculus" of tempered operators. We 
use the word "tempered" because we require that the local symbols &(//, w, £) 
satisfy certain growth conditions in fj, and £. We also discuss the mapping 
and composition properties of the small calculus. The proofs of the mapping 
and composition properties (Proposition 4.2, Lemma 4.3, and Theorem 4.4) 
are written in careful detail for those readers interested in how ^-operators 
are manipulated. Unfortunately, they are quite technical as they involve an- 
alyzing pushforwards and pullbacks of conormal distributions on blown-up 
manifolds. The proofs may be skipped over at a first reading. 

Second, we invert A « 1(A) near the boundary. This can be done within 
the usual calculus of 6-pseudodifferential operators. 

Finally, we want to invert the operator 1(A) — A found in (1.8). In order 
to do this we introduce a blown-up manifold T connected to the arguments 
used to derive condition (1.8). Let x and x' denote the boundary defining 
functions for the left and right factors of X2. The first step is to blow- 
up x = xf = 0 in X2, which constructs the manifold X2, the 6-stretched 
product. Let p be a boundary defining function for the blown-up face in X2 

(e.g. p = x + x1 is such a function). The second step is to blow-up p — 0, 
r = 0, where for A large, A ~ r~m for r near 0. This creates the manifold 
with corners T. In Section 5, we define a space of parameter-dependent 
operators whose Schwartz kernels are polyhomogeneous functions on the 
blown-up manifold T. 

The "full calculus" of tempered operators consists of a sum of parameter 
dependent operators: B(X)JrC(X)JrD(X) where B(X) is in the small calculus 
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of tempered operators, where C(A) is described in the previous paragraph, 
and where i}(A) is a parameter-dependent operator whose Schwartz kernel 
is a polyhomogeneous function on A x X2, vanishing to infinite order at 
A = oo. In Section 5, we discuss the mapping and composition properties of 
the full calculus. 

In Section 6, we prove the main result of this paper (see Theorem 6.1): 
For A sufficiently large, the resolvent (^4 — A)-1 exists and is an element of 
the full calculus of tempered operators. We emphasize that the composition 
properties of our calculus of parameter-dependent operators make the con- 
struction of (A — A)-1 very similar to the construction of a parametrix for 
an elliptic (non parameter-dependent) 6-differential operator. 

In Section 7, we show precisely how the singularities of the Schwartz 
kernel of (A—A)-1 accumulate near the diagonal as A —> oo. This is expressed 
by showing that the kernel of (A—A)-1 can be realized as a polyhomogeneous 
distribution on a blown-up manifold constructed from A x X2. The exponents 
of the polyhomogeneous expansions at the boundary faces of the blown-up 
manifold are given in terms of the boundary spectrum of A. 

In Section 8, we prove the trace expansion (1.2), and finally, in the Ap- 
pendix we collect various results about asymptotic expansions and about 
6-pseudodifferential operators. 

In conclusion, I thank Juan Gil and the referee for helpful comments in 
improving this paper. 

2. Manifolds with corners. 

The main references for this section are [14] and [35]. Other references are 
[29] and [30]. We define NQ := {0,1,2,...} and N := {1,2,...}. 

2.1. Manifolds with corners and conormal functions. 

An n dimensional manifold with corners X is a paracompact topological 
space with local models of the form W1^ := [0, oo)x x E£~k, where k can 
run between 0 and n, such that X has only finitely many boundary hyper- 
surfaces, say {ili, • • •, i?r} for some r G NQ, where each Hi is imbedded. In 
our applications, the main source of manifolds with corners will come from 
the process of blow-up (see Section 2.2). By definition, it follows that each 
boundary hypersurface Hi is itself a manifold with corners, and that if X is 
compact, then near Hi there exists a local diffeomorphism X = [0,1) x H^ 
The set of boundary hypersurfaces is denoted by Mi(X). A total bound- 
ary defining function is a function of the form p = Ylri=i Pi, where pi is a 
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boundary defining function for Hi. 
The 6-density bundle, O^, is the trivial line bundle with sections of the 

form p-1/i, where /i is a smooth density on X, and where p is a total bound- 
ary defining function on X. 

Prom now on, X will always be compact. The space of b-differential 
operators of order m, Diff^(X), is the space of operators P on C00(X), such 
that locally on a patch W^ = [0, oo)*; x M^~k, we can write 

P=     E   aaip(x}y)(xDx)
aDl,    where aa,p(x,y) G C00^). 

M + |0|<m 

We now define various classes of conormal functions. A multi-index a 
on X is a, map a : Mi(X) —> M, or equivalently, an r-tuple (ai,...,ar) 
of real numbers. Let p be a total boundary defining function for X and a 
a multi-index. Then the space of symbols of order a, Sa(X), consists of 
functions u such that Difit(X)u C p^L^iX), where p-a := TlLiPz7^- 
The Sobolev lemma implies that symbols are smooth on the interior of X; 
they may however, have singularities at dX. For example, given a G C and 
* G No, a;a(loga;)* G Sa([0,1)) for all a > -Rea. 

An mdez set (or C00 mdez se£) is a discrete subset E CCXNQ satisfying 
the following conditions: if (z, k) G E, then (z + ^j) G £? for all £ G No and 
0 < j < A:, and given any iV G No, {(2, A:) G JS | Rez < N} is a finite set. 

Given a multi-index a and a hypersurface iJ, we define a multi-index a# 
on H as follows. If G G Mi (If), then G = H fl if' for some H' G M^X). 
We define aniG) := a(iZ'/). Let i? be an index set. A function ^ G 5a(X) 
(for some a) is said to have an asymptotic (or classical) expansion at H with 
index set E, if given any product decomposition X = [0, l)x x Hy of X near 
H, for each (2, A;) G £", there exists a i^^) G 5,Q:if (H) such that for each 
N G N, there exists an M G N with 

(2.1)        ufay)     -    J2 xz(logx)ku{z,k)(y) G ^S^QO, 1) x H). 
(z,k)eE,Rez<M 

We then write u ~ ^[V k^eE xz(\ogx)ku^z^y Thus, an asymptotic expansion 
is just a generalized "Taylor expansion". In the appendix of [29], it is shown 
that the expansion (2.1) is defined independent of the choice of product 
decomposition of X near H. Note that if E = 0, then (2.1) holds for all N 
if and only if u vanishes to infinite order at H. Also, if E = NQ, then (2.1) 
holds for all N if and only if u is smooth up to H. 

An index family associated to a subset A C Mi(X) is a set £ = {EH | H G 
.A}, where each EH is an index set.   We define Ae(X) to be the space of 
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[[0,oo)2;(0,0)] 

tL> •    L       Jb    I Jb 

X 
►  ►  ► 

A*       S = O        Us I Jb    •    ct/ 

Figure 1:   The manifold [[0, oo)2; (0,0)], along with two sets of projective 
coordinates. 

functions that have an expansion at each H £ A with index set EH . If 
A = Mi(X), we denote AS(X) by Ae

phg{X). 

2.2. Blow-ups. 

Let X = [0,00)3; x [0,00)^/ and Y = (0,0). Then we define "X blown-up at 
y" as the set [X; Y] = [0, oo)r x S^'2, where S1'2 = S1 fl [0, oo)2, and where 
r = K^jX7)! and 6 — t3,n~1(xf/x) are polar coordinates about Y. See Figure 
1 for a picture of [X] Y]. Thus, blow-up of Y is just the introduction of polar 
coordinates about Y. The blow-down map /3: [X; Y] -¥ X is by definition the 
usual polar coordinates map: /3(r,9) = (r cos0,rsin0). The left boundary, 
lb, is where 6 = IT/2, the right boundary, rb, is where 6 = 0, and the front 
face, jff, is where r = 0. The b-diagonal, A&, is the set where 6 — 7r/4. Other 
useful coordinates are the coordinates {x,z), where z = \og(x/x'), which 
give the decomposition: 

(2.2)        [X-Y] \ {lb, rb} ^ [0,oo)x x Rz,     where Ab = [0,oo)x x {0}^. 

Projective polar coordinates are also useful: 

[X; Y] \ {rb} ^ [0, oo)s x [0, oo)x/,     where s = x/x'. 

Here, lb, rb, ff, and A5 are the sets where s = 0, s = +00, x' = 0, and 5 = 1 
respectively. Reversing the roles of x and x' gives another set of projective 
coordinates. See Figure 1 for a description of these coordinates. 

In general, given a manifold with corners X and a p- (or imbedded) 
submanifold Y of X, one can define "X blown-up at Y", [X; Y], by taking 
polar coordinates about Y. The boundary face created in the blow-up is 
called the front face, denoted by ff[X]Y], and the polar coordinates map 
ft: [X; Y] —> X is called the blow-down map. See [14] for a precise definition 
of the mathematical process of blow-up. If Z C X is a closed subset of X, 
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then we define the lift of Z into [X; Y], /3*Z C [X; Y], as /3*Z := /T^Z) if 
Z C y; or as f3*Z := ^(y \Z)i£Z = Z\Y. For example, if X = [0, oo)2 

and y = (0,0), then /&, r&, j^, and A& shown in Figure 1 are the lifts of 
{0} x [0, oo), [0, oo) x {0}, (0,0), and {x = x'} respectively. If f3*Z is defined 
and if in addition, I3*Z is a p-submanifold of [X; y], then [X; Y] blown-up 
along /3*Z is defined, and we denote it by [X; Y\Z] = [ [X; Y]; p*Z\. 

Assume now that X is a compact manifold with connected boundary 
y. Then we define the b-stretched product, X6

2, by X^ := [X2]Y xY]. If 
ft : X^ —> X2 is the blow-down map, we set lb := f3*{Y x X), rb := 
/3*(X x y), and # := ^(y x y). The &-diagonal is defined by A6 := /3*(A), 
where A is the diagonal in X2. Locally, Figure 1 describes X2. Indeed, 
let U = [0, l)x x M^"1 be a coordinate patch on X near Y. Then, X2 ^ 

[0,1)? x^ x l^-1 x K"1, where (a/, y') are the coordinates on the right factor 

oiU2. It follows that locally 

By (2.2), coordinates on X^ away from lb and r&, are given by 

(2.3) X6
2 ^ U x HJ,    where s = (log(x/x'),y - y'). 

Observe that in these coordinates, A^ = U x {0}. 

3. Calculi of pseudodifferential operators. 

3.1. 6-pseudodifferential operators. 

More on 6-pseudodifferential operators can be found in the Appendix. For 
the rest of the paper, we will assume that X is a compact manifold with 
connected boundary. We will denote dX by Y. 

Let 0 < v G C00(X, fift) be any trivialization of Q,b (see Section 2.1). We 
denote by v' the lift of v to X2 under the projection X2 3 (y, y1) \-^ y1 G X. 

Definition 1. The space of b-pseudodifferential operators of order m G K, 
^^(X), consists of operators A on C00(X) that have a Schwartz kernel JRT^ 

satisfying the following two conditions: 

(1) Given ip G C^0(X^ \ A^), the kernel PKA is of the form fci/, where 
k G O00^2) and vanishes in Taylor series at the sets lb and rb. 

(2) Given a coordinate patch of X^ near A^ of the form Uy x MJ such that 
Ab^Ux {0} (cf. (2.3)), and given </? G C7~(W x IT), we have 
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(3.1) <pKA = f   eiz< a(y, 0^ • ^,     ^ = 7^ 

where a(y, ^) is a classical symbol of order m. 

<% 

Gluing together the principal symbols of the local operators (3.1) gives 
a (principal) symbol map, bam(A): *™(X) —► C^^T*X), where 

^hom(m)(6^r'*^) 'ls ^e sPace 0f smooth homogeneous functions of degree m 
on <T*X \ {0}, where <T*X is the 6-cotangent bundle (see [35]). If 6crm(-4) is 
invertible, then A is called elliptic. The symbol map gives an exact sequence 

o -> tfr'PO ^ ^W ^ cj^^Crx) -► o. 

The space ^(-X") consists of those functions which are square integrable 
with respect to z/. For each m G R, the b-Sobolev space of order m, H™(X), 
is the space of distributions u such that *^(X)iz C Lg(-X'). If A G ^(-X"), 
then A: flJ(-X") —> H^iX) continuously for any 5 e R 

jPz'a; a boundary defining function a; on X and assume that X = [0,1)^ x Y 
near Y\ In the coordinate patch (2.3) on X%, let A e ^^(X) be given locally 
by (3.1) with i/' - K^V/)*/'!. Let f - (r,^) where ^ - (&, ■ ■. ,^). Then 
the normal operator of A, A(r) E ^m(Y), is the operator defined locally by 

A(r) := ^y^ | e^-V)^ o(0, y, r, ^'X • |dl/|. 

For example, if P = Yl^o Prn-k{x){%Dx)
k, where Pm_A;(rz;) is a smooth 

family of differential operators of order m — k on Y and D^ = ic^, then 

771 

(3.2) P(r) = J2 Pm-k(0)rk: HS(Y) —> iJ5—(y). 

Recall that given a smooth 6-density 0 < u G C00(Xi O^), i/' denotes the 
lift of 1/ to X2 under the projection X2 3 (y, y') ^y' <E X. If £ = (JEfo, JS7r6) 
is an index family on X2, then ^r""00^(X) consists of those operators with 
integral kernels of the form kv' where k G A%h (X2). Here, the space of 
polyhomogeneous functions "Aphg" is defined at the end of Section 2.1. Thus, 

(3.3) Aev-^ix)    ^    KA = kv\    keAE
phg{X

2). 
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Since the kernels of operators in \I>~00'^(X) are polyhomogeneous functions 
on X2, it follow that for a G R with Erb > -a, any operator A G *"00'£(X) 
defines a continuous linear map 

(3.4) A:xam(X)^A^g(X),    for any a e R 

If 5 = (^6, jE?r6, -Egp) is an index family on X$, then we define 

(3.5) AeV^iX)    ^    KA = ku\    keA£
phg(xZ), 

and the full calculus is the sum: 

*™>€{X) := *P{X) + ^^(X) + y-<x>>Elb,ETh(Xy 

Remark 1. This is not the same as the original definition of the full calculus 
as presented in [35, Def. 5.51]. Melrose always sets Eg = NQ. The definition 
we use is the one that is most suitable for this paper. 

Given a G M and an index set E, we write E > a if (z, k) G E => Re z > a 
and (a, k) 0 E for any A; > 0. We write E > a if (z, k) G E => Re z > a. 

If Eib > l3LErb > -a, and a + Eff > f3, then (see [31, Th. 3.25]) any 
operator A G ^r^' (X) defines a continuous linear map 

A: xaHs
h{X) —+ x^Hs

b-
m(X),    for any s G R 

3.2. Cone differential operators. 

Throughout the rest of this paper (unless stated otherwise), x will denote 
a fixed boundary defining function on X which gives a decomposition X = 
[0, l)x x Y near Y = dX. 

A cone differential operator of order m G No is an operator of the form 
A = x~mP, where P G Diff^(X). The cone operator A is said to be elliptic 
if P is an elliptic fe-differential operator. The boundary spectrum of an elliptic 
cone operator A, specc(A) C C, is the set of points r G C where the normal 
operator P(r) (see (3.2)) fails to be invertible. 

Theorem 3.1. If A G a;-mDiff^(X) is elliptic and a 0 -Imspecc(^); then 
for any s G R, A: xaHs

h(X) —> xa-mH^-m(X) is Fredholm, and its gener- 

alized inverse, Ga, is in the full calculus: Ga G x™^™' ^a\x). The index 
family £(a) is defined in (3.8) below. Here, a b-density 0 < u G C00(X, fi&) 
is fixed, and the generalized inverse is defined by the equations 

AGa = Id - Hi,    GaA = Id - HQ, 
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where UQ and Hi are the orthogonal projections (with respect to v) onto the 
null space and off the range in xaH^(X) and xa~mH^~m\X) respectively. 

Moreover, HQ E #-°°,£+(*H™,£-(a)-™(X) and Hi G $-~,£+(a)J£-(a)pfy 
where the index sets E^fa) are defined in (3.7) below. 

Proof. (Outline) Let B = Axm e Diff^(X). Note that ba{xmA) = ba(B). 

Thus, B is an elliptic 6-differential operator. Also note that xmA(T) = 
B(r 4- im). It follows that B(r) is invertible for all r G C with —Imr = 
a-m. Hence, by [31, Th. 4.4], B: xa-mHs

h(X) —> a;a-mfl'*-m(A') is 

Predholm having a generalized inverse Ha G *^m' (-X"). Using the fact 
that B = Ax171 finishes the proof. □ 

The index family £(a) is defined as follows. We first define 

(3.6)      E±(a) := {(z, k) \ r = ^iz G specc(A) + im, 

1 < k + 1 < ord(r - im), and Rez > ±(a - m)}. 

Here, ord(r) denotes the order of the pole of a;mA(T)~1 at r G specc(A). 
The extended union of two index sets E and F is the index set E\JF := 
EUF\J{{z,k+l+\) | {z,k) G E, M) € F}. Let ^(a) := \Jr&io{E±(a)+r); 
that is, explicitly 

(3.7^[a) = {(z + r,A;)|r G No, r = T^ G specc(A)+im, 
r 

1 < k + 1 < ^ord(r - im^fil), and Rez > ±(a - m)}. 
£=0 

We define 

f38) S(a):=ND(^+(a) + ^-(a)); 
V ' ;     £(a) := (E+(a),E-{a),E(a)),     where EPfa) = ^(aJD^Ca). 

The next theorem describes the behavior of the resolvent for finite A. 

Theorem 3.2 (Analytic Predholm Theory). Let A G a;-mDiff^(X) be 
elliptic and assume that a $ — Imspecc(j4). Then for any s G K, 

A - \:xaHs
h{X) —> xa-mHs

b-
m(X) 

is either never invertible or else, C 3 A ■-»■ (^4 - A)-1 is meromorphic with 
values in xm^fb 

m' (a'(X) having only finite rank singularities. 
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Proof. If A is elliptic and a £ -Imspecc(A), then as ba{xm{A - A)) = 
ha(xmA) and specc(A—A) = specc(A), ^4-A is elliptic and a. £ — Imspecc(-A- 
A). Now following the proof of Theorem 3.1 and using the standard argu- 
ments for analytic Predholm theory for pseudodifferential operators on closed 
manifolds completes the proof. □ 

Example: The Cone Laplacian. A Riemannian metric g on the interior 
of X is called a conic metric if on the decomposition X = [0, l)x x Y near y, 
we can write g = dx2 + x2h(x), where h{x) is a family of Riemannian metrics 
on y depending smoothly on x. Note that the Riemannian measure dg is a 
smooth density in xnC00{X, ft&). A computation shows that on [0, l)x x y, 
the Laplacian Ac associated to such a metric is of the form 

x2 

(3.9) kc = x-2[(xDx)2-i{n-2)xDx + &h-———— {dxy/teth{x))-dxl 
ydet Ai(a;) 

where A/^ = A^^) is the Laplacian on Y associated to the metric h{x). In 
particular, Ac G a;-2Diff^(X). Note that as dg G xnC00{X^h), we have 
x~n/2L2{X) = L2(Xidg), the square integrable functions with respect to 
dg. It follows that Ac: x-n/2+2H2{X) -^ x-n/2L2

b(X) is symmetric and 
non-negative (with respect to the ^-measure x~ndg). 

Let 0 < Ai < A2 < •••  be the eigenvalues of A^Q) E Diff2(y).   Then 
from (3.9), it follows that specc(Ac) = i • {^}j=±i,±2,..., where 

n - 2 ± J(n - 2)2 + 4A7- 
^±3 = y—g  >    wliere J G N- 

One can check that i(0,n - 2) fl specc(Ac) = 0. Fix n > 5. Then, this gap 
in specc(Ac) implies that —n/2 + 20 -Imspecc(Ac). Moreover, using the 
generalized inverse of Theorem 3.1 and the gap in specc(Ac), it is straight- 
forward to show that Ac: x-n/2+2H2(X) —► x-n/2L2lx) is self-adjoint 
Hence, by Theorem 3.2, for any 5 G M, 

Ac - A: x-n/2+2H^X) —■> x-nl2Hs
h-

m(X) 

is invertible for A 0 M4", and C 3 A H* (AC - A)-1 is meromorphic with 
values in x2^ ' ^a\x) with a = -n/2 + 2, having only finite rank singu- 
larities. Here, the index family £ (a) is defined in terms of specc(Ac), see 
(3.8). Theorem 6.1 describes (Ac —A)-1 as an element of a parameter depen- 
dent space of operators, and Theorem 8.2 describes how the singularities of 
the Schwartz kernel of (Ac - A)-1 accumulate near the diagonal as A -» 00. 
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4. The small tempered calculus. 

4.1. The small calculus. 

Before defining our basic space of parameter-dependent operators, see Def- 
inition 2 below, we review their corresponding symbols. These symbols are 
found throughout the literature, cf. [29] or Gilkey's book [17]. 

Let A C C be a closed sector (closed angle with vertex at 0) and let 
d G N. The space S^'^M71), where m G K, consists of those functions 
a(A,£) G C00(A x W1) satisfying the following estimates: for each a, /?, there 
exists a C > 0 such that 

(4.1) 15?^a(A, 0 | < C (1 + lAI1^ + \z\)™-d\°\-\P\m 

The "classical" subspace 5^(En) consists of symbols a(A,£) G ^'d(Mn) 
such that 

oo 

(4.2) a(A,0~]rx(A,Oam-*(A,0, 
k=0 

where x(A, 0 G C00(A x W1) with x(A, 0=0 near (A, 0 = 0 and x(A, 0 = 1 
outside a neighborhood of 0, and where am_fc(A,£) G C00(A x Rn \ (0,0)) is 
anisotropic homogeneous of degree m — k: 

The asymptotic sum (4.2) means that for each N 6 N, we have a(A,£) - 

E£o1x(A,e)aTO-fc(A,e) e sr^on- 
Of course, the "canonical" example of a classical symbol is the local 

symbol for the resolvent. The following lemma is straightforward to verify. 

Lemma 4.1. Let a(£) be a homogeneous polynomial of degree m G N such 
that a(£) never takes values in A for £ ^ 0, and let x{\€) be a cut-off 
function as defined above. Then, xl^O (a(£) — ^)~1 £ iS^^,m(Rn). 

Throughout this paper, p will always denote a boundary defining function 
for ff(Xl). Let 0 < i/ G C00^,^). Recall that i/ denotes the lift of v to 
X2 under the projection X2 3 (y, y') v-t y1 G X. 

Definition 2. (cf. Definition 1) Let m G R Then the sma// calculus of tem- 

pered cone pseudodifferential operators of degree m,d, denoted by ^^ (X), 
consists of those parameter-dependent operators ^4(A) with a Schwartz kernel 
KA{\) satisfying the following two conditions: 
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(1) Given <p G C™{Xl \ A6), the kernel (pKAW is of the form k{pdX,p) v', 
where k{\,p) € (^"^(A x X$) and vanishes to infinite order at A = oo 
(that is, with all derivatives as |A| —> oo in A), and at p 6 lb and p 6 rb. 

(2) Given a coordinate patch of Xjj near A;, of the form Uy x M!? such that 
Ab^Ux {0} (cf. (2.3)), and given <p e C™{U x Rn), we have 

y^(A)= /"   eiz<a(pdX,y,0d(^', 

where y ^ a(\,y,Z) € C00^; 5^(M")). 

One can check that this space of operators is defined independent of the 
choice of p. We define ^~^d(X) := f]meR^f{X). Observe that Lemma 

4.1 suggests that (A - A)"1 G a;m#~™'m(X)'if A G a;-mDiff^(X). This 
is almost true, except for some "smoothing" type operators introduced in 
Section 5. 

4.2. Properties of the small calculus. 

Let A C C be a closed sector and let d G N. Recall that x represents a fixed 
boundary defining function on X. 

Proposition 4.2. Let m G M.   Then, 

(A) for any k 6 N, ^f(X) C *3tM(X); 

(B) for any a, d^f(X) C zM^-^pO; 

(^Cj Lei /: A x X —> A x X be the map f(\,p) = (x(p)d\,p).   Then given 
an index set F, any operator A € ^^ (X) defines a continuous map 

A:AFhg(X) -► rS™/d(A;AFhg(X)). 

Here, S^ (A]Aphg{X)) denotes the classical symbols of degree m/d on 
A with values in the Frechet space A^hq{X). 

Proof. Properties (^4.) and (B) follow directly from Definition 2. We now 
prove (C). Let A G tf^jf (X) and u G A^hg{X). Then following the discus- 
sion around (1.3) in the Appendix, to prove (C), we must show that fiAu = 
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(*L,bU*Lj,l**huKA) G rS™/d(A;AFh9(X,nb)), where /* G C^X,^). 
To prove this, we will use local coordinates, and for simplicity, we assume 
that KA is supported near ff(Xjj). In what follows, we will rely heavily on 
the properties of KA as described in Definition 2. 

Let V = W1'1 be a coordinate patch on Y. Then X ^ [0, l)x x V near 
y, and Xj; = [0, l)g x V2 near ff. Moreover, cf. Figure 1 in Section 2.2 and 
Equation (2.3), (s,xf,y,yf), where s = x/x', are coordinates on [0,1)1 x V2 

near lb] {x,t,y,y'), where t = rz'/z, are coordinates near r&; and (x,y,z), 
where 2 = (log^/a/), y — y'), are coordinates near A^, with A5 = {z = 0}. 

Assume first that the Schwartz kernel KA is supported near lb. Then 
according to Definition 2, in the coordinates (s,x',y,y') we can write 

KI^KR^UKA = Bi{[x')d\,8,x',yd)\ Tdydy'\, 
o     X 

where Bi(\,s,x',y,y') vanishes to infinite order at 5 = 0, A = 00, and has 
an expansion at x' — 0 with index set F. Observe that ^^^{s^x^y^y1) = 
(sx'^y). Hence, by (1.1) of Lemma 1.1 in the Appendix, we have 

/, G?«S     dx 
Bi(X/sd,s9x/s,y,i/)dj/— • |— dy\. 

S X 

Since i?i(A, s,x',y, y') vanishes identically at A = 00 and 5 = 0, and at 
x'  =  0 has an asymptotic expansion with index set F,  it follows that 

Assume now that KA is supported near rb. Then in the coordinates 
(x;t,y,yf), we can write 

dx dt 
KLfiPnRfiuKA = B2(xd\,x,t,y,y,)\ — —dydy,l 

' x   t 

where B2(\,x:t,y,yf) vanishes to infinite order at A = 00 and t = 0, 
and has an expansion at x = 0 with index set F. In these coordinates, 
^L.bi^^^y^y') = (x,y) is a fibration. Hence, 

B2{xdX,x,t,y,y')dy'j ■ \-^dy\. 

The asymptotic properties of B2 imply that (TTL^^^I^TT^^KA) € 

/*S-~(A; AFhg(X, nb)) C /*5cf d(A; ^(Z, n6)).   ' 
Now assume that KA is supported near Ab. Then we can write 
/7 
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where a(A,a;,y,£) has an expansion at x = 0 with index set F, and where 
(A,£) i-> a(A,x,y,0 G 5^(1^). Since 7rL}6(a;,y,z) = (a;,y), it follows that 

(IT 
{■XL,b)*(nl,btm*R,buKA) = a{xd\,x,y,0) \—dy\. 

Thus, (*LM'KLfili'Kh>*KA) € rS™/"^, A^hg(X, nb)) here as well.       □ 

4.3. Composition. 

We begin by proving composition for the — oo operators. 

Lemma 4.3.   We have tf"^*) 0 ^A^*) - ^A'^W- 

Proof. Let A G *~^'d(X), S G *-^'d(X), and fix 0 < fi G C00^,^). To 

show that AB G ^JA
3
' (^), we will use the formula 

(4.3) IMKAB = {^c,b)^h^^F,bKA ^S^KB). 

See (1.6) in the Appendix for the definitions of TTC^TTF^, and TT^; and see 
the derivation of Equation (1.7) in the Appendix for the proof of (4.3). 

We will use local coordinates to analyze (4.3), and for simplicity, we 
assume that the Schwartz kernels of A and B are supported near ff(X^). 
Thus, if V = E71-1 is a coordinate patch on Y = dX, we can decompose X = 
[0, l)x x Vy. Note that X6

2 S* [0, l)2
b x V2 near #(X2) and X6

3 S [0,1)3 x V3 

near ff(X^). (See the middle picture in Figure 2 for a picture of Xjj.) 
We will use the following coordinates on [0,1)^ x V2 (see Figure 1): 

(4.4) (sja/jy, y'), where 5 = z/a/, are coordinates near lb] 

(4.5) (re, t, y, y')* where t = aZ/o;, are coordinates near rb. 

Let a;, a;7, a;" be the coordinates on the left, middle, and right factors of 
[0,1)3 and y, y', y" be the coordinates on the left, middle, and right factors 
of V3. Assume that // = |^fdy|. 

Step 1: We analyze IJLKAB near the intersection of ra&, j(f, and fs of X^. 
Here, we may use the coordinates (s,£, xn,y, y',y"), where s = rr/o;7' and 
t = x'/x (see the left-hand picture in Figure 3). Near the intersection of ra&, 
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Figure 2: X% and the projections TT/?^, TT^, and ircfi- 

ff s     ff 

Figure 3: Various coordinate patches on Xjj. 

ff, and /s, nc^ and TT^-^ map near lb in Xjj and TTp^ maps near rb in X%. 
Moreover, in the coordinates (4.4) on X% near lb, we have 
(4.6) 

0Ksjb{s,t,x",ydd') = (s£,£",y',y"); nc9b(s,t,x",y,y',i/') = {s,x",y,y"), 

and in the coordinates (4.5) on X^ near rb, we have 

(4.7) 'KF,h(s,t,x",y,y,,y") = {sx",t,y,y,). 

Near rb in X6
2, KA  = A{xd\,x,t,y,i/)\4§-dy,l where A(\x,t,y,yf) i is 

smooth in all variables, and vanishes identically at A = oo and t = 0. Near lb 
in X%} KB = ^((a;7)^,^,^,^^7)!^^!, where B^s^x1 ,y,y') is smooth 
in all variables, and vanishes identically at A = oo and 5 = 0. Using the for- 
mulas for Trs^ and npfi in (4.6) and (4.7), it follows that near the intersection 
of mb, ff, and fs of Xl, 

A((sx")d\, SX", t, y, yf)B((x")d\, St, x", y', y^\^fdydy'dy^ 
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Hence, as ^c,b{s,t,xn,y,y',y") = {s,x",y,y") is a fibration, 

= I A((sxy\,sx\t,yy)B((xr\st,x\yf\yf)f dy" • \^dydy'\ 

= C{(a/)dX9sta/,yM^dyd1/l 
sx 

where C^SiX^yiy') = f A{sd\,sx',t,y,y")B{\st,x',y"^f dy". Now, 
since A(\, x, t, ?/, y7) is smooth in all variables, vanishing identically at A = oo 
and t = 0, and since S(A, s.x'.y.y') is smooth in all variables, vanishing 
identically at A = oo and 5 = 0, it follows that C(A, 5, x', y, y') is smooth in 
all variables, vanishing identically at A = 00 and 5 = 0. 

Step 2: We analyze [IKAB near the intersection of /s, if, and lb of X*. 
Here, we may use the coordinates (s,s',x",y, y',y"), where s = x/xf and 
5' = x'/x" (see the middle picture in Figure 3). Near the intersection of 
/s, ff, and /6, 7rF)5, 7r5?5, and 7rc,6 all map near lb in X$. Moreover, in the 
coordinates (4.4) on X^ near /6, we have 

7rF)6(s, 5', a;", y, y7, y") = (5, s'x", y, yf); 
(4.8) 7r^(S, *', 3:,,, y, y', y") = (s', a/', j/, y'7); 

7rc,&(s, s', re", y, y', y") = (ss', x", y, y"). 

Near /6 in X^, we can write KA = A((xY\,s,x',y,y')\d*fdy,l and KB = 
B((x!)d\,s,x',y,i/)\4fdi/l where A{\s,xf,y,f/) and B(\,s,x',y,y') are 
both smooth in all variables, and vanish identically at A = 00 and 5 = 0. 
Using the formulas in (4.8), it follows that near the intersection of /s, jff, and 
IboiXl, 

^C^ KpfiKA ^S,bKB = 
dsds'dx" 

A{{s'x")d\ s, s'x", y, y^BdxyX, s', x\ y\ y")| —dydy'dy'^. 
So X 

Hence, as Trc,b(s,s',x",y,y',y") = {ss',x",y,y"), by (1.1) in the Appendix, 

IJ,KAB = (^C,&)*(^C,6M<F,6^A7r<?)fc-fij3) 

=JA{{s'x')d\ s/s', s'x', y, y")B((x')dX, s', x', y", y')^-dy"-\^dydy'\ 

= C((x')dX,s,x',y,y')\^dydy'\, 
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where C(A,s,x',y,y') = /c(A,s/s',s',x',y,y')^f, with 

c(A, s, s', x', y, y') = J A((S')d\, s, s'x', y, y")B{\ S',x', y", y')dy". 

Now, as A(A, 5, x1\ y, yr) and S(A, 5, x', y, y') are smooth in all variables, van- 
ishing identically at A = 00 and s = 0, by Lemma 1.1 in the Appendix, it 
follows that C^A^o/jyjy') is smooth in all variables, vanishing identically 
at A = 00 and s = 0. 

Step 3: We analyze JJLKAB near the intersection of jff, cs, and lb of X|. 
Here, we may use the coordinates (s^x^t, y, y^y"), where s — x/x" and 
t = x" jx' (see the right-hand picture in Figure 3). Near the intersection of 
jff, cs, and /&, TTC^ and TTp^ map near lb in X^ and TT^ maps near rb in X%. 
Moreover, in the coordinates (4.4) on X^ near /6, we have 
(4.9) 

7rF;6(5, x7, t, y, y', y77) = (st, a;7, y, y7); ^,5(5, x7, t, y, y7, y77) = (5, A y, y77), 

and in the coordinates (4.5) on Xl near rb, we have 

(4.10) 7^(5, x7, t, y, y7, y77) = (x7, t, y, y7). 

Near » in X6
2, ^ = A((a;7)dA,5,a;7,y,yO|^y7|, where A(A,5,^7,y,y7) is 

smooth in all variables, and vanishes identically at A = 00 and 5 = 0. Near rb 
in Xl, KB = B{xd\,x,t,y1y

,)\^-dy'\, where B{\,x,t,y,y') is smooth in all 
variables, and vanishes identically at A = 00 and t = 0. Using the formulas 
for npjb and fl"s,6 in (4.9) and (4.10), it follows that near the intersection of 
jff, cs, and lb of X^, 

A((x')d\, st, x', y, y/)B((^7)rfA, x', t, y', y")\ ^fdydy'dy'^ 
six' 

Hence, as iTc,b(s,x',t,y,y',y") = (s,x't,y,y"), by (1.1) in the Appendix, 

fJ-KAB = {'Kc,b)*{'K*c,bim*FtbKA'K*SbKB) 

= [A{{x'/t)d\, st, x'/t, y, y")B((x'/t)dX, x'/t, t, y", y')^dy".\^-dydy'\ 
J t sx' 

= C{{x')d\s,xl,y,y,)\^dydy'l 

where C{\s,x',y,y') = f A(A/td,Si,a;',y,y")S(A/id,a;7t,i,/,y')fdy". 
Now since A(\,s,x',y,y') is smooth in all variables, vanishing identically 
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at A = oo and 5 = 0, and since B(\,x,t,y,yf) is smooth in all variables, 
vanishing identically at A = oo and t — 0, it follows that C(X1s^x,^y^yf) is 
smooth in all variables, vanishing identically at A = oo and 5 = 0. 

In summary, away from the faces 55 and rb, TT^ 6/X TT^ bKA ^s b^B pushes 

forward under TTC^ to define the kernel of an element in /i • ^r~^0' ' (X). 
Similar arguments show the same thing away from /s and lb. It follows 
that KAB defines the kernel of an element in ^r~^0' (X), and hence, AB G 

Theorem 4.4. // m, m', a, a' G R, then 

xa-$™£{X)oxa'y™'/(X) C xa+a'y™+m''d(X). 

Proof. Let A G ^f(X), B G ^'if{X).   We will first show that AB G 

*3"m'4{X)- To do so, we first write A = Ai + A2 and B = Bi + B2, where 
Ai, B\ are both supported away from lb and rb, and where A2, B2 are both 
supported away from Aft and thus are elements of ^J^0' (X). Then, 

(4.11) AB = AiBl + A2Bl + A1B2 + A2B2. 

By Lemma 4.3, A2B2 G y~™'d(X). Let 0 < /i G C00^,^). Then as in 
Lemma 4.3, the first three terms can be analyzed using local coordinates 
and the formula 

fJ,KAB = (irc,b)*{'Xc,bVlrF,bKAlrS,bKB)- 

LetX^U = [0, l)x x V, where V £ Kn_1 is a coordinate patch on Y = dX. 
Then, X6

2 ^ [0,1)1 x V2 near #(X6
2) and X$ * [0,1)3 x V3 near #(X6

3). Let 
x, x' be the coordinates on left and right factors of [0,1)2 and y, y' be the 
coordinates on the left and right factors of V2. Similarly, let #, x'r, x" be the 
coordinates on the left, middle, and right factors of [0,1)3 and y, j/, y" be 
the coordinates on the left, middle, and right factors of V3. 

Stey 1: First consider AiBi. Near A^, we have (see (2.3)), 

.       X2 ^ U x M^, z = (^x,/), where ^ = log^'/o;), z' = yf - y, 
1       ; with Ab^Ux {z = 0}. 

Thus, in the coordinates (4.12), we can write 

(4.13) KAl= ip{z)jeiz<a{xd\ x, y, £)<% ■ //; KBl=jeiz<b{xd\, x, y, £)<*£ • /*', 
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Figure 4: The manifold X% and the submanifolds Tr^Af,) n7r5^(A(,) and 

where o(A) € C00^; 5^(M'1)), 6(A) G C^^S^'JiW)), tp(z) € Cf^), 

and where we may assume that /i = |^r<iy|. Near n^^Ab) fl n^^Ab) 

in X^ (see Figure 4), we can use the coordinates (x,y,z,w)i where z = 
{\og(x'/x)^' — y) and w = (\og(xnlx),y" — y). In these coordinates on X^ 
and the coordinates (4.12) on X^, we have 

(4.14) 
^C,b(x,y,z,w) = (x,y,w); TrFfi(x,y,z,w) = (x,y,z); 

irs,b(x, y, z, w) = (xeZl ,y + z',w-z). 

Using (4.13) and (4.14), a short computation shows that 

fiKAiBi = (irc,b)*(Kc,bfJ'n*F,bKAi ^5,6^) =  / etHc(xdX,x,y,f)d£ • MA*'. 

where c(A,x,y,0 = Ia(A'x,y,i- rj)b{\x,y,£,v)dv, with 6(A,x,y,£,rj) = 
j'e_lz''?(/'(^)6(ed'zlA,a;e;Zl,y + z',£,)dz where z = (zi,z'). Another com- 

putation shows that c(\,x,y,£) € C00^; S'^Tn''d(IRn)).   Thus, A1S1 6 

*™tm''d(X). 
Step 2: Now we work on the middle two terms of (4.11). Consider A\B2. 

Observe that Tr^Af,) = X% x {0}u in a decomposition (cf. Figure 4) 

(4.15) Xi^Xix^,    yhexeirc,b(p,u)=p,p€Xl 

Let p be a boundary defining function for ff(X^). Then in the decomposition 
(4.15) near TT^^A^), we have (see Figure 4), ^pbp = pp/& and 7r^fep = p, 
where pib is a boundary defining function for lb in Xjj. Hence, as Ai G 
y™j!?(X) and B2 e y~™4(X), it follows that in the decomposition (4.15), 
we can write 

Tr^/i ir*FtbKAl n*S!bKB2 = j eiu<c{pd
Ptb\ pdX, p, 0d( ■ \du\ n y!, 



argument shows that ,42£i G ^~^a{X). Thus, AB G ^^(X) 
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where Xj; 3 p ^ c(A,A/,p,0 G 5^(I^)®5-
OO

(AA0 is smooth and van- 
ishes to infinite order at p £lb and p Grb of Xfi. Thus, as ^c,b{Piu) — P? 

/iiiCiiBa = (^c^^hfi^Ffi^i ^s,bKB2) = c(pdptbX:pdX,p,0) • up'. 

The properties of c(A,A/,p,0 imply that A1B2  G *^'d(X).    A similar 

ument shows that ^i?! G 
Now let a, af G K. Then, 

a;Q^ o xa/S = ^+Q,(a;-Q,^a;Q,) o B = x^"'A' o B, 

where A' - (x-Q,^/a;Q,). Observe that A' G tf J^PO- Thus
5 ^^ 0 ^^ ^ 

The following lemma is proved the same as the usual "asymptotic sum- 
mation lemma" for pseudodifferential operators on a closed manifold. 

Lemma 4.5. Given a sequence A^ G ^^Y ' (-^0> ^ = 0,1,2,... ; there ex- 

ists anAe ^f(X) such that for all N G N, A - J2k=o Ak £ *^A 
N4{X); 

in which case, we write A ~ YH^LQ 
Ak- 

5. The full calculus. 

5.1. The full tempered calculus. 

In order to complete the definition of our parameter-dependent cone opera- 
tors, we first need to define a blown-up manifold. 

Let d G N. Henceforth, we will assume that A / C. Thus, we can fix a 
branch of X1^ for A G A. We define Ad := {Xl/d | A G A}. Then Ad is also a 
closed sector in C and if ( G A^, then (d G A. 

We will denote by A^, the manifold A^ radially compactified. We denote 
by <9ooAd, the boundary "at X1^ = 00". Some convenient coordinates near 
dooAd are given by r := |/i| and u := /i/M, where /i = l/A1//d for A G A. 

We define 

(5.1) Td-lAdxXjj-dooAdXff], 

see Figure 5. If ft: Td —> Ad x X^ is the blow-down map, then we set lb := 
f3*(Ad xlb(X%)), left boundary; rb := ^*(Arf_x r6(X6

2)), right boundary; 
ff := P*(AdXff(Xl)), front face; ^ := ^{d^AdXffiX^)), face at infinity; 
and 6z := f3*(dooAd x X2), boundary at infinity. 
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A^ x Xl 

Figure 5: The manifold Td- Here, [x — l/A1/^ for A G A where r = |/i| = 0 
defines dooA^. 

Let 0 < v £ C00(X, f26). Recall that v1 denotes the lift of v to X2 under 
the projection X2 3 (y, y') i-> y' e X. 

Definition 3. Let £ = {Ei^^Er^^Eff^Efi) be an index family for 7^ associ- 

ated to the faces (/&, rb,ff,fi). Then we define ^r~^0' ' (X) as those operators 
A(A) depending smoothly on A G A, that have a Schwartz kernel -K'A(A) of the 

form A: • z/, where fc G ^iL' (Td) with 0 associated to bi. Thus, A; depends 
smoothly on A G A, and defines a function on Td such that 

1. At the hypersurface bi, k vanishes to infinite order; 

2. At any remaining hypersurface H = lb, rb, jff, or fi, k has an expansion 
with index set EH- 

-oQ,d,E -oo£' By definition, we have A G %™>a*(X) => A G C00(A, ^f'00^ (X)), where 

S1 = (Eih,Erh,Eff) (see (3.5) for the definition of the space ^~00^(X)). 
Thus, only near fi, where A = oo and p = 0, where p (as always) is a boundary 
defining function for jff (X2), does KA differ from just a parameter-dependent 
kernel of a &-pseudodifferential operator. 

We now define the "residual operators":  If £ = (E^, E^) is an index 
family on X2, then we define 

(5.2) V^iX) := S-^iA-^'^iX)). 

See (3.3) for the definition of the space ^ 00'£(X). We may also define this 
space as 

(5.3) A e vi^ix) KA = kv',    k£A0/(kxX2), 

where 0 is associated to dock. 



902 Paul Loya 

The full calculus of tempered cone pseudodifferential operators is the sum 

(5.4) *™'*'S(X) := ^f{X) + V-™>d's(X) + y-™>Ei»Erb(x). 

The following lemma relates the small calculus and the residual operators 
to Definition 3. 

Lemma 5.1.   We have 

y-T'd(x) c vi^ix), 
where J7 is the index family on Td given by J7 = (0,0,No,No). For any 
index set £ — (2£/&,i?r&); we have 

*l™'S(X)C*-™>d>s'(X), 

where £' is the index family on Td given by 8' = (£75, E^ En, + E^^ 0). 

Proof Let A G %™'d(X). Then by (1) of Definition 2, KA = R(pdX), 
where jR(A) G ^"^(A;*^00^)). Near if(X6

2), we may assume that 
X6

2 ^ [0,l)p x [-1,1]™ x y2, where {^ = -1} = lb and {w = 1} = rb 
(see Figure 1 for a picture of X2). Writing R in these coordinates, we 
have R = R(pd\,p,w,y,y')^, where R{\p^w^y^y') is a smooth function, 
vanishing to infinite order at A = 00, and at w = ±1. If r = |/i| and 
v — p/r, where p = l/X1^ for A G A, then lifting it! to 7d, we find that 
R = R(vdL)~d

:rv,w,y,yf)i',: where CJ = /i/|/i|. Now the asymptotic prop- 
erties of R(\,p,w,y,yf) imply that R{vd(jj~d,rv,w,y,y') has expansions at 
lb, rb, v = 0, r = 0, and v = 00, with index sets 0, 0, No, No, and 0, 
respectively. Thus, the first statement of this lemma is proved. 

Observe that the second statement follows from the definition (5.3).    □ 

5.2. Mapping properties. 

We now describe some mapping properties of the full calculus. We define 

(5.5) Xd-iKdXX'^dooXdXY]. 

Figure 6 gives a pictorial representation of X^. If /?: Xd —> Ad x X 
is the blow-down map, then we define the following faces in Xd'. bx := 
/3*(Ad x y), boundary of X; fi := ^(dooAd x y), face at infinity; and 
bi := ^(dooAd x X), boundary at infinity. Before presenting the follow- 
ing two propositions, recall that if £" and F are index sets, then EUF := 
FUFU{(^,A; + £+l)|(^,A;) eE:(z,£) e F}. 



Resolvent of Differential Operators 903 

Ad x X Xd ox 

X 
—► 

Figure 6: The manifold Xd. The arrow represents the blow-down map 

Proposition 5.2. 

(A) If f: A x X —> Ax X is the map /(A,p) = {x(p)dX,p) and F is any 
index set, then any A E ^^ {X) defines a continuous map 

A: AF
phg{X) -► rsT^Avhgi*)) C AQ

phg{Xd), 

where Q = (Gbx, Gfi, Gbi) = {F, F, -m). 

(B) If A £ ^'^'^{X) and F is an index set with Erb + F > 0, then A 
defines a continuous map 

A: AF
hg(X) -► AS

phg(Xd), 

where Q = (G6:c, Gfi, Gu) = {EibU(Eff + F),Efi + F,0). 

(C) IfA€ ■qf-'x<E'»'Er^x) and Erb + F> 0, then 

A: AFhg(X) -^ S-«>(A;,4g»(X)) C A%g(Xd), 

where Q = {Gbx, Gfi, Gbi) = (Elb, 0, 0). 

Proof. One can check that rS^/d(A;AF
hg{X)) C A%hg(Xd), where a =■ 

(F, F, -m).   Thus, (A) follows from (C) of Proposition 4.2.   The proof 
of (B) is similar to the proof of (C) of Proposition 4.2 with only more 
complicated notation due to the slightly more complicated structure of the 
kernels in ^J^0' ' (X). As the proofs are so similar, we omit the details of 

(B).  Finally, if A G *^00,B|»,-Bri(A'), then (C) follows from the definition 

(5.2) of the space ■i&-cc'E'b'Erb(X) and the mapping property (3.4). □ 

Combining (^4), (B), and (C) of Proposition 5.2 imply the following 
mapping property of the full calculus. 
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Proposition 5.3. If A e ^f^,s(X) and F is an index set, then provided 
that E^ + F > 0; A defines a continuous map 

A'- A^h9(X) -> Ag
ph9(Xd), 

where Q = (Gbx, Gfi, Ghi) = {ElhU{Eff + F),Efi + F, -m). 

5.3. Composition. 

Given £ = (Eib, Erb, Eff,Efi) and F = (Flb, Frb, Fff,Ffi),we define the index 
family £6?r as follows: if Q = £oT, then 

f5 6) Glh = EibU(Eff_+ Fib); Grb = {Erb + Fff)UFrb; 
K ' ) Gff = (Eff + Fff)U(Elb + Frb),    and Gfi = Efi + Ffi. 

We begin with the following composition result. 

Proposition 5.4. Provided that Erb + Fib > 0, we have 

Ifm,ae K, then 

xa^(x) o *-~A:F(x) c %X'd'0W> 

where Q = (a + Flb, Frb, a + i^F, a + i^); and 

where Q = (Elb,Erb + a,Eff + a,Efi + a). 

Proof The proof of this proposition is similar to the proofs of Lemma 4.3 
and Theorem 4.4 with only more complicated notation due to the slightly 
more complicated structure of the kernels in ^~^,di£(X). As the proofs are 
so similar, we omit the details of this proof. □ 

We now prove composition involving the residual operators. 
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Proposition 5.5. 

(A) If m, a e R, then 

xa^(X) o^-^iX) C VI00'0(X), 

where Q = (a + Fi^.F^); and 

^l00^{X)oxa^{X) C ^-^{X), 

where Q = (En,,Erb + a). 

(B) Provided that Erh + Fih > 0, 

^~^AS{X)o^^(X)C^l(X>^(X): 

where Glb = Eib\J{Es + F^), Gr& = Fr6. 

Provided that F^ + En, > 0; 

y-^ix) o q-™AS(x) c ^x00^^)^ 

w/iere G/6 = F^; Gr6 = (Frb + Eff)UErb. 

(C) Finally, provided that Erb + Fib > 0, 

^/iere G^ = JB^, Gr6 = Frb. 

Proof. Statement (C) follows from the definition (5.2) and the mapping prop- 
erty (3.4). By taking adjoints, it suffices to prove only the first statements 
in properties (A) and (B). 

Consider the first statement in (A). Let A = xaB, where B G ^^{X). 
Then by (A) of Proposition 5.2, if f: Ax X —> Ax X is the map /(A,p) = 
(x(p)dA,^) and E is any index set on X, then S defines a continuous linear 
map 

(5.7) B: AX(X) -+ rS™/d(A. A^hg(X)). 

Let C e ^^^(X). Then the kernel of C is a function C(\,p,q)onAxXx 
X that vanishes to infinite order as A —> oo in A, and has expansions as p and 
q approach the boundary of X with index sets Eib and Erb respectively. Thus, 
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as the kernel of AC is just xaB acting on the variable p of C(A, p, g), by (5.7), 
it follows that AC e x^l^iX) = ^^{X), where Q = (a + i^,Fr6). 
The first statement is thus proved. 

The proof of the first statement in (B) is proved similarly, but here we 
use the mapping property (B) of Proposition 5.2. □ 

For any index set Q = (Gib, Gr5, Gff, Gfi), we define 

(5.8)        $;X'd'G(X) ■■= %AAe(X) + V^'iX),    G' = (Glb, Grb). 

Thus, $™f'S(X) = y™j?(X) + §-™'d's{X). Then Propositions 5.4 and 5.5 
yield the following result. 

Proposition 5.6.   We have 

xa^(X) o $c-~'d^(X) C %™'d>gi(X); 

^^(x)o^^(x) c $;X'd'd2(n 
where Qi = (Flb + a,Frb,Fff + a,Ffi + a), g^ = {Eib,Erb + a,Eff + a,Efi+a). 
Moreover, 

$-co,d,£(X) 0 $-oo,d,^X) c $-~'d'£5^(Z), 

where £oT is defined in (5.6). 

The following theorem combines the previous propositions. 

Theorem 5.7. Ifm,m' € M, then provided that Erb + Fib > 0, 

*™i'e{x) ° ^'/^(X) C y™+m'>d(X) + 

where £oT is defined in (5.6). 

',m,rf,f/vx   ^nA   n ^m'.d,^" ose Proof. If A € *^v' (X) and B G t™A'a^(A"), then we can decomp 

A = A1+A2 andB = Bi + B2, where'^i € *™£(X), A2 £ $C"^'^(X), 

Bi € *™'jf(X), and B2 e $-~'d^(X). Thus, 

^B = A1S1 + (A1B2 + A2B1) + A2B2. 

By Theorem 4.4, ^i^i € *^"m''d(X). By Proposition 5.6, it follows that 

A1B2 + A2Bl € §^'^(X) + $-~'^(X) and that ^2JB2 € $-~'d'f5^(X). 
Thus, our theorem is proved. D 
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6. The Resolvent as a Tempered operator. 

We begin by defining "cone" Sobolev spaces based on polar coordinates on 
W1. Thus, let (Sn"1)A := [0,oo)s x S71"1 be the usual polar coordinates 
decomposition of W1, with the "blow-down map", cf. Section 2.2, (S71-1^ 3 
(S,UJ) H- su e W1 identifying the interior of (S71"1^ with Rn \ {0}. Let 
X e C^o([0,oo)) with x(s) = 1 near 5 = 0. Given p E M, we define the 
Sobolev space fl?((Sn-1)A) as those distributions u on (S71'1^ such that 

u 6 fl?((S      )  )     ^^     | (1 _ xW)tt G ^jp^ 

The statement that (1 - x(s))ti G ^(M71) uses the identification of W1 \ {0} 
with the interior of (S71"1)*. Thus, fl'*((Sn-1)A) interpolates between 6- 
Sobolev spaces near 5 = 0 and the usual Sobolev spaces outside of 5 = 0. 

Let YA := [0, oo)s x Y, where Y = dX. Then appealing to local coordi- 
nates on y, we can define H?(YA) for any p G R If Ae x-mDiS^(X) is 
written A = arm]C/fcU Pm-k{x){xDx)k near y, where Pm-A:(a:) is a differ- 
ential operator on y of degree m - k, then we define 

m 

I(A):=s-mY,Prn-kmsDs)
k. 

k=0 

Let g G Coo([0, oo)), with g{s) = s for 5 < 1, g > 0 for 1 < 5 < 2, and ^(5) = 
1 for 5 > 2. Then for any a, p G E, /(A): ^iJ?(yA) —^ e

a-mfl?-m(yA) 
continuously. The operator 1(A) is called the indicial operator of A. 

Definition 4. An operator A G x~mDift™(X) is said to be fully elliptic 
with respect to a G R on a closed sector A if 

1. 6<Tm(a;mA)(f) - A is invertible for all f / 0 and A G A; 

2. a £ -Imspecc(A.); 

3. for any p G R, I{A) - A: ^ff?^) —> £a-m#rm(^A) is invertible 
for all A G A sufficiently large. 

Remark 2. In [15], full-ellipticity is called "parameter-ellipticity", and the 

space QaHj!{YA) is denoted by KP>a+nf2(YA). 

The following is the main result of this paper (cf. Theorem 3.2). 
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Theorem 6.1. Let A G a;_mDiff^(X) be fully elliptic with respect to a 6 K 
on a closed sector A. Then, C 3 A >->► (A — A)-1 is meromorphic with values 

in x™^™' ^a\X) having only finite rank singularities. Here, £{a) is given 
in (3.8). Moreover, for all A G A sufficiently large, 

{A - A)"1 G a.m^-mlm,5(a)lNo ^ 

To prove this theorem, we first take a closer look at 1(A). 

6.1. Scaling properties of 1(A). 

Henceforth, we will use the letter "#" to denote both the boundary defining 
function on X and the coordinate variable on [0, oo) in yA. However, it will 
always be clear which x we are referring to in any given context. 

For each t > 0, define ft: A x YA —> A x YA by ft(\x,y) := 
(t~m\,tx:y). Then, ft is a diffeomorphism on A x YA for each t > 0 with 
inverse f^l{\,x,y) = (tm\t-lx,y). 

Let (7°°^ x yA) be the space of smooth functions on A x YA that vanish 
to infinite order as A —> oo in A, as x —> oo, and at d(A x YA). Let 
^-^(A x YA) be its dual. Then given any operator T on C~00(A x YA), 
we can define the pullback /t*T via (ftT)u := /t*(T(/i"

1)*^) for all w G 
C-00(A x yA). Observe that if T and S are operators on C"00^ x YA), 
then /t*(T o S) = ftT o /*5. In particular, 

(6.1) ft{T-l) = {rtT)-1    if T"1 exists. 

Let T: C00(yA) —► ^"^(A x rA) be continuous. Then recall that the 
(Schwartz) kernel of T, KT G C"00^ x (yA)2), satisfies 

< KT\ 1> H ^ >=< T^, ^ >,     for all cp G C,00(yA), ^ G ^(A x yA), 

where V E ^(A, rr, x', y, y7) = ^(A, re, y)^(rr', y'). 
Define 

(6.2) 
/,: A x (yA)2 —> A x (rA)2    by /t(A, a:, rr', y, y') := (f^A, te, te', y, y'). 

Given any continuous linear map T: C"*^!^) —¥ C-0O(A x FA), a definition 
chase shows: 

(6.3) If KT is the kernel of T, then the kernel of ftT is ftKT. 
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Proposition 6.2. Let A € a;~mDiff^'(X) be fully elliptic with respect to 
a G M on a closed sector A. Then, identifying (1(A) — A)-1 with its kernel 
on Ax (YA)2, we have 

ft*(I(A)-\)-1=tm(I(A)-X)-\ 

Proof. Let (p G C00^ x yA). Then observe that 

xDM^Tf = xDx(<p(tm\,t-lx,y)) = xlt{Dxy){tm\t-lx,y)). 

Thus, xDxiff1)* = {ft-
l)*xDx. Since ft*{x-m) =.rma;-m and the indicial 

operator of A is of the form 1(A) = x-m'£^=1Pm_k(xDx)k, where the 
Pm-k are differential operators on Y, it follows that ft 1(A) — t~mI(A). In 
particular, ft(1(A) - X) = t-m(I(A) - A), and thus, formula (6.1) yields 

ft*(I(A)-X)-1^tm(I(A)-X)-1. 

Then (6.3) finishes the proof of this proposition. □ 

If /i = l/A1/™, then observe that ft(fjL, x, x', y, yf) = (t/z, tx, tx', y, y'). Let 
Tm(Y*) be the manifold (5.1) for X = yA. Consider now the map ft as a 
map on Tm(Y

A). Thus, let p =_\(x,x% and 9 = (x,x,)/\(x,x,)\. Then, 
(fjb^p^O^y^y1) are coordinates on Am x (yA)5, and 

(6-4) /t(/i, p,0, y, y') - (t/i, tp, 0,y, y'). 

Let r = |/i|, a; = /i/l/i), a = |(r,p)|, and (j) = (r,p)/|(r,p)|. Then, 

(6.5) (a, (/>, u, 0, y, y7)    are coordinates on Tm(Y
A), 

and by (6.4), ft(°,<!>,",6,y,y') = (ta^.uj.e.y.y1). Thus, ft scales in the 
defining function for the face fi. 

Combining this property of ft with Proposition 6.2 gives the following. 

Corollary 6.3. Let A e ^"mDiff^(X) be fully elliptic with respect to a G R 
on a closed sector A. Then, identifying (1(A) - A)-1 with its kernel on 
Tm(YA), in the coordinates (6.5); we have 

(I(A)-X)-l{<Tt4,,cj,e,y,1/) = (<T/<To)m(I(A)-\)-1(<To,<l>,u,etV,l/), 

for (JQ > 0 sufficiently small. 

This corollary is important because it states that to determine (1(A) - 
A)"1 at any point (a, <f>, u, 9, y, y') in Tm(YA), we just need to know it at the 
submanifold {a = CTQ}. 
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6.2. Proof of Theorem 6.1. 

As already mentioned, we will use the letter "z" to denote both the boundary 
defining function on X and the coordinate variable on [0, oo) in YA. However, 
it will always be clear which x we are referring to in any given context. 

Before presenting the proof of Theorem 6.1, we review its outline de- 
scribed in Section 1.4 of the introduction. First, writing A - A = x~rn(P - 
xm\) where P is a 6-differential operator, we invert the "6-part": P — xmX. 
This is done in Lemma 6.4 using the small tempered calculus. Second, we 
invert A at the boundary. This is done in Lemma 6.5. Finally, we invert the 
operator 1(A) — A in Lemmas 6.7 and 6.8. As mentioned in the introduc- 
tion, we want to emphasize that the composition properties of our calculus 
of parameter-dependent operators make the construction of (A — A)-1 very 
similar to the construction of a parametrix for an elliptic 6-differential op- 
erator. The proofs in this section are quite technical and may be omitted 
without loss of continuity. 

Lemma 6.4. Let A G x~TnDiS™(X) be fully elliptic with respect to a G R 
on a closed sector A. Then there exist operators B G 1Jr

c^'m(X) and R G 

*-^'m(X) such that {A - X)xmB = Id - R. 

Proof. Let a = 6cr(Aa;m), and let U = [0, l)x x IR^-1 be a coordinate patch on 
X near y, where En_1 is a coordinate patch on Y. Then, (a/,?/,2), where 
z = (log(x/xf),y — y1) is a coordinate patch on X% near A&. Let <p G C^(pl) 
and let ^)(z) G C^0(Mn) be such that ^(z) = 1 on a neighborhood of z — 0. 
Finally, let x(A,0 G C00^ x W) with x(A,£) = 0 near (A,0 = 0 and 
^(A, £) = 1 outside a neighborhood of 0. Define 

KB := Vtf, y') TP(Z) I eiz< b{{xT\ *', 2/', 0 *Z ■ "', 

where b(X,x',y',0 = x(A,£) (a(x',y',0 - A)"1 and 1/ = \^dy'\. Then, 

B € #~^'ro(X) by Lemma 4.1. Observe that since ba(Axm) = a, 

(6.6) (A - X)xmB = cp - S,    where S € *^m(X). 

If U is a coordinate patch on the interior of X, a similar argument shows 
that given <p e C^(U), there is a B G $~™'m(X) such that (6.6) holds. 

Let {Ui}^ be coordinate patches covering X such that as in (6.6), there 
exists a, Bi £ %™'m(X) satisfying (A - X)xmBi = ^ - Si, where Si G 
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*cA'm(^0> and where w is a smooth function supported in Ik. Setting 

B := J2iLi &% and assuming that the tpi form a partition of unity of X, 
we then have {A - X)xmB = Id - 5, where S G *^m(X). By Theorem 

4.4, Si G ^"^(X) for each j, and thus by Lemma 4.5, we can choose an 
S' e %Am(X) such that S' ~ E^i 5i. It follows that if B7 := S(Id+5/) G 
>-™'m(X), then (A - X)xmB' - Id G ^c"^ ^-m,m(x)5 then ^ _ A)rrmjB/ _ Id G ^-~^(X). D 

Lemma 6.5. Let A G rz;~mDiff^l(X) be fully elliptic with respect to a G R on 

a c/o^ed sector A. T/ien piven jR G ^^'m'£(X); ^ere w a S G *^~,m,:F(JSr), 

where T — (E+(a)\JEii),0,Eff^Efi) with E+(a) the index set defined in 

{3.7), such that {A-\)xmB-R G %^Q{X)} where G = {0,Erb,Eff,Efi). 

Proof. On the decomposition X = [0, l)x x Y near the boundary y — dX, we 
can write Ax™ = Y?k=o Bk{x){xDx)k\ where Bk{x) is a differential operator 
on Y depending smoothly on x. Observe that (r, (jj,v,s,y, y') where r = |/i| 
(where p = l/\llm for A G A), a; = /i/|/x|, v = x'/7*? and s = rc/a;7, are 
coordinates near Z6 in 7^. Hence, as x = sx' = srv and A = r~ma;~m, for 
any function K onTm, we have 
(6.7) 

m 

{A - \)xmK = (J2 Bk(srv)(sDs)
k - smvmuj-m)K{r, u, v, s, y,y') = AK, 

k=0 

where A = Yjrk=<)Bk{r,w,v,s)(sDs)
k, where Bk(r,uj,v,s) is the following 

differential operator on Y depending smoothly on (r, a;,v, s): 

g , v      f B^srv) - srnvmuj-rn    if & = 0; 
\ Bk(srv)    ilk > 0. 

Now given R G *^'m'5(X), K^ = f{r,u,v,s,y^)u' has an expan- 
sion as 5 | 0 with index set JEfo. Hence by [35, Lem. 5.44], there ex- 
ists a B G *~^^(X) where J^ = {E+{a)UElh0,Eff,Efi), such that if 

KB = gv', then Ag - / is the kernel of an operator in ^~™'m'G(X) where 

Q = (0, Erb, Eff, Efi). Since the kernel of {A - X)xrnB is Ag v' by (6.7), our 
lemma is proved. □ 

Our next lemma deals with functions that have only partial expansions. 
Thus, let E be an index set, r G R,  Z be a manifold with corners, and 
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H G Mi(Z). Then a function u E Sa(Z) (for some a) has a,partial expansion 
at H with index set E of order r, if u satisfies the expansion condition (2.1) 
with M = N = r. If A C Mi(Z) and £ is an index family associated to A, 
then Af(Z) is the space of functions u such that for each H G A, u has a 
partial expansion at H with index set EH of order r. 

Lemma 6.6. Let R G %^mfi{Yh) with Es = 0 and % > 0. T/ien 

writing KR = ^l^-dy'l, /or am/ iV G No and /or A awa?/ /rora 0, we have 

ueS2N+l{k;A{^'Erb\{Y^)). 

Proof. By the definition of ^r"^0'771' ^ We may assume that ?i is supported 

near /?. Let r = |^| with /i = l/\l/m and let p be a boundary defin- 
ing function for ff((YA)l). Then, p/r is a boundary defining function 
for ff(%n{yA))' Hence, as u vanishes to infinite order at ff(Tm(YA)) (by 
assumption) and at bi(Tm{YA)) (by definition), for any k we can write 
u .= r~kpkUk = \\\k'mpkUk, where Uk has the same poly homogeneous prop- 
erties as u on Tm(YA). 

Choosing k = 2mN + m, it suffices to prove that p2rnN+mU2mN+m ^ 
50(A5 ^mlNErb)((YA)2))' Denote U2mN+m by ty. For simplicity, we assume 
that w is supported near lb; the proof is similar if it is supported near rb. 
Thus, in the coordinates (r,a;,^,5,7/,y7), where CJ = /VM, ^ = ^V7*? and 
5 = x/x'i near /6 in 7^i(yA), we have 

w = ^2     s^loS 5)A;^,A:)(^ w, v, y, j/) + smNuN{r, u, v, 5, y, j/), 
Re2J<m7V,(2?,A;)G^b 

where since JE^ = 0 and £yj > 0, U(Zik)i UN € *Sf0(7^n(FA)). Since 5 = 

rr/o/, we have (logs)* = SjLo (^(^S^P'C- loga;')*""-7'. Thus, as p = a;7 is a 
boundary defining function for jff near /6, we have 

k 

+ xmNumN{r,uj,x,x,,y,yf), 

Rez<mN,(z,k)£Elb j=0 

with u{zj,k)(r,u;,x',y,y') = (x')2mN+m-z(-\ogx')k^u{z>k)(r,uj,x'/r,y,y'), 
and with umN(r,u),x,x',y,y') = (x')mN+mumN(r,u,x'/r,x/x',y,y'). Since 
Rez < miV and U(z>k), UmN S 50(7^l(l

rA)), it follows that U(ZJjfc), umjv € 
(a;')mAr50(A x (yA)2') away from A = 0. " D 
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Let A G x~~mDiff™(X) be fully elliptic with respect to a e M on a closed 
sector A. For the next two lemmas, we will denote 

a(X) = (J(^) - A). 

Lemma 6.7. There exists B € *~A'm'£(^A) and R e *~~'m'^(yA), where 
£ = £{A,a) is of the form (Eii„Ert),Eff,No)) with Ea, > a — m, EJ-I, > — (a — 
m), Eff > 0, and where T = (0,^

_
(Q;),0,NO), such that a(X)xmB = Id-R. 

Proof. By Lemma 6.4, there is a Bo € ^'m(YA) and an RQ G *~~'m(yA) 
such that 

a(X)xmBo = Id - .Ro- 

Let Sg be the 6-pseudodifferential operator with kernel 

(6.8) Kg,, = ^^ f (x/xTA^ir)-1 o R0(r)dr • \^-dy% 
^7r       JlmT=-(a-m) x 

where ip G ^([O,^)2) with (p = 1 near (0,0). Then, see [35, Sec. 5.7], 
B'o e tf-^yA) with So = (Eo,ib,Eo,rbM = (E+(a),E-(a),-No), where 
^(or) are given in (3.6). Let V(A) G C^C) be such that ^(A) = 1 near 
A = 0 and set Bi := BQ + ilj(pm\)B'0, where p — \(x,x')\ is a boundary 
defining function for ff{{YA)2

b). Then by Lemma 5.1, Bi e *^'m'£l(yA), 
where £i is of the form £i = (Eojb, Eo^bi No, No), and it satisfies 

a{\)xmBl =Id-i?i, 

where by the composition properties of tempered operators (Proposition 
5.4), Rl= Ro- a(\)xmiP(pm\)B'0 G *^,m'^(yA), where ft = ^   By 

(6.8), the normal operator of a(A)a;m o ip(pmX)B'0 is Ax™ o B'Q = RQ, and 

hence, Ri = 0. Thus, Rx vanishes to first order at ff(Tm{YA)) and so in 
fact, ft = (Eo,ib, Eo,rb,N,No). 

By   Lemma  6.5,   there   is   a   BJ    G    *^'m'£i(yA),   where .£{    = 

(E+(a)UEo,ib,0,N,No) with ^(a) the index set (3.7), such that 

(6.9) a(X)xmB'1 - iJx e ^-^'m^2(yA), 

where ^ = (0,^,r6,N,No). Let B2 := Bx + BJ G *c-7'm'52(yA), where 
£2=£1U6'V Then by (6.9), 

a(A)a;mB2 = Id - ife, 
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where ^G*-^^2^)- 
Observe that for each j, RJ

2 e ^~™'m' 2,J (5/A)5 where the J^j are defined 

inductively using Proposition 5.4 and the fact that B^     — R20 R3
2\ 

^2,1 := ^2, ^2,j+i := (0, (#0,r6 +i)DF2J>6,Nj+i,No), 

where N^ - {j, j + 1, j + 2,...}. Since S-(a) = UrGNo(£;"(a) + rj and 

EQJI, = E~(a), it follows that i^j^ft ^ ^""(a) for each j and ^2,7^6 —^ E~(a) 
as j -> +00 in the sense that c G i£~~(cO if and only if for some j, c G i^rft- 

Hence, we can find an asymptotic sum i?2 ~ Sjli^ ^ ^cX'771' 2(^A)' 
where ^ := (0, -E"(a),N, No), such that for each JV, 

Thus, setting £3 := ^(Id + R^) G ^-^^^yA^ where (see Theorem 5.7) 
£3 = £2 u F2 U ^20^*^ ^ follows that 

a(A):rm£3=Id-E3, 

where #3 G *~^0'm^3(yA), where ^3 = (0,-B"(a),0,No). Following the 
construction of £3, one can see that £3 = (£3^, E^, JE^JNO), where 
^3,Z6 > « - m, £3,r6 > -(a - m), and £3^ > 0. D 

Lemma 6.8. For \ sufficiently large ink, a(A)-1 G xm*~^'m'£:(yA); w/iere 
<? = £(A, a) is an index set of the form (En,, E^^ Eg, NQ ), with Eib > a — m, 
Erb > — (a - m); and Eg > 0. 

Proo/. By Lemma 6.7, there is a B G ^TA 
,m,f 0^), where £ = £(A a) is an 

index set of the form (En,, Erb, Eg, No), with Eu, > a — m, E^ > — (a — m), 
Eg > 0, and an R G ^-^m^{YA), where ^ = (0, ^"(a), 0, No), such that 

(6.10) a(X)xmB = Id - R. 

Let A = x-mP, where P G Diff^(X).    Then, A1 = x-mP', where 
pi   =  xmptx-mt    Note that  p/(T)   =  pt(r + im)   =  p(_r _ im)tB    Thus, 

as —a 0 Imspecc(^4), it follows that —a + m £ —Imspecc(^). Also, since 
for any 5 G K, I {A) - A: gaH^(YA) —> ga-rnH^-m{YA) is an isomorphism 
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for all A € A large, it follows that for all s € M, I {A*) - A = {I{A) - 
A)*: 0-a+m

JHc-s+m(YA) —► ^-Q
Jffc-

s(yA) is an isomorphism for all A G A 
large. Thus, $ is fully elliptic with respect to -a + m on A. Thus, applying 
(6.10) to a(A)t gives 

a{\)txmB = Id - R, 

where B € tf~A,m,£(yA) with £ = (Elb,Erb,Eff,No), where JS,6 > -a, 

i?r6 >a,Eff> 0, and where £ € $-~'m^(y^) with.? = (0, F+(a), 0, NQ), 

where F+
(Q!) > a is the set E~(-a + m) /or A1. Taking the transpose of 

the above equation gives 

(6.11) xmB'a(X) = Id - R', 

where B' = x^&x™ £ %^'m'£'(YA), R' = R* e *;~,m^'(rA)> where 

£' - (^.^^.No), with E'lb = Erb-m> a-m, E,
rb = Eib + m> 

-{a - m), E'ff > 0, and where T' = (F+{a),0,0, No). 
From (6.10) and (6.11) it follows that a(A)-1 = xmB + a(A)-1i? and 

o(A)_1 = xmB' + i?'a(A)-1. Plugging the second equation into the first 
gives 

(6.12) a(A)-1 = xmB + xmB'R + R'aiX^R. 

Let cp € C°°(A x [0,00)3; x Y) have bounded derivatives and vanish for 
|A|-2 + x2 small. Then, applying ip to the right-hand side of (6.12) yields 

(6.13) a(A)~V = xmBip + xmB'R<p + R!a{\)-xRip. 

Since when (p is lifted to the right in Tm{Yh), it vanishes near the hyper- 

surface ft, it follows that Rip E ^-~.m.(0"B"(Q)'0.0)(yA). Also, by Lemma 

6.6, omitting density factors, R' € S2N+l(A; A{^{a)'0)((YA)2)) for any JV. 
Thus, by (6.13), for any N, 

a(A)-V G xm^-^^lb,Erb,Eff,0){YA) + 

xm^-oo,m,(E'lb,E-(a),0,0){YA)+   ^^ ^CP+(Q),g-(a))((yA)2) ^ 

Since TV is arbitrary, it follows that 

(6.14) a(A)-V G ^^-^'(^'^^'^(yA) + 
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A similar argument multiplying ip to the left-hand side of (6.12) yields 

(6.15)        ^a(A)-1 G ^$-^(^6,^6^,0)(yA) + 

a.m^-«)^(^,6»^"(tt)»^,6+^"(«).0)/yAN +   ^-cx),F+(Q)J-(a)/yA\ 

Thus, if ${\x,x',y,y') = (p(\,x,y) + (p{\x',y1), then adding (6.14) and 
(6.15) gives 

§a{\)~1 E £m$~m'm'^6'Er6'jE;tf'0)(yA) + 

Let Flb = Elh U E?lb U (F+(a) - m), Frh = ^ U ^ U ^"(a), and let 

i^. = EffU(E,
lb-\-E~(a)). Then observe that i*^ > a-m, F^ > — (a-ra), 

and Fjj > 0; and that 

(6.16) $a(A)-16a;ro*-A,m'(J!,'i,i!,r6,Fifl"0)(yA). 

Now we may choose ip such that in the coordinates (6.5), $ > 0 for e/2 < 
a < 2s where e is sufficiently small so that a(A)_1 exists for all A such that 
a < 2e. Thus, with CTQ = e in Corollary 6.3, formula (6.16) implies that 
a(A)-1 G xm^-^m^{y% where T= (Flh,Frh,Fff,No). □ 

We need one more lemma before proving our main theorem. 

Lemma 6.9. Let R € ^^^(X). Then given s E R, and 7 G R with 
Ew > 7 and E^ > — 7, Id — R is invertible on x^H^X) for A sufficiently 

large. Moreover, (Id - R)'1 = Id + S, where S G ^^(X). 

Proof. Since En > 7 and J5r& > —7, by the mapping property (3.4) and the 
definition of ^^(X), R G 5-00(A; tf-00'^)) C ^-^(A; B(x^H^(X))), 
where B{x1 Hb{X)) is the space of bounded operators on x^H^X). The 
usual geometric series argument now completes the proof. □ 

Proof of Theorem 6.1: By Lemma 6.4, there is a BQ G *^'m(X) and 

RQ G *^,m(X) such that 

(A - X)xmBo = Id - BQ. 

By Lemma 6.8, {1(A) - A)"1 G xm%^m>8{Y*) for A G A sufficiently large, 
where £ = £(A, a) is an index set of the form (£75, j?^, jE^gr, NQ), with EM > 
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a - m, Erb > -(a - m), and Eff > 0. Let V,^' € C00^) be such that 
if), ip' = 1 near Y and such that ip' = 1 on supp'i/'- Let 

S^ := x-mip{I{A) - A)" Vi2o. 

Then, ££ 6 *^'m'5(X). Since near Y, A = 1(A) mod a;-m+1Diff^(X), 
and since ip' = 1 on supp'?/', it follows that 

(A - X)xmB'0 = iPRo mod xV-£'m'e{X). 

Thus, if Bi := Bo + B'0e y;™'m'£l(X), where fx = S, then 

(A - A)^"1^! = Id - Ru 

where ^ € x^'m'e(X) C *-^>ro';Fl (X) with ^,,6 = £?,6 +1, F1>rb = Erb, 
Fitff = N U [Eff'+ 1) U (£7|6 + Erb + I), and Fiji — N, where we used Lemma 
5.1, and the fact that x vanishes at lb, ff, and fi of Tm- By Lemma 6.5, there 
is a Si e ^~~'m'^(X), where £[ = {E+(a)UFi,ib,0,Fhff,N), such that 

{A - \)xmB'l = Ri    mod ^m^F^F^N) {x) 

Thus, if B2 = Bi + B'1e *~f m'£2(Z), where £2 = Si U £{, we have, 

(A - \)xmB2 = Id - R2, 

where #2 € *~*,m,^2(X), where ^2 = (0,Fi7rb,Fiiff,N). Observe that for 

each j, i?2 G ^,
CA>'m' 2'J(^)) where the fyj are defined inductively using 

Proposition 5.4 and the facts that R^     = R2 o R^ and J^i^ > 1: 

^2,1 := ^2, -^j+i := (0,(Fi,rb + J)VF2,j,rb,F2,j+i,ff,Nj+i), 

where Nj = {j, j+1,...} and i^tf = {(«i, fci)+- • ■ + (*,•, fcj)|(«i, A^) € FIJF}. 

Set JF»2trb := UreNo(Fi>r6+r), F^ = UjL^ff, and^ = (0,^,^,^. 
Then, J^J C ^ for each j and ^.j ->• ^2 as i —^ +00 in ^^ sense that 
c € ^2 ^ and only if for some j, c € ^j- Hence, we can find an asymptotic 

sum itf, ~ Y^jLi Ri G V'^'^Hx) such that for each N, 

Set .63 := B2(Id + i^) G y-™'m'S3(X), where (see Theorem 5.7) S3 = 
£2 U ^2 U £2°J72- Then, following through the construction of B3, one can 
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see that £3 = (JE^E^^S^NO), where £3^ > a-ra, #3^ > -(a-m), 
and Ez^ff > 0; and 

{A-\)xrnB3=Id-R3, 

where i?3 e ^'m^3(X) with F3 = (0,^,0,0).  Since F^rb > -(a - 

m), and since *-^'m^3(X) C *~
OO,0,JP

^
6
(X), by Lemma 6.9, Id - RS(X) 

is invertible on xa~mH£~m(X) for A G A sufficiently large, with inverse of 

the form Id - i^, where i^ e ^'^''{X). Hence, A - A: xaHs
h{X) —► 

xa~'mHl~m(X) is invertible for all A e A large, with inverse, 

(,4-A)"1  = xm53(Id-^3)  - xmB3-xrnB3R!3exmy-™^e*(X) 

+xm^l00'E^F^h{X) C a;m*-^m^(X), 

where 0 =  (E3ylh,E^rb U i^^jflr,^)-    By Theorem 3.2, for finite A, 

[A - A)"1 6 a^^'^pO. Now, the expansions at lb, rb, and j^ of X6
2 

must of course, be the same as the expansions at /6, r&, and ff of Tm given 
by 0; thus, (A - A)"1 € a;-*-^m'£(a)'No(X). 

7. The Structure Theorem. 

In this section, we describe the Schwartz kernels of operators in *^ (X) 
as poly homogeneous functions on certain blown-up manifolds. We begin by 
describing the polyhomogeneity of the Schwartz kernel when restricted to 
the diagonal. The blown-up manifold in this case is just Xj (see Figure 6 
for a picture of Xj) already studied in Section 5.2. This result reduces trace 
computations to a simple pushforward theorem of Melrose (Lemma 1.1 in 
the Appendix), see Proposition 8.3. We next describe the whole Schwartz 
kernel as a polyhomogeneous function, see Theorem 7.2. In this case, we 
need to introduce a new blown-up manifold tailored to fit the particular 
homogeneities of our parameter-dependent operators. 

Throughout this section, we fix a smooth positive 6-density on X. This 
trivialization of the 6-density bundle allows us to omit density factors that 
are inherent in Schwartz kernels (cf. Definition 2). 

Theorem 7.1. Let A E ^f{X) where m < -n. Then KA\Ab is defined, 
and moreover, 

KAIA, G A^hg(Xd), 

where T is the index family on X^ defined by 

Fte:=Pfc; i^~No; Fw :=-m - n + No. 
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In words, i^A|A6 when lifted to X^, defines a function which is smooth up 
to bx and fi, and has an expansion at bi with index set F^. The proof of 
this theorem is straightforward: we just write KA\Ab in the coordinates on 
Xj and show that it has the desired polyhomogeneity. 

Proof. For simplicity, we will assume that KA is supported near ff(X%). Let 
[0,00)0 x M^"1 x flg? be a coordinate patch on X% with g defining ff(X$) 

and with Ab ^ {z = 0}. Then by definition of tf^(X), for any N G N we 
can express KA as a sum: 

AT-l 

(7.1) KA= Y,Arn-k + RN, 
k=0 

where 
Am-k    := / ete,c x(^A, f) am_ib(edA, ft y, 0 df; 

where am_k(SdX,g,y,6C) = Sm-kam-k{X,g,y^) for all 8 > 0, (fty) ^ 
rN(\,Q,y,€) takes values in ^^"^^(IR^), and where x(^0 ^ C00^ x ^n) 
with x(A,0 = 0 near (A,0 = O^and x{\€) = 1 outside of (A,0 = 0. Note 
that since m < —n, these symbols are integrable in f over En (see the symbol 
estimates (4.1)). In particular, KA\Ab is defined. 

We now consider local coordinates on Xj. Since [0,oo)e x M^-1 x R™ is 
a coordinate patch on X% with g defining ff(X^) and A5 = {z = 0}, and 
since X = A5, we can consider [0, oo)^ x M^-1 a coordinate patch on X with 
g defining dX. Let r = \fj,\ where /i = l/\l/d for A G A. Then, cf. Figure 
6, near bx, r is a defining function for /J and v = g/r is a defining function 
for 6a;; and near 6i, ^ is a defining function for fi and iy = r/g is a defining 
function for bi. 

We now show that ^4m-A;|A6 € ^^(X^). To do so, we write -/lm_A:|A6 

in the coordinates on Xd- Consider first the coordinates r and v = g/r near 
bx. Thus, as £dA = vduj~d where CJ = /x/|/x|, we have 

Am-kIAb = / x( ^^"d, 0 am-h (vdw"d, rv, y, 0 d£. 

It follows that ^4m_fc|A6 is smooth in v and r. 
Now consider the coordinates g and w = 1/v near fei. In this case, 

^m-fck = fx(w-durd,t)am-k(w-duj-d,Q,y,Z)a£. Sincex(A,0 = 1 out- 
side a neighborhood of (A,£) = 0, for w small, x(w~du~d,(i) = 1.   Hence, 
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we may just as well replace x with 1. Doing this, and making the change of 
variables £ H-> w~1(t then yields 

Am-k\Ab =wk-m-n I am_k{uj-d,Q,y^)^- 

It follows that Am_fc|A6 is smooth in g and has an expansion at w = 0 with 
index set k — m — n. 

In summary, we have shown that Am_jfe|A6 € A^hg{Xd), but with 
^ra-/c|A6 actually vanishing to the higher order —m — n + k at 6i instead of 
—m — n. By (7.1), we have 

N-l 

(7.2) ^IA, =  Y, Am-kW + RNW 
k=Q 

A similar analysis as we did with Am-k\Ab shows that RN\Ab is smooth up 
to 6a? and fi. Moreover, using the symbol estimates (4.1) for S1^~N4(Wl), it 
is straightforward to verify that RNIAI vanishes to higher and higher order 
at bi as N is chosen larger and larger. It follows that KA\Ab € A^h (Xd). □ 

We now describe the whole Schwartz kernel KA of an operator A £ 
^c^A P0 as a polyhomogeneous function on a blown-up manifold. We begin 
by defining the blown-up manifold: 

X2
d := [Td\ doJid x Ab;Ad x Ab]. 

Here, Td is defined in (5.1), and recall that (see Section 5.1) Ad := Al/d and 
that Ad denotes the radial compactification of A^ with dOQAd denoting the 
boundary at "A1^ = oo". Figure 7 shows how X^ is constructed. Thus, X^ 
is constructed as follows: First, in Adx Xj;, we blow-up {X1^ = oo} x ff to 
form Td. If Aoo (the "diagonal at X1^ = oo") is the lift of dooA^ x Ab into 
7d, then blowing it up in Td, we form [Td] Aoo]. The lift of Ad x Ab in this 
new blown-up space is denoted by Ay. Finally, blowing-up A/ in [7^; AQQ] 

creates Xj. 
If /?: Xj —> Ad x Xjj is the blow-down map, then the new faces from 

Td that we create in Xj are di := l3*{dOQ~Ad x A&), diagonal at infinity; and 
d/ := /5*(Ad x A&), diagonal face. 

Theorem 7.2. TAe Schwartz kernel of an operator A G ^™f(X) lifts into 
Xj to define a polyhomogeneous function: 

KA€Afhg(X
2

d), 
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Figure 7: The manifold Xj. The arrows represent blow-down maps. 

where £ is the index family on X^ defined by 

Eff = Efi := No; En, = E^ = E^ := 0; 
£;d/ := (-m-n + No)UNo; Edi'=-m-n + ^. 

In words, KA when lifted to Xj defines a function which is smooth up to 
jff and fi, vanishes to infinite order at /6, r&, and 6i, and has expansions at 
the diagonal face df and the diagonal at infinity di, with index sets E^f and 
Edi respectively. The proof of Theorem 7.2 is simple in principle: we write 
KA in local coordinates on X^ and prove that it has the claimed asymptotic 
properties. However, as its proof is a bit technical, the proof may be skipped 
without loss of continuity. 

Proof. Our first order of business is to describe the local coordinates on Xj. 
As usual, let (i = l/A1/^ for A G A, r := |/i|, and u := /i/|/i| G Sj, where 
gi = {a; = ji/l^l : /i = l/A1^ for A G A}. Let [0,oo)ff x M^1 x R^ be a 
coordinate patch on X^ with ^ defining ff(X^) and A5 = {z = 0}. Then 
near ff(Xj), we have 

X^ Vd,    with Vd := [0, oo)r x Sj x [0,00), x \SQ; {0}] x l^1, 

where r and v = g/r define j^ and j(f respectively. Away from jff (Xj), 

Xj ^ Wd,     with Wd := [0,oo), x Sj x O x KJ-1, 
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where if w = r/g, then 

9 := [%oo)w x E^; [0,00)^ x {z = 0}; {^ = 0} x {z = 0}], 

Note that g and w define fi and 62 respectively, and that df and di are 
those faces in Vd created from the blow-ups of [0,00)^ x {z = 0} and {w = 
0} x {z = 0} respectively. 

Before analyzing the asymptotics of JKAJ we remark that if QdX is replaced 
with A, then the asymptotics of KA are analyzed in [29]. Thus, in the 
arguments that follow, we will rely heavily on the results of [29]. Now write 
KA as in (7.1) in the proof of Theorem 7.1. We will now analyze each term 
of (7.1) separately. 

We first show that i4m_fc G As(Xj). We begin in the coordinates of Wd- 
Indeed, if w = r/g, then as ^A = gdr~du~d = w~d(jj~d^ we can write 

An-fc = J' eiz*x(i»-do>-d,Z)am-k(v>-do'-d,Q,V,Z) *£. 

Now An-fc is an operator of the form considered in [29]. Then Lemmas 4.39, 
4.41, and 4.43 of [29] show that Am-k e A

e(Wd). 
Consider now the coordinates Vd-    Thus, observe that since gdX  = 

gdr~duj~d = vd(jj~d where v = g/r, we can write 

Am — m—k j eiz< x( vdu-d, i) am_fc( vdu-d, § d?. 

Also observe that outside a neighborhood of £ = 0, x{vduj di £) — x(0? 0 = 
0. Thus, !eiz<{x{vdu-d^) - x{0,0)am-k{vdv~diOd€ is smooth in the 
variables z and vd. Hence, it suffices to show that 

J eiz<x(Oam-k(vduj-d^)^ G Ae(Vd), 

where x(0 '•= xfiiZ)- The proof of this statement follows from the proof of 
[29, Lem. 4.40]. It follows that Am-k G As(Xj). 

We now focus on the remainder term R^. Suppose that m — N < 
-2M - n - 1 where M G N. Then, we claim that RN G (TMS0(Wd), where 
a is a total boundary defining function for the hypersurfaces df, di, and bi, 
of Wd- Also, we claim that .RAT G C2M{ Vd). 

Indeed, if w = r/p, then RN = f elz'Z rN(w~dCjj~d, g, y, ^) &£. We can 
now apply [29, Lem. 4.45] to prove that RN G aMS0(Wd). 

To see that RN G C2M(Vd), we first recall the following fact: let a(f) G 
5^(Rn) with p < -n - £, where I G No,, and let u = f eiz<a(£)d£. Then, 
^GC^(Rn)nL00(Mn). 
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Now, RN = Jeiz<rN(vdcjj-d,g,y^)d^ where gdX = vdu)-d. From the 
estimates (4.1), S™"*4^) C ^^(A; S-n-M-l{W)). Thus, the fact men- 
tioned in the previous paragraph implies that RN G C2M( V^). 

The fact that Am-k € AS(X<^) for each k, and the above analysis of RN 

together with the fact that iV G N can be made arbitrarily large, complete 
the proof of Theorem 7.2. D 

8. Applications. 

Throughout this section, A G x~mDiff^l(X) will be fully elliptic with respect 
to a G M on a closed sector A. In Theorems 8.1 and 8.2, we realize the 
Schwartz kernel of {A — A)-1 as polyhomogeneous distributions on blown-up 
manifolds. In Theorem 8.4 we prove a trace expansion for the resolvent. 
Finally, in Section 8.3 we investigate the heat trace expansion. 

8.1. The resolvent kernel. 

By Theorem 6.1, for A G A sufficiently large, we have 

{A - A)"1 G a.m$-m,m>f(a)>NB(Jf) g x™^™^) + tf^'^PO, 

where the "^ space" is defined in (5.8), and where £i(a) = {^{a) + 
m,E-(a),E(a) + m,Nm) with Nm = {m,m + l,...}. Thus, for any TV G N 
and A sufficiently large, 

(A - X)-N G xNmy-%m>m(X) + $-^'m'^(a)(X), 

where the index family £N(a) = (ENjlb(a),ENjrb(a),EN^(a),NmN) is a 
combination of, and defined inductively from, the index sets of £i(a) using 
Proposition 5.6. In Theorems 8.1 and 8.2 below, we fix a smooth positive 
6-density on X so that we can omit density factors in Schwartz kernels. Our 
first result involves the manifold Xd in Figure 6 with d = m. 

Theorem 8.1. Let B G Diff^pQ, m' G No, and let A G rr-mDiff^(X) be 
fully elliptic with respect to a G R on A. If m1 - mN < —n, then for A G A 
sufficiently large, identifying B{A — X)~N with its kernel, we have 

B{A-\)-N\±bzA%g{Xml 

where Q = (GbxjGfiiGbi) is an index family on Xm such that 

(8.1) Gbx > m; Gfi := nmN; Gu := -m' + miV - n + No. 
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The exact form of G^ is not important; this is why we don't explicitly state 
it (it is however, given in the proof). 

Proof. As Diff^1 {X) C *^A'm(X) (this is easily verified), the composition 
results of the full calculus (see Section 5.3) imply that 

(8.2) B{A-\)-N = C + D, 

where C G xNm^Nm^{X) and D G ^^"^{X). By Theorem 
7.1, Kc\&h is a poly homogeneous function on Xm with expansions given by 
an index family satisfying (8.1). (In this case, Kc\/\h has an expansion at 
bx with index set NmAr.) Since operators in §-~^.^(a)^ are defined 

directly in terms of the polyhomogeneity of their kernels, see Definition 3, 
the definition (5.8), and the second statement in Lemma 5.1, it immediately 
follows that i^D|A6 is a poly homogeneous function on Xm with expansions 
given by an index family satisfying (8.1). (In this case, KD\^h vanishes 
to infinite order at bi and has an expansion at bx with index set G = 
NmN U ENfi{a) U (ENjb(a) + EN^h(a)). One can check that G > m.) 
□ 

We now consider the asymptotics of the whole Schwartz kernel. To un- 
derstand exactly what the following result means, we refer the reader to 
Section 7 and Section 5.1 for the definitions of the manifolds X^ and Tm 
respectively. Each of these manifolds is designed to capture the singularities 
of the resolvent at A = oo, at A&, and at dX. 

Theorem 8.2. Let B G Diff^'pQ, w! G No; let A G a;-mDiff^(X) be 
fully elliptic with respect to a G M on A, and let N G N. Then for A G A 
sufficiently large, identifying B{A- \)~N with its kernel, we have 

B{A - \)-N e Alhg{Xl) + A^hg{Tm) + A%g{K x X2), 

where T — (£jv(a),0) with 0 associated to bi, Q = (0,ENji)(a),ENirb(a)) 
with 0 associated to dooA, and where 

Elh — Erb = Ebi := 0;    Eff = Efi := NmN; 
Edf := {-rri + mN - n + No)DNo; Edi := {-m' + mN - n + NQ). 

Proof We can decompose B(A - \)-N = C + D as in (8.2) of Theorem 
8.1.    Then Theorem 7.2 implies that Kc  G A^iX*,).    Since operators 
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in ^r~^0'm' N (X) are defined directly in terms of the polyhomogeneity of 
their kernels, see Definition 3, the definition (5.8), and the definition (5.3), 
it follows automatically that KD G Aphg(Tm) + Aphg{A x X2). □ 

8.2. Trace expansion of the resolvent. 

Recall that Xd is Ad x X blown-up at {A1^ = oo} x Y-, where A^ is A^ 
(= A1/^) radially compactified, see (5.5) and Figure 6. Also recall that 
r = |/i| and u = /x/|/i|, where fi = l/X1^ with A G A, are coordinates on A^, 
with r defining {X1^ = oo}.  Let u G Aphg{Xd).  Then for fixed r > 0, we 

can consider ^(r,u) G A ^(X). In particular, given 0 < v G C00(X,fi^), if 
Ebx > 0? then u(r, a;) v is integrable over X. The following result, which is 
really just an application of Melrose's pushforward theorem (see Lemma 1.1 
in the Appendix), states how Jx n(r, u) v behaves as r 4 0. 

Proposition 8.3. Let u G Aphg(Xd) with E^ > 0. Then, as r I 0, 

fx u(ria;) u has an asymptotic expansion 

(8.3) f u{r,u)v~        Y,       ^(logr^^H, 

where U(Z^((JJ) are smooth functions of oo. 

Proof We can write u as a sum of three functions u = ui + U2 + ^3, where 
ui is supported near bx and away from 6i, U2 is supported near fi Hbi and 
away from bx, and where ^3 is supported away from both bx and fi. (See 
Figure 6 for a pictorial representation of Xd-) Then, 

/   u(r,u))v=  /   ui(r,oj)i/+ /   U2(r,a;)^+ /   i43(r,a;)i/. 
Jx Jx Jx Jx 

Since for any (r, a;), ^3(r, w) is uniformly supported in the interior of X, 
it follows that Jxus{r,uj) v has an expansion as in (8.3) but with only the 
index set E^- 

Now we work on Jx u\ (r, u) v. Decompose X = [0, l)x x Y near F = dX. 
Then near 6rz; and away from bi, Xd = [0,oo)r x [0,00)^ x y, where 
v = x/r. Let mi/ .= vi(r,a;,v,j/)|^dy|, where vi(r,uj,v,y) has an expan- 
sion at r = 0 and v = 0 with index sets Efi and Ebx respectively. Thus, 
$xm(r,uj)v = fvi(r,cu,x/r,y)4fdy.   Changing coordinates x \-> rx, we 
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find that fxui(r,cd)i; = /i>i(r,a;,a;,y)^fdy. It follows that fxui(r,(ju)v 
has an expansion as in (8.3) but with only the index set Efi. 

Finally, we work on fxU2{r,u)v. Near fi fl bi and away from bx, 
we can decompose Xj = [0, l)^ x [0, oo)^ x Y, where ^ = r/x. Let 
^2^ = V2(x,w,a;,2/)|^ch/|, where V2{x^w^uj^y) has an expansion at a; = 0 
and ty = 0 with index sets i^ and EM respectively. Then, Jx U2 (r, UJ)U = 
J V2{x, r/x, w, y)^dy. Hence, by Lemma 1.1 in the Appendix, it follows that 
$x U2{r, (j) v has an expansion as in (8.3). □ 

Theorem 8.4. Let A e rz;"mDiff^(X) be fully elliptic with respect to a G 

R on A and let B 6 ar^Diffj^pQ, /3 G R ancf m' G NQ. Suppose that 
m! — mN < —n and that ft < m. Then B(A — X)~N is trace class on 
x0i~mLfr(X) and as A —>» oo m A; w;e /ia?;e 

oo / oo 

(8.4)   TrBiA-Xr"-^^1^^^  + E {**tosA + c*} A' 

where b^ = 0 unless k G /3 — m7 — n + No. /n particular, as A -> oo m A, 

oo 
n —A; 

Tr(A- A)-w ~ EA ^ "^^ +J2\-k<m-N log A ft. 
A;=0 fc=0 

Proo/. First of all, decomposing B(A- X)~N as in (8.2) of Theorem 8.1 (now 
with an extra factor of a;-^), and using standard facts about the ^-calculus 
(see for instance, [35, Ch. 4.18]), it follows that B(A- X)~N is trace class on 
xa-mL2(X) withTrB(A-X)-N = fx{B(A-X)-N}\Ab. Now, by Theorem 
8.2, B(A-X)-N\Ab is of the form uv, where 0 < u G C00^,^), and where 
u G Aph {Xm), where Q is an index family satisfying 

Gbx > -& + m; Gfi := -/3 + Nmiv; Gu := -m7 + miV - n + NQ. 

Since G^x > 0, and since 

GfiUGti = (-m7 - n + miV + No) U (-/3 + mAT + No)U 

{(k - $ + miNT, l)|A;GNo,A;G/3-m/-n + NQ}, 

Proposition 8.3 implies the trace expansion (8.4), but with A1/772 replaced 
with r~l and with the coefficients functions of a;. Since B{A — X)~N is 
holomorphic in A, [29, Prop. 5.49] implies that the expansion holds as given 
in (8.4). □ 
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8.3. Trace expansion of the heat kernel. 

In this section, we will assume that A is of the form {A E C| £o < arg(A) < 
27r — SQ} for some 0 < £Q < ir/2. The heat operator of A, e~tA, is defined by 
the Cauchy integral 

(8.5) e-tA :=■£-[ e-tx (A - A)"1 dA, 
ZTT Jr 

where F is an anti-clockwise contour in A of the form 

F = a + {A e C | arg(A) = 8 or arg(A) = 27r - <$},   a < 0, £o < S < n/2. 

Since e~tx —> 0 exponentially as A —> oo on F, the definition of the 
full calculus (5.4) implies that the integral (8.5) converges uniformly in 

xrn%mAa)(X)iovt>0. 
Integrating by parts N — 1 times, we can rewrite (8.5) as 

i (-t)-N+i 

l-K    (N- L)'.    JT 

(8.6) e-tA = ^\;     1.,   / e-
tA {A - X)-1" dX; 

-JV+I    r 

and hence, e~tA is actually of order -raiV rather than N. Thus, in fact, 
e~tA is of order —oo. Hence, if B is any 6-differential operator, the kernel of 
Be~tA restricted to A^ is defined. The proof of the following corollary follows 
from the results of [3, Sec. 4.6] applied to B times the Laplace transform 
(8.6), together with the asymptotic expansion (8.4). 

Corollary 8.5. Let A G #~mDiff™(X) be fully elliptic with respect to a G R 

on A and let B G aT^Diff™'(X) where (3 < m and w! G No.  Then, as 11 0; 

OO / 00 

TrBe-^^J^akt1^^ + £ {ftlogt + 7*} i^, 

where /3k = 0 unless k G f3 - m! - n + No. /n particular, as t \. 0, 

00 00 

Tte-^~]r^a+£*fc/"Mog*a. 

1. Appendix: Pushforwards and the ft-calculus. 

The following lemma is the basic version of Melrose's pushforward theorem, 
see [34]. We will use the notation of Section 2.1. 
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Lemma 1.1. Let f: [0,1)2 —> [0,1) be the map f(x,y) = xy. Then given 

any compactly supported b-density u = u(x,y)\^-^j-\, where u(x,y) has an 
expansion at x = 0 with some index set E^ and an expansion at y = 0 with 
some index set E^, then 

(i.i)     f.u(x) = fuMv)- = fvWviv)- e A^f^do,!)), 
Jo y    Jo y 

where ElbUErb := Elb U Erb U {(*, k + I + 1) | (z, k) G Elb, {z, i) £ Erb}. 

Proof. Let <p e C~((0,1)). Then, 

< f*u,<p > = < u,f*ip >    = u(x,y)cp(xy)  
Jo Jo x y 

= u(x/y,y)(p(x) (x^x/y) 
Jo Jo x y 

. dx 
x 

Thus, f*u(x) = J0 u(x/y:y)-^. Changing variables y t-> x/y gives the other 

representation f*u(x) = fQ u(y, x/y)-^. That f*u has an expansion at x = 0 
with index set Ei^3Erb can be found in, for instance, [34]. □ 

We now show how to express the composition of 6-pseudodifferential 
operators, and their action on functions, in terms of the pushforward of a 
6-density involving their Schwartz kernels. 

We will use the notation of Section 3.1. First we start with the mapping 
properties. Let A € W^(X). Let K denote the Schwartz kernel of A as a 
distribution on X2, and let KA ~ f3*K be Schwartz kernel on X%, as given 
in Definition 1. Here, /3: Xfi —> X2 is the blow-down map. Let <p G C00(X). 
We will write Acp as a pushforward of a 6-density. Thus, let /i G C00(X: fl&) 
be any 6-density, and let TT^TTR: X2 —> X be the projections onto the left 
and right factors of X2 respectively. Then a definition chase shows that as 
distributions, 

(1.2) nAcp = (7rL)*(<jr*RtpTritiK). 
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We will now write this formula in terms of KA- To do so, we first define 
^,6 := TTi o /3 and TTR^ := TTR O /3. Then (1.2) takes the form 

liAtp -  M^RV^lliK)   =   (irL)*(l3*{l3*(ir*R<piT*Lij) KA)) 

=   {-KL* PUi-KR* PTvi-KLO PT »KA) 

Thus, 

(1.3) MP = (T£,&)«(Tfl,6Vnj-,6M-KA)- 

Thus, 

(i.4) A:C00{x)^c°0{x) ^ (iTLfiU^hv^L^^ec^ixM. 

A similar argument shows that if C^pQ is the space of smooth functions 
vanishing to infinite order at Y = dX, then 

(1.5)   A:C<X>(X)—>C°0(X)  <=>  (nL^kbV<^KA) eC™(X,nb) 

for all (p e C00(X). The proofs of (1.4) and (1.5) use Lemma 1.1, and 
are very similar to (but much simpler than) the proof of statement (C) in 
Lemma 4.2. Note that the role of the auxiliary 6-density /i is only to ensure 
that we are pushing forward 6-densities in (1.4) and (1.5). 

We now consider the composition of two 6-pseudodifferential opera- 
tors Ai and A2. To do so, we will write the composition using pullbacks 
and pushforwards. But first, we must define the 6-triple product. Define 
TTF, TTS, TTC: X3 —> X2 by 

7rF{x,y,z) = (x,y), 7Ts(x,y,z) = (y,z), 7rc{x,y,z) = (x,z), 

and define T := Y xY xY, BF := Y xY x X = (Tr^J-^y x y), Bs := 
X x Y x Y = (TT^)"

1
^ x Y), and Be ~ Y x X x Y = (7rc)-1(y x y). 

We define the triple b-stretched product, X^, as the iterated blow-up, X3 := 
[X3; T; {BF, Bs, Be}]. Figure 8 illustrates how X3 is defined. 

Let /3(3): X3 —-> X3 be the blow-down map. We define lb := (^(3))*(y x 
X x X), rb := (/3(3))*(X x X x y), mb := (/3(3))*(X x Y x X), fs := 
(/3(3))*(y x X x X), ss := (/3(3))*(X x X x y), cs := (/3(3))*(X x Y x X), 
and j^ := (/3W)*(Y xYxY). (These faces are called the left boundary, right 
boundary, middle boundary, first side, second side, composite side, and front 
face respectively.) 
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Figure 8: How X\ is defined. The arrows represent blow-down maps. 

Let /?: Xl —\ X2 be the blow-down map of X| onto X2. Then, see 
[33], there exist (unique) functions TTQ,!,: Xl —>• X|, where O — F, S, or C, 
such that 

(1.6) TTQ O fiW =p0 no 

Pictures of these functions are given in Figure 2, and these functions ex- 
pressed in local coordinates are given in the proof of Lemma 4.3. 

We now can show how to write the composition of 6-pseudodifferential 
operators in terms of pullbacks and pushforwards. To do so, we first let 
Ai,A2 G ^^(X) have Schwartz kernels Ki, K2 on X2 vanishing to infinite 
order at dX2. These are true smoothing operators. Then denoting the kernel 
of A1A2 on X2 by jRT^, observe that 

(fiK^ix.z) = IM(X) /      Ki(x,y)K2(y,z) = (irc)*(vcl**FKinsK2), 
Jyex 

where we continue to denote by //, the lift of fi to X2 under 7rL. Let KA1 = 
f3*Ki and KA2 — /3*^2 be the kernels of Ai and A2 on X2, and continuing 
to abuse notation, we denote /?*// by //. Then by (1.6), 

flKn     =     {/JTc)^{^cfJ,7rpK17V*sK2) 

=    ^c),/3iS\^3)r(7r^7r*FK1rsK2) 

=    #* (ncb)*^^ ^Fib
KA1 'K*SjbKA2 ) - 

Thus, the kernel of HA1A2 on X? is 

(1.7) ^KA1A2 = ('7rc,b)*(7rC,btJ'7r*F,bKA2 ^SJKBZ). 

To derive this equation, we assumed that Ai and A2 were smoothing op- 
erators. But, using the properties of the maps 7rc,&, 717^, TT^^, and the 
pullback, product, and pushforward theorems of [14], one can show that 
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this formula holds for Ai e ^{X) and A2 G ^'(X), and moreover, that 
A1A2 G ^+m,(X). The proof uses Lemma 1.1 and is similar to, but much 
simpler than, the proof of Theorem 4.4. 
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