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Harmonic morphisms are smooth maps between Riemannian man- 
ifolds which preserve Laplace's equation. They are characterised as 
harmonic maps which are horizontally weakly conformal [14, 20]. 
R.L. Bryant [7] proved that there are precisely two types of har- 
monic morphisms with one-dimensional fibres which can be defined 
on a constant curvature space of dimension at least four. Here 
we prove that, on an Einstein four-manifold, there are precisely 
three types of harmonic morphisms with one-dimensional fibres, 
the third type being new. 
We have the following applications:   let (M4,^) and (iV3,/i) be 
complete Einstein manifolds; then we list all the harmonic mor- 
phisms from (M4,*?) onto (N3,h) when: 
• M4 and TV3 are simply-connected (Theorem 4.1, Theorem 4.8); 
• M4 is compact (Theorem 4.11). 

Introduction. 

It is useful to place the study of harmonic morphisms into the context of 
conformal foliations. The idea is due to J.C. Wood [34] (also, see [4] for a 
significant application of it). Say that a foliation produces harmonic mor- 
phisms if its leaves can be locally defined as fibres of harmonic morphisms. 
Then harmonic morphisms can be described and classified in terms of the 
geometrical properties of the foliations formed by their fibres. For example, 
on a Riemannian manifold of dimension at least four and with constant cur- 
vature there are just two types of one-dimensional foliations which produce 
harmonic morphisms (a result essentially due to R.L. Bryant [7]): 

(i) Riemannian foliations locally generated by Killing fields and 

1The author gratefully acknowledges the support of the O.R.S. Scheme Awards, 
the School of Mathematics of the University of Leeds, the Tetley and Lupton Schol- 
arships and the Edward Boyle Bursary. 

779 



780 Radu Pantilie 

(ii) homothetic foliations with geodesic leaves and integrable orthogonal 
complement. The type (i) is due to R.L. Bryant whilst type (ii) is due 
to P. Baird and J. Eells [3] (cf. [34]). 

In [29] it is proved that the alternative (i) or (ii) still holds for one- 
dimensional foliations which produce harmonic morphisms and have inte- 
grable orthogonal complement on Einstein manifolds of dimension at least 
four. One of the consequences of the main result of Section 1 below is 
that the integrability assumption cannot be removed, at least in dimension 
four. More precisely, in Theorem 1.8 we prove that on a four-dimensional 
Einstein manifold any one-dimensional foliation which produces harmonic 
morphisms is of one of the types (i), (ii) or (iii) where (i) and (ii) are as 
above and (iii) is as follows: (M4,g) is Ricci-flat and, up to homotheties, 
any harmonic morphism </? : {U,g\u) —> {N^ih), with dilation A, produced 
by V such that V\u and TV3 are orientable is (locally) described by: 

(a) (iV3,/i) has constant sectional curvature equal to one; 

(b) ^d (A-2) is a (flat) principal connection for V with respect to suitably 
chosen V G r(V) such that g(y, V) = A2; 

(c) the local connection form A of % with respect to ^d (A-2) satisfies the 
equation &A + 2*A = 0 on (iV3,/i) where * is the Hodge star-operator 
of (TV3, h) with respect to some orientation of iV3. 

The construction of the metric g in type (iii) above appears to be in the 
spirit of work of RE. Jones and K.P. Tod (see [9]). 

Examples of harmonic morphisms of type (iii) are given in Section 2. 
There we prove that these are always submersive (Proposition 2.1). Also, 
we show that any surjective harmonic morphism of type (iii) with connected 
fibres and complete codomain is, up to homotheties and Riemannian cover- 
ings, the restriction of the radial projection (M4 \ {0},^a) —>> Ss where ga is 
the Eguchi-Hanson II metric [12] (go is induced by the canonical metric on 
E4 and note that it is well-known that cpo is a harmonic morphism of type 
(ii)). In particular, there exists no surjective harmonic morphism of type 
(iii) with connected fibres whose domain and codomain are both complete. 

A first set of applications of Theorem 1.8 is given in Section 3. For 
example we have: if cp : (M4,g) —> (iV3,/i) is a nonconstant harmonic 
morphism between compact Einstein manifolds of dimension four and three, 
respectively, then (MA,g) and (N3,h) are flat and, up to homotheties and 
Riemannian coverings, (p is the canonical projection between flat tori T  -> 
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T3. This is proved in Theorem 3.8 for submersive harmonic morphisms and 
Theorem 4.11, in general. 

In Section 4 we study surjective harmonic morphisms <p : (M4,^) -> 
(iV3, h) (the necessity of surjectivity was pointed out by J.C. Wood) between 
complete Einstein manifolds of dimension four and three, respectively. If M4 

and iV3 are simply-connected we prove the following: 

• If ip is submersive then, up to homotheties, it is one of the following 
projections E4 -> M3, H4 -> E3, H4 -> H3 induced by the following 
canonical warped-product decompositions E4 = E1 x E3, H4 = Hl xr 

E3, H4 = H1 xs H
3 where Hk is the hyperbolic space of dimension k 

(Theorem 4.1). 

• If <p has exactly one critical point then there exists a > 0 such that, up 
to homotheties, ip : (E4, ga) —)> (E3, ho) is the Hopf polynomial with ga 

the Hawking Taub-NUT metric (a > 0) and go? ^o the canonical met- 
rics on E4, E3, respectively (Theorem 4.10). Moreover, we show how 
the Hopf polynomial in the last mentioned result can be generalised 
such that to allow any number of critical points (Theorem 4.8). 

In the Appendix we prove a result needed in the proof of Theorem 4.1; 
there we also give constructions of harmonic morphisms of type (i) or (ii) 
defined on Einstein manifolds not of constant curvature and which have 
integrable horizontal distribution - thus answering to a question raised by 
S. Gudmundsson. 

I am deeply indebted to J.C. Wood for thoughtful guidance. 

1. Foliations of dimension one which produce harmonic 
morphisms on four-dimensional Einstein manifolds. 

Foliations whose leaves are locally fibres of (submersive) harmonic mor- 
phisms were introduced in [34]. We introduced the following terminology in 
[29]. 

Definition 1.1. Let (M,g) be a (connected) Riemannian manifold and let 
V be (the tangent bundle of) a foliation on it. 

We say that V produces harmonic morphisms on (M, g) if each point 
of M has an open neighbourhood U which is the domain of a submersive 
harmonic morphism ip : ([/, g\u) —)• (N,h) whose fibres are open subsets of 
the leaves of V. We call <p a harmonic morphism produced by V. 
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Since any harmonic morphism is horizontally weakly conformal, any foli- 
ation which produces harmonic morphisms is a conformal foliation [34]. We 
recall the following definition [29]. 

Definition 1.2. Let V be a distribution on the Riemannian manifold 
(M,g). We shall say that V is homothetic if it is conformal and the mean 
curvature form of its orthogonal complement is closed. 

Homothetic foliations are characterised by the property that their leaves 
are locally fibres of horizontally homothetic submersions, and that a foliation 
of codimension not equal to two which has minimal leaves produces harmonic 
morphisms if and only if it is a homothetic foliation [29]. 

To state the main result of this section we also need a definition which is 
a trivial generalization to foliations of the well-known concept of principal 
connection on a principal bundle. For simplicity, we give this definition just 
for one-dimensional foliations. 

Definition 1.3. Let V be a one-dimensional foliation and let V G r(V) be 
a nowhere zero vector field tangent to V. 

A principal connection for V (with respect to V) is a complementary 
distribution U C TM, H © V = TM such that V is an infinitesimal auto- 
morphism of H (i.e., H is invariant under the local flow of V). 

The connection form 9 of W. is the 'vertical' dual of V (i.e., 9(V) = 1 
and 0|ft = 0) and the curvature form of H is fi = d6. Note that Q is 
basic and it can be interpreted as the integrability tensor of Ti (indeed 
n(X,Y)V = -V([X,Y]) for any horizontal vector fields X and Y). 

It is obvious that a one form 9 defines a principal connection for (the 
one-dimensional foliation) V with respect to V if and only if 9(V) = 1 and 
Cv9 = 0. 

Example 1.4. Let V be an orientable one-dimensional geodesic foliation 
on (M,g). Then %(= V1-) is a principal connection for V with respect to 
U e r(V) where g(U, U) = 1. The connection form is U'K 

An orientable one-dimensional foliation V on M admits a principal con- 
nection if and only if it is geodesible (i.e., there exists a Riemannian metric 
h on M such that the leaves of V are geodesies on (M, h)). Indeed, given 
the principal connection H (with respect to some V G r(V)) if we choose 
any metric h such that h(V,V) = 1 and h(V,X) = 0 for X G H then the 
leaves of V are geodesies of (M, h). Also the set of principal connections of 
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V (if nonempty) with respect to a given nowhere zero vector field V G r(V) 
is an affine space over the linear space of basic one-forms: if 9j, j = 1, 2 
are connection forms then 9i — 02 is locally the pull back by cp : U —» N 

of a one-form A £ r(T*7V) where U is an open subset of M and the fibres 
of (p are open subsets of leaves of V. Fix V G r(V). Then in a neighbour- 
hood of each point of AT a local section s of (p can be found which, in a 
neighbourhood of its image, defines a principal connection 9S which is flat 
(i.e., d9s = 0). If 9 defines a principal connection then the one-form A such 
that 9 = 9S + ip*(A) is the local connection form of 9 with respect to s. 
Because V is one-dimensional we can define the local connection form of a 
principal connection with respect to a (local) flat principal connection by 
using any parallel section of the flat connection. Also note that the exis- 
tence of a global flat principal connection impose severe restrictions to the 
topology of the foliation and of the manifold. For example, as is well known, 
if the leaves of V are the fibres of a principal bundle £ = (M, JV, S'1) over the 
simply-conected N and £ admits a flat principal connection then £ is trivial 
and, in particular, M and N x S1 are diffeomorphic. 

The orthogonal complement of a one-dimensional foliation which pro- 
duces harmonic morphisms is a principal connection of it. To show this we 
first recall the following [29]: 

Definition 1.5. 

1) Let V be a conformal foliation on the Riemannian manifold (M,g). 

A smooth positive function A : U -> M on an open subset U of M 

will be called a local dilation of V if V\u is a Riemannian foliation on 
([/, A2 g\u)' lfU = M then A is called a (global) dilation of V. 

2) Let V be a foliation which produces harmonic morphisms on the Rie- 
mannian manifold (M,g). Let A be a local dilation of V which re- 
stricts to give dilations of harmonic morphisms produced by V. Then 
p = A2~n is called a local density of V. If A is globally defined on M 
then p is called a (global) density. 

The terminology of Definition 1.5(2) is motivated by the following fact. 

Remark 1.6. Let V be a foliation which produces harmonic morphisms on 

(M, g). Let a; be a local volume form for V and H = V1-. A positive smooth 

function p is a local density for V if and only if p^rr is a iocai dilation of V 

and poo is invariant under the parallel displacement determined by H [29]. 
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Proposition 1.7. Let V be a one-dimensional foliation which produces har- 
monic morphisms on (Mn+1,g) where dimM = n + 1. Let p = gC2-71)0" be 
a local density of V. Supposing that V restricted to the domain of a is ori- 
entable let V E r(V) be such that g{V,V) = e^n-^(T(= p'2). 

Then the horizontal distribution /H(= V  ) is a principal connection for 
V with respect to V. 

Proof From [29, Lemma 2.1] (or Remark 1.6) it follows that [V,X] = 0 for 
any basic vector field X € T(K). □ 

We now state the main result of this section. 

Theorem 1.8. Let (M4,#) be an Einstein manifold of dimension four 
and V a one-dimensional foliation which produces harmonic morphisms on 
(M4,g). 

Then, one of the following assertions holds: 

(i) V is Riemannian and locally generated by Killing fields; 

(ii) V is a homothetic foliation by geodesies with integrable orthogonal com- 
plement; 

(hi) (M4,g) is Ricci-flat and, up to homotheties, any harmonic morphism 
(p : ([/,g\u) —t (-ZV3,/i); with dilation A; produced by V such that V\u 
and N3 are orientable is {locally) described as follows: 

(a) (iV3,/i) has constant sectional curvature kN = 1, 

(b) ^d (A-2) is a (flat) principal connection for V with respect to 
suitably chosen V G r(V) such that g(V, V) = A2, 

(c) the local connection form AofH with respect to ^d (A-2) satisfies 
the equation dA + 2*^4 = 0 on (N3,h) where * is the Hodge star- 
operator of (iV3,/i) with respect to some orientation of N3. 

Moreover, only (i) and (ii) or (ii) and (hi) can occur simultaneously, in which 
case (M4,^) must be Ricci-flat. 

From Theorem 1.8 we obtain the following. 

Corollary 1.9. Let (M4,g) be an orientable Einstein manifold of dimen- 
sion four, and (N3,h) an orientable Riemannian manifold of dimension 
three. 



Harmonic morphisms with 1-dimensional fibres 785 

Let cp : (M4,^) -» (iV"3,/i) be a submersive harmonic morphism; denote 
its dilation by A and let V G r(V) be such that g(V, V) = A2. 

Then, one of the following assertions (i); (ii); (iii) holds: 

(i) V is a Killing field; 

(ii) cp is horizontally homothetic and has geodesic fibres orthogonal to an 
umbilical foliation by hyper surf aces; 

(iii)    (a)  (M4,^) is Ricci-flat and (iV3,/i) has constant sectional curvature 
kN = £(c>0), 

(b) ^d(A""2) is a (flat) principal connection for kev (p* with respect to 
v, 

(c) any local connection form A of (ker y?*)"1 with respect to ^d (A-2) 
satisfies dA + c * A = 0 on (7V3,/i) where * is the Hodge star- 
operator of (iV3,/i) defined by some orientation of N3. 

Remark 1.10. 

1) If M4 is not orientable then we can replace (M4, g) by a Riemannian 
double covering (M4,^) such that M4 is orientable. Then we replace 

ip by (p = ip o £ where £ : (M4,^) —> (M4,^) is the projection of the 
covering. 

2) If N3 is not orientable we can pull-back cp to a Riemannian double- 

covering (N3,h) of (AT3,/}) such that AT3 is orientable. 

Before proving Theorem 1.8 we need some further preparations. 
Let V be a one-dimensional foliation which produces harmonic mor- 

phisms on a Riemannian manifold (M4,^), dimM = 4 and let p = e-*7 

be a positive smooth function.  We define the Riemannian metric h on M 
by 

h = e* gu + e-2* gv 

where g^ and gv are the horizontal and the vertical part of 5, respectively. 
Then from [29, Proposition 1.8] (cf. [27], [28]) it follows that V produces 
harmonic on (M, h) aswell. Furthermore if p = e-0" is a (local) density of V 
then V is Riemannian and has geodesic leaves with respect to h. 

Assuming that V restricted to the domain O of the local density p is 
orientable let V E r(V|o} be such that g(V, V) = p~~2. Then, by Proposition 
1.7, H is a principal connection for V, with respect to V. We shall always 
denote by Q the curvature form ofH. 
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Next we relate the Ricci tensors MRicci and ^Ricci of (M4,^) and 
(iV3,/i), respectively, where (N3,h) is the codomain of a harmonic mor- 
phism produced by V. 

Lemma 1.11. Let O be an open subset o/M4 and let (p : (O^glo) —> (N:h) 
be a harmonic morphism produced by V.  Then, 

MRicci (X, y) = NRicci (<p*X, tp+Y) - ^ eA(T h{ixto, iy«) 

- e-2(T AMa h(X,Y) - 2X{a)Y(a), 

MRicci (X, V) = ± e^ (M*fi)(X) + 2e4^ ft(X, grad/.a) 

+ 2X{V((J))-2X{(J)V(G)I 

(1.3) MRicci(V; V) = e2<7AMa + ^e8<7|fi|J + 4y(y(a)) - 10y(a)2 

for any horizontal vectors X, Y, where e* is the dilation of tp, AM is the 
Laplacian on (M,g) and M* denotes the codifferential on (M,h). 

Proof These equations follow, respectively, from (5.3), (5.4) and (4.4) of [29]. 
□ 

The following proposition which will be used later on holds for manifolds 
of any dimension. 

Proposition 1.12. Let (M,g) be an Einstein manifold and V a one- 
dimensional foliation of codimension not equal to two which produces har- 
monic morphisms on (M,g). 

Then the following assertions are equivalent: 

(i) V has basic mean curvature form; 

(ii) V is a homothetic foliation. 

Proof This follows from [29, Proposition 5.13]. □ 

Theorem 1.8 extends the result of [7] for the dimension considered. 
We recall the following result of [29]. 
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Theorem 1.13. Let (M,g) be an Einstein manifold of dimension at least 
four endowed with a one-dimensional foliation V. Suppose that either V has 
integrable orthogonal complement or V is homothetic. 

Then V produces harmonic morphisms if and only if either 

(i) V is Riemannian and locally generated by Killing fields or 

(ii) V is homothetic, has geodesic leaves and integrable orthogonal comple- 
ment. 

Moreover, if both (i) and (ii) hold then (M, g) is Ricci-flat. 

Proof of Theorem 1.8. By passing to a two-fold covering, if necessary, we 
can suppose that V is oriented. Also, by passing to a regular covering, if 
necessary, we can suppose that V admits a global density p = e~(T [30]. Thus 
there exists V e T(V) such that g(V, V) = e2(J. 

If ft = 0 then we are done by Theorem 1.13. So suppose that ft ^ 0. 
Then, since ft is basic, we can choose a local orthonormal frame {X, Y, Z} 
of H with respect to h, made up of basic fields and such that 

izft = 0    and   Sl(X,Y)^0. 

Then it is easy to see that 

(1.4) h(ixto, iyty = hiiyft, izn) = h(izft, ixft) = 0, 

(1.5) h(ixft, ixft) = /i(iy£2, iyft) = Q(X, Y)2. 

Now recall that (M4,^) is Einstein and thus MRicci = cM g for some 
real number cM G. M. Hence from (1.1) and (1.4) it follows that 

X(a)Y(a), Y(a)Z(a), Z(a)X(a) 

are basic functions. Also, because MRicci(X,X) = MRicci(Y, Y) from 
(1.1) and (1.5), it follows that X(a)2 — Y(a)2 is a basic function. Hence 
X(cr),y(cr) are basic functions and, moreover, outside the set 

S = {x e M\XX((T) =YX(<J) =0}, 

we have that Z(a) is also basic. It follows that, at least, outside the interior 
of S, the foliation V is homothetic by Proposition 1.12. From Theorem 1.13 
we obtain that the alternative (i) or (ii) of Theorem 1.8 holds locally at 
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least on M \ S (just locally because M\S might be disconnected). If also 
Z(a) = 0 on 5" then we are done because then V is homothetic on M and 
we can again apply Theorem 1.13. 

o 

Prom now on in this proof we shall work on 5 fl { x G M \ Zx (a) / 0 }. 
There we can write [X,Y](<T) = X(Y(a)) - Y(X(a)) = 0 and hence 

-V[X,Y]((T)=H[X,Y]{<T) 

<^ il(X, Y) V(a) = h{H[X, Y], grad ha). 

Since we are in the interior of S the last equality is equivalent to 

(1.6) n(X,Y)V((T) = Z(<T)h([X,Y],Z). 

Next we compute (hd*Cl)(Z) (note that by (1.2) the other components 
of H*(hd*Q,) are zero): 

(hd*n)(z) = -(Vxn)(x,z) - (Vyft)(y,z) 

-(Vzfi)(z,z)-(Vvfi)(v;z). 

h 
Because izQ = 0 we have (VztyiZ, Z) = 0 and because O is basic and V is 

h 
geodesic with respect to h we have (V\/0)(F, Z) = 0. Also 

(VxO)(x, z) = x(n(x, z)) - n(vxx, z) - n(x, vxz) 

= -n(x,VxZ). 

h h 
Since h{VxZ,Y) = -h(Z,VxY) we have 

{Vxa){X,Z)=Sl{X,Y)h{Z,VxY). 

h h 
Similarly (Vyfi)(Y, Z) = Sl(y,X) h(Z, VyX) and we obtain that 

(hd*n)(Z) = - Q(X, Y) h(Z, VXY) - n(Y, X) h(Z, VyX) 

= -n{X,Y) {h{Z,VxY) - h{Z,VYX)}. 

We have proved that 

(1.7) (M*fi)(Z) = -n{X,Y)h{Z,[X,Y\). 
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Now by (1.2) (with X replaced by Z) we have 

(1.8) \ e4"(/ld*0)(Z) + 2 Z{V{a)) - 2 Z{a) V{a) = 0. 

Prom (1.7) and (1.8) it follows that on S n { x £ M \ Zx(a) ^ 0 } we have 

- 1 e^ n(X, Y) h(Z, [X, Y}) + 2 Z(V(a)) - 2 Z(a) V(a) = 0 
Zi 

which together with (1.6) gives 

(1.9) - \ eA° ^4 n(X, Yf + 2 Z(y(a)) - 2 Z(a) F(a) = 0. 

Because MRicci(X,X) = MRicci(Z,Z) from relation (1.1) we ob- 
tain that the function - \ e4a h{ix&, ixQ) + 2 Z(o-)2 is basic, equivalently, 
- i e4<T 0(X, y)2 + 2 Z(CT)

2
 is basic. This implies that 

(1.10) e4CT F(a) fi(X, Y)2 = 2 7(Z(a)) Z(a). 

From (1.9) and (1.10) it follows that 

(1.11) V{Z{a)) = 2V{a)Z{a) 

which is equivalent to the fact that e"2" Z(a) is basic. Hence Z(V(e~2'7)) = 
V(Z{e-2c)) = 0. This implies that, if V(e-2(7) is nonconstant, then its level 
hypersurfaces are horizontal and hence H is integrable; then the proof follows 
from Theorem 1.13. There remains to be considered the case when V(e~2'T) 
is a constant, say c € R. By replacing, if necessary, V with -V we can 
assume that c > 0. Since V(e-2cT) is basic, y(y(e-2<7)) = 0, equivalently, 

(1.12) V(V{a)) = 2V(a)2. 

From (1.8) and (1.11) it follows that 

(1.13) (hd*n)(Z) = -4e-4<T Z(<T)V{<T). 

Prom (1.10) and (1.11) it follows that either 

(a)V{a)=0   or    (6) n(X,Y)2 = Ae'4* Z(a)2 

which, after replacing, if necessary, one of the vector fields X, Y or Z with 
its negative, is equivalent to 

(1.14) a{X,Y) = Z(e-2a). 
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In case (a), V is Riemannian and the proof follows from Theorem 1.13. So 
suppose from now on that (1.14) holds. 

By (1.11) the horizontal component of d(e""2ff) is basic and thus we can 
locally write 

(1.15) ^*(d(e-2(7))-^*(5) 

where ip is as in Lemma 1.11 and B is a one-form on N. Hence (^*(di?) + 
cd0 = 0 where 6 is, as before, the vertical dual of V. But Q, is also basic 
and hence fi = (p*(F) for some two-form F on N. It follows that 

(1.16) dB = -cF. 

Because _V is Riemannian and has geodesic leaves with respect to h we have 
that <p*(\r.F) = «*(M*ft) where %* is the codifferential on (N,h). 

Now (1.13) can be written: 

(1.17) ~hd*F = -cB. 

Also (1.14) can be written: 

(1.18) F = *B    (equivalents, *F = B) 

where * is the Hodge star-operator (locally) induced on (iV, h) by the (local) 
orientation corresponding to {(/^X, <p*Y, (p*Z}. 

From (1.1) it easily follows that 

%icci (<£*X, ip*Y) = NRicd (cp^Y, <p*Z) = ^Ricci (^Z, y+X) = 0, 

^Ricci (^-X", ^*X) = ^Ricci (^* Y", ¥?* F). 

Also by (1.1), ^Ricci(^X,^X) = ^licci(y?*Z,^*Z) if and only if (1.14) 
holds after replacing, if necessary, one of the vector fields X, Y or Z with 
its negative. Thus (Ns,h) is Einstein and, because it is three-dimensional, 
it is of constant sectional curvature kN. Then ^Ricci = 2kN h. 

Now from (1.3) we obtain 

e2a CM = e2a ^M(J + 1 ^ JJ^ y)2 + 4 y(y^)) _ IQ F(a)2 

which together with (1.12) gives 

(1.19) e-2<T cM = e-2a AMa + - ei(J n(X, Y)2 - 2 e'^ V(a)2. 
Zi 
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It is easy to see by using (1.14) that (1.19) implies 

(1.20) I AM{e-2(T) + e-2(T cM + c2 = 0. 

Also by (1.1) we have 

(1.21) e-2<T cM = NRicd (<p*X, tptX) - j- e4<7 Sl{X, Y)2 - e-20" AMa. 

Prom formulae (1.19) and (1.21) it follows that 

^Ricci (<p*X, ip*X) = e-2a cM + ]- e4<7 to{X, Y)2 + e-2<7 AMa 

= e-2a CM + (g-20- CM + 2 e-4CT F((7)2) 

and thus 

(1.22) NKicci{tp*X,ip*X) = 2e-2(TcM + 2e-AaV(a)2. 

Now recall that (AT, h) is of constant sectional curvature kN and thus 
(1.22) is equivalent to 

(1.23) kN = e-2(TcM + e-A(TV(a)2. 

Now recall that V(e~2(7) = c = constant and thus (1.23) reads 

(1.24) kN = e-2a(M+C 

Now, if V is not Riemannian (i.e., c > 0), then e 2<J cannot be con- 

4 stant, and hence cM = 0 and kN = T- > 0.   Then, after a homothetic 
transformation, if necessary, we can suppose that kN — 1 and hence c = 2. 
Then ^(e""20") is a flat principal connection for V with respect to V. Put 
A = —5B. From equation (1.15) and the fact that V^e-20") = 2 and it 
follows that 

e=1-&{e-2°) + v*{A) 

and hence A is a local connection form of 6 with respect to ^d(e_2<J). Also 
dA = F and this together with (1.18) implies that 

(1.25) dA + 2*A = 0. 
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We have proved that, at each point of M, one of the situations (i), (ii) 
or (iii) occurs. 

Now by (1.20) it is obvious that there cannot exist any point where both 
(i) and (iii) occur. 

Suppose that in an open connected subset O C M which is the domain 
of the harmonic morphism </? : {0,g\o) —> {N,h) both situations (ii) and 
(iii) occurs.   Then on the image (by <p) of the set where (iii) occurs from 
(1.25) it follows that 

(1.26) AA = 4A 

But, on the image of the interior of the set where (ii) holds, the equation 
(1.26) is trivially satisfied. Thus (1.26) is satisfied on JV; this is an ana- 
lytic manifold because (TV, h) has constant curvature. By the regularity of 
solutions for elliptic operators (see [6, p. 467]) we have that A is analytic 
and hence, if O contains interior points of the set where (ii) occurs, we have 
that A = 0 on iV. Hence if the set where (iii) occurs is nonempty and also 
the interior of the set where (ii) occurs is nonempty then the set where (iii) 
occurs is contained by the set of points where (ii) occurs. 

Since by Theorem 1.13 on each connected component of the complement 
of the set where (iii) occurs the alternative (i) or (ii) holds globally the 
theorem is proved. □ 

Remark 1.14. 

1) Note that if A satifies (1.25) then F = dA satifies 

M*^ + 2*^ = 0. 

2) The codomain of a harmonic morphism of type (iii) of Theorem 1.8 
always has constant positive sectional curvature. In the limit, when 
this tends to zero, we obtain a harmonic morphism of type (i). This 
follows from (1.24). 

3) Harmonic morphisms of type (iii) are also of type (ii) if and only if 
A = 0. 

4) The result of Theorem 1.8 shows that, on an Einstein manifold of 
dimension four, the nonlinear system of partial differential equations 
whose solutions are harmonic morphisms with fibres of dimension one 
can be reduced to one of three types of systems of linear partial differ- 
ential equations of the first order. For type (i) this is Killing's equation, 
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and for type (iii) it is (1.25). Finally, the one-dimensional foliation V 
on (M: g) is of type (ii) if and only if it is locally generated by vector 
fields W G r(V) which satisfies 4VVF = divWId^M where V is the 
Levi-Civita connection of (M,g) (see [30, Lemma 6.5]). 

See [35] for other situations in which the nonlinear system of partial 
differential equatons whose solutions are harmonic morphisms can be 
reduced to a linear system of partial differential equations of the first 
order. 

2. The third type. 

We shall say that a harmonic morphism </? : (M4,^) —> (iV3,^) is of type 
(iii) ((i), (ii)) if its regular fibres form a foliation of type (iii) ((i), (ii)) of 
Theorem 1.8. In this section the harmonic morphisms of type (iii) will be 
the main object of study. 

The first thing to be noticed about the harmonic morphisms of type (iii) 
is that they are always submersive. 

Proposition 2.1. Let tp : (M4,^) -» (N3,h) be a harmonic morphism of 
type (iii). 

Then (p is submersive. 

Proof. By passing, if necessary, to a two-fold covering, we can suppose that 
the vertical distribution V (which is well-defined outside the set of critical 
points) is orientable. Then, as before, let V G r(V) be such that g(V^ V) = 
A2 where A is the dilation of ip. Since, up to a multiplicative constant, 
d(A-2) is a (flat) principal connection with respect to V, F(A_2) is a nonzero 
constant. This implies that the connected components of any regular fibre 
of cp are noncompact. 

Suppose that cp is not submersive and let XQ G M be a critical point 
of it. Recall that, by a result of P. Baird [2, Proposition 5.1], the set of 
critical points of (p must be discrete. Then from the main result of [10] it 
follows that cp is topologically locally equivalent at XQ to the cone of the 
Hopf fibration S3 -» S2. Hence, in a neighbourhood of XQ, the connected 
components of the regular fibres of cp are diffeomorphic to Sl. But we have 
seen that all the regular fibres of cp have noncompact connected components 
and hence tp cannot have critical points. □ 

Remark 2.2. Let ip : (M4,g) —> (7V3,/i) be a harmonic morphism of type 
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(iii) with connected fibres; denote its dilation by A. Then ?/*(d(A~2)) is a 
basic one-form and let A G r(T*iV) be such that -i^*(d(A-2)) = (p*(A). 
Because (N3,h) is of constant curvature it is an analytic manifold. But A 
satisfies (1.26) and hence it is analytic. Using this fact it is easy to see that if 
iV3 is orient able then there exists an orientation of it such that dA+2*A = 0 
on AT3. 

From the proof of Theorem 1.8 it follows that any harmonic morphism 
of type (iii) is locally determined by the local connection form A. This is 
also illustrated by the following example. 

Example 2.3. Let h be the canonical metric on the three-dimensional 
sphere S3. Let A = i:¥(-x2dx1 + x1dx2-x4dx3 + x3dx4) where i : S^M-M4 

is the canonical inclusion. 
Let * be the Hodge star-operator on (S3,h) considered with the usual 

orientation of 53. Then 
d^ - 2 * A = 0. 

To show this, first note that A is the canonical connection (form) on the 
Hopf bundle (S3

:S
2
: S

1). Also |^L| = 1 and thus it suffices to verify that 
A A dA = 2vS3 where vS3 is the usual volume form on S'3. 

For a E R let ga be the Riemannian metric on M4 \{0} = (0, oo) x S3 

defined by 
ga = p2h + p-2{pdp + aA)2. 

Then for any a ^ 0 the canonical projection ipa : (R4 \{0}, ga) —> {S3, h) 
is a harmonic morphism of type (iii) whilst go is the restriction to M4 \{0} 
of the canonical metric on R4 and thus ^o : ^4 \{0} -+ S3 is the usual radial 
projection which is of type (ii). 

Note that (R4 \{0},3a) is the Eguchi-Hanson II metric [12] and thus is 
Ricci-flat and anti-self-dual. 

Let il)a = TT o ipa where TT : S3 -> S'2 is the Hopf fibration. Then ^a is a 
harmonic morphism with totally geodesic fibres. Any fibre of it is isometric 
with (R2 \{0},7a) where 70, in polar coordinates {p,6), is given by 

la = p2d02 + p-2(pdp + ad0)2. 

It is easy to see that any point of R2 \{0} is at finite distance from 0 with 
respect to 7a. Hence (R2 \{0},7a) is not complete. Because the fibres of 
V^a are closed and totally geodesic we obtain that ga is not complete for any 
aeR. 
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We shall prove that the ipa of Example 2.3 are, essentially, the only sur- 
jective harmonic morphisms of type (iii) with connected fibres and complete 
simply-connected codomain. For this we need the following: 

Proposition 2.4. Let 53(= Sp(l)) be the three-dimensional sphere con- 
sidered with its canonical metric and orientation and let * be the Hodge 
star-operator on it. 

(i)   The space of solutions of the equation 

(2.1) dA + 2*A = 0,    Ae r(T*53) 

is the space of left-invariant one-forms on S3. 

(ii)   The space of solutions of the equation 

(2.2) dA-2*A = 0,    Ae r(T*s3) 

is the space of right-invariant one-forms on S3. 

Proof (i) Let S'3 x Sp(l) —> S3 be the unique spin-structure on S3 and let 
S'3 x H —>- S3 be the spinor bundle induced by the action of the Clifford 
algebra CI3 = H © H on HI given by (rr, y) • q = x • q. 

Consider the trivialization TS3 = S3 x ImH induced by the canonical 
left action of S3(= Sp(l)) on itself. Thus any one-form A on S3 can be 
viewed as a spinor field A : S3 —± ImH C H which is constant if and only if 
the corresponding one-form is left-invariant. 

Consider the Dirac operator D obtained by using the trivial flat connec- 
tion on S3 x M -> S3. Then it is easy to see that A G r(T*53) satisfies (2.1) 
if and only if DA = 0. Also a straightforward calculation gives D2 = A + 2D 
where A is the usual Laplacian acting on H-valued functions on S3. Thus 
any solution A of (2.1) induces a harmonic H-valued function on 53 which 
must be constant if A is globally defined on S'3. 

(ii) Since the isometry x H-> X
-1
 of S3 reverses the orientation, it pulls 

back solutions of (2.1) to solutions of (2.2). Thus the proof of (ii) follows 
from (i). □ 

Remark 2.5. There are other ways to describe the solutions of the equa- 
tions (2.1) and (2.2). For example, since any orthogonal complex structure 
on IR4(= H) compatible with the canonical orientation can be described as 
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left multiplication with imaginary quaternions of length one (see [8]) any 
solution of (2.2) is, up to a multiplicative constant, of the form 

A = i* l^2j^xbdxa 

where J is any orthogonal complex structure which induce the canoni- 
cal orientation on M4 (i.e., if {^1,^2} is a complex basis of (M4, J) then 
{^1, Jui,U2, JU2} is positively oriented) and i : 53 ^ M4 is the canonical 
inclusion. This can also be checked directly. 

Also, any solution A of (2.2) can be written A = *i*(F) where F E 
A^_(1R4) is a self-dual two-form. 

In fact, by using these characterisations an alternative proof for Propo- 
sition 2.4 can be obtained. First, note that, for each one of the equations 
(2.1) and (2.2) we have a three dimensional space of solutions. Then, it is 
easy to see that if A satisfies (2.1) or (2.2) then A is coclosed and AA = 4A 
where A is the Hodge Laplacian on S'3. Thus A is in the eigenspace corre- 
sponding to the first eigenvalue of A acting on coclosed one-forms of 5'3 and 
it is well-known that this space is of dimension six (see [16, 7.2] or apply 
one of the results from [26, p. 148] and [21, Theorem 2.3]). 

Proposition 2.6. Let <p : (M4,^) —► (iV3,/i) be a surjective harmonic mor- 
phism of type (iii) such that (N3,h) is complete, simply-connected and cp has 
connected fibres. 

Then there exists a E M such that, up to homotheties, (p is a restriction 
ofipa : (M4 \{0},£a) -» (S3,/*) from Example 2.3. 

Proof. Up to a homothety, we can identify (iV3,/i) with 53 considered with 
its canonical metric and orientation. Let A be the dilation of ip. Then, 
by Proposition 2.4, there exists a E M such that, up to an isometry of S'3, 
-i«*(d(A-2)) = ay*{A) where A E r(T*S3) is as in Example 2.3. By 
Proposition 2.1, </? is submersive and let V = ker(/?*. Because V is orientable 
we can find V E r(V) such that g(V, V) = A2. 

Because cp is of type (iii) we have that ^(A-2) is a nonzero constant. 
This implies that the restriction of A to any fibre of cp is a diffeomorphism 
onto some open subinterval of (0,00). Hence the map $ : M4 —> Ss x (0, 00) 
defined by $(2;) = (<p(x), A(a;)~1), x E M4, is a diffeomorphic embedding. 

Then from the proof of Theorem 1.8 it follows that $ : (M4,g) ^ 
(53 x (0,oo), ga) is a local isometry and hence an isometric embedding. 
Also, it is obvious that (pa o $ = cp. □ 
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Corollary 2.7. Let cp : (M4,g) —> (N3
:h) be a surjective harmonic mor- 

phism of type (iii) with connected fibres such that (iV3,/i) is complete. 
T7ien*(M4,g) is not complete. 

Proof. Up to homotheties, the universal covering of (iV3,/i) is S3 with its 
canonical metric and orientation. Then, ip can be pulled back via S'3 —> N3 

to a harmonic morphism whose total space is complete if and only if (M4, g) 
is complete. Then we can define $ as in the proof of Proposition 2.6 . Then 
$ is a local isometry and because (E4 \ {0}^ga) is not complete (M4,#) is 
not complete. □ 

3. A few applications. 

From Theorem 1.8 and Corollary 2.7 we can exclude the third type in the 
complete case as follows: 

Theorem 3.1. Let (M4,g) be a complete Einstein manifold of dimension 
four and let (iV3, h) be a complete Riemannian manifold of dimension three. 

Let cp : (M4,g) —> (iV3,/i) be a surjective harmonic morphism with con- 
nected fibres. 

Then, either: 

(i)  the regular fibres of cp form a Riemannian foliation locally generated 
by Killing fields or 

(ii) cp is horizontally homothetic and has geodesic fibres orthogonal to an 
umbilical foliation by hyper surf aces. 

Recall that for a horizontally weakly-conformal map the vertical dis- 
tribution is well-defined outside the set of critical points. We analyse the 
behaviour of cp at a critical point. The model is the cone of the Hopf fi- 
bration S3 -> 52 which, as is well-known, can be written as a quadratic 
polynomial: 

Definition 3.2. The Hopf polynomial is the harmonic morphism <p : M4 —> 
R3 defined by 

<p(ziy) = (\z1\2-\3?\2,2z1z*) 

via the standard identifications ]R4=C2,M3=IRxC. 

Note that the Hopf polynomial has an isolated critical point at the origin 
ofE4. 
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Corollary 3.3. Let (M4,g) be an Einstein manifold of dimension four. 
Let (p : (M4,g) —t (N^^h) be a nonconstant harmonic morphism which 

has critical points and orientable vertical distribution. 
Then there exists a Killing field V G T(TM) tangent to the fibres of cp 

which vanishes precisely at the critical points of (p. Moreover, in a neighbour- 
hood of each critical point ip is smoothly equivalent to the Hopf polynomial. 

Proof. Because tp has critical points and (M4,g) is Einstein, <p must be of 
type (i). (By Proposition 2.1 it cannot be of type (iii) and from the main 
result of [15] it follows that ip cannot be of type (ii).) 

Let A be the dilation of (p and let V be the vertical distribution of <p. Let 
V e r(V) be such that g(V, V) = A2. 

Obviously, V can be extended to a continuous vector field on M whose 
zero set is equal to C^, the set of critical points of cp. 

Then V is a Killing field on (Af \ CV,0|M\CV) i7] (cf- [5L t29])- Hence i* 
satisfies the equation 

(3.1) V* VV = MRicci (V) 

(see, for example, [21, page 44]), here MRicci G T(TM ® T*M) denotes 
the (1,1) tensor field associated to the Ricci tensor of (M4,#). From the 
regularity of solutions for the elliptic operators it follows that V is a smooth 
(in fact, analytic) vector field on M. 

By Baird's result ([2, Proposition 5.1]) ip has isolated critical points. 
Then in a neighbourhood of the critical point x G M the local flow of V is 
equivalent, via the exponential map at x, with the flow (&) on TXM given 
by the vector field with value VwV at w G TXM. Recall that (VV% : 
TXM —)> TXM induces an orthogonal complex structure on (TxM,gx) (see 
[21]). Hence (&) induces an S1 action on TXM which must be free outside 
zero since its quotient is equivalent to (p in a neighbourhood of x. From this 
fact the last assertion of the proposition easily follows. □ 

Remark 3.4. Since (3.1) holds in general, the conclusion of the above corol- 
lary holds for any harmonic morphism (p : (M4, #) ->► (iV3, h) of type (i) and 
with orientable vertical distribution. 

Corollary 3.5. Let (M4,^) be a complete Einstein manifold of dimension 
four and let (TV3, h) be a complete Riemannian manifold of dimension three. 

Letcp : (M4,g) —> (iV3,/i) be a surjective submersive harmonic morphism 
with connected fibres and orientable vertical distribution; denote its dilation 
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by A. Let W be a vertical vector field such that g(W, W) = A-2 and suppose 
that W is complete. 

Then ip is of type (i) and there exists a globally defined nowhere zero 
Killing field tangent to the fibres of (p. 

Proof. Suppose that (ii) of Theorem 3.1 occurs. Then, either directly or 
by using [29, Lemma 4.3], it can be shown that VW = /ild^M where /i is 
a smooth function on M4. In particular, W is conformal. By a result of 
K. Yano and T. Nagano (see [21]), either W is Killing or (M4,#) is 54 with 
its canonical metric. But in the latter case W would have two zeroes. The 
proof follows from Theorem 3.1. □ 

Proposition 3.6. Let (M4,*?) be a compact Einstein manifold (MRicci = 
cM 9) 0f dimension four and let ip : (M4,^) —> (N3,h) be a nonconstant 
harmonic morphism with orientable vertical distribution. 

Then there exists a Killing field tangent to the fibres of ip and nowhere 
zero on the set of regular points. In particular, the Euler number of M4 is 
equal to the number of critical points of (p. 

If cp has critical points, then cM > 0 and Nbi = Nb2 = 0, where Nbi and 
Nb2 denote the Betti numbers of N3. 

Proof. Because (p has compact fibres it cannot be of the third type. 
From Corollary 3.3 and Corollary 3.5 it follows that there exists a Killing 

vector field tangent to the fibres of ip. Then the fact that cM > 0 follows from 
Corollary 3.3 and equation (3.1). Also by a well-known result of S. Bochner 
we have Mbi = 0. Prom [11, 7.14] it follows that % = 0 and by Poincare 
duality % = % = 0. □ 

Remark 3.7. More generally, if M4 is an arbitrary compact manifold then 
the number of critical points of cp : M4 —>• iV3 is equal to the Euler number 
of M4 provided that the smooth map ip has isolated critical points (this 
follows from [33, Proposition 4.2(iii)]). 

Recall that by the well-known result of M. Berger the Euler number of 
(MA,g) (Einstein and compact) is nonnegative and is zero if and only if 
(M4,^) is flat (see [6, 6.32]). 

We can now completely describe submersive harmonic morphisms with 
one-dimensional fibres defined on a compact Einstein four-manifold as fol- 
lows. 
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Theorem 3.8. Let (M4,#) be a compact Einstein manifold of dimension 
four. Let cp : (M4,g) -» (7V3,/i) be a submersive harmonic morphism. 

Then (M4, g) and (iV3, h) are flat and the fibres ofcp are locally generated 
by parallel vector fields. In particular, up to homotheties and Riemannian 
coverings cp is the canonical projection between flat tori T4 —> T3. 

Proof. By passing, to a two-fold covering if necessary we can suppose that 
the vertical distribution of cp is orient able. Then, from Proposition 3.6 it 
follows that there exists a Killing vector field V on (M4,g) tangent to the 
fibres of cp and the Euler number of M4 is zero. Hence (M4, g) is flat by the 
above mentioned result of Berger. Prom a result of Bochner (see [6, 1.84]) 
V is parallel. 

The fact that (N3,h) is flat follows from Lemma 1.11. 
Because cp has compact regular fibres, from a well-known result of 

C. Ehresmann [13], it follows that the leaf space of the foliation whose 
leaves are the connected components of the regular fibres of cp is smooth. 
Thus by factorising y?, if necessary, into a harmonic morphism followed by a 
Riemannian covering we can suppose that cp has connected fibres. Thus, cp 
is, up to homotheties, the quotient induced by V. Hence, cp is the projection 
of a 5'1-principal bundle and the horizontal distribution H is a flat principal 
connection on it. Then, each holonomy bundle P of it is a regular covering 
over TV3 with group the holonomy group H(C S1) ofH. Moreover, because 
(M4,g) is flat, P considered with the metric induced by g is flat (actually, 
up to homotheties, this is the unique metric with respect to which P —> N 
becomes a Riemannian covering; in particular, P with the considered metric 
is complete.) Hence M = P x# S1 and the pull back of cp by P —> N is the 
projection P x 51 -> P. To end the proof, recall ([22, Chapter V, Theorem 
4.2]) that P is covered by an Euclidean cylinder or by a torus. □ 

Remark 3.9. 

1) The condition that cp is submersive, in Theorem 3.8, can be removed 
if we assume that (N3,h) is of constant curvature (see Theorem 4.11). 

2) Recall that the K3 surfaces and the tori cannot carry any metric of 
positive scalar curvature (see [6, 4.34]). Hence, from Proposition 3.6 
and Theorem 3.8 we obtain the following: 

• There exists no K3 surface endowed with an Einstein metric and 
which is the domain of a harmonic morphism whose regular fibres 
are of dimension one. 
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• Let g be an Einstein metric on the torus T4 and let ip : (T4, g) -* 
(iV3,/i) be a nonconstant harmonic morphism. Then g and h 
are flat, cp is submersive and, up to homotheties and Riemannian 
coverings, cp is the canonical projection T4 —> T3. 

Corollary 3.10. Let (M4,^) 6e a compact Einstein manifold of dimension 
four. 

Then there exists no submersive harmonic morphism (p : (M4,*?) —» 
(AT3, /i) t/ either % = 0 or % - 0. 

4. Harmonic morphisms <p : (M4,g) -> (Ns,h) between 
Einstein manifolds. 

In this section (M4,*?) and (iV3,/i) will be Einstein manifolds (since AT3 

is three-dimensional this means that (iV3,/i) is of constant curvature) and 
(p : (M4, #) —> (TV3, /i) will be a harmonic morphism. Recall that, by a result 
of P. Baird [2, Proposition 5.1], the set of critical points of cp is discrete and 
hence, by the second axiom of countability, at most countable. 

We now state one of the main results of this section enumerating all sur- 
jective submersive harmonic morphisms between complete simply-connected 
Einstein manifolds of dimension four and three, respectively 

Theorem 4.1. Let (M4,^) be a complete simply-connected Einstein mani- 
fold and let (iV3,/i) be complete, simply-connected and with constant curva- 
ture. 

Let ip : (M4, g) -» (iV3, h) be a surjective submersive harmonic morphism 
with connected fibres. 

Then, up to homotheties, ip is one of the following projections R4 —>> E3, 
if4 —> IR3

; if4 —> iJ3 induced by the following canonical warped-product 
decompositions E4 = E1 x E3, iJ4 = H1 xr E

3
; H

A = H1 xs H
3 where Hk 

is the hyperbolic space of dimension k. 

Proof. First we prove that (M4,^) has constant curvature and that cp has 
geodesic fibres and integrable horizontal distribution. 

By Theorem 3.1, either (i) the vertical distribution of cp is Rieman- 
nian and locally generated by Killing fields or (ii) <p has geodesic fibres 
and integrable horizontal distribution. Suppose that case (i) holds and let 
V = ker (/?* be the vertical distribution. We can choose a local orthonormal 
frame {X, Y, Z} for T-L (= V-1) with respect to h made up of basic fields and 
such that iztt = 0. 
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Because (M4,^) and {Ns,h) are both Einstein, from (1.1) we obtain 

(4.1) X(a) Y(a) = 0    and    X(a)2 = Y{a)2. 

Thus X(a) = Y(a) = 0. 
From (1.1) it follows that (1.14) holds after, replacing, if necessary, one 

of the vector fields X, y, Z or V with its negative. Choose the (local) 
orientation on N3 such that {^*X, <p*Y, (p*Z} is positively oriented. 

Let A be the function on iV3 such that e0" = <£*(A) and let F be the 
two-form on N3 such that Q = (p*{F). Then (1.14) implies that 

(4.2) F = *dA-2. 

where * is the Hodge star-operator on (N3,h). 
But dF — 0 and thus (4.2) implies that A-2 is a positive harmonic 

function on (N3,h). 
From (1.1) and (1.3) we obtain 

(4.3) £^ = A-2cM 

where kN is the constant sectional curvature of (iV3,/i) and cM is the Ein- 
stein constant of (M4,^). Thus either A is constant or kN = cM = 0. But 
in the latter case, by Liouville's theorem, A-2 must be constant. Hence A 
is constant and, by [3, Theorem 5.2], (p has geodesic fibres. Moreover, by 
(4.2), F = 0 and thus H is integrable. 

Thus, we always have case (ii). The fact that (M4,g) has constant 
curvature now follows from Corollary A.3. 

By [5] H is an Ehresmann connection for cp. 
Because W, is a flat (i.e., integrable) Ehresmann connection any maximal 

integral submanifold of it is a covering space of iV3. But iV3 is simply- 
connected and hence ip admits a (global) horizontal section. The proof of 
the theorem follows. □ 

Corollary 4.2. Let (M4, #) be a complete simply-connected Einstein mani- 
fold and let (N3,h) be complete, simply-connected and with constant curva- 
ture. 

Letcp : (M4,*?) -4 (N3,h) be a surjective submersive harmonic morphism 
with connected fibres; denote its dilation by A. Let W be the vertical vector 
field such that g(W, W) = A-2. Suppose that W is complete. 

Then, up to homotheties, ip is the orthogonal projection E4 —>• M3. 
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Proof. This follows from Corollary 3.5 and Theorem 4.1. □ 

Proposition 4.3. Let tp : (M4,g) —> (Ns,h) be a harmonic morphism be- 
tween Einstein manifolds and let A be its dilation. Suppose that the regular 
fibres of ip form a Riemannian foliation. 

Then, up to homotheties, ip can be (locally) characterised as follows: 

• (M4,*?) is Ricci-flat and (iV3,/i) is flat; 

• A-2 is the pull back of a local positive harmonic function u on (AT3, h) 
{in particular, A~2 is a harmonic function on (M4,g)); 

• Any local connection form A {— s*9) of the horizontal distribution sat- 
isfies 

dA = *du 

where * is the Hodge star-operator of (N^,h) with respect to some 
(local) orientation (equivalently, the curvature form F = dA satisfies 
the monopole equation F = *du); 

• In a neighbourhood of the local section s of ip where ip is equivalent to 
a projection we have 

g = uh + u~l(dt + A)2. 

Proof. This follows from the proof of Theorem 4.1. □ 

Remark 4.4. 

1) Note that the metric g of Proposition 4.3 is constructed by applying 
S.W. Hawking's ansatz [19] (cf. [25]). 

2) Let ip : (M4,g) —>• (iV3,/i) be a harmonic morphism between Einstein 
manifolds. If (M4,#) does not have constant curvature or the horizon- 
tal distribution is nonintegrable then (M4,(?) is Ricci-flat and ip is of 
type (i) (and hence locally given as in Proposition 4.3) or type (iii) of 
Theorem 1.8. This follows from Theorem 1.8 and Corollary A.3. 

Let a > 0. Recall that if we apply the Hawking's ansatz (with the 
convention d^4 = — * du) to the harmonic function ua : M3 \ {0} —> (0, oo) 
defined by ua(y) — ^(A- + a), y E M3 \ {0}, then the following metric is 
obtained. 
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Definition 4.5. Let a > 0. The Hawking Taub-NUT metric is the Rieman- 
nian metric on R4 defined by 

ga = (a\x\2 + l)go- Q(^f +?) (-x2dxl + x'dx2 - zW + x3dx4)2. 
a\x\z + 1    v 

For a — 0 this gives the canonical metric go on R4 . 

Note that g\ is discussed in [25]. 

Remark 4.6. 

1) For any a > 0 the Hopf polynomial ^ : (R4,ga) -> (R3,/io) is the 
harmonic morphism induced by the isometric action of S1 on (R4,ga) 
where h§ is the canonical metric on R3. In particular, (R4, g^) is Ricci- 
flat for any a > 0. 

2) Moreover, we can consider a = <£>*(a) to be the pull back of a non- 
negative harmonic function a defined in the neighbourhood of 0 € R3. 
Then, the resulting metric ga is still Ricci-flat and with respect to it 
the Hopf polynomial, suitably restricted, is a harmonic morphism. 

For the next construction we follow C. LeBrun's discussion [25] of 
Hawking's ansatz [19]. 

Example 4.7. Let u : R3 \CU —> (0,oo) be a positive harmonic function 
whose set of singularities Cu = {yj}jei is discrete. Hence / is finite or 
countable. Thus by applying Bocher's theorem, the 'minimum' and Har- 
nack's principles (see [1]) we obtain 

(4A} "(!')=o+5^i 
for any y G R3 where a > 0 and bj > 0 are nonnegative constants. Suppose 
that u has the same residue equal to &(> 0) at each singular point, i.e., 
bj = b for each j G /. 

Let Fu G r(A2(T*(R3 \CU))) be defined by Fu = - * du where * is the 
Hodge star-operator on R3. Because u is harmonic we have dFu = 0. Then, 
taking S1 = R/47r6Z, the cohomology class 

■^[Fu} E H2(R3 \C„,Z) = H^R3 XC^S1) 
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is the first Chern class of a principal bundle £u = (Pw, R
3 \CW,5

1), with 
projection ^ : Pu -» R3 \Clt. It is not difficult to see, by using the homotopy 
sequence of £w, that Pu is simply-connected. 

As is well-known, Fu is the curvature form of a principal connection 
given by 9U G T(T*PU). Note that if A is a local connection form of 6U^ with 
respect to some local section of fu, then dA = — * du. 

Let ho be the canonical metric on R3 and define 7^ = ^(uho) + 
^(u-^el. Then i/;u : {PuHu) -> (K3 \CU, ho\Rz\cu) is a harmonic mor- 
phism. 

The key point of the construction is the fact that V^ can be extended to 
a harmonic morphism whose co domain is R3. 

To prove this, first note that if Cu = {0} then £u is the cylinder of 
the Hopf bundle (S3, S2, S4) and hence tpu is the restriction of the Hopf 
polynomial to R4 \{0}. Moreover, one can easily verify that 7U is homothetic 
to the restriction of the Hawking Taub-NUT metric g^a to R4 \ {0} where, 
from now on, we consider, for simplicity, that b = |. 

Let v(y) = 1—-—1 and w — u — v. Then w/      \y-yi\ 

£,u = £v+w = ^|E
3
\CU ' £WIR

3
\C„ 

where c •' denotes the group operation in if^R3 \CU,S
1). There exists a 

neighbourhood U of yi such that U fl Cu = {yi} and hence w\u is a (well- 
defined) positive harmonic function. By taking U to be contractible we get 
that €w\u is trivial (equivalently, it is the neutral element of Hl{U, S1)). 
Then iu\u\{yi} = £>v\u\{yi} and hence %l)u can be extended so that its image 
contains yi. More precisely, we can add a point xi to ip^iU) such that the 
extended map is smoothly equivalent, in a neighbourhood of #1, to the cone 
of the Hopf fibration S3 -> S2. Moreover, because w has no singularities 
in U the metric ju extends over xi to a metric which is homothetic, in the 
neighbourhood of xi, to g^ of Remark 4.6(2). 

In this way (Pw,7u) can be extended to a Riemannian manifold 
{Mu^gu) and ipu can be extended to a surjective harmonic morphism 
(pu : (Mu,gu) —> (R3,/io) where ho is the canonical metric on R3. Note that 
(Mu,gu) is Ricci-flat, simply-connected and that ipu is induced by an iso- 
metric action. 

We can now state the next main result of this section enumerating all 
the surjective harmonic morphisms with critical points between complete, 
simply-connected Einstein manifolds of dimension four and three, respec- 
tively. 
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Theorem 4.8. Let (M4,^) be a complete Einstein manifold and let {N3,h) 
be complete, simply-connected and with constant curvature. 

Let (p : (M4,^) —> (iV3,/i) be a surjective harmonic morphism with ori- 
entable vertical distribution; denote its dilation by A. Suppose that ip has 
critical points. 

Then, up to homotheties, (iV3,/i) = (R3,/io) where ho is the canon- 
ical metric on M3. Moreover, X~2 = (p*(u) for a positive harmonic 
function u : M3 \ Cu —>• (0, oo) having the same {positive) residue at each 
{fundamental) pole y E Cu and (M4,^) = {M^gu) and cp = cpu. 

Proof By Corollary 3.3 there exists a Killing field V on (M,#) tangent to 
the fibres of cp. 

Although cp has critical points, an argument due to R. Hermann (see [6, 
9.45]) can be adapted to prove that the horizontal distribution W, (which is 
well-defined outside the set of critical points) is an Ehresmann connection 
for cp restricted to the set of regular points. By applying [6, 9.40], it is easy 
to see that ip can be factorised into a harmonic morphism with connected 
fibres followed by a Riemannian covering over (TV3, h). But the latter must 
be trivial because N3 is simply-connected and hence cp has connected fibres. 

Now, as in the proof of Theorem 4.1 we obtain (4.3) and the monopole 
equation (4.2) and hence A-2 is a harmonic function where A = <£*(A). 

Because cp has critical points its dilation cannot be constant. This, to- 
gether with (4.3), imply that (M4, #) is Ricci-flat and (TV3, h) is flat. Hence, 
up to homotheties, (7V3,/i) = (]R3,/io) where ho is the canonical metric on 
E3. 

Using the completeness of (M4, #) and the fact that V is Killing it is not 
difficult to prove (directly or by using [29, Theorem 2.9]) that the restriction 
of ip to the set of regular points is the projection of a principal bundle f 
with group (E, +) or (-S1,-) and the horizontal distribution is a principal 
connection on it. But (p extends the projection of £ over the critical points. 
Hence in the neighbourhood of each critical point £ is (suitably restricted) 
the cylinder of the Hopf bundle (53, 52, S'1) or its dual. Hence the structural 
group of £ is 51 = R/L Z where L {> 0) is the period of the orbits of V. 

Let {yj}jei be the set of critical values of cp. Using the Chern-Weil 
morphism and (4.2) it is easy to see that the first Chern number of £ suitably 
restricted to a sphere about any yj is given by ci = —Airbj/L where bj{ > 0) 
is the residue of A-2 at yj. But we must have ci = ±1 and hence bj = b^ 
for any j,k E I and the proof follows. □ 
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Remark 4.9. Note that the period L of V is the mass of the regular fibres, 
i.e., L — /fibrep where p(= A-1) is the density of ip. Because p is constant 
along the fibres we have that L is equal to p|fibre multiplied by the length of 
the considered fibre. 

We end with two other classification results: 

Theorem 4.10. Let (M4,*/) be a complete simply-connected Einstein man- 
ifold and let (iV3,/i) be complete, simply-connected and with constant cur- 
vature. 

Let cp : (M4,*?) —t (7V3,/i) be a surjective harmonic morphism. Suppose 
that cp has exactly one critical point. 

Then there exists a > 0 such that, up to homotheties, cp : (M4,^a) —> 
(R3,/io) is the Hopf polynomial with ga the Hawking Taub-NUT metric (a > 
0) and go, ho the canonical metrics on M4, R3

; respectively. 

Proof. This follows from Theorem 4.8. □ 

Theorem 4.11. Let (M4,g) be a compact Einstein manifolds of dimension 
four. Let (AT3, h) be a Riemannian manifold of dimension three with constant 
curvature. Let cp : (M4,p) -> (iV3,/i) be a nonconstant harmonic morphism. 

Then (M4,g) and (N3,h) are flat, cp is submersive and its fibres are 
locally generated by parallel vector fields. In particular, up to homotheties 
and Riemannian coverings ip is the canonical projection T4 —> T3 between 
flat tori. 

In particular there exists no harmonic morphism with one-dimensional 
fibres from a compact Einstein manifold of dimension four to S'3. 

Proof. Suppose that (p has critical points. Then by Proposition 3.6 we have 
that cM > 0. From (4.3) it follows that the dilation of ip is constant and 
hence ip cannot have critical points. 

Hence (p is submersive and the proof follows from Theorem 3.8. □ 

Remark 4.12. We do not know any example of a harmonic morphism with 
critical points and one-dimensional regular fibres which is defined on a com- 
pact four-dimensional Einstein manifold. 
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Ac Appendix. 
Some constructions of one-dimensional foliations which 

produce harmonic morphisms on Einstein manifolds. 

Here we use well-known results on warped-products and conformal vector 
fields (see [6, Chapter 9, Section J], [23]) to show that there exist one- 
dimensional foliations with integrable orthogonal complement and which 
produce harmonic morphisms on Einstein manifolds which are not of con- 
stant curvature (thus answering to a question formulated by S. Gudmunds- 
son). Also, we give a result needed in the proof of Theorem 4.1. 

Ad. Homothetic foliations with geodesic leaveSo 

Proposition A.l (cf. [6, Chapter 9, Section J]). Let ip : (Mn+1,#) -> 
(Nn,h), n > 3^ be a nonconstant harmonic morphism with geodesic leaves 
and integrable horizontal distribution; denote its dilation by A. Then the 
following assertions are equivalent. 

(i)  (Mn+1,£) is Einstein (MRicci = cM g); 

(ii)  (i\P,/i) is Einstein (^Ricci = cN h) and the following relation holds 

(A.l) — A2 - -^— A4 + ([/(A))2 = 0 
n n — 1 

where U is a vertical vector field such that g(U, U) = L 

Moreover, if (i) or (ii) holds then 

rM / rN 
M u      _ \2l TfN (A.2) K£Ay - — = y [K, (p*XA(p*Y 

where KM and KN are the sectional curvature of(M,g) and (JV, h), respec- 
tively, and Xj Y are horizontal. 

Proof. The equivalence (i) 4=> (ii) follows from Lemma 4.6, (4.4), (5.3) and 
(5.4) of [29] or from [6, 9.107-109] (note that (A.l) is essentially the same 
as equation (9.109) of [6]). 

If (i) or (ii) holds then (A.2) follows from (A.l) and the following formula 

tfK&Y - A4 KP.XAV.Y + (UW)2 = 0 
which can be obtained directly or as a consequence of a formula of 
S. Gudmundsson [17]. □ 
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Proposition A.2 (cf. [23, Lemma 13(iv)]). Let tp : (Mn+1,g) -> (iVn, 
h), n > 3, be a nonconstant harmonic morphism with geodesic leaves and 
integrable horizontal distribution. 

(i) If(Mn+1,g) has constant curvature then (Nn,h) has constant curva- 
ture. 

(ii) // (Mn+1,g)  is Einstein and (Nn^h)  has constant curvature then 
(Mn+1,(7) has constant curvature. 

Proof. Assertion (i) is an immediate consequence of (A.2). 
If(Mn+1,0) is Einstein then from (A.l) and from (5.1) of [29] we obtain 

(A.3) K&u = — 
To 

where X is any horizontal vector. 
The proof of (ii) follows from (A.2) and (A.3). □ 

The following corollary is needed in the proof of Theorem 4.1. 

Corollary A.3 (cf. [23, Corollary 15]). Let cp : (MA,g) -+ (iV3,/i) be 
a harmonic morphism with one-dimensional geodesic leaves and integrable 
horizontal distribution. 

//(M4,g) is Einstein then both (M4,^) and (iV3,/i) have constant cur- 
vature. 

Proof. If (M4,g) is Einstein then by Proposition A.l, (iV3,/i) is Einstein. 
But TV3 is three-dimensional and thus (iV3,/i) has constant curvature. The 
proof follows from Proposition A.2(ii). □ 

Corollary A.4 (cf. [23], [6, Chapter 9, Section J]). Given any Ein- 
stein manifold (Nn,h) of dimension n there exists an Einstein manifold 
(Mn+1,<7) of dimension n + 1 and a harmonic morphism cp : (Mn+1,^) —¥ 
(Nn,h) with geodesic fibres and integrable horizontal distribution. 

If n > 4 and (Nn,h) does not have constant curvature then (Mn+1,<7) 
does not have constant curvature. 

Proof. Let (Nn,h) be Einstein and let A be a (local) solution of (A.l) (see 
[6, 9.109]). 
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Let Mn+1 = E x Nn and g = dt2 + A"2 h. It is obvious that the 
canonical projection (Mn+1,g) -> (Nn,h) is a harmonic morphism with 
geodesic leaves and integrable horizontal distribution. Also (Mn+1,g) is 
an Einstein manifold by Proposition A.l. Moreover, if {Nn,h) does not 
have constant curvature then, by Proposition A.2, {Mn+l,g) does not have 
constant curvature. □ 

A.2. Riemannian foliations locally generated by Killing fields. 

The following results are consequences of [6, Corollary 9.107, 9.108, 9.109]. 

Proposition A.5 ([6]). Let (Nn,h)  be a Riemannian manifold and p : 
Nn -> (0, oo) a smooth positive function. 

Let Mn+l = R x Nn and g = p2dt2 + h. Then, the following assertions 
are equivalent. 

(i)  (Mn+\g) is Einstein (MRicci =cMg). 

(ii) (iVn, h) has constant scalar curvature sN = (n—1) cM and the following 
relation holds 

N CM 
(A.4) Vdp= ph + pZ yN 

n 
N 

where V is the Levi-Civita connection on (Nn,h) and ZN = ^Ricci — 
(s   /n) h is the trace-free part of ^Ricci. 

Proof. From [6, 9.106a, 9.106c] or, by a straightforward calculation the fol- 
lowing equations can be obtained: 

/A ^ p^(MRicci) ^Ricci - p-^dp 

p|(MRicci)=p-1(AArp)p|(^) 

where pw : M -^ N and p^ : M —>• M are the canonical projections. Also, 
[6, 9.106b] gives that MRicci (X, d/dt) = 0 for any X G r(TN). From this 
and (A.5) the proof easily follows. □ 

Corollary A.6. For each n > 5 there exists Einstein manifolds (Mn+1,g) 
not of constant curvature, endowed with a nowhere zero Killing field which 
has integrable orthogonal complement. Moreover, the construction can be 
done in such a way that the (locally) induced isometric quotients are also 
Einstein. 
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N 
Proof. If the equation Vdp = aph, where a G M, has solutions then there 
exists a homothetic one-dimensional foliation with geodesic leaves and inte- 
grable orthogonal complement (see [30]). Recall that ZN = 0 if and only if 
(iVn,/i) is Einstein (see [6, 1.118]). Hence, [6, 9.109] and Corollary A.4 im- 
plies that there exists an Einstein manifold (TV71, /&), n > 5, not of constant 
curvature, on which (A.4) has a (local) solution p which is positive. Then, 
by Proposition A.5, (Mn+l,g) (where Mn+1 = R x Nn and g = p2 dt2 + h) 
is Einstein. Clearly V = d/dt is a nowhere zero Killing field on (Mn+1,g). 

□ 
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