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If g is a metric whose Ricci flow g (t) converges, one may ask if 
the same is true for metrics g that are small perturbations of g. 
We use maximal regularity theory and center manifold analysis to 
study flat and Ricci-flat metrics. We show that if g is flat, there is 
a unique exponentially-attractive center manifold at g consisting 
entirely of equilibria for the flow. Adding a continuity argument, 
we prove stability for any metric whose Ricci flow converges to 
a flat metric. We obtain a slightly weaker stability result for a 
Kahler-Einstein metric on a KS manifold. 

1. Introduction. 

Since the introduction of the Ricci flow 

(1) -g = -2Rc, g{0)=go, 

as a useful tool [H2] for the study of relationships between manifolds and 
the Riemannian geometries they admit, there has been considerable progress 
in our understanding of the behavior of geometries deformed by the Ricci 
flow. (See for instance [H5], [H6], and the survey [CC].) However, some 
basic questions of nonlinear analysis concerning this behavior are to date 
unresolved. One of these is the question of stability of converging Ricci 
flows. In particular, let go be a geometry whose Ricci flow g (t) converges. 
Is it true that the Ricci flow g (t) converges for all geometries go that are 
sufficiently close to go in some appropriate topology? 

The work of Ye answers this question affirmatively [Ye] if go is a metric 
of constant nonzero sectional curvature and if one replaces the Ricci flow by 
the volume-normalized Ricci flow 

(2) ^ = -2Rc+^ (lRd^\ g, g (0) = go. 
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(Here and throughout this paper, we denote the average of a scalar function 
/ on a compact manifold by $ f dfi == / / d/j,/ f d/j,.) Among other results, 
that work shows that for any sufficiently Riemann-pinched Einstein metric 
go of nonzero scalar curvature, there is a C2 neighborhood Afg0 of go such 
that the Ricci flow g (t) of any go G Afg0 converges to go- 

Left undetermined by Ye's work is the stability of Ricci flow convergence 
for metrics near a flat geometry, or more generally, near an Einstein metric 
go of vanishing scalar curvature. A key feature of such geometries is the 
existence of zero eigenvalues for the linearization of the flow, regarded as 
a differential operator on symmetric (2,0)-tensors. Note that Ye's result 
requires a positive spectrum for the operator 

L[h]^ = -Ahij - 2i^ + (n< - IRS?) hqj. 

A zero eigenvalue signals the presence of a nontrivial center manifold in the 
space of metrics near go, with corresponding complications in the analysis 
of the flow of nearby metrics. 

The maximal regularity theory developed by Da Prato and Grisvard 
[DG] and notably applied to quasilinear parabolic reaction-diffusion systems 
by Simonett [S] enables one to establish stability, long-time existence, and 
convergence of dynamical flows with nontrivial center manifolds present. We 
use these methods to prove a convergence stability theorem for the Ricci flow 
of metrics near a flat geometry. To the best of our knowledge, this is the 
first time that center-manifold analysis has been applied to the Ricci flow. 
A secondary purpose of our investigation, therefore, has been to explore 
how effective such techniques may be for studying this geometric evolution 
problem. It should be noted that linear stability and instability analysis has 
been successfully used to study the curve shortening problem; see [AL] and 
especially [EW]. 

As detailed in Theorem 3.1, our main result says that for all metrics go 
in a little-Holder IHI2+P neighborhood J\fg0 of a flat metric go on a torus 
Tn, the Ricci flow g (t) converges exponentially fast in the IH^+p norm 
to a flat metric g^. The limit metric g^ is generally not go] however, 
the set of flat metrics forms a n (n + 1) /2-dimensional submanifold of the 
space of all metrics on Tn, and the intersection of this submanifold with the 
neighborhood J\fg comprises the center manifold for the Ricci flow dynamical 
system near go. Although center manifolds in dynamical systems are in 
general not unique, it is a remarkable consequence of this analysis that the 
center manifold at a flat metric is unique, consisting entirely of equilibria. 
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If one has determined the stability of Ricci flow convergence for metrics 
near a specified flat metric go (Theorem 3.1), then it is relatively straightfor- 
ward to show that it is stable for metrics near some ho whose Ricci flow h (t) 
converges to #0 (Corollary 3.7). The basis for this argument is finite-time 
continuity of the flow, which implies that for any neighborhood MgQ of go, 
there exists a neighborhood A//^ of ho such that if ko 6 A//i05 then the Ricci 
flow k (t) enters Mg0 in finite time. Combining this with stability about go, 
one verifies the stability of Ricci flow convergence about ho. Applying this 
result, one can show Ricci flow convergence to a flat metric for any initial 
metric ko sufficiently close to a product geometry on T2 x S1 ([H4] and §11 
of [H5]) or sufficiently close to a polarized Gowdy metric [CIJ]. 

As noted above, Ye's studies show stability of Ricci flow convergence for 
Riemann-pinched Einstein metrics of nonzero scalar curvature, but his re- 
sults leave the case of zero scalar curvature unresolved. In three dimensions, 
g is Einstein and has vanishing scalar curvature if and only if g is flat, in 
which case Theorem 3.1 establishes stability. In dimension four and above, 
there are nonflat Ricci-flat metrics, so we may hope to find further cases 
for which we can attempt to show stability of Ricci flow convergence using 
the techniques discussed here. In §4, we discuss such a case: we consider 
Kahler-Einstein metrics on K3 complex surfaces. These are geometries on a 
certain manifold M4 of four real dimensions; they are Ricci-flat and there- 
fore fixed points of the Ricci flow, but are not flat. In Theorem 4.3, we 
show that for any Kahler-Einstein metric go on a if 3, there is a IH^+p 
neighborhood Afg0 of go in the space of all metrics on MA such that the 
DeTurck flow g (t) of any initial metric ^0 € Afgo exponentially approaches 
a 58-dimensional center manifold containing go, for as long as g (t) remains 
in J\fg0. (The DeTurck flow is equivalent by diffeomorphisms to the Ricci 
flow; see the next paragraph for an introduction and §2.1 for a precise state- 
ment of this equivalence.) Note that one result of Cao's paper [C] is that 
every initially Kahler metric on a K3 converges under the Ricci flow to a 
Ricci-flat Kahler metric. This makes it natural to conjecture that the Ricci 
flow of any initial metric in Afg0 converges to a unique limit metric in the 
58-dimensional space of Ricci-flat Kahler metrics known to exist on a K3 
surface. Our results thus far support but do not yet prove this conjecture. 

While the heart of the proof of Ricci flow convergence stability for both 
the flat and K3 Kahler-Einstein metrics is maximal regularity analysis, a 
preliminary step is needed in each case. The Ricci flow PDE system is not 
itself strictly parabolic; it is thus not a system to which one can directly 
apply the methods of Simonett. However, one can work with an alternative 
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flow whose PDE system is strictly parabolic, and whose solutions are related 
to solutions of the Ricci flow by a 1-parameter family of diffeomorphisms. 
In §2, we review this alternative flow (sometimes called the 'DeTurck flow'), 
establish some notation, discuss the function spaces we will use, and provide 
a very brief introduction to some ideas of maximal regularity. 

Our main result for flat metrics is stated and proved in §3. The proof 
involves essentially five steps: 

1. Compute the linearization of the DeTurck flow and analyze its spec- 
trum at a given Ricci-flat metric go- 

2. Verify certain characteristics and properties of the flow that are nec- 
essary for the application of maximal regularity results. 

3. Show the existence of Cr center manifolds and describe their tangent 
space at the fixed point go- 

4. In the flat case, prove there is a unique smooth center manifold present. 

5. In the flat case, use the fact that the center manifold consists entirely 
of flat metrics first to show that exponential approach to the center 
manifold implies convergence of the DeTurck flow to a unique flat 
metric, and then to prove that the same is true for the Ricci flow. 

We carry out each of these steps in §3. We then state as a corollary the 
stability of Ricci flow convergence for metrics whose Ricci flow converges to 
a flat metric. 

In §4, we discuss the application of the analysis developed here to other 
metrics. The focus there is on Kahler-Einstein metrics on KS manifolds. 
We sketch the proof of our results for such metrics in that section, following 
essentially the first three steps outlined above. As we have already noted, we 
are not yet able to complete a full stability analysis for the center manifold 
about a KS Kahler-Einstein metric. In the remainder of §4, we note a few 
other geometries to which our methods may apply. 

Acknowledgement. The authors thank Jean Pierre Bourguignon and 
Alan Rendall for valuable communications, and Sigurd Angenent for many 
stimulating discussions during the preparation of this paper. We also thank 
Martin Jackson, who worked with some of us on this problem in its earlier 
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2. Background. 

The intent of this section is to establish notation, to introduce the function 
spaces needed for our study, and to provide a brief introduction to some of 
the tools we shall need, including the DeTurck flow and maximal regularity 
theory. We start by fixing some notation. 

Given a closed connected smooth manifold .M, we denote by S2 (M) 
the bundle of symmetric covariant 2-tensors over M. and by S^ {M) the 
subset of positive-definite tensors. In this context, a (smooth) Riemannian 
metric is an element of C00 (S^ (Al)). For convenience, we shall write £2 % 
C00 {S2 (.M)) and Sf = C00 (Sj CM)). If g G S£, we denote its Riemannian 
curvature tensor by Rm and write its components as Rijki, where R1221 > 0 
on the round sphere. Then Re G £2 denotes the Ricci tensor of g with 
components Rij, and R is its scalar curvature. 

We denote by Ap = Ap (T*M) the bundle of p-forms on M and by 
Q,p = C00 (Ap) the space of differential p-forms. We indicate the de Rham 
cohomology groups of M by Hp = H^R(M^R) and denote the harmonic 
p-forms by H^. 

Given a Riemannian metric g on M with volume form cf/i, we define 
S = Sg : S2 -» fi1 as the map 

(3) 8:h^5h = -gijWihjkdxk 

whose formal adjoint under the L2 inner product 

(4) .(v)= f   (v)^ 
JM 

is the map 5* = 5* : O1 ->- 52 given by 

(5) 6* : UJ ^ -C^g = - (V^- + Vj^i) <ia;z ® dx3. 

(Here £ is the Lie derivative and CJ^ is the vector field metrically isomorphic 
to w.) We shall also denote by 5 = ^ the map fF -> O^-1 formally adjoint 
to d : £F —> 0P+1; the meaning will be clear from the context. 

2.1. The DeTurck equations. 

The Ricci flow evolution equation (1) posed on <S^ is only weakly parabolic 
[H2]. In order to obtain a strictly parabolic system, we follow [D] and define 
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G : 8% x S2 -> ^2 by 

(6) {g,u)^G {g, u) = (uy - ^eUke9ij ) dxl ® da?3. 

Then (for positive-definite u) we define P : S2  x <?2^ —>■ <?2 by 

(7) (5,«) ^ Pu (5) = -2<J* (u"1^ (G (5,«))) , 

and consider the evolution equation 

(8) ^= - 2 Re [p] - Pu (g), 5 (0) = 5o. 

It is remarkable that the right hand side of (8), regarded as a quasilinear 
operator on 5, is strongly elliptic for any choice of u G ^S^"; in fact we have 
the following: 

Theorem 2.1 (DeTurck). The right hand side of (8) has the same symbol 
as the Laplacian; consequently the evolution equation (8) is parabolic for any 
choice of u G <!>2~. The unique solution g of (8) provides a unique solution 
4^9 0f the Ricci flow evolution equation (1) with initial value g®, where the 
diffeomorphisms fa are generated by integrating the vector field 

(9) V* = s'Vs V (Vp*V - ^ V/Up,) • 

Note that we shall usually take u to be the particular flat (or Ricci-flat) 
metric about which we wish to determine stability. (For Ricci solitons, a 
different approach is needed.) 

2.2. The space of Riemannian structures. 

As is well known, £2 with the C00 topology is a Frechet space, and <S^ C ^2 
is an open convex cone. There is a natural right action of the group V (M) 
of smooth diffeomorphisms of M on 5^ given by (/i, faj h-* (jfh. It is easy to 
check that a metric g is Einstein if and only if (ffg is Einstein. So for purposes 
of studying distinguished metrics on .M, one may regard 5^ as a union of 
orbits Og. The slice theorem of Ebin [E] shows that S^ is 'almost' an infinite- 
dimensional manifold possessing an exponential map. (More precisely, the 
theorem states that for any metric g, there is a map x '• U -* ^ (-M) of a 
neighborhood U of g in Og such that (x (</>*#))* g = fa"9 for all fag <E W, and 
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there is a submanifold T of S2 containing g such that the map U x T —>• ^ 
given by ((f)*g^) «->» (x((/)*flf))*7 is a diffeomorphism onto a neighborhood 
of # in tS^".) We shall require only the infinitesimal version of the slice 
theorem, which gives a useful decomposition of TgS^- For each g G <S^, let 
Sg and 5* be the maps defined in (3) and (5), respectively. It is clear that 
(/i, SgW) = (Sgh,W), hence that ker^ _L imJ*. With more analysis (see 
[E] or [BE]) it can be shown that these spaces span: in fact, one has 

(10) T9^2   — Kg ®Vg, 

where 

(ii) 'Hn 4= ker (L and Vg = im5*g. 

Our notation is meant to suggest 'horizontal' and 'vertical' subspaces, 
because TgOg = im£* = Vg. In the remainder of this paper, we shall freely 
use the following observations, whose proofs are straightforward calculations. 

Lemma 2.1. Given g E 5^ an^ h ^ ^2; define H = tr^ h = g^hij. Let 
g = g + eh, and denote the Christoffel symbols, curvature, and volume form 
of g by T, R, and dfl, respectively.  Then: 

1    -Q-V* i-   deljk e=0 ^^(v^ + v^-vV) 

9    AR^ Z-    ds^ijk 

3.   75-it! 

= 1 /  ViVfc/ij - ViV^jfc - VjVkhj 

de-Kjk 
1 f Ahjk + VjVkH — Vj div /i^ - V^ div /ij 

e^o 

4 ^^ 
£=0 

-Rjih{ - Ruh] + 2RjpqkhPi 

= - {AH - div (div h) + (Re, h)) 

5. §^djlE=Q = \H d/j,. 

fjRdfl       =f{±(R-$RdvL)H-(Ite,h))dtJi. 
e=0 

de 

X. 
(£x~g) U 

— yk 
£=0 

XkVkhij 4- hikVjXk + hjkViXk for any vector field 
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2.3. Maximal regularity and dynamic analysis. 

It is often useful to regard an evolution PDE as an ODE posed in an infinite- 
dimensional space. This viewpoint suggests the utility of a qualitative geo- 
metric or dynamic theory for parabolic evolution equations — a framework 
in which one can decompose the state space of an equation into invariant 
subspaces and then discuss their stability or lack thereof. Such an approach 
was developed for semilinear equations in [H]. More recently, the concept 
has been extended to nonlinear parabolic equations by Da Prato-Lunardi 
[DL], and refined for quasilinear systems by Simonett [S]. A key ingredi- 
ent of that theory is some sort of implicit function theorem or fixed-point 
theorem. For this to work, one needs function spaces in which each linear 
Cauchy problem of the sort 

^ = 2# + V(t), 0(0) = ^o 

has a unique solution </> such that d(/)/dt and Lcf) have the same regularity 
as /0. One approach for achieving this is to use the maximal regularity 
theory of Da Prato and Grisvard [DG], which in turn is based on the use 
of interpolation spaces. There are several methods of defining such spaces 
in the literature; each yields a suitably functorial map taking any Banach 
couple yi «-» 3^o to a Banach space y such that 3^i Q y Q 3V (For further 
background, see [CH].) 

In §3.3, we lay the groundwork that allows us to apply this hierarchy 
of theories to the Ricci flow. Our objective there is to apply the following 
theorem of Simonett. We state it here in a form suited to our purposes; this 
is an adaptation of more general results derived from Theorem 4.1, Remark 
4.2, and Theorem 5.8 of [S]. Roughly speaking, the theorem tells us that if A 
is a suitable quasilinear differential operator acting on appropriate function 
spaces, and if its linearization DA at a fixed point has an eigenvalue on 
the imaginary axis, then the evolution of solutions starting near that fixed 
point can be characterized by the presence of exponentially attractive center 
(unstable) manifolds. 

Here and in the remainder of this paper, we denote by B (X, x, d) the 
open ball of radius d centered at x in the metric space X. 

Theorem 2.2 (Simonett). Let Xi ^ XQ be a continuous dense inclusion 
of Banach spaces, and let Xa and Xp denote the continuous interpolation 
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spaces corresponding to fixed 0 < (3 < a < 1. Let 

(12) §i9 = A^9 

be an autonomous quasilinear parabolic equation posed for t > 0, such that 
A (•) G Ck (Gp, £ (A4, XQ)) for some positive integer k and some open subset 
Gp ^ Xp- Assume that there exists a pair So 5 £1 of Banach spaces, that 
there exist extensions A(') of A(-) to domains D(A(-)) that are dense in 
£Q, and that the following conditions hold for each g G Ga =1= Gp H Xa: 

• A(g) G £(£i,£o) generates a strongly continuous analytic semigroup 
on C(£o); 

• XQ I* (So,D(A{g)))e and X1 ^ {£o,D{A{g)))il+e) for some 6 G (0,1), 
where (v)0 denotes the continuous interpolation method o/[DG]; 

• A (g) agrees with the restriction of A (g) to the dense subset D (A) C 

• £1 <—> Xp *-¥ £Q is a continuous and dense inclusion with the property 
that there are C > 0 and 5 G (0,1) such that for all 77 G £1, one has 

\l-S \\„\\6 
Xp < C||-'/ii£0   \\'i\\s1 

Let g G Ga be a fixed point of (12). Suppose that the spectrum E of 
the linearized operator DA\g admits the decomposition E = E5 U ECW; where 
Es C {z : Kez < 0}, and where Ecli C {z iKez > 0} consists of finitely 
many eigenvalues of finite multiplicity. Suppose further that Ecu D iK. 7^ 0. 
Then: 

1. If S (A) denotes the algebraic eigenspace of A G Eclt; then Xa admits 
the decomposition Xa = X^ © X™ for all a G [0,1], where X™ = 

©AeEcu
5'(A)- 

2. For each r G N, £/iere ea;i5^5 dr > 0 5^c/i t/iat for all d G (0, dr]; there 
is a bounded Cr map ip — ip1^ : B (X^^g, d) -> X( with ip (g) = 0 and 
Dip (g) = 0. The image of ip lies in the closed ball B {Xl,g, d), and its 
graph is a Cr manifold 

M%c = {(7,^(7)) = 7 eB(X?,g,d)} C ^ 

satisfying TgM™c = Aff". WKe caW A^^, a local center manifold if 
Ecli C zM and a local center unstable manifold otherwise. Mf^c 

is locally invariant for solutions of (12)  as long as they remain in 

B(X?,g,d)xB(X{,0,<I)- 
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3. For all a E (0,1), there are constants Ca > 0 independent of g and 
constants CJ > 0 and d E (0, do] such that for each d E (0, d], one has 

\\^g (t) - ^ (7rc"9 (t))!!* < §^e-^ W^g (0) - </> (7rc"3 (0))||% 

/or all solutions g (t) with g (0) E 5 (A'Q,, 5, d) and all times t > 0 5^c/i 
^/ia^ ^/ie solution g (t) remains in B (Xa,g,d). Here TT

5
 and 7rcu denote 

the projections onto X^ = (X^XQ)    and X™ respectively. 

Remark 2.2. The Cr local center (unstable) manifolds constructed in 
statement (2) of the theorem are not in general unique. For instance, it 
can happen that dr —> 0 as r -> 00. 

Remark 2.3. Statement (3) of the theorem implies in particular that solu- 
tions whose initial data lie sufficiently near a fixed point in the Xa topology 
are attracted at an exponential rate in the Xi topology to solutions whose 
initial data belong to one of the finite-dimensional local center (unstable) 
manifolds. Note however that the theorem does not in general tell us any- 
thing about the dynamics within a local center (unstable) manifold. 

3. Stability of Ricci flow convergence to a flat metric. 

In this section, we state and prove our main results, which concern the 
behavior of the Ricci flow near a flat metric, or near a solution of the Ricci 
flow that converges to a flat metric. 

The key step in obtaining these results involves the application of The- 
orem 2.2 to the DeTurck flow evolution equation (8). So we shall need to 
identify appropriate function spaces and study the properties of the De- 
Turck flow operator and its linearization in order to verify the hypotheses 
of Theorem 2.2 in our particular case. We do this preliminary analysis in 
subsections 3.1-3.3. Then after a discussion in subsection 3.4 of the relation- 
ship between convergence of the DeTurck flow and of the Ricci flow, we state 
and prove our main result (Theorem 3.1) in subsection 3.5. Theorem 3.1 
pertains to Ricci flows starting near a flat metric; in subsection 3.6, we use 
the continuity of finite-time evolution together with Theorem 3.1 to verify 
the stability of Ricci flow convergence near any metric go whose Ricci flow 
converges to a flat metric (Corollary 3.7). 
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3.1. The DeTurck operator. 

We begin by examining the form of the DeTurck operator — the right hand 
side of equation (8) — in local coordinates and by noting some of its prop- 
erties. 

We first observe that the DeTurck operator is quasilinear in g. In order 
to match the notation used in Theorem 2.2, let us write this operator as 
Az (flO AS so that equation (8) takes the form 

-r^g = Au{g)g, 5(0) = 50- 

Lemma 3.1. // we express Au (g) g in terms of first and second derivatives 
of g in local coordinates, we obtain 

Mpq      d (Au (g) fl)y - a (x, u, g).™ Q^Q^9ki 

(13) + b (x, u, du, g)^ Q^9k£ + c (x, u, du)" gk£. 

The functions a (x, •, •), &(x, •, ■, •), and c(x, •, •) depend smoothly on x E A4 
and are analytic functions of their remaining arguments. 

Proof. In a smooth chart {V}, it follows from the standard formulas 

j,k       1  kif d d d       \ r^ " 29    [drf9* + M9* " dZ9ii) 

^k      dx1   ^k     dxi   ik       im ik       ik Jm 

by straightforward computation that 

op   -  ki(_& d2 a2 d2        \ 
2KiJ-9   {dxidxi9ke+ dxW9ij   dxidx"9^   dxidx*9*) 

+ ^{g,g~l,9g), 

where TT (g,g~1,dg) is a generic polynomial in g, g-1, and first derivatives 
of g. 

Similarly, one observes that 

(■Ft. (P))y = (QuflOij + (Qu5)ji , 
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where 

(14) (Q^y = Vi   (u-1)jk gUg" (vpUqi - ±Veupq^ 

Since 

VpUqt - -ViUpq =  f Q-jU>qi - T™qUml - T^Uqm J 

2 \ dx^Upq       tpUmq     *-£quPm ) ' 

one has 

(Qughj = - {u-l)jku,mgktg^ (j^v£) +7r{g,g-1,dg,u,u-1,du). 

Since for any matrix M, the components of M_1 are analytic functions of 
the components of M, the result follows. □ 

3.2. The linearization of the DeTurck operator. 

We next study the infinitesimal structure of the DeTurck operator. Given a 
Riemannian metric g on M, we denote by A =F <7

U
 V^ VJ the rough Laplacian. 

The Lichnerowicz Laplacian is then the map At : S2 ^ S2 given by 

(15) Ajfry = Afcy + IRipqjh™ - I^hkj - R^hik. 

While the spectrum of the Lichnerowicz Laplacian is negative semidefinite 
for a flat metric and for many other geometries, it is not negative semidefinite 
for all Riemannian metrics [Av]. This is relevant for the linearization of the 
DeTurck flow (8), because we have the following: 

Proposition 3.2. The linearization of the DeTurck operator Au (g) g about 
go is given by 

(16) (DAu{g))\goh = Aih-Vuh, 
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where 

(17) 

+ M 

+ /i 

L+Vi(t*«1(3V^-V»t4)) 

v* (t*;*1 (^vV - v-4)) 

JjTere; all   covariant differentiation is done with respect to the Levi-Civita 
connection of go, indices are raised and lowered using go, and U = tr^0 u. 

Proof. By definition, we have 

{DAU (ff))L h = -2 — Re [go + eh] \go de e=0 
- —Pu (go + eh) 

6=0 

We calculate J^ Re [go + eh] using formula (3) of Lemma 2.1.  To calculate 

Ji^u (50 + eh), we use the identity 

with Qwg defined by (14), and then use Lemma 2.1 to compute 

d_ 
de (Qu {§))» 

e=0 

-ViVjH - Vidivhj 

+ \ (V% - Vift} - V^*) nil (v™t4 - IV^) 

+ >4Vi 

^(^cz-v^ 

jfc I 2 ̂V*«?1 - Vm«J 
D 
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3.3. The DeTurck flow in the context of maximal regularity. 

We now exhibit appropriate Banach spaces AQ, AI, £O, and £i such that the 
DeTurck operator and its linearization satisfy the hypotheses of Theorem 
2.2. 

The spaces we use are certain little Holder spaces. Recall that if r G N 
and p G (0,1), the ordinary Holder space Cr>p is the Banach space of all 
Cr functions / : W1 -> R for which the Holder norm ||/||r+p is finite. The 
subspace of C00 functions in Cr,p is not dense; indeed, Cr>p is isomorphic [Ci] 
to ^oo, hence is not separable. One defines the little Holder space /ir+p to be 
the closure of the subspace of C00 functions with respect to the |H|r+p norm; 
one then verifies that hr+p is a Banach space and that hr+p M- /I

5+0
" is a 

continuous and dense inclusion for s < r and 0 < a < p < 1. (Corresponding 
statements hold for Cr>p (fi) when £) C W1 is a bounded C00 domain.) 

These definitions extend readily [BJ] using a smooth atlas to functions 
defined on a smooth closed manifold A4 and taking values in the bundle 
52 {M) of symmetric (2,0)-tensors over M. Accordingly, we shall use the 
notation |H|r+/9 to denote the Holder norm on Cr (.M, S2 {M)), and hrJtp to 
denote the little Holder spaces formed in this fashion. Note in particular 
that 

(18) hr+p -> hsJr(7 

remains a continuous and dense inclusion. 
An exact interpolation method IQ of exponent 6 takes any pair Bi C 

i?o of Banach spaces to a Banach space IQ(BQ,BI) such that Bi C 
Io{Bo,Bi) C Bo, and such that if T G £(£o,Ao) n C(BuAi) then 
T G C (le (Bo, Bi), le (AQ, A^) and 

llTll/:(/fl(BolBi)A(Ao,Ai)) ^ \\T\\c(BoAo) \\T\\c(BuAi) ' 

To apply Theorem 2.2, we will use the continuous interpolation spaces 
(Bo,Bi)e introduced in [DG]. By [DF], these are equivalent in norm to 
the real interpolation spaces frequently found in the literature; hence we 
will freely use results originally proved for the latter spaces. The continuous 
interpolation method is exact and may be defined in a number of equivalent 
ways. (See [Tr] or [CH].) For instance, one can characterize (.80,-61)0 as the 
set of all x G BQ such that there exist sequences {yn} C BQ and {zn} C Bi 
with x = yn + zn, where 

\\yn\\Bo=o(2-ne) and ||^|IB1=O(2
B
^>) 
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as n —> oo. The norm on (£?o, Bi)e is equivalent to 

inf|sup(2^||yn||Bo,2-"(1-e)||^||Bi)}, 

where the infimum is taken over all such sequences (ymZn)- 
For our purposes, the key fact [Tr] about the continuous interpolation 

spaces is that for 5 < r E N, 0 < a < p < 1, and 0 < 6 < 1, there is a 
Banach space isomorphism 

(19) (ha+a, hr+P)e * h{Or+{i-e)s)HOp+{i-o)")7 

provided that the exponent 6 (r + p) + (1 — 9) (s + a) is not an integer. If it 
is not an integer, then there is C < 00 such that for all 77 G hr+p, 

(20) \\v\\ihs+«,hr+r)9 < CMIJI |M|Jr+,. 
Thus for fixed 0<cr<p<l, we define the following nested spaces: 

So    =    h0+° 
U 

XQ    =    h0+P 

(21) U 
£1    =    h2+° 
U 

Notice that for 0 = (p - a) /2 G (0,1), it follows from (19) that 

(22) #0 = (£o5£i)^ and Xi = (£o7^i)(i+^) ■ 

We now wish to focus on the DeTurck operator Au (g) defined by (8) 
and written in expanded form in (13). Let us fix a smooth metric u and 
write A (g) = Au (g). For fixed 0 < e < 1 and 1/2 < /3 < a < 1, we define 

Gp = Gp{u,£) = [g e (XQ^XI)^ :g>euj, 

Ga = Ga {u, e) = ^ H (AQ, Ai)a , 

where g > eu means # (X, X) > e for any vector X such that |X|2 = 1. 
Observe that for each g G Gp, equation (13) allows us to regard A{g) as a 
linear operator 

+ b (x, u, du,g)ifp -Q-^IM + c (s, u, Su)" 7M 
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on h2+a = Si. For g G Qp, let us denote by Ae1 (g) '• £i Q So -> ^o the 
unbounded linear operator on SQ with dense domain D (Ae1 (g)) = S\. And 
let us denote by Axx (ff) : ^i ^ ^o -> ^o the unbounded linear operator on 
#0 with dense domain D (^A^ (5)) = A4. We need to establish the following: 

Lemma 3.3. The functions g *-» Axi (g) and g ^ As1 (g) define analytic 
maps Ga —> £ {Xi-> ^b) and Gp -^ C (f 1, fo) respectively. 

Proof. Analyticity of these maps is an immediate corollary of Lemma 3.1, 
once we have verified that these two functions map into the correct spaces. 
So it suffices to show that 7 »->> Axx (g) 7 is a bounded linear map from Xi 
to XQ for all g E Ga, and that 7 H-> A^ (g) 7 is a bounded linear map from 
£1 to £Q for all g e Gp- 

Let 7 G Ai and consider the first term: a (#, ^, g)ijVq Q^>Qxqlu {x)' Writ- 
ing (F o g) (x) — a (x, u, g) and suppressing indices for clarity, we wish to 
estimate the Holder norm of 

(23) (F o g) {x) ■ (d2
7) (x) -{Fog) (y) • (d2^ (y) 

= (Fo5)(a;).[(a27)(x)-(a27)(2/)] 
+ (a27)(y)-[(i;,o5)(a;)-(JFoff)(y)]. 

Observe that we can estimate \(F o g) (x) — (Fog) (y)] by integrating the 
directional derivative along a minimizing n-geodesic p from x to y of length 
distw(a;,y): 

\(Fog)(x)-(Fog)(y)\ = I D{Fog)(p') 
Jp 

ds 

< sup \D(F og)\- distu (x,y). 

Then recalling from the proof of Lemma 3.1 that F o g is a polynomial in M, 

IX"
1
, #, and g~l of total degree iV, and noticing that g-1 can be controlled by 

u~l when g G Ga — ^a (^^ we find that there is a constant C depending 
only on u, s, TV, n, and A^ such that 

sup |P (F o 5)| < C (l + ||y||jj^j) HsILi-w, • 

Combining these estimates and noting that 

distu (x,y) < (distu (x,y))p ^1 + (diamn.M)1~/?J , 
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we obtain a constant Co such that 

KFog)(z)-(Fog)(y)\<Co(l + \\g\\Z£)\\g\\hi»(4iBtu{x,y)y. 

The remaining term in (23) is easily estimated when one recalls that Xa — 
(XQ, Xi)a = h2a+P M- h1+P ^ h0+P. Thus we find there is Ci such that 

aix^g)^" 
d2 

13    dxPdxi Ike 
h0+p 

<C7i(i + |Ml2,) IWU, 

Similarly, one obtains C2 and C3 such that 

6(^,11, flu, »)**A7W <C2(l + |M|^) 
dxP 

\k£ 

h0+P 
ht+p 

c (x, u, du)ik jki < C3 II7IU0+, 

Thus we have shown that 7 t-t Ax1 (g) 7 is a bounded linear map from Xi 
to AQ, and hence that Qa —> C (A4, XQ). Replacing a by (3 and p by a in the 
argument above proves the assertion for Qp -> £ (£ 1, £Q). □ 

Although for every g G Gp, Ae1 (g) is bounded when regarded as an op- 
erator £1 -> £0, it is unbounded when regarded as an operator £0 -» £0, and 
is in fact only defined on a dense subspace D (As1 (g)) = £1. Nonetheless, it 
has the desirable property of generating a strongly continuous analytic semi- 
group, which is bounded (and hence defined everywhere) as a map £0 —> £0: 

Lemma 3.4. For every g E Gp, Ael (g) is the infinitesimal generator of a 
strongly continuous analytic semigroup on C(£o). 

Proof. By DeTurck's result (Theorem 2.1), A£1 {g) is strongly elliptic for 
any g G Gp- By classical elliptic theory, its spectrum is discrete, having 
a limit point only at —00. (See for instance Theorem 37 in Appendix I 
of [B].) Hence there is AQ > 0 such that XI — As1 (g) is a topological 
linear isomorphism from £1 onto £Q whenever Re A > AQ. In this case, the 
standard Schauder estimate (Theorem 27 in Appendix H of [B]) applied to 
the operator XI — As1 (g) yields C < 00 such that 

Me, ± IMU* < CII(AJ - As, (9)) T/Hfto-H, = C || (XI - A£l (g)) r,^ 

for every rj G £1 = D(As1 (g))> By Theorem 1.2.2 and Remark 1.2.1(a) of 
[A], this suffices to prove the result. □ 
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3.4. Equivalence of DeTurck and Ricci flow convergence. 

Our objective here is to show that a solution of the DeTurck flow (8) con- 
verges exponentially fast to a unique flat metric only if the corresponding 
solution of the Ricci flow (1) converges exponentially fast to a unique (though 
possibly distinct) flat metric. 

Lemma 3.5. Let V (t) be a vector field on a Riemannian manifold 
(Mn,g(t)), where 0 < t < oo; and suppose there are constants 0 < c < 
C < oo such that 

snp\V(x,t)\g(t)<Ce-ct. 

Then the diffeomorphisms fa generated by V converge exponentially to a 
fixed diffeomorphism (j)^ of M. 

Proof. Given x E M, let 7 : [0,00) —> M be an integral curve for V starting 
at x. Then 7 satisfies 

1'(t) = V(1(t),t) 

7(0)=*, 

where we make the standard identification 7' = 7* (d/dt). The length L [7] 
of the integral curve is nondecreasing and bounded above, because 

Lh)(t)= f\V{x,T)\g{T)dT<cfe-~dT=^{l-e-ct)<^. 
Jo Jo c c 

This proves that L [7] converges; to see that the convergence is exponential, 
it suffices to note that 

e-CTdT = -e-ct. 
c 

/oo re 

\V(x,T)\g{T)dT<Cjt 

Since 7 (t) — fa (x) and since x G M is arbitrary, the result follows. □ 

Proposition 3.6. Let go be a flat metric on a manifold M. Suppose there 
is a neighborhood O of go in $2 with respect to the IH^+p Holder norm such 
that for every go E O, the unique solution g (t) of the DeTurck flow 

di —g == -2Rc - P90 (g), g (0) = go 
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converges exponentially fast to a flat metric QOQ. Then the unique solution 
g (t) = (</>£#) of the Ricci flow (1) with g (0) = go G O guaranteed by Theorem 
2.1 converges exponentially fast to a flat metric g^. 

Proof. It is clear that ^oo will be flat if it exists, so all we need do is to show 
that g (t) converges. But because ^oo and go are both flat, their Levi-Civita 
connections are each trivial, whence it follows that 

v[<?oo] (So) = Vbo] (go) = 0. 

Then since g (t) —> ^oo exponentially fast, it follows that V (t) —> 0 expo- 
nentially, where V (t) is given by 

V* = 9ij fa1)^?9 (v, (9o)qi - \\>i (9o)pq 

(Here V denotes covariant differentiation with respect to the Levi-Civita 
connection of g (<).) Hence by Lemma 3.5, the solution g (t) of the ODE 
corresponding to V (t) exhibits exponential convergence to some limit g^. 

D 

3.5. Main theorem. 

Having established the preliminary results of subsections 3.1 -3.4 concern- 
ing the DeTurck operator, its linearization, and the relation between con- 
vergence of the DeTurck and Ricci flows, we are ready to state and prove 
our main theorem, which says that the Ricci flow of any metric sufficiently 
close to a flat metric will necessarily converge exponentially quickly to a flat 
metric. 

Theorem 3.1. Let go be a flat Riemannian metric on a torus Tn'. For fixed 
p G (0,1); let X denote the closure of S^ D S^ with respect to the IH^+n 
Holder norm.  Then: 

1. Tg0S2  — X admits the decomposition 

where Xc is the n (n + 1) 12-dimensional space of (2,0) -tensors parallel 
with respect to the Levi-Civita connection of go- 
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2. There exists do > 0 such that for all d G (0, do], there is a bounded C00 

map tp : B(Xc,g0,d) -> Xs with i/) (go) = 0 and Dip (go) = 0. The 
image of ip lies in the closed ball B (Xs,go,d), and its graph 

Ml^i^m-.jeB^^goid)} 

satisfies Tg0Mfoc = Xc. This unique C00 local center manifold Mfoc 

is of dimension n (n + 1) /2 and consists entirely of flat metrics. 

3. There are constants C > 0, u > 0 and d* E (0, do] such that for each 
d G (0, d*]; one has 

h'g (t) - V (vrcff m\2+p < Ce-** \\nsg (0) - V (neg (0))||2+p 

/or a// solutions g (t) of the Ricci flow with g (0) G B(X,go,d) and 
all times t > 0. iTere TT

5
 and 7rc denote the projections onto Xs and 

Xc respectively. In particular, any solution g (t) of the Ricci flow with 
initial data sufficiently near go converges exponentially to a flat metric 
near go. 

Proof. For reasons discussed earlier, we work first with the DeTurck flow 
rather than the Ricci flow. We take the background metric u to be the 
given flat metric go, and thus consider the DeTurck flow 

(24) ^ = -2RS-Pp0(ff), $(0) =gQ. 

Note that any flat metric is a stationary solution of this flow, because 
Pg0 (g) = 0 if g is flat. Note also that ^uh in equation (16) vanishes for 
this choice of n, whence by Proposition 3.2, the linearization of (24) reduces 
to the basic heat equation: 

d_h    _Ah 

It is clear that the rough Laplacian is negative semidefinite on S2 with 
kernel consisting exactly of parallel (2,0)-tensors, hence of dimension at 
most n (n + 1) /2. Recalling the choices made for XQ, XI, So-, and £1, and 
applying Lemmas 3.3 and 3.4, we thus verify that the DeTurck operator 
satisfies the hypotheses of Theorem 2.2. This proves that local Cr center 
manifolds rMf0C exist, and that the DeTurck flow of any metric starting 
near go exponentially approaches rMf0C. 
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We now claim that the rMfoc are independent of r, and consist entirely 
of flat metrics. To prove this, we observe that any flat metric g sufficiently 
near go belongs to rM^0C for all r e N: if not, then statement (3) of Theorem 
2.2 would imply that g converges exponentially to rM^oc, contradicting the 
fact that g is a fixed point of (24). But it is a standard fact that the space 
of flat metrics on the torus is a convex n (n + 1) /2-dimensional set. (See for 
instance §12.18 of [B].) Since each rMf0C is at most n (n + 1) /2-dimensional, 
it follows that rMfoc consists exactly of flat metrics for all r E N. 

Our argument thus far shows there is a neighborhood B {X,go, 8) such 
that the DeTurck flow g (t) of any metric g (0) G B (X^go, 5) becomes flat 
exponentially fast in the IHI2+P norm for as long as g (t) G B (X,go,5). By 
(14), we have 

1^ 
(P9o ($))y = Vi 

+ v 

where V denotes covariant differentiation with respect to the Levi- 
Civita connection of g (t). Since | Rij |, | Vj (go) ki — dj (go) ki |, and 
|ViVj (go)ke ~ didj (5o)^| ^ decay exponentially fast when g (t) G 
B {X, go, 5), there are C = C (S) < 00 and a) = a) (S) > 0 such that 

dv 
= \-2Rc-Pg(g)\ <Ce —ut 

for as long as g (t) remains in B (#,go, ^)- Choose 0 < £ < S small enough 
that C (s) /u (6) <S-£. Then for all solutions g (t) with g (0) G B (X,go,£), 
we can estimate 

\g(t)-go\<\g{t)-g(0)\ + \g(0)-go\<6-e + e = 6 

independently of t > 0. It follows that g (t) remains in B (X,go^5) for all 
time and hence converges to a unique flat metric. By Proposition 3.6, the 
Ricci flow of any metric starting sufficiently near go also converges to a 
unique flat metric. □ 

3.6. Stability of solutions that become flat. 

There are various families J7 of metrics for which it is known that if g (t) 
is the solution of the Ricci flow starting at some go G J7, then the flow 
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g (t) necessarily converges to a flat metric. This is true, for example, for the 
polarized Gowdy metrics [CIJ], for direct-product metrics (T2, /i) x (S1, dx2) 
with /J, an arbitrary Riemannian metric on T2 [H4], and for square torus 
bundles over S1 (§11 of [H5]). Note that all of these families are characterized 
by isometrics rather than curvature restrictions. 

A straightforward corollary to Theorem 3.1 shows that if the Ricci flow 
h (t) of a metric starts sufficiently near one of these families, it too must 
converge to a flat metric. We emphasize that h (0) need not share the 
isometrics of the family J7. 

Corollary 3.7. Let g (t) be a solution of the Ricci flow that converges to a 
flat metric g^. Then there is a \\-\\2+p neighborhood O of g (0) in S^ such 
that every solution h (t) of the Ricci flow with h (0) G O converges to a flat 
metric HQQ near g^. 

Proof. We fix g (t) and its limit g^. It follows from Theorem 3.1 that there 
exists a neighborhood Af of poo such that the Ricci flow of any metric starting 
in Af converges to a flat metric near g^. Since g (t) converges to g^^ there 
exists a time T = T (g (0), Af) such that g (t) <E Af for t > T. Choose e > 0 
small enough that B {X, g (2T), e) CAf. Since Ricci flow for finite time is a 
continuous map, there exists 5 > 0 such that for all h (0) G B {X,g (0), 8), 
we have h (2T) e B(X,g (2T), e). It follows that h (t) converges to a flat 
metric near g^. □ 

4. Other results. 

The intent of this section is to stimulate further research by demonstrating 
that our methods are applicable to other questions of stability regarding 
the Ricci flow. It should be noted, however, that the results stated below 
are weaker than our main theorem, either because they are incomplete or 
because they in some sense rediscover known results. 

4.1. Stability at metrics which are Ricci flat but not flat. 

In this section, we consider the DeTurck flow 

(25) ^g = -2R^ - Pgo (g), g (0) = g0, 

where {A/iri
:go) is a given Ricci-flat (but not flat) geometry about which we 

wish to determine stability.  (Such geometries exist only for n > 4.)  Note 
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that g (t) = go is a stationary solution of both the Ricci flow (1) and of 
(25). On the other hand, if <7o is another Ricci-flat metric on Mn, then 
g (t) = go is a stationary solution of the Ricci flow (1) but not necessarily of 
(25). Nonetheless, in this case (25) reduces to 

d 
-Q-t9 = -Pgo (9), 

which is just the Lie derivative of g. So g (t) moves only by diffeomorphisms, 
and in particular remains Ricci-flat. 

If we linearize (25) at the distinguished Ricci-flat metric go, the ^uh 
term in equation (16) vanishes, so that we obtain 

d_ 
dt 

hij = A^hij = Ahij + 2Ripqjh
PQ. 

Thus in order to understand the stability of the DeTurck flow near go? it 
is necessary to analyze the spectrum of the Lichnerowicz Laplacian on a 
Ricci-flat manifold. Since A^ is elliptic and self adjoint, we know that its 
spectrum is real, discrete, of finite multiplicity, and has no positive accumu- 
lation point. It follows immediately that Theorem 2.2 can be applied at the 
Ricci-flat metric go, with the function spaces XQ, XI, £o, and £i chosen as in 
§3.1. Thus there is for each r E N a Cr center (unstable) manifold at go, and 
the flow of nearby metrics will approach it. But to obtain useful information 
about the dynamics of the Ricci flow near go, we need to know much more 
about those center manifolds. To do this, we decompose the tangent space 
Tg0S2 at a Ricci-flat metric go into a number of subspaces and relate these 
to the spectrum of A^, in order to describe the tangent space to the center 
manifolds at go. We carry out this analysis in Lemmas 4.1-4.7, and summa- 
rize our results in Proposition 4.8. This is a first step toward understanding 
the dynamics. For the special case that go is a Kahler-Einstein metric on a 
K3 surface, we obtain a stronger result (Theorem 4.3) that falls just short 
of determining stability, as has been done above for flat metrics. 

To simplify notation, let us assume for now that g is a fixed Ricci-flat 
metric. To start our analysis of the spectrum of its Lichnerowicz Laplacian, 
we recall that the Hodge-de Rham Laplacian is the map A^ : fip —)► £F 
given by 

(26) Ad = - {d6 + 5d). 

Note that our sign convention is opposite to the standard one, but is more 
convenient for studying heat flows. It is well known [L] that for any Ricci- 
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parallel manifold (namely, any manifold for which VRc = 0), one has 

(27) A*J* = 5*Ad 

and 

(28) ^ = AdS. 

If moreover Re = 0, we note that Ad on ft1 reduces to 

(29) AdUi = - {{dS + Sd) u). = Aui - Riuj = Aa*. 

We follow [Bu] in defining certain subspaces of <?2 — TgS^', for ease of 
notation, we suppress the subscript indicating dependence on g. We set 

(30) C= {5*(5ri) : 77 Eft2} C V 

(31) E = {VV/ : / G C00 (M)} C V 

(32) Z#{Va;:a;e#i} C V, 

where iJ^ denotes the space of harmonic 1-forms (defined in §2) and 

(33) N = {heS2:5h = 0, tih = 0}CH 

(34) S={(Af + a)g- VV/: / E C00 (^,M) , a E M} C^ 

(35) G = {ag : a E M} C S. 

Recalling that V and H are defined in (11), it is easy to check the indicated 
inclusions. 

We now make a number of claims regarding these subspaces. Many of 
these claims are similar to those in [Bu]. However, negative scalar curvature 
is assumed in that paper, whereas we have Re = 0. Thus (since the proofs 
are short) we verify the results directly. 

Lemma 4.1. Each of the spaces defined in (30)-(35) is an invariant sub- 
space for Ai, in the sense that A^h belongs to the space whenever h does. 

Proof. Invariance of V is a trivial consequence of (27). Invariance of C follows 
from (27) and the fact that A^ = SAj as maps A2 —> A1 on any manifold. 
Invariance of E and Z follows from (27) and the fact that Vo; = 5*ou for any 
closed 1-form u on any manifold. 
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Invariance of H follows from (28). Invariance of iV also follows from (28) 
and the identity tr (Aih) = A (tr/i). The invariance of G is clear, and that 
of S when Re = 0 follows from the computation 

(36) A^ [(A/ + a) gij - ViVjf] = (AA/) ^ - V^A/. 

□ 

Lemma 4.2. The spaces C, E, Z, N, and S are pairwise orthogonal with 
respect to the L2 inner product (•, •) == fM (•, •) d/j,. 

Proof. For any closed 1-form 0, we have 66*6 = -Ad = -Ade by (29). So let 
c = 6*8T)eC,e = VV/ = 6*df e E, and z = Vw = S*u) e Z be arbitrary. 
Then C ± Z, because 

(c, z) = {6*6^, 6*u) = - [Sr], Adu;) - 0. 

Similarly, E J. Z, because 

(e,z) = -(4f,Ada;) = 0. 

And C -L E, because 

(c,e) = (5*6r],8*df) = - (^, A^/) = (^ta/) = {6\6df) = 0. 

To finish the proof, it suffices to show that N J_ 5, because C, £7, Z C V and 
iV, 5 C H. If /i G N and 5 = (A/ + a) g - VV/ G 5, then 

(M) = J ((A/ + a)ff - VV/, h)dvL = -J (VV/,/i) ^ = - (4f,«i) = 0. 

a 

Lemma 4.3. U = JV 0 S. 

Proo/. We already know that N ® S C U.  Given h e H, define H = tih 
and H = f H d/i. Then if V = Vol (.M, g) and a = H/riV, we have 

/■ 
(jff — na) d/i = 0. 

So there is a unique solution / G C00 of the Poisson problem 

n-1 / 
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Set 5 = (A/ + a) g - VV/. Then s G S and 

tr s = gij [(A/ + a) ^ - V;^/] = (n - 1) A/ + na = H = tr /i 

Hence (/i — 5) E iV, which completes the proof. □ 

We are now ready to analyze the spectrum of A^ on the spaces (30)-(35). 

Lemma 4.4. A^ vanishes on Z, which is at most n-dimensional. 

Proof. If z = Vu = 5*LJ G Z, then u E H\ by definition. So A^*a; = 
5*A(IUJ = 0 by (27). This proves the first assertion. The second follows 
from Bochner's theorem, which says that any harmonic 1-form on a closed 
manifold of non-negative Ricci curvature is parallel: 

0 =  / (Ada;, (j) dfi = - / (l Va;|2 + Re (w, a;)) d/j, < - j | Va;|2 rf/i. 

a 

Lemma 4.5. A^ < 0 on E. 

Proof. Let e = VV/ = 5*0?/ G ^ be arbitrary. Since VRc = 0, we have 

A,ey = AViV,-/ + 2RipqjW
pVqf = V^AV,-/, 

and hence 

(A/e, e) = y ViAVj/V* VV d/j = - f | AV/|2 d^ < 0. 

Equality is possible only if 0 = AV/ = A^d/, hence only if e € .E D Z = 
{0}. D 

Lemma 4.6. A^ < 0 on C. 

Proof. Let c = 5*57/ G C be arbitrary, and write UJ = Jn. Since by (27), 

A^*^ = 5*A^Jr? = -5* (dS + <M) ^ = -8*5du;, 

we have 

(A^c, c) = - (8*8du, 5*6j) = - (Sdv, 85*LJ) . 
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But since Re = 0, we get 

7V; {Sd^j = -Vz {ViLJj - WjUi) = -Acjj + VjVz 

= -Aujj - VJSUJ = -Acoj - Vj (52r)) = -AUJJ, 

and similarly 

(65*^ = --V^ (Viujj + VjUi) = --AUJ. 
2      K       J        J    ' 2 

Hence by (29), we have (A^c, c) = — / | Arfa;|2 d/i < 0, with equality only 
if UJ e Hb hence only if c e C n Z = {0}. D 

Lemma 4.7. A^ vanishes on the 1-dimensional subspace G, and A^ < 0 on 
S\G. 

Proof. The first statement is clear. Let s = [(A/ + a) gij — ViVjf] E S be 
arbitrary. Since Re = 0, we have ViVjV1/ = VjA/. So by (36), we get 

(A£5, s) = J [(AA/) g^ - ViVjAf] [(A/ + a) gy - V^V^/] dfA 

= (n-2) J AA/A/ + (n-l)af AAf + f (VVA/, VV/) dp 

= -(n-l)J\VAf\2dlA<0. 

Equality is possible only if A/ is constant, hence only if Af = 0, hence 
only if / is constant. □ 

As noted above, since A^ is elliptic and self adjoint, we may readily 
apply Theorem 2.2 and thereby determine that center manifolds exist for 
the dynamics of the Ricci flow near a Ricci-flat metric. Combining this 
with the results of Lemmas 4.1 -4.7, we are able to make the following 
observation: 

Proposition 4.8. Let (M71, go) be Ricci flat; and for fixed p G (0,1), let X 
denote the closure of S2 D 5^ with respect to the IHI2+0 Holder norm. 

1. Tg0S2 = X admits the decomposition Tg0S2 = Xs © Xcu, where Xcu 

is finite dimensional The eigenspace corresponding to the zero eigen- 
value of the linearization of the DeTurck flow at go contains the space 
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Z®G of dimension bi + 1, where bi = dimH1 (M., M) is the first Betti 
number of M, and possibly a subspace of N. If any positive eigen- 
values of the linearization exist, their eigenspaces are the closures of 
finite-dimensional subspaces of N. 

2. For each r G N, there is a Cr center {unstable) manifold Mf^c existing 
in a neighborhood Or of go in X. Each center (unstable) manifold 
M^QC is tangential to Xcu and is locally invariant for solutions of (25) 
as long as they remain in Or. 

3. There are positive constants C and w, and neighborhoods 0'r of go in 
X defined for all r G N, such that 

HTT'S (t) - i, (n™~g (tM* < Ce^ \\K
S
9 (0) - V (**§ (0))\\x 

for all solutions g (t) of (25) and all times t > 0 such that g (t) G C^.. 
(The projections IT

8
 and 7rcu here are those defined in Theorem 2.2.) 

We now consider the special case of a Ricci-flat metric on a K3 surface. 

Definition 4.9. A K3 surface is a closed connected smooth complex surface 
with vanishing first Chern class and no global holomorphic 1-form. 

A K3 surface is a 2-dimensional complex manifold, hence a 4-dimensional 
real manifold. In fact, each K3 surface is diffeomorphic to a unique simply- 
connected orientable manifold, namely the quartic hypersurface 

M4=< 
3 

[zo:z1:z2:zs]eCF3 :J2zj=0 

3=0 

> CQP3 

Siu has proven [Si] that every K3 admits some Kahler metric, and Yau's 
proof [Y] of the Calabi conjecture shows that each Kahler class of a K3 
contains a unique Ricci-flat Kahler metric. (For general background, the 
reader is referred to [P].) 

We are interested in fixing a Ricci-flat Kahler metric go on the K3 surface 
.M4, and considering the Ricci flow g (t) of metrics for which g (0) is IH^+p 
close to go. Proposition 4.8 applies, but we shall be able to say more about 
the center manifolds in this special case. 

Our first observation is that the kernel of the Lichnerowicz Laplacian is 
well understood for K3 geometries. Indeed, for any Riemannian manifold 
(Mn,g), let e (g) denote the space of infinitesimal Einstein deformations of 
g. (See 12.29 of [B].) The usual definition of e (g) is equivalent by [BE] to 
the following characterization, which is most convenient for our purposes: 



Stability of the Ricci flow 769 

Definition 4.10. An element h £ S2 is an infinitesimal Einstein deforma- 
tion of g if and only if h G N and satisfies 

Ahij + 2Ripqjh
pq = 0. 

It is clear that e (g) coincides with the kernel of A^|iV on any Ricci-flat 
manifold. This space can be described exactly [Bl]: 

Theorem 4.1. If (M^^go) is a Ricci-flat Kdhler metric on a KZ surface, 
then e (go) is isomorphic to the tensor product of the 3-dimensional space 
of parallel self-dual 2-forms and the 19-dimensional space of harmonic anti- 
self-dual 2-forms. 

In general, the fact that ^ Re [g + e/i]| 0 = 0 says nothing about 
Rcfg + eh] for 0 < e <C 1. It is thus a remarkable fact that the infinites- 
imal deformations of a Kahler-Einstein metric on a K3 surface actually 
correspond to Ricci-flat metrics [Tl], [T2]: 

Theorem 4.2. Let go be a Kahler-Einstein metric on a K3 surface .M4. 
Then there is a submanifold £ C S^of Ricci-flat metrics near go with 

Tgo£ = e(9o). 

Remark 4.11. The theorem implies in particular that £' = {Ag : A > 0, 
g G £} is a 58-dimensional family of metrics that evolve only by diffeomor- 
phisms under the DeTurck flow (25). 

With this understanding of the eigenspace corresponding to the zero 
eigenvalue of A^, our remaining task is to elucidate the eigenspaces corre- 
sponding to positive eigenvalues of A^, should any exist. Proposition 4.8 
tells us that any such eigenspaces must be subspaces of N. We now show 
that for a Ricci-flat K3 geometry, no such spaces exist. To do this let us 
recall some standard facts about 4-dimensional geometries. On any oriented 
Riemannian manifold (.M71, #), the Hodge operator * : Ap —> An~p is defined 
for 0 < p < n by a A (*/3) = (a,/?) //, where /i is the volume form of 5; it 
satisfies *2 = (—l)^n~^ idAP. If n = 4, this induces a natural decompo- 
sition A2 = A+ © A- into the self-dual and anti-self-dual eigenspaces of * 
corresponding to +1 and —1, respectively. If {e;} is an orthonormal moving 

frame with dual coframe {0Z} on an open set U C M, and < r)k = rjf- 6l A Qi > 
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is an orthonormal basis of A2, say 

yft y/2 y/2 

V2 V2 'y/2 

it is easily checked that {r/1 ± r/6, ry2 =F ry5, rj3 ± ry4} is an orthogonal basis 
of A^. Let A^ denote the self-dual 2-forms of norm 1, and let 5^ denote the 
bundle of traceless symmetric (2,0)-tensors. Then it is well known [B2] that 
there is a natural isomorphism a : A^OA- —> S® given by<7:a®/?i->>aE3/?, 
where 

4 

(37) aM(3 = Y,(<<eka)®(LekP), 
k=l 

and (o*:??) (Y) = ^ (-X", ^)- The bases {rj1 dz T;
6
, r)2 =F T/

5
, Ty3 ± ry4} induce a 

block decomposition of any linear map A2 —>■ A2, in particular of the self- 
adjoint map Rm : A2 —> A2 defined by 

(38) (Rm(rf),^)=RijkeVPj7]l, 

where Rijki denotes a component of the Riemann curvature tensor with 
respect to the coframe {01}- Now in any dimension, one also has the or- 
thogonal decomposition 

(39)       Rm=2^hT){9Q9) + ^{AcG9)+w 

o 

that defines the Weyl tensor W, where Re is the trace-free part of the Ricci 
tensor, and 0 denotes the Kulkarni-Nomizu product of symmetric tensors. 
If (.M4,*/) is Ricci flat, one may combine these points of view to identify 
Rm with the block decomposition [ST] of the Weyl tensor, 

(40) Rm=W=^VV       w_ 

where each block W± is self adjoint and trace free. 

Lemma 4.12. Let (MA,g) be a Kahler-Einstein metric on a K3 surface. 
Let a G A+ and (3 e A~. Then 

2Rmo (a 13 /?) = a IS (W' (/?)) , 

where (RmoS').. = RipqjS
pq denotes the natural action of the curvature 

operator on a symmetric tensor. 
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Proof. It is well known that any Calabi-Yau metric on a K3 satisfies W+ = 
0. (See [Bl] or 13.17 of [B].) Calculating with respect to the orthonormal 
basis {e^}, we have 

(a m W- (/3))y = akiW^pq = a^W^/V 

Then using the symmetry of the product between self-dual and anti-self- 
dual 2-forms, we get 

(Rmo (a El /?))y = W7qjakppkq = aipW^qjf3kq. 

Hence by the first Bianchi identity, 

(Rmo (a Bl 0))^ = -aip (w-qjp + W^) (3kq 

= aWWjpqk^q - <XipW-kjPqk 

= {a®W-(l3))ij-(Rmo(a®P))ij. 

a 

We are now able to show that A^ has no positive eigenvalues: 

Corollary 4.13. // (.M4,g) is a Kdhler-Einstein metric on a K3 surface, 
then At < 0 on N and Ai < 0 on N\e (g). 

Proof Recall the general formula for the Hodge-de Rham Laplacian acting 
on a 2-form: 

AdVij = - [(dS + Sd) r/] • • = Arjij + 2Rivqj7]M - Ritrnj - Rjkn }ik' 

Let a e A+ and /3 G A- on a Kahler-Einstein K3. Then 

(W     {(3))^ = Wijpq{3qp == - (Ripqj + Riqjp) Pqp = 2RipqjPpq- 

Hence by Lemma 4.12, we obtain the useful identity 

(A, (a M ft).. = (A (a 12/3)).. + 2 (Rmo (a M 0)).. 

= (Aa M (3)^ + (a H A^)^ + 2VpakiVp/3kj. 

Integrating by parts and recalling that |Q!| = 1, we get 

(Az(a®p),a®(3) = -[ | Va|2 | V/3|2 dfi + f (Ad(3, j3) dfi < 0. 
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Since there are no parallel anti-self-dual forms, equality is possible only 
if a is parallel and /? is harmonic. □ 

Since b\ = 0 on a K3 surface, we have thus proved the following: 

Theorem 4.3. Let (.M4,#o) be a Kahler-Einstein metric on a K3 surface. 
For fixed p £ (0,1); let X denote the closure of S2 D $2 with respect to the 
IHl2+n Holder norm. 

1. Tg0S2 — X admits the decomposition Tg^S^ = Xs © Xc. The space 
Xc is the closure of e (go) ®G7 where e (go) is isomorphic to the tensor 
product of a 3-dimensional space of parallel self-dual 2-forms and a 
19-dimensional space of harmonic anti-self-dual 2-forms. Xc is thus 
58-dimensional. 

2. For each r 6 N, there is a Cr center manifold Mfoc that exists in a 
neighborhood Or of go in X. Each center manifold is tangent to Xc 

and is locally invariant for solutions of (25) as long as they remain in 
Or. 

3. There are positive constants C andu, and neighborhoods Of
r of go in 

X defined for all r G N, such that 

\\Ksg (t) - j, (irc~g m\x < Ce""* \\7rs~g (0) - V tfg m\\x 

for all solutions g (t) of (25) and all times t > 0 such that g (t) E O^. 

Remark 4.14. As mentioned in the introduction, Cao has shown [C] that 
any Kahler metric on a K3 surface converges under the Ricci flow to a Ricci- 
flat Kahler-Einstein metric. His result does not imply Theorem 4.3 however, 
because we consider the Ricci flow of all metrics near go, not just Kahler 
metrics. 

4.2. Stability at other Einstein metrics. 

If (Mn,go) is a Riemannian manifold of constant nonzero sectional curva- 
ture, it is not possible to choose u so that go becomes a fixed point of the 
DeTurck flow. So we modify our method, proceeding in two steps. 

First we apply the DeTurck trick to the volume-normalized Ricci flow 
(2), obtaining 

(41) — g = Aug + -(f RdA 9, 9 (0) = ffo- 
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Clearly, Theorem 2.1 applies to this equation as well. Moreover, every 
metric go of constant curvature becomes a fixed point of (41) if we again 
choose u = go. By straightforward calculation, it follows from Proposition 
3.2, Lemma 2.1, and the formula for Rm on a manifold of constant sectional 
curvature that the linearization of (41) at g takes the form 

dt 
2R fjHdn\ 

hij — Ahij + 2Ripqjh    — —£ I     .        I gij 

(42) = Ahij + -j—^ (H9ij - M - -f (IJJ-) 9ij, 

where H = g^hij. 
Then we restrict our attention to the space 5^ of metrics on M which 

have the same volume element as go- This involves no loss of generality, 
since by [M], any metric in ^ can be transformed into an element of c?^ 
by homothetic rescaling and an action of V (M). Moreover, S^ has rather 
nice geometric properties: Ebin's slice theorem applies to S^ (see §8 0^ PD? 
implying in particular that 5^ is 'almost' an infinite-dimensional symmetric 
space whose tangent space ^ consists exactly of those elements of S2 of trace 
zero. Moreover, the subset V^ (Ai) C V (M) of diffeomorphisms preserving 
d/i is a closed Lie subgroup (Theorem 2.5.3 of [HI]). 

Thus on TS2 , we have H = 0, whence equation (42) reduces to 

(43)                        !*« — Ijflij '• = Ahij 
n 

R 

(n- -1)^ • 

Since when R > 0, we have 

(Lh, h) = -\\Vh\ l
2 R 

ii^iii. <0 
(n- 1) 

for any nonzero h G c?^, we can aPPly ^^ construction in §3.3 to 8% and 
thereby obtain the following: 

Proposition 4.15. Let {A4n,go) be a metric of constant positive curvature. 
Then there is a neighborhood O of go in 8% with the IHI2+P Holder norm 
such that every g G O converges exponentially to go under the flow (41). 

Remark 4.16. We include this result merely as an illustration of the 
method. It does not provide an alternative proof of Hamilton's conver- 
gence theorems for n = 3 [H2] and n = 4 [H3], nor of Huisken's result for 
n > 4 [Hu]. 
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4.3. Ricci solitons. 

Suppose (M71^ (t)) is a steady Ricci gradient soliton with g (0) = go- Then 

9(x,t) = (9*tgo)(x) 

for some family 6t of diffeomorphisms generated by vector fields —X (t) 
whose dual 1-forms are closed. In particular, 

Re = VV/, 

where X (t) = V/ (t) for some 1-parameter family of smooth functions / on 
A4. In dimension n > 3, the choice 

u = en-2j go 

makes go a fixed point of the DeTurck flow, because at t = 0 one has 

The corresponding linearization at go is given by 

Ojhij = Ahij + ^hijVkf - 2^ (Vih* + Vjh!) Vkf 

- -^ (ViHVjf + VifVjH) + 2RipgjhPi 

However, we have not yet extensively studied the spectrum of the oper- 
ator that results from this construction. 
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