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1. Introduction. 

We examine the following fully nonlinear partial differential equation on a 
smooth compact n-dimensional Riemannian manifold (AT, g) 

(1.1) al
k
/k (v2u + du®du- ^^-9 + s\= ^{x,u) > 0, 

where a^ is the fcth elementary symmetric function of the eigenvalues, S is 
a symmetric tensor, V denotes the gradient, V2 denotes the Hessian, and 
du is the differential of u. 

Definition 1. Let (Ai,..., Xn) G R71. We view the elementary symmetric 
functions as functions on Rn 

ii<~-<ik 

and we define 

Tjji" — component of {ok > 0} containing the positive cone. 

We also define T^ = -17+. 

For a symmetric linear transformation A : V —> V, where V is an n- 
dimensional inner product space, the notation A E Tk will mean that the 
eigenvalues of A lie in the corresponding set. We note that this notation 
also makes sense for a symmetric tensor on a Riemannian manifold. 

We assume the following conditions 

(1.2) 5er+, 

815 
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and there exist two constants S_ < 0 < S with 

(1.3) tl>(x,6) < (j]/k(S) < il>(x,8) for all x E N. 

For example, we may take S = g, and i()(x,u) = f(x)eu
1 with f(x) > 0 

any smooth positive function. We shall see that (1.2) is the condition for 
ellipticity, and (1.3) is the C0 estimate. For equation (1.1) with 1 < k < n, 
we will prove 

Theorem 1. If S £ C00, i/) G C00, and both (1.2) and (1.3) are satisfied, 
then there exists at least one solution u £ C00(N) to (1.1) satisfying 5 < 
u<8. 

In the beautiful paper, [Li90], Yanyan Li proves the existence of a solu- 
tion to the following equation on a compact Riemannian manifold 

a1
k
/h{V2u + I) = ^{x,u)>0, 

provided that N has non-negative sectional curvature. We would like to 
emphasize that because of the quadratic gradient terms in equation (1.1), 
we do not require any curvature assumption in our existence theorem. 

The main part of our proof is the derivation of an a priori C2 estimate 
on solutions. The C2,a estimate follows from the work of Evans [Eva82], and 
Krylov [Kry83] for concave, uniformly elliptic equations. See also [GT83] for 
an excellent exposition of these results. From these estimates, we obtain the 
existence theorem by applying the degree theory for fully nonlinear second 
order elliptic equations developed by Yanyan Li in [Li89]. 

We will also discuss the equations (1.1), when S G F^, the negative 
cone. By sending u to —u, we see that the negative case is equivalent to the 
positive cone case of the following equation 

(1.4) a1^ (v2u -du®du + ^^-9 + s\= ipix,u) > 0. 

In Section 7, we will show for ^{x.u) = f(x)eu, the C1 estimate still holds 
for this equation, but our method for obtaining the C2 estimate does not 
work. We do not know if there exists a solution in this case. 

1.1. Conformal Geometry. 

We would also like to point out that (1.1) has geometric origin in conformal 
geometry; see [ViaOOa]. Let (N,g) be a Riemannian manifold of dimension 
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n > 3, and we define 

An  =        RlC —  —; —i 9     n-2\ 2(n-l)* 

where Ric and R are the Ricci tensor and scalar curvature of the metric g, 
respectively. We consider the curvature equation 

(1.5) crk'  (Ag) — constant > 0, 

for metrics g in the conformal class of g. Notice that for k = 1, the trace, 
this is just the Yamabe equation. 

If we let g = e~2ug, then the curvature equation (1.5) may be written as 
the partial differential equation (see [ViaOOc]) 

(1.6) a1^ (v2u + du®du- 1^0 + A^\ = e-2u, 

where we have normalized the constant to be 1. This equation is conformally 
invariant; see [ViaOOb]. 

If Ag G FjJ", the equation (1.6) does not satisfy (1.3), but our results here 
reduce the compactness question to obtaining a C0 estimate on solutions. 
To this end, for the determinant case, we have the following. Let O = {g G 
[g] : Ag G T^"}, where [g] denotes the conformal class of g, and define the 
conformal invariant 

(1-7) *([(/]) = jnf (Amax(^)£>2), 

where Amax(^) denotes the maximum eigenvalue of the curvature Ag on iV, 
and D is the diameter of (N^g). If ft is empty, then define cr([g]) = oo. 

Theorem 2. // (AT, [g]) satisifes cr([g]) < ^-; then there exists g G [g] sat- 
isfying 

(1.8) det(Ag) = 1. 

Furthermore, the space of solutions of (1.8) is compact 

In Section 8 will show that, in this case, convexity yields a Harnack 
inequality for solutions which, together with a maximum principle argument, 
produces the necessary C0 estimate. To show existence, we use a fixed 
point theorem of Berger ([Ber77]), following an argument from the paper of 
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Delanoe [Del81]. We will also give some examples of manifolds satisfying the 
2 2 

condition <j([g]) < ^-, and demonstrate that cr(Sn
: [go]) = ^-, where (Sn,gQ) 

is the n-sphere with the standard metric. Therefore Theorem 2 is analogous 
to the first step in the solution of the Yamabe problem: if the <7-invariant 
is strictly less than that of the sphere, one has existence of solutions and 
compactness of the space of solutions. 

The case k — 1, the Yamabe Problem, has been solved by Aubin and 
Schoen (see [LP87], [Sch89]), and the proof of the C0 estimate for the Yam- 
abe equation in the locally conformally flat case, along with an brief outline 
of the proof in the general case, may be found in [Sch91]. Because of the 
conformal invariance of equation (1.6), it is reasonable to expect that we also 
have compactness for all &, 1 < k < n, if (TV, g) is not conformally equivalent 
to{Sn,goy. 

Conjecture 1. // Ag £ r^; then there exists a conformal deformation 
g = e2ug such that crj^(Ag) = 1. Furthermore, if {N,g) is not conformally 
equivalent to Sn with the standard metric, then the space of solutions is 
compact. 

Again, the results in this paper reduce this compactness statement of 
this conjecture to obtaining C0 estimates on solutions. The existence should 
then follow from a suitable topological argument. We mention that recently 
Chang, Gursky and Yang, have proved the conjecture for a? in dimension 4 
(see [CGY01]). 

Finally, if Ag G F^, then writing g = e2ug^ and normalizing the constant, 
the equation (1.5) becomes 

(1.9) aJA (v2u -du®du + ^j-g - Ag) = e2u. 

This is precisely equation (1.4) and, as mentioned above, from the results in 
Section 7, we have an a priori bound on the C1 norm of any solution. We do 
not know if there exists an a priori C2 bound for solutions of this equation. 

Acknowledgements. The author is especially grateful to Yanyan Li, for 
numerous helpful discussions on fully nonlinear equations, and to Pengfei 
Guan, for pointing out the improvement of the original argument of Propo- 
sition 13 which gives the best constant. He would also like to thank Alice 
Chang, Phillip Griffiths, Matt Gursky, Karen Uhlenbeck, Paul Yang, and 
Yu Yuan for their interest and many useful comments. 
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2. Ellipticity. 

In this section we will show that the equations (1.1) are elliptic at any 
solution. 

Definition 2. Let A : V -> V be a symmetric linear transformation where 
V is an n-dimensional inner product space. For 0 < q < n, the qth Newton 
transformation associated with A is 

Tq(A) = aq(A) • I - Vg-xlA) • A + • • - + (-1)*A*. 

It is proved in [Rei73] that if Alj are the components of A with respect 
to some basis of V then 

(2.1) TM)) = ±%$A--<> 

where <^1"'^z is the generalized Kronecker delta symbol, and we are using 
the Einstein summation convention. We also have 

We note that if A : R ->• Hom(y, V), then 

^ak(A(t))=Tk_l(A(t))ijjtA(t)i=T^l(A(t)fjt. 

that is, the (k — l)-Newton transformation is what we get when we differ- 
entiate <7fc. 

The following proposition describes some important properties of the 
sets r+. 

Proposition 1.  Each set T^ is an open convex cone with vertex at the 
origin, and we have the following sequence of inclusions 

r+cr+_1c---cr+. 

For symmetric linear transformations A G FjJ", B G F^, and t E [0,1], we 
have the following inequality 

(2.4) {^((1 - t)A + tB)}llk > (1 - t){ak{A)}llk + t{ak{B)}llk. 

Furthermore, if A G FjJ", then Tk-i(A) is positive definite. 
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The proof of this proposition is standard, and may be found in [CNS85] 
and [Gar59]. Note that by replacing A with —A, analogous statements hold 

for F^. Note that the inequality (2.4) states that ak'   is a concave function 
^ r+ 

Definition 3. A function u G C2(N) is positive k-admissible, or negative 
k-admissible if 

(2.5) V2u = V2u + du®du- —^-Q + S 

is everywhere in F^" or F^T, respectively. 

Proposition 2. If S E F^ then equation (1.1) is elliptic at any solution. 

Proof. Since TV is compact, at a minimum of the solution u we have 

a]/k (V2MP) + S{p)) = V(P, «(P)) > 0, 

with V2^ positive semidefinite. From Proposition 1, we then have, at the 
minimum point, V2u is in FjJ-. Therefore since the cones are connected, by 
continuity we have u is positive /c-admissible. A similar argument holds in 
the negative fc-admissible case. 

Claim 1. If we make the conformal change of metric g = e~2ug, then for 
any function h, 

(2.6) V~(/i) = V2(/z) +du®dh + dh®du- (du, dh)g. 

where V2(/i) is the Hessian of h with respect to the metric g, and V|(/i) is 
taken with respect to g. 

Proof. We have for the Christoffel symbols (see [Bes87]) 

f ^ = r^ - mS) - UjSl + gij^ur. 

Therefore 

(V|/i)y = hj - rijht 

= hij - (F^. - u^ - ujSl + gijglrur)hi 

= (V2gh)ij + Uihj + ujhi - ^UrhWij. ^ 
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We let 

F[u, Vu,V2u} = (j]Jk (v2u + du®du- —^9* + Sj - il>{x,u). 

From (2.3) and (2.6), we see that the linearization at the solution u in the 
direction h is given by 

(2.7) F'[u, Vu, V2u]{h) = Gk^u^Tk-^uy^Vlh)^ - fah. 

Since X72u is in T^", from Proposition 1, we are done. □ 

3. C0 estimate. 

In this section, we present the necessary C0 estimate which will be required 
in the existence proof. We will give the general argument, and then also 
an easier argument in the case that ip{x,u) = f(x)eu. In order to apply 
the maximum principle, we need to rewrite the equation as follows. We let 
w = eu, and the equations (1.1) become 

(3.1) al/k (-V2w-^^g + s) =^X,lnw), v K    \w wz     2 / 

Proposition 3. // WQ   is positive k-admissible,   and w\   is positive  k- 
admissible, then (1 - t)w^ + twi is positive k-admissible for t G [0,1]. 

Proof. By positive fc-admissible, we mean that the matrix 

V2w = wV2w - *—p-g + w2S 

is in rjj".    The multiple of w is irrelevant, since w_= eu > 0.    Letting 
wt(x) = (1 - t)wo(x) + twi(x), we must show that V2wt G rjj", i.e., Ffc is 
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elliptic at wt for t E [0,1]. We have 

V2wt = wtV2wt-!^-g + ((l-t)wo+tw1)
2S 

= ((1 - t)wQ + twi){{l - t)V2wo + tVV) 

|V((l-t)«;o + *«;i)|2 

 2 9 

+ (1 - t)2v%S + 2t(l - t)woWiS + t2wlS 

= (1 - t)2woV2wo + t2wiV2wi + t(l - t)(w0V
2wi + «;iV2u;o) 

+ (1 - tfwlS + 2t(l - tfwowxS + t2wlS 

= (1- t)2V2wo + i2V2^i + t(l - t) 

{WO (      V72 IV^ll2       ,    jV^ll2   ^ 

+ ^ (wo V^o - ^f-g + i^J!^) - (Vm ■ V^g) 
WQ \ Z Z / / 

+ 2<(1 -t)wQWiS 

= (l-t) ((1 - *) V2^o +1—V2ti;o) + t(tVV + (1 - t)—VV) 

+ 
two y        V ^1 

2WQWI 

= (!-*) ((1 - *)VV) + ^—V2^o) + t(tvV + (1 - *)^vV) 

t(l-t) + M^oV^i - ^iV^ol2]^- 

From Proposition 1, the first two terms together are in FjJ". The last term 
is a non-negative multiple of the identity, so again using Proposition 1, we 
are done. □ 

Proposition 4. Suppose S G C0, ip G C1, and both (1.2) and (1.3) are 
satisfied.  Then any C2 solution u of (1.1) with 5 < u < 5 satifies 5<u<5. 

Proof. Assume we have a solution u of (1.1), with 5 < u. We let 

F[W] = a1^ (-V2w - ^^t; + S] - iKar.lnu;). 
^     V^ itr     2 J 
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Then letting w = eu, the function w — e- > 0 satisfies 

L{w - e*) = F[w] - F[(&] = 0- (J^iS) + il>(x,6) < 0, 

where L is a linear elliptic operator (this follows from Proposition 3, see 
[GT83], Chapter 17), so by the maximum principle, we have e- < w, that 
is, 5_< u. The proof of the strict upper inequality is similar. □ 

Remark. Why did we change to w = eu in the above argument? A 
computation similar to that of the proof of Proposition 3 shows that the 
original equation (1.1) is elliptic along the straight line path only if k < 
n/2. We are just using a different straight line path in order to apply the 
maximum principle. 

In the case that ^(x^u) = f(x)eu, we present an alternative, more ele- 
mentary derivation of the C0 estimate. 

Lemma 1. Let A and B be symmetric n x n matrices. Assume that A is 
positive semi-definite, B G r^"; and A + B E FjJ".  Then 

Gk{A + B)>Gk(B). 

If A is negative semi-definite, then 

ak(A + B)<ak(B). 

Proof. Let jP(t) = ak(tA+B)-(jk(B) for t e [0,1]. Note that from convexity 
of the cone F^, we have t(A + B) + (1 - t)B = tA + B G r+. Using (2.3), 
we have 

F,(t)=Tk_1(tA + B)^Aij>0, 

since Tk-i(tA + B) is positive definite from Proposition 1. Therefore F(t) is 
non-decreasing, and ^(0) = 0, so we have F(l) = ak(A + B) — (Jk(B) > 0. 
The negative case is similar. □ 

Proposition 5. Suppose S G C0 satisfies (1.2). If il)(x,u) = f(x)eu, for 
f{x) > 0 a positive C0 function, then there exist constants 5 < 0 < S 
depending only upon f, S and k, such that for any solution u{x) of (1.1), 
we have 5_ < u{x) < 8. 
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Proof. Since N is compact, at a minimum of the function u{x) we have 

cr)lk{VMp) + S(p))=f{p)e^ 

with V2u{p) positive semidefinite. From the lemma we have 

cr]Jk{S{p)) < /(p)e"M 

and certainly we can choose 5 such that 

n(,) > «(p) > In [-J^-) > ^ ^     ^     J > &■ 

Similarly, if the maximum of u(x) is at q E iV, we can choose ^ such that 

\     f(q)      J \^N      f{x)      J 

D 

4. C1 estimate. 

Proposition 6. Suppose S G C1, ip G C1, (1.2) i5 satisfied, and u is a C3 

solution of (1.1) satisfying 5 < u(x) < S. Then there exists a constant Ci 
depending only upon S,il),li,5, and k such that 

\Vu\co < Ci. 

We consider the following function 

where (f): R —> R is a function of the form 

(f)(s) =Ci(c2 -S)P. 

The constants ci, C2, and p will be chosen later. We will estimate the maxi- 
mum value of the function /i, and this will give us the gradient estimate. 

Since iV is compact, and h is continuous, we suppose the maximum of h 
occurs and a point p G N. We take a normal coordinate system (a;1,..., xn) 
at p. Then we have gij(p) = <%, and ^(p) = 0, where g = gijdxldx^ and 

rj.j. is the Christoffel symbol (see [Bes87]). 
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Locally, we may write h as 

h=(l + ^muiUm
>\eM=ve«u\ 

In a neighborhood of p, differentiating h in the x1 direction we have 

dth = hi = ^diig^mUm^M + ve^Wiu)^ 

(4.1) = ^diig^mume^ + g^diiuOume^ + ve^^'^m 

Since in a normal coordinate system, the first derivatives of the metric vanish 
at p, and since p is a maximum for /i, evaluating (4.1) at p, we have 

(4.2) uuui = -v^{u)ui. 

Next we differentiate (4.1) in the x^ direction.    Since p is a maximum, 
djdih = hij is negative semidefinite, and we get (at p) 

0 » hij = ^djdig^UiUmetM + unjute^ + unu^^ 

+ ve^W'^UjUi + ve+MflMuij 

Next we note that Vj = uijUi, and using (4.2), we have 

0 » hij = ^djdig^umme^ + uujUie*^ + uimije+M 

+ {(t)u{u) - (l>'{u)2)ve*^UiUj + ve*M<f>l(u)uij 

Next we divide by ve^u\ sum with Tk-i{V2u)^ (which is positive definite 
and symmetric), and we have the inequality 

(4.3) 0 > ^T^didjg^uturn + -T^uujm 
At) V 

+ (4>"(u) - fiu^T^UiUj + <l>'(u)Tif_lUij, 

since unuij is positive semidefinite, and we abbreviate Tj*^ = Tfc_i(V u)13, 
where V2^ is the notation in (2.5) above. 

We will use equation (1.1) to replace the Uij term with lower order terms, 
and then differentiate equation (1.1) in order to replace the UUJ term with 
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lower order terms. Writing equation (1.1) with respect to our local coordi- 
nate system, we have 

(4.4) a]Jk [ glj (uij - ^1^ + UiUj - -(grir2uriUr2)gij + Sijj \ = ^(x, u). 

Note that the g1^ term is present since we need to raise an index on the 
tensor before we apply <Jk'  . 

For a symmetric matrix A , we have the formula (see [Rei73]) 

Tk^(A)ijAij = kak(A). 

Using this, and equation (4.4), we have at p, 

^-i««=nu («ii+w - -^-%+s^ - utuj+-^-^ - si,-) 

= kak + T^_1 ( -muj + —^-Sij - Sijj 

(4.5) - hl>{x, u)k + Tjf^ f-iHUj + ^-Sij - S^ 

Next we take m with 1 < m < n, and apply 5m to (4.4) 

(4.6) 
1 — k / / 

<Jk k   T^_i f dmglj(V2u)ij + glj \Uijm - Urmltf - UrdmTlj + UimUj + UiUmj 

~ ~^\Vm9        )'U'ri'U'r29ij ~ 9        urimur29ij ~ 7j9        uriur2^m9ij ~T~ ^m^ij J   I 

dib       dib 

dxm      du 

We evaluate the above expression at p, and we obtain 

(4.7) 

ip       ^k—1 [uijfn ~ ur^m^ ij + ^uimuj ~ urmur^ij "I" Um&ij ) = ym + Yu^rr 

We then sum with um, and using (4.2) we have the following formula 

(4.8)       Tl^UijmUm 

= 1k_i\UmUrdmYr
ij + 2v^,(u)uiUj - vtj)'(u)\Vu\25ij + UmdmSijJ 
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Substituting (4.5) and (4.8) into (4.3), we arrive at the inequality 

+ -T^ (uiUrdiTlj + 2v(f)'{u)uiuj - ^»|Vu|2<% + u^Si-,) 

I k—1 

+ ^— (um^m + V'ulVul2) + (0"(«) - fiiu^T^UiUj 

(4.9) + k<l/(u)ij>(x, u)k + ^(w)T^_1 (-tHUj + ^Sij - SiA 

Lemma 2. At p, in normal coordinates, we have 

J^idifyg1™ + 2dlr^)uium = 2 J2 Riijmuium, 
l,m l,m 

where Rujm  are the  components  of the Riemann curvature tensor of g 
(see [Bes87]). 

Proof. The metric is parallel, so we have 

0 = Vjg1™ = djg1™ + Tl
jrg

rm + Tfrg
lr. 

Therefore we have, at p, 

0 = didjg1™ + diT^S"" + diTfr8
lr = dityg1™ + ftrjm + 8^. 

Using this, we have 

l,m l,m 

= 2 53(-^ + ^)«,«m 
l,m 

== ^ / v •*:Mljm'U'l'U"mm 

l,m 

□ 
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Using the lemma, and collecting terms in (4.9), we arrive at 

(4.10) -/-ife/'m + V'u—) -k<l>'(u)ll>(x,u)k 

\ V Zi V J 

Now we will choose </>(s). 

Lemma 3. Assume that S_ < s < 5.   Then we may choose constants ci,C2, 
and p depending only upon 5_, and S. so that (j)(s) = Ci(c2 — s)p satisfies 

(4.11) </>'(*) < o, 
and 

(4.12) t"(S) - - «£'(s)2 + <f/(a) > 0. 

Proof. We have 

<l>'(s) = -pC1(C2-8)P-\ 

and 

4>"(s)=p(p-l)c1(C2-s)*-2. 

To satisfy (4.11) we need ci > 0, p > 0, and C2 > 5. So choose C2 > 5. Next 
we have 

^(5)-^(5)2 + 0/(5) 
= PCP - ijcifo - ^)p"2 - (^i(c2 - sy-1)2 - pci(c2 - *)'-1 

= PCi (C2 - SY~2 \{p - 1) - pCi (C2 - 5)P - (C2 - 5) J . 

Now choose 

 1  
p2 - max{(c2 — s)^}' 

and p so large that 

(J <C2 < J+p-1- -. 
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Then we have 

j'{S)-j (a? +4'{8) >  y, r-T(C2-SF-2(p-l---C2+S) 

> FT ^T(c2 - ^"'(-^ + s)>0. p- max{(c2 -S)P}
K /      v   _      / 

□ 

With ^(s) chosen as above, we let 

ei = — maxj^s)}, 

and 
e2-min{(/>,,(5)-(/),(5)2 + (/),(5)}. 

From the inequality (4.10), we have 

(4.13) 

C > e2Tiiluiuj + rl, (Riijm^ + ei^f-Sii + ^'H-^ + 7^^) , 

where in this equation, and in what follows, C is a constant depending on 
<5, £, and ip. 

Without loss of generality, assume that V2^ is diagonal at p. Now if for 
some i, a diagonal entry of the matrix in parenthesis above satisfies 

Riiim + ti1—^- + 4> wSn + —diSu < 1, 
v 2 v 

then we have the gradient bound. So we may assume that 

uium \Vu\2 , .^^C    x, 1 
Riiim 1- ei——- + 0 {u)Sii + —diSu > 1, 

v 2 i; 

for all i. From the inequality (4.13), we conclude that 

(4.14) C>e2J2Tl1u* + '£Tl1. 
i i 

Noting that 

(4.15) J^LiMn-fc + lfo-i, 
i 

(see [Rei73]) we deduce that 

tffc-i < C. 
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Proposition 7. Let k>2, and A G F^ be a symmetric linear transforma- 
tion. If 0 < ci < (JkiA), and Gk-i{A) < C2, then we have a bound on the 
eigenvalues of A, that is, \\{A)\ < C, where C depends only on ci and c^. 

Proof. The proof may be found in [Li90]. □ 

Using this result, if k > 2, we see that 

|A| < C, 

and since T/^-i is positive definite, this implies 

2E-i>^>0, for» = l...n. 

Equation (4.14) then implies that 

|vu|2 < a 

Note that in the case k = 1, we do not require the proposition since TQ = 6lJ, 
and therefore (4.14) gives the gradient bound. 

5. C2 estimate. 

Proposition 8. Suppose S G C2, ip G C2, (1.2) is satisfied, u is a C4 

solution of {1.1) satisfying 5<u(x) < 5, and \Vu\ < Ci. Then there exists 
a constant C2 depending only upon S, '0,^,5, Ci, and k such that 

\V2u\co < C2- 

Let S(TN) denote the unit tangent bundle of iV, and we consider the 
following function w : S(TN) ^ R, 

w (ep) — (V2^/ + du (g> du + S){ep, ep). 

Since S(TN) is compact, let w have a maximum at the vector ep. We use 
normal coordinates at p, and by rotating, assume that the tensor is diagonal 
at p, and without loss of generality, we may assume that ep = d/dx1. 

We let w denote the function defined in a neighborhood of p 

w(x) = {W2u + du®du + S)(d/dx\d/dx1) 

= (V2u)n+u2
1+S11 

= tiii-rz
11^ + ti? + 5ii. 
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Differentiating in the ith. coordinate direction, we obtain 

(5.1) Wi = um - dirl
nui - Tl

nuii + 2uiuii + diSn. 

The function w(x) has a maximum at p, so evaluating (5.1) at p, we obtain 

(5.2) um = diT^ui - 2uiuii - diSn. 

Next we differentiate (5.1) in the x^ direction.    Since p is a maximum, 
djdiW = Wij is negative semidefinite, and we get (at p) 

0 > w^ = uiuj - didjT^ui - diT^uij - djT^uu 

+ 2uijUii + 2uiuiij + didjSn. 

We sum with T/C_1(V
2^)U (which is positive definite and symmetric), and 

we have the inequality 

(5i3) 0 > Tl^nij - Tl^djTi.m - 2Tlldir
l
11ulj 

+2T^_1uljuii + 21^_luluiij + T^ldidjSii. 

We will use (4.7) to replace the fifth term, and we will differentiate equation 
(1.1) twice to replace the first term. 

We recall that the equation is 

To simplify notation, write / = aj . Differentiating once in the x1 direction, 
we had (equation (4.6)) 

(^(v^nH^i + ^Mi- 
dVij i 

Differentiating twice, we obtain 

= (;^fc)(ai(^"t)<8l('2")5) + ^(S'8'(^"»» 

= ^n + 2lpiuUi + ii)uuu\ + ifruUll' 

Since crk'    is concave in FjJ", we have the inequality 

(5.4) T^ (cWVMj) > /"H^n + 2Vi««i + ^«u«? + V««ii)- 



832 Jeff A. Viaclovsky 

Prom formula (4.6), we can expand the left hand side, and evaluate at p to 
get 

^-lOWV2*)}) 

= 2^ (^/(V2^*) + 2fcii («iiii - 2^1911^ - UrdidiTlj 

+ 2ujUiii + 2uiiUji — -didigrir2uriur26ij — (uT\\uT + uT\ur\)&ij 

Prom (5.2) we can replace terms of the form u\\i and we have 

(5.5)   ^(^(VM}) 

= ^(dxdx^^u)^) +Tj>_l(uiju - 2^1^^ - n^i^r^. 

+ 2uj{diY\1ui - 2ui«it - diSn) + 2uiiUji - -didigrir2uriur2Sij 

— (ur(5rr11n; — 2uiuir — drSn) + urinri)(5y 

Substituting (5.5) in (5.4), we have 

(5.6) 

+ T^und^lj + Urd&Tlj - 2UHUJ!) 

+ 2Tl
k
j_1{-UjdiTl

11ui + 2ujuiuii + UjdiSn) 

+ Tj^^UrdrTiiUi — 2uiUrUir — UrdrSii + Urlurl)^ij 

+ iljk~l(ipii + 2ipiuui + iftuuul + ipuun). 

Next we will substitute inequality (5.6) into (5.3). Note that the fourth term 
on the right hand side of (5.6) will cancel the fourth term in (5.3). We also 
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use equation (4.7) to replace the fifth term in (5.3). We have 

0 > -Tl^d^i^uh) +Tl1(2urld1rij+urdldlT
r

ij) 

+ 27^ ( - UjdiT^ui +12ujUiuii + UjdiSnj 

+ Tl^lurdrT^Ui —   2uiUrUir   — UrdrSii + UriUri)5ij 

- Tl.didjTi.m - 2rl1dir
l
uulj 

+ 2T^1 (uiurdiTlj -1 2uiUiiUj + uiuriurSij - uidiSij) 

+ 2^"1 (^i^i +il>uu?) + T^didjSn 

Note that the boxed terms cancel. Using the bounds on lower order quan- 
tities, the above simplifies to 

(5.7) 
c + cY^iti > -^(^^''(vMii) +2^i1(uPla1rrJ.) 

i 

+ Tif-iUriUriSij + ^k~l^uUii - 2T^_1diTl
nuij. 

In this equation, and in what follows, C is a constant depending only on 
S,ip,5,5,Ci: and k. 

The next step is to rewrite the second derivative terms in terms of V2u. 
To further simplify notation, we let Uij = (W2u)ij. We have 

Uij = u^ - UiUj + (|Vu\2/2)Sij - Sij. 

Substituting this into (5.7), we obtain 

C + C ^ Tti > -Tti (didig^uu) 
i 

+ ZZJii (fin - urm + (|Vn|2/2)^i - Sri)^ 

+ (XX-i) E (^i - u^ + (|Vn|2/2)^i - 5rl)
2 

i r 

+ </>*- Vu (sn - uj + (|Vn|2/2) - Sn) 

- 2T^_1dir
l
n(ulj - muj + (|Vu|2/2)«% - Sij). 
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Next we use the fact that Uij is diagonal, and absorbing lower order terms 
we obtain 

C + Cj^^V-i + CHnY^Tti 
i i 

>-J2Tk-i(didiguuii)-2Y/Tt1dinim 
i i 

i 

We estimate the first two terms on the right hand side 

i i 

= Y^Tg^RmiUii) < C max|5tf | J2Tk-i- 
i i 

Since we are in the cone T^, the trace is positive by Proposition 1, and since 
tin is the largest eigenvalue, we have 

\tiii\ < (n- l)tiii,     i = l...n. 

Therefore we obtain 

(5.8) C + Cun + CJ£T^1 + Ciin^Tti > «?! E^-i" 

Dividing by u^ and using (4.15), we obtain 

C       C\ CO (KK\ / ( G    ,    C \ C C 

If 

C       C       1 
39- + — > -, 

then we have the necessary eigenvalue bound. So we may assume that 

C       C       1 
«!!       «11        2 

and substitution into inequality (5.9) yields 

1 ^   C       C 
2 u^     un 
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Without loss of generality we may assume that un > 1, and from the above 
inequality we obtain 

0"Jb-i < C, 

which by Proposition 7 yields the eigenvalue bound in the case k > 2. In 
the case k = 1, (5.9) already gives the eigenvalue estimate. 

6. Existence. 

We now prove Theorem 1. The main tool will be the degree theory for fully 
nonlinear second order elliptic equations as developed in [Li89]. We consider 
for t G [0,1] the family of equations 

(6.1) ta1^ + (1 - t)<7i - til>(x, u) + (1 - t)a1(S)eu, 

where we abbreviate a^   = ak'  (V
2^). Note that at t = 0, the equation is 

Au + ^^|Vu|2 + <7i(S) - a1{S)eu. 

From the maximum principle, u = 0 is the unique solution. 

Proposition 9. For any t £ [0,1]; any C2 solution u* of (6.1) with d_<u< 
5 satifies 5<u<S. 

Proof. From assumption (1.3), we have 

til>{x75) + (1 - t)a1{S)e^ < talJk{S) + (1 - t)(7i(5) 

<^(xj) + (l-t)c7i(5)e^ 

therefore the proof of Proposition 4 applies. D 

Proposition 10. Lett £ [0,1], andu1 be a solution to (6.1) with 5 < u* < 5. 
Then 

.\\Ac2<c, 
for some constant C independent oft. 

Proof. We let ft = ta]Jk + (1 - t)cri. Define 

r^t = component of {ta^   + (1 — t)Gi > 0} containing the positive cone. 
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Then all of the estimates in the previous sections hold with a^ replaced 
by /t, and F^" replaced by r^t, and it is then not difficult to see that we can 
choose C independent of £, since the C0 estimate holds uniformly. □ 

The above estimate yields uniform ellipticity, and since our equation is 
convex with respect to the second derivative variables, by the work of Evans 
[Eva82], and Krylov [Kry83] mentioned in the introduction, and standard 
elliptic theory, there exists a constant M independent of t such that 

||u*||C4,a< M. 

Define the subset Gt of C4'a by 

Ot ={£ < u1 < ~5} H {||u*||C4fa< M} 

n {vV e r+j n {t^* + (i - tfa > ts0 + (i - tfaffle?-}, 

where ^o is a constant chosen such that i/)(x, s) > 5o for 5 < s < 5. Define 
Ft : C4>a -^ C2'a by 

Ft(u) = ta]/k{V2u) + (1 - i)<7i(V2u) - tyfau) - (1 - t)al{S)eu. 

There are no solutions of the equation i^(^) = 0 on dOt, so the degree of Ft 
is well-defined and independent of t. As mentioned above, there is a unique 
solution at t = 0. Furthermore, the linearization at u = 0 is invertible. 
Therefore 

deg(Fo,C7o,0) = ±l, 

and since the degree is independent of £, we have 

deg(Fi,C7i,0) = ±l> 

and we conclude that (1.1) has a solution in Oi. 
Note that in the case ^(rr, u) = f(x)eu^ we can avoid using degree theory 

since the linearization is invertible, and the existence follows by using the 
continuity method. 

7. The negative cone equation. 

As mentioned in the introduction, the negative cone case of (1.1) is equiv- 
alent to the positive cone case of equation (1.4).  We no longer necessarily 
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have ellipticity along the straight line path for this equation (the proof of 
Proposition 3 does not work for this equation), so we just consider the equa- 
tion 

(7.1) alJk (v2u -du®du + ^^9 + s\= f{x)eu > 0. 

In this section we will show that we still have the C0 and C1 estimate 
for solutions of this equation. The proof Proposition 5 still works for this 
equation, so we have 

Proposition 11. Suppose S E C0 satisfies (1.2). Then there exist constants 
8_ < 0 < 8 depending only upon f and S, such that for any solution u(x) of 
(7.1); we have 5 < u(x) < 5. 

The C1 estimate also holds, with appropriate modifications to the proof 
of Proposition 6. 

Proposition 12. Suppose S G C1, (1.2) is satisfied, and u is a C3 solution 
of (7.1) satisfying 6_ < u(x) < S. Then there exists a constant C\ depending 
only upon 3^,5,5, and k such that 

\Vu\co < Ci. 

Proof. We consider the following function 

where 0 : R —> R is a function of the form 

The proof precedes exactly as before, but we end up with the following 
analogue of equation (4.10) 

(7.2)        _^-i(^ + ^]M) -fc^(„Mx,u)fc 

>(^»-^(u)2-^»)^ii«,-«i 
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Lemma 4. Assume that 8_ < s < 5.   Then we may choose constants ci,C2, 
andp depending only upon 5; and S. so that <j)(s) = Ci(c2 + s)p satisfies 

4>'(s) > o, 

and 

^"(s)-4>'(s)2-^(s)>0. 

Proof. This follows easily from Proposition 3. D 

With (f>(s) chosen as above, we let 

ei = minims)}, 

and 

e2 = min{^(S)-^(S)2 + </.'(S)}. 

From the inequality (7.2), we have 

C > e2Tlluiuj + Tl, Uajra^ + ei^f-Sij + if/^Stj + ^S^ . 

The proof then procedes exactly as before. D 

We note that our method above for obtaining the C2 estimate fails for 
equation (7.1), since the dominating term in the inequality (5.8) now has 
the wrong sign. 

8. Monge-Ampere equation in conformal geometry. 

In this section we restrict our attention to k = n, the determinant, and we 
consider more generally: 

(8.1) det1/71 (V2u + du®du- ^-^-g + s) = e"2", 

where S G F^ is a positive definite symmetric tensor. 
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8.1. Proof of Theorem 2. 

We begin by proving a Harnack inequality for solutions of (8.1). 

Proposition 13. Let u be a C2 solution of (8.1). //Amax(5)D2 < ^-, then 

(8.2) 2 log (cos (zVAmax(S')/2)) + sup u < inf u, 

where Amax^) denotes the maximum eigenvalue of S on N and D is the 
diameter. 

Proof In order to prove this, it is convenient to write the equation (8.1) in 
slighty different form. Writing eu = v2, with v > 0, we see that v solves the 
equation 

(8.3) det1/ri (vV2v + dv®dv- \Vv\2g + \v2s\ = V—, 

As seen in Section 2, we must have 

(8.4) vSJ2v + dv®dv- \Vv\2g + -v2S E r+, 
z 

and therefore since v > 0, 

(8.5) v2v+1-vSer+. 

Next choose p E N such that v(p) = sup v and q E N such that v(q) = iniv. 
Let 7 : [0, d(p, q)] —> iV be a unit speed minimal geodesic such that 7(0) = p 
and 7(d(p, q)) = q. Letting v denote the restriction of v to 7, we have 

v"(t) + ±sti(t)Mt))v(t)>o, 

therefore 

V"(t) + ^m^(S)v{t) > 0, 

Let M = v(p) = sup v, and a = Amax(Sf)/2. Then w(i) = Mcos(y/a • t) 
satisfies 

^'(t) + aw(t) = 0, ^(0) = M = v(0), ^'(O) = 0 = ^(0). 
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If we let h(t) = (v/w)(t): then it is easy to verify that h satisfies the in- 
equality 

h" >2v/^tan(%/a^)/i/, 

for ^JoL-t < 7r/2. Integrating this, and using the boundary condition /^(O) = 
0, we find that /&'(£) > 0 for t > 0. Since h(0) = 1, we conclude that 
v(t) > w(t) as long as 0 < ^/a • t < 7r/2. Evaluating this at the endpoint g, 
we have 

v(q) = inf v > sup v • cos(^/a • d(p, q)) > sup v • cos(y/a • D), 

that is, 

sup v < (cos(D^Xmax(S)/2))     infv, 

Which implies the stated inequality for u. □ 

Proposition 14. Let u be a solution of (8.1), then there exist constants 
8< 5 depending only upon g, S so that  sup u > 5, and  inf u < 5. 

Proof. This follows from the proof of Proposition 5, but since we have e~2u 

instead of ew, the inequalities are reversed. □ 

Combining Propositions 13 and 14, we obtain the (7° estimate: 

Theorem 3. Let u be a solution of (8.1). If 

TT2 

(8.6) Amax(S)i}2 < —, 

then there exist a constant C depending only upon g, S so that \u\ < C. 

Next, using this a priori estimate, we give a fixed point argument to 
prove the existence of a solution to 8.1. 

Lemma 5. If S e r+ satisfies (8.6), and 0 < f(x) G C00^) then the 
equation 

(8.7) det1/™ (v2u + du®du- ^Y-9 + s) = f(x)e-^ 

admits a unique solution u £ C00^) where (u) = fNu dvolg. 
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Proof. We use the continuity method. For t G [0,1] we consider the equation 

(8.8) Ftiut) = det (V2ut) - f(x)nte-n^\ 

where 

(8.9) VV = V2^ + dut ® dut - ^Y-9 + (1 - t)Xm^(S)g + tS. 

Letting ^a{N) = {u e C2>a(N) : V2ut G r+}, we know from Section 
2 that a solution necessarily lies in A^,a(JV), and we claim that the map 
Ft : A^a(N) -4 Ca(N) is locally invertible at a solution. Prom (2.7) above 
we see that the linearized operator is 

(8.10) Fl(ut)(h) = TWVVHV^/Otf + nHx)nte-n^(h), 

where gt = e~2utg. The coefficient matrix Tn_i(V27it) is positive definite, 
but there is a slight difficulty due to the fact that the linearized operator 
is not formally self-adjoint. Nevertheless, it is still invertible. This was 
proved for Monge-Ampere equations in [Del81], and the proof given there 
is applicable in this case. Local invertibility of Ft follows from the implicit 
function theorem (see [GT83]). 

Let m E C2>a{N) be a solution of (8.8). The matrix St = (1 - 
t)XmQiX(S)g + tS satifies the condition (8.6) for all t E [0,1], therefore we 
have that ut satisfies the Harnack inequality (8.2). Let q G N be a point 
where ut attains a global minimum. We have 

(8.11) det1/"^) </(</)e-K 

which implies (ut) < C. By also considering a maximum of ut, we obtain the 
estimate |(^t)| <5 C. Combining this with the Harnack inequality, we obtain 
an a priori L00 estimate on ut, independent of t. From the work in Sections 
4 and 5, and Evans-Krylov, we obtain an a priori bound on the C2'a norm 
of ut, independent of t for some a G (0,1). Standard elliptic theory gives a 
uniform bound on the C*^ norm for each k > 3. 

We consider the equation Fo(^o) = 0: 

(8.12) det1/'1 (Vuo + dun ® duo - ^^-g + Amax(5)^ = e-^. 

Let ^o be any solution to (8.12). As before, by going to a maximum and 
minimum of UQ, we find that e~^0^ = Amax(5

f). Then from the arithmetic- 
geometric inequality, we have 

Amax(5) = e-M < -Ano + ^|VUo|2 + Amax(5). 
n In 
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We conclude that A^o > 0, which implies UQ = constant. The existence of 
a solution at t = 1 now follows from the continuity method. 

It remains to prove the uniqueness at t = 1. To see this, if we have 2 
distinct solutions ui and vi at t — 1, we may run the continuity method 
in reverse. From uniqueness at t = 0, the paths we obtain must hit at 
some time to £ [0,1). But since the linearization is invertible at to, this 
contradicts local invertibility. □ 

Theorem 4. If Ag e r+ satisfies Xma,x(Ag)D2 < ^ then the equation 

(8.13) det1/71 (v2u + du®du- ^-9 + Ag) = e 

admits a solution u E C00(N). 

Proof. We will employ a fixed point argument using the existence and unique- 
ness of solutions to (8.7) in Lemma 5. For t G [0,1], a G (0,1), and 
u E C2>a{N), let ut = H(u,t) denote the unique solution in C2>a(N) of 
the equation: 

VV + dut ® dut - 
l-^-9 + tAg + (1 - t)Xm^(Ag)gJ 

_ e-2tue-(ut) 

It is easy to show that for each u G C2'a(7V), the mapping H(u,t) : [0,1] —>- 
C2,a(N) is uniformly continuous in t, and we also claim that for each t G 
[0,1], H(u,t) : C2^{N) -+ C2'a(A0 is a compact operator. For a bounded 
subset of C2>a(N), the right hand side is bounded in C2>a(N). From the 
proof of Lemma 5, solutions are bounded in C3>a(N). Since C3,a C C2,a is 
a compact embedding, the claim follows. 

We next show that for all t G [0,1], solutions of the equation u = H(u, t) 
satisfy an a priori bound ||^||c2.a(7V) < C. As in the proof of Lemma 5, we 
need only obtain an L00 estimate. 

To this end, let ut G C2>a(N) be a fixed point H(ut:t) = ut, and q G N 
be a point where ut attains a global minimum. Then we have at g, 

det^n(Ag(q)) < e-^e-2tu^\ 

which implies 

(8.15) Ci < -(ut)-2tmiuu 
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for some constant Ci, and we obtain the estimate 

(Vro/(iV) + 2t)inf^<Ci. 

Similary by considering a maximum of ut we obtain 

{Vol{N) + 2t)suput>C2, 

for some constant C2. These estimates, coupled with the Harnack inequality 
in Proposition 8.2, imply the desired uniform L00 estimate. 

As already seen in the proof of Lemma 5, we have that H(u, 0) = C for 
all u G C2,a, where C is some constant. We may then apply a fixed point 
theorem of Berger [Ber77, Theorem 5.4.14, p. 270]: 

Proposition 15. Let H{x,t) be a one-parameter family of compact oper- 
ators defined on a Banach space X for t G [0,1], with H(x,t) uniformly 
continuous in t for fixed x G X. Furthermore, suppose that every solu- 
tion of x = H(x,t) for some t G [0,1], is contained in the fixed open ball 
a = {^Hl^ll < M}. Then, assuming H(x,0) = 0, the compact operator 
H(xi 1) has a fixed point x G S. 

Letting X = C2'Q(iV), we find a fixed point u G C2'Q(iV) at t = 1. 
Standard regularity theory then implies that u G C00(N). Adding a constant 
if necessary, we obtain a solution to (8.13). □ 

2 
To finish the proof of Theorem 2, if a([g]) < ^ then there exists a 

metric g G [g] with Amax(A^)jD2 < z^-. The existence of a conformal metric 
g with det(Ag) — 1 follows from Theorem 4, and the compactness of the 
space of such solutions was also demonstrated in the proof of Theorem 4. 

8.2. Examples. 

In this section we examine some simple cases, and we refer the reader to 
[Pet98] for details. 

•   (S'n, g = round metric) : Ric = (n — l)g, D = TT, and 

AmaxtA^2 = 7r2/2. 

2 
If a(Sn

1g) < z^-, then Theorem 2 would imply that the space of solutions 
of (1.8) is compact. But compactness cannot hold in this case since Sn 

has a non-compact group of conformal transformations, and the orbit of 
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the standard metric gives rise to a non-compact family of solutions of (1.8). 
Therefore a{Sn, g) = ^-. 

• (RPn, g = standard metric) : Ric — (n — l)g: D = 7r/2, and 

Amax(^)^2 = 7r2/8 < 7r2/2. 

Prom [ViaOOb], we know that the standard metric on RPn is the unique 
solution in its conformal class of (1.8), but this shows that conformal classes 
on RPn in a large neighborhood of the standard metric have compactness. 

• (CPm, g = Fubini-Study) : Ric = (2m + 2)g, D = 7r/2, and 

\        (A   Ml*-   m + 1  ** ^,r2/9 Amax{Ag)V   - 2m_1Y < * I2' 

In this case, we do not know if the Fubini-Study metric is the unique solution 
in its conformal class to (1.8) since it is not locally conformally flat, but the 
above shows that the space of solutions is compact, and also for conformal 
classes on CPm in a large neighborhood of Fubini-Study. 
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