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0. Introduction. 

0.1. Historical Notes. 

Compactifications of symmetric spaces and their arithmetic quotients have 
been studied by many people from different perspectives. Its history went 
back to E. Cartan's original paper ([2]) on Hermitian symmetric spaces. 
Cartan proved that a Hermitian symmetric space of noncompact type can 
be realized as a bounded domain in a complex vector space. The com- 
pactification of Hermitian symmetric space was subsequently studied by 
Harish-Chandra and Siegel (see [16]). Thereafter various compactifications 
of noncompact symmetric spaces in general were studied by Satake (see 
[14]), Furstenberg (see [3]), Martin (see [4]) and others. These compact- 
ifications are more or less of the same nature as proved by C. Moore (see 
[11]) and by Guivarc'h-Ji-Taylor (see [4]). In the meanwhile, compacti- 
fication of the arithmetic quotients of symmetric spaces was explored by 
Satake (see [15]), Baily-Borel (see [1]), and others. It plays a significant 
role in the theory of automorphic forms. One of the main problems involved 
is the analytic properties of the boundary under the compactification. In 
all these compactifications that have been studied so far, the underlying 
compact space always has boundary. For a more detailed account of these 
compactifications, see   [16] and   [4]. 

In this paper, motivated by the author's work on the compactification 
of symplectic group (see [9]), we compactify all the classical groups. One 
nice feature of our compactification is that the underlying compact space is a 
symmetric space of compact type. Furthermore, for real groups, real analytic 
structure is preserved; for complex groups, complex analytic structure is 
preserved (see Theorem 2.4 and Theorem 3.3). In addition, all the G(p,q) 
groups for p + q = n can be compactified simultaneously (see Theorem 2.3). 
I should remark that this compactification is essentially different from the 
construction in  [13]. The main idea in this paper is due to D. Vogan ([17]). 
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Throughout this paper, we will mainly follow the standard notations 
from Helgason's book   [5] and Knapp's book   [12]. 

0.2. Compactification: Ideas. 

Let X be a noncompact analytic manifold, Y be a compact analytic man- 
ifold. We say that (i, Y) is an analytic compactification of X if i is an 
analytic embedding from X to Y and i(X) is open and dense in Y. We say 
that (i,-X") is a complex analytic compactification if in addition i is complex 
analytic. In [9], I construct an analytic compactification (%, U(2n)/0(2n)) 
of Sp2n(1^) based on the integration kernel of the oscillator representation. 
The homogeneous space U(2m)/0(2n) is taken to be the 2n x 2n symmet- 
ric unitary matrices. In [9], the formula for H was laid out via KAK 
decomposition of Sp2n(^)- In  [10], H was explicitly computed as fractions: 

Theorem 0.1. Let g = ( J e 5p2n(M).   Then 

In [10], I also showed that the left and right group action of Sp2n W 
can be extended to a left and right action on U(2n)/0(2n). 

Theorem 0.2. Let G = Sp2n(^)' Let U{Q) be the universal enveloping 
algebra of Q. Let L(U{Q)) be the space of right invariant differential operators 
on G7 and R(U(g)) be the space of left invariant differential operators on 
G. Let D be an differential operator in L(U(g)) ®R(U(g)). Then D can be 
extended to an algebraic differential operator on G. 

Now, one remaining problem is to classify all the bi-Sp2n(IK) orbits on 
U(2n)/0(2n). This problem seems unapproachable from our construction. 

Another interesting problem is to compactify all the other classical 
groups. The analytic approach of compactification used in [9], [10] can 
be extended to other classical groups by using dual pairs (see [8]). Roughly 
speaking, a dual pair is a pair of classical groups embedded in a symplectic 
group as commuting subgroups (see [18], [19]). Therefore, a compactifica- 
tion of symplectic group will automatically yield a compactification of the 
dual pair. Even though the analytic approach would give us the explicit 
formula, the computation is expected to be intense. 
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The geometry behind our compactification (7i:U(2n)/0(2n)) was dis- 
covered by Vogan ([17]). In fact, Vogan constructed a "new" compactifica- 
tion (i,U(2n)/0(2n)) by realizing U(2n)/0(2n) as the Lagrangian Grass- 
mannian of R471. It is believed that this "new" construction is exactly 
(%, U(2n)/0(2n)) I constructed earlier. In this paper, I will apply Vogan's 
idea to compactify all the classical groups and identify (i, U(2n)/0(2n)) 
with (%, U(2n)/0(2n)) for Sp2n(R) in the Appendix. Vogan's idea can be 
stated as follows ([17]). 

Let if be a classical semisimple group. Let a be a group involution. Let 
X = H/P be a generalized flag variety. Let L be the set of fixed points of 
a (L may or may not be connected). Then it is well-known that L acts on 
X with finite number of orbits. In particular, when there is a unique open 
L-orbit, we call it the generic orbit If we choose (if, X, cr) such that the 
generic L-orbit exists and can be identified with our intended group £?, then 
this construction will automatically produce an analytic compactification of 
G, namely {i,X). The embedding i is simply the identification of G with 
the generic orbit. One nice feature that comes freely with this construction 
is the geometric interpretation. For example, the classification of L-orbits 
depends more or less on the geometry of the flags in X. 

In this paper, we will give unified constructions of {i^X) for classical 
groups of type I and II. The group H will be a bigger classical group of the 
same type as G. L will be G x G and P will be a maximal parabolic subgroup 
of H. One necessary condition for (i,X) to be an analytic compactification 
of G is that the L action on the generic orbit in X must be identical to 
the left and right group action of G. This is consistent with our result in 
[10], that is, in the symplectic case, the left and right G actions can be 
automatically extended to X. In this paper, we will further classify all the 
G x G-orbits in X. 

0.3. Content and Results. 

Our paper is organized as follows. In Chapter 1, I construct the com- 
pactification (i^X) for symplectic groups. Here H = S^^M), L = 
Sp2n{^) x Sp2n{^) and X is the Lagrangian Grassmannian of M4n. I define 
the index of a Lagrangian subspace X as an L-invariant and classify all the 
L-orbits based on this index. Most of the results in this chapter is due to 
Vogan. In Chapter 2, I generalize the construction in Chapter 1 to all the 
classical groups of type I (see Definition 0.1). The following in the main 
result. 
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Theorem 0.3. Let G be a classical group of type 1. Let r be the real rank 
of G. Then there exists a natural analytic compactification (i,X) with 

\. X = 0{n) for G = 0(p, n - p); 

2. X = U{p + q)forG = U(p,q); 

3. X = U{2n)/Sp(n) for G = 0*(2n); 

4. X = Splp + q)forG = Sp(p,q); 

5. X = 0(2n)/U{n) for G = 0(n,C); 

6. X = Sp(2n)/U(2n) for G = Sp2n{C); 

7. X = U(2n)/0(2n) for G = Sp2n{^) . 

Furthermore, the number of G x G-orbits on X is equal to r + 1. 

In Chapter 3, we treat classical groups of type II, namely the general 
linear groups. The following is the main result. 

Theorem 0.4. Let G be a general linear group over M, C or EL  Then there 
exists a natural analytic compactification (i,X) with 

1. X = 0(2n)/0(n) x 0(n) for G = GL(n,R); 

2. X - U{2n)/U{n) x U{n) for G = GL(n,C); 

3. X = Sp(2n)/Sp(n) x Sp(n) for G = GL(n,M). 

Furthermore, G x G acts on X with (n+1Hn+2) orbits. 

For G a complex classical group, X possesses a natural complex struc- 
ture. The complex structures are in fact preserved under our compactifica- 
tion. 

Theorem 0.5. For G = Sp2n(C)JGL(n,C),0(n,C), the compactification 
(i, X) preserves the complex structure. 

In Chapter 4, we make some remarks about some remaining questions 
that need to be addressed. In the Appendix, we show that for symplectic 
group, (i,X) can be identified with {1-L^X) in [9]. The idea is as follows. 
We fix a complex structure and a complex inner product on E4n compatible 
with the symplectic structure. We observe that a real orthonormal basis 
in any Lagrangian subspace produces a complex orthonormal basis in R4n. 
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Based on this observation, we further identify Lagrangian subspaces of R4n 

with 2n x 2n symmetric unitary matrices. We examine (i^X) for Sp2n(^) 
under KAK decomposition and prove that i satisfies all the conditions that 
uniquely determine %. Thus the compactification % in Theorem 0.1 and i 
are identical. 

1. Compactification of Symplectic Group: Vogan's 
Construction. 

1.1. Preliminary. 

A linear subspace of a symplectic space is said to be isotropic if the restriction 
of the symplectic form vanishes in such a subspace. Let X(2n, m) be the 
set of m-dimensional isotropic subspaces of the standard 2n-dimensional 
symplectic space. If an isotropic subspace V is half of the total dimension of 
the symplectic space, we say V is a Lagrangian subspace. We denote the set 
of Lagrangian subspaces of the standard 2n-dimensional symplectic space 
by £(2n). Then X(2n,n) = £(2n). If the symplectic space V is equipped 
with only one symplectic form a;, we use Z(V, m) to denote the set of m- 
dimensional isotropic subspaces of (V,ci;), and C{y) to denote the set of 
Lagrangian subspaces of (V,a;). 

Let (V, u)) be a symplectic space. Let us fix an isotropic subspace VQ. Let 
VQ- be the space of vectors which are perpendicular to Vb under the bilinear 
form u. The suflficient and necessary condition for VQ to be isotropic is 

for Vb to be Lagrangian is 

^o1 2 ^o 

Vf = Vb. 'o 

One consequence of Vb being isotropic is that it uniquely determines a sym- 
plectic flag: 

{0} C Vo C TV" C V. 

Now we define a new symplectic form fi on VJ^/Vb as follows 

IJL(U + VO,V + Vb) = u(u,v). 

It is trivial to check that /J, is a well-defined bilinear form and skew- 
symmetric. To see that /i is non-degenerate, suppose 

V(u + Vo,V0
±)=u;(u,V0

±)=0. 
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Then U + VQ£ {V^)1-. We have 

u + V^V^V^/V^. 

Thus u = Q(rnodV{)). This shows that /i is nondegenerate. Therefore ji is a 
symplectic form on V^/VQ. We call // the quotient (reduced) symplectic 
form of a; on VQ^/VQ, usually denoted by UJV±IVQ. 

Let 5p2n(IK) be the standard symplectic group, u the standard symplec- 
tic form. Let {xi, X2, • • • ? Xn? ei, 62,... , en} be a basis of IR2n such that 

u(Xi,ej) = tii- 

Let Xm be the linear span of {xi?--- ^Xm}- Let Pm be the standard 
parabolic subgroup stabilizing Xm. If we regard X(2n,m) as a flag vari- 
ety, we have 

X(2n,m)^5p2n(M)/Pm. 

Let A^m be the nilradical of Pm. Let Lm be the Levi subgroup of Pm which 
also stabilizes the linear span of {ei, 62,... , em}. Then we have 

Lm^Sp2{n_m){R) xGLm(R). 

Notice that Pm acts on X^/Xm preserving Wx^/Xm'  ^n ^act' we ^iave 

for a;, y G X^ and p G Pm 

^^/xm(H? M) = ^(^Z/) = u{px,py) = u)x±/Xrn(\px]9 \py]). 

Now it is easy to see that Pm acts on (X^/Xm, u)x±/xm) v^a ^^ ^P2(n-m)(K) 
factor in Lm. We summarize these facts in the following lemma. 

Lemma 1.1.  We have 

l(2n,m)^Sp2n(R)/Prn. 

Furthermore Pm acts on X^/Xm via Pm/(GLm(R) x Nm). 
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1.2. Vogan's construction. 

Let (U,u)) and (W^UJ) be two identical copies of the standard symplectic 
space of dimension 2n. Let U © W be the direct sum endowed with the 
following symplectic form 

Let Gi be the symplectic group Sp(U,u) and G2 be the symplectic group 
Sp(W,(jj). Then Gi x G2 acts on U © VF diagonally. Furthermore fi is 
fixed under the action of Gi x G2.   We regard Gi x G2 as a subgroup of 
Sp{u®w,n). 

Now let £([7©!^) be the Grassmannian of Lagrangian subspaces of (17© 
W, ft). Then £(t/ © W) can be identified with Sp(U© W, ft)/GL(2n, M)iV2n 

where iV^n consists of 

{(tl) ^=x} 
Firstly, since the maximal compact subgroup of Sp(U © W, ft) is U(2n) 
and the maximal compact subgroup of GL(2n,M) is 0(2n), C(U © W) can 
be identified with U(2n)/0(2n). Secondly, Since C(U © W) possesses a 
Sp(U ffi W, ft)-action, it possesses a Gi x G2 action. 

Lemma 1.2. The compact symmetric space U(2n)/0(2n) has a bi-Sp2n{^) 
action.  These two Sp2n(^)-actions commute. 

For V G C(U ffi W), the Gi action is given by 

9iV = {(giuiv) I {u,v) € V}- 

The G2 action is given by 

g2V = {(^,52^) I Kv) G V}. 

Apparently, gi commutes with 32- 

Now for each g e 5p2n(K), we regard it as a linear function from U 
to W. We consider the graph of #, denoted by i(g). The graph i(^) is a 
2n-dimensional subspace of U © W. Since 

n((x,gx),(y,gy)) = uj(x,y) - u(gx,gy) =0        (xeU,g<E Sp{U,W)) 
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i(g) is a Lagrangian subspace of (U © W,fi). Therefore z(5p2n(K)) is in 
£(U®W). We may identify g with i(g). It is easy to see that i(Sp2nQ®)) is 
a single Gi x G2-orbit. 

In the next section, we will show that i(5p2n(K)) is the generic Gi x G2- 
orbit in C(U ffi VF). We will also classify the orbital structure of Gi x G2 
on C(U © W) and study each orbit. Very briefly, for a nongeneric orbit, 
we want to single out the degenerate part of each Lagrangian subspace and 
construct a fibration such that the fiber is "generic" with respect to certain 
reduced symplectic form. 

1.3. Index. 

Let V be a Lagrangian subspace of (U © W, ft). We define 

v1 = v n u     V2 = v n w. 
Then Vi and V2 are isotropic subspaces of (17© W, fl). Since the restrictions 
of ft on U and W are just UJ and — CJ, Vi and V2 are isotropic subspaces of 
(C/,CJ) and (VF,CJ) respectively. Let V^- be the subspace of U perpendicular 
to Vi with respect u. Let V^ be the subspace of W perpendicular to V2 
with respect to u. Then we have 

Vi C Vf. 

We denote the projection U ®W -+U by TTI, and 17 © W ->► M^ by 7r2. The 
map TTI © 7r2 is just the identity map. We have the following lemma 

Lemma 1.3. Suppose  V  is a Lagrangian subspace of (U © VF, fi)   and 
Vi = UnV,V2 = WnV. Then we have 

ker(7ri|y) = V2        ker(7r2|y) = Vi        (trivial), 

7r1(V) = V1
A'        7r2(V) = V2±, 

dimVi = dimT^. 

Proof. Since V is Lagrangian, for every v E V, we must have 

n((^ri(t;),7r2(t;)),Fn^) = 0. 

This implies that w(7ri(v), Fi) = 0. Therefore we have 

TriMeVi"1-. 
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It follows that 

(1) MriQV^. 

Similarly, we have 

(2) MV) C V^. 

By taking the dimensions, we obtain 

(3) dim(7ri(y)) < 2n - dim(^)        (i = 1,2). 

On the other hand, since Vi is the kernel of 7r2|y, and V2 is the kernel of 
7ri|y, we have 

dim(7ri(F)) = dimT^ — dimT^ dim(7r2(V)) = dimT^ — dim Vi. 

Combined with Equation  3, we obtain 

2n - dim(V2) = dim(7ri(F)) < 2n - dim(Vi), 

2n - dim(Vi) = dimfaiV)) <2n- dim^)- 

These inequalities force 

dim(Vi) = dim(V2), 

dim(7ri(y)) = dimiVj1)        dim(7r2(V)) = dim^). 

Combined with Equations   1 and   2, we obtain 

7ri(F) = V1
±       7r2(F)=y2

±, 

dim(Vi) - dim(F2) = 2n - &m(iri(V)) = 2n - dim(7r2(V)). 

D 

Definition 1.1. Suppose V is a Lagrangian subspace of (U 0 W, 0).  We 
call the dimension of Vi or V2, the index of V. This defines a map 

ind : C(U © W) -»• N. 

Lemma 1.4. Let V € C(U © W). The following are equivalent: 

• ind(V) = i; 
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• dim{V nU)= i; 

• dim(V nW)= i; 

• dim(7ri(V)) = 2n — i; 

• dim(7r2(T^) = 2n — i. 

Let C(U © W^ be the set of Lagrangian subspaces with index i.   We 
observe that for any gi G Gi, ^2 G 6^2, 

ind(ffi^) = dim(^iF n U) = dim(F n g^U) = dim(V nU) = ind(V), 

ind(g2V) = dim^T^ n W) = dim(V n g^W) = dim{V nW) = ind{V). 

We obtain 

Lemma 1.5.   The index ofV is preserved by the action of Gi x G2. 

1.4. Generic Orbit. 

The definition of index will help us nail down the image of 

i:5p2n(R) ^C(U®W) 

we defined earlier. The following theorem says that i produces a one to one 
correspondence between C(U © W)Q and 5p2n W- 

Theorem 1.1 (Vogan). The set C(U®W)Q can be identified with SfonW 
through i. This identification i preserves the Sp2n{^) x Sp2n(^) action. 
Therefore for V G C(U® W)Q, the isotropic subgroup (Gi x G2)y is isomor- 
phic to the subgroup 

{(9,9) \g€ Sp2n 

Proof. Let V G C(U © W)o- Then we have 

vnu = {0}     vnw = {0}. 

Therefore 7ri|v and 7T2\v are all injections. But dim(V) = dim(C/) = 
dim(VF). Thus 7ri\v and 7r2\v are isomorphisms. This implies that V is 
the graph of a one-to-one correspondence 

(f)V : U -> W. 
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In fact, (j)v can be written explicitly as 

7r20 ((TTIJIV)"
1
. 

Now we know that 
V = {{x,(j)V{x)) \x£U}. 

Since V is Lagrangian, for any x, y G £/, we must have 

0 = fi((x, 0y (a;)), (j/, (j>v{y))) = w{x, y) - wOM*)* 0v(y))- 

This means that </v G 5p(C/', W) = 5p2n(K)- Conversely, for each g E 
5^271 (IK) 5 we can define V to be 2(3), the graph of g. Then V is a Lagrangian 
subspace of (JJ © W, fi) and its index is 0. Furthermore, it is easy to check 
that 

<t>i{g) = 9        i{^v) = V. 

Therefore i defines one-to-one correspondence between Sp2n(^) an(l 
C(U 0 W)Q. NOW let gi G Gi and 52 G G2. Then 

1(91992) = {(x, 91992%) \x eU} = {(g2lx,gigx) \ x e U} = gig^Kg)- 

Hence i preserves the Sp2n(^) x 5p2n(lR) action. Let e be the identity 
element in 5p2n W- Apparently, the subgroup stabilizing i(e) is given by 

(G1xG2)x = {{g,g) \geSp2n( 

D 

1.5. Nongeneric Orbits. 

Let us consider C(U © W)i for i > 0. We equip (V^ © Vr
2-J-)/(Vi © V2) with 

the quotient symplectic form of Q. It is easy to see that 

^(v1
±ev2

±)/(v1ev2) = vyf/V! - ^v^/Va- 

Theorem 1.2.   T/iere exzsfs a fibration: 

ZiV^/Vx © F2
±/y2)o -> >C(C/ © W)i -> X(C/, i) x x(w; i). 

Proof. Let V G £(f7 © W)z. We define the projection of the fibration 

<*(¥) = (Vu V2) = (v n u, v n w). 
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This yields a surjection 

TT : C(U @ W)i -»• 1(U, i) x I(W, i). 

Now fixing Vi G Z(U,i) and V2 G l(W,i), we would like to study the fiber 
Tr~l{Vi, V2). We wish to identify this fiber with C(V1

±/V1®V2
±/V2)o. Recall 

from Lemma  1.3 that 

7ri(F) = F1-L       ir2(V) = V2
±. 

We obtain 

Since V^ = kerfalv) and ^2 = ker(iri\v), We obtain two isomorphisms: 

7r2 : V/Vi -)• 1^. 

These two isomporhisms induces other two isomorphisms: 

iri:V/Vi®V2^V1
±/Vi, 

7f2 : V/Vi (BV2-* V2
±/V2. 

Apparently, the direct sum 

TTI 0 7f2 : V/Vi © V2 -> (V^/Fi) © (Fa1/^) 

is also an isomorphism. We check the dimension 

(4)      dim(V/Vi © V2) = dim(F1
x) - dim(F2) 

= dim(V1
±) - dim(Vi) = dim^) - dim^)- 

We see that V/Vi © V2 is half of the dimension of (Vf/Vi) © (VJ-/V2). In 
fact, V/Vi © V2 is a Lagrangian subspace of (V^/Vi) © (V^/Va). We prove 
this claim in two steps. 

Lemma 1.6. 
Let /J, be the quotient symplectic form of 0 on (T^-1 © V^/iVi © V2). Then 
V/(Vi © V2) is an isotropic subspace of (V^/Vi) © (V^/V^) with respect to 
fi. 
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Proof. For any x,y G V, we know 

(TTI © 7r2)(x), (TTI © iT2){y) G Vf1 © V^. 

Therefore, we have 

H{x + (Vi © 72), V + {Vi © 72)) = u>(x, y) = 0. 

Thus V/iVi © 72) is an isotropic subspace of (71
J-/7i) © ^y^). This ends 

the proof of the lemma. d 

We observe that 

(7/(7i © 72)) n ((V^ © 72)/(7i © 72)) = (7i © 72)/(7i © 72) 

and 

(7/(7: © 72)) n ((7! © 72±)/(7i © 72)) = (7! © ^/(Vi © 72). 

Combined with Equation  4, we obtain 

Lemma 1.7. 7/(7i ©72) is a Lagrangian subspace of (V^/Vi) © {V2-/V2). 
Furthermore, 

7/(7! © 72) G £((7i±/7i) © (72±/72))o. 

Based on these two lemmas, we see that the fiber TT
-1

 (7I, V2) is contained 
in C(Vi-/Vi © 72L/72)o. Conversely, for any Lagrangian subspace 

X G CUVf/V!) © (72±/72))o 

we define 7 to be the preimage of X under the projection 

V,1- © 72-L -> (V^/Vi) © (72
±/72). 

Then it is easy to verify that 7 G £(U © W) and ind(V) = i. This ends the 
proof that the fiber of TT is exactly 

C(V1
±
/VI®V2

±
/V2)Q. 

□ 

Based on our established knowledge on the geometric structure of 
C(U © W)i, we can analyze C(U © W)i in terms of the group action. Let 

{(31,62,...  ,e2n} 

be the standard basis for the symplectic space (R2n, a;). Let Xi be the linear 
span of {ei, 62,... , en}. Apparently, Xi is isotropic for i < n. 
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Theorem 1.3. Each C(U © W)i is a single Gi x G2 orbit Let Pi be the 
parabolic subgroup stabilizing Xi and Ni be its nilradical. We identify the 
Levi subgroup Li with Sp2n-2i($) x GL^M). Let Q be the subgroup of Pi xPi 
consisting of 

{(#5293,^2^3) I 9 £ Sp2n-2i(1®),92,h2 E GLi(R),g3:h3 G Ni}. 

Then we have 
C{U 0 W)i ^ SpznW X S&nW/Q. 

Proof. Suppose V E £(U © W)i. Since Gi x G2 acts transitively on 
T(U,i) x X(Ty,i), without loss of generalities, we assume Xi = V fl U = 
V fl W. The isotropic subgroup stabilizing (Xi,Xi) is simply Pi x Pi. Now 
Pi x Pi acts on C{{X^/Xi) © (X^/Xi))0 . The left Pi acts on U/Xi via 
Pi/GLi(R)Ni ^ 5p2n-2i(K) and the right ^ acts on W/Xi in the same 
way. From Lemma 1.1, C((X^-/Xi) © (X^-/Xi))o can be identified with 
Sp2n-2i(R)- Thus ^ actions on £((X±/Xi) © (X±/Xi))o descend into left 
and right Sp2n-2i{R) actions on Sp2n-2i{R)' It follows that both actions of 
Pi are transitive. 

From the fibration 

CiVf/Vi © VfVvOo ^ C(U © W)i ^ Gi/Pi x G2/Pi 

we see that £(U © W)i is a single Gi x G2 orbit. Furthermore, for 
#1 ©#2(10 G C{{X^/Xi) © (X±/Xi))o, from Theorem 1.1, the isotropy 
group 

(Pi x Pz)7f107f2(y) 

is isomorphic to Q. Therefore the isotropic group of Gi x G2 action on V is 
isomorphic to 

(Pi X Pij^Q^iV) — Q- 

D 

The dimension of £(U © W)i is equal to 

2 dim(X(C7, i)) + dim(£(4n - 4i)o) 

= 2(dim(S,p2n(IR)) " dini(Pi)) + dim{Sp2n-2i 

(5) = dim(5p2n(M)) - dim(Li) + dim(Sp2n-2i 

= dim(5p2n(M)) " dim(GLi(R)) 

<dim(£(U®W)o)). 
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Therefore, C(U @ W)o is an open dense subset of C(U 0 W). We obtain the 
following theorem 

Theorem 1.4.  The map i : SfonW -> £>{U © ^) defined by 

i(g) = {(x,^) | x <E 17} 

zs an analytic compactification of Sp2nW- 

Proo/. Let e be the identity in 5p2n(K). First of all, S^nW acts on £(17© 
W) from left analytically. Therefore, the orbit i(Sp2n{^)) is an analytic 
submanifold. Since i is one-to-one, i is an analytic embedding. Furthermore, 
i(Sp2n{^)) is open and dense in C(U®W). Hence (i, ^([/©W")) is an analytic 
compactification. □ 

2. Compactification of Classical Groups of Type 1. 

The techniques used in the last chapter to compactify the symplectic group 
can be easily generalized to all the classical groups of type I without much 
modification. We will give the definition of type I classical groups first, and 
then we will state our results. Since the proof of these results is not much 
different from the case for symplectic group, we will be brief. 

2.1. Classical Group of Type I. 

Definition 2.1 (Classical Group of Type I). A type I classical group 
G(V) consists of the following data (see   [7], [18], [19]). 

• A division algebra D of a field F with involution (j, and cflb$ = (ba)^', 

• A (right) vector space V over D, with a nondegenerate (D-valued) 
sesquilinear form (,)e, e = ±1, i.e., 

(u,v) = e(v,uy        (u,v G V), 

(u\, v) = (u, v)X        (u, v e V, X G D); 

• G is the isometry group of (,), i.e., 

g.{uX) = {g.u)X        (A G D,u G V,g G G) 

{gu,gv) = (u,v)        (u,v G V). 
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If (V, (,)) is implicitly understood, we denote the classical group by G. 
In general, we denote it by G(V). We allow (1 to be trivial. We call the 
identity component of G connected classical group of type 1. For F = C, ft 
trivial, we obtain all the complex classical groups of type I, namely, Sp2n{tyi 
and 0(n, C). For F = R, D = H, (J the usual involution, we obtain Sp(p, q) 
and 0*(2n) depending on the sesquilinear form. For F = M, D = C and 
U the usual conjugation, we obtain U(p^q) depending on the signature of 
the Hermitian form. For F = M, D = M with trivial involution, we obtain 
5p2n(K) andO(p,g). 

Let Vb be a linear subspace of V. We write VQ- for the orthogonal 
complement of VQ with respect to the sesquilinear form (,). From now on, 
all the linear spaces and dimensions and homomorphism will be over D 
unless stated otherwise. In some situation, a linear subspace refers to a 
point in a Grassmannian manifold depending on the context. 

For V = Dn endowed with a sesquilinear form (,), we say that a subspace 
Vb is isotropic if 

(Vro,%) = 0. 

Let r be the real rank of G(n). Let {ei, 62,... , er} be a basis of a maximal 
isotropic subspace of V. Let Xi be the linear span of {ei, 62,... , e^}. Let Pi 
be the parabolic subgroup of G(V) stabilizing the subspace Xi. Let Z(V,i) 
be the set of i-dimensional isotropic subspaces of V. Then 

J(V,0 = G(n)/fS. 

According to our definition of type I classical group, Pi also stabilizes X^. 
In fact, we have 

0- {XJ-iXi) = {X^PiXi) = (PiX^Xi). 

Therefore Pi acts on X^/Xi. 

Now we fix an i.   We define a nondegenerate sesquilinear form /i on 

x^/Xi 
^(x + Xi.y + Xi) = (x,y) (x,y € Xi ). 

We call // the reduced sesquilinear form of (,), denoted by (, )x±/Xi' ^ow ^e 

Pi action on X^/Xi descends to the group action of G(X/7X;, (Jx^/X;)- 
More precisely, let Ni be the nilradical of Pi. Then Pi/Ni can be identified 
with G(X±/Xi, (, )x±/Xi) x GL(i, D) and apparently GL(i, D) acts trivially 

on X^jXi. Therefore Pi acts on X^-jXi via PijNi x GL(n,D). For more 
details on the structure of Pi.  We refer the reader to Jian-Shu Li's paper 
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2.2. Main Theorem I. 

Let U and W be two identical copies of Dn equipped with the same sesquilin- 
ear form (,). Let U © W be the direct sum of U and W equipped with the 
following sesquilinear form 

Sl((ui,wi),(u2,W2)) = {ui,U2) - (wi,W2)        {ui G U,Wi € W). 

Then G(U) x G(W) acts diagonally on U © W. We say a subspace V is a 
Lagrangian subspace of U © W if 

n(V, V) = 0        dimD V = n. 

Let C(U © W) be the set of Lagrangian subspaces of U © W. Then G(U) x 
G(W) acts on C(U © W). Furthermore, we have 

£{U®W)^G{2n)/Pn. 

We define a map i : G(n) -> L(U © VF) by 

i(9) = {(vigv)\veDn} 

Theni(g) eC{U®W). 

Theorem 2.1 (Main Theorem-Type I). Let G(n) be a classical group 
of type I. Let r be the real rank of G(n). Let C(D2n) be the set of Lagrangian 
subspaces of the following sesquilinear form 

to((uuWi),(u2,W2)) = (ui,U2) - (wi,W2) {Ui,Wi G Dn). 

Then G(n) x G(n) acts on C(D2n) with r + 1 orbits. There exists a unique 
open dense orbit C(D2n)o (to be defined) which can be identified with G(n) 
naturally. 

Recall that £(17.0 W) can be identified with G(U © W)/Pn. Here Pn is 
a parabolic subgroup stabilizing a Lagrangian subspace of (U © W, ft). We 
choose a KAN decomposition of G(U © W) (warning, not of G(n)) such 
that the corresponding minimal parabolic group MAN is contained in Pn. 
Let MnAnNn be the Langlands decomposition of Pn (see Ch. V in [12]). 
Then C(U®W) can be identified with K/MnnK. We observe that Mn can 
always be identified with GL(n,D) (see   [7] and   [8]).  Therefore Mn Pi K 
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will be one of the compact classical groups, namely 0(n),[7(n) or Sp(n). 
We obtain the following list: 

(6) 
Gin) G(U © W) K GL(n,D)nK c(u e w) 

0(p,n-p) 0(n,n) 0{n) x 0{n) 0(n) 0(n) x 0(n)/0(n) 
U(p, n-p) U(n, n) U(n) x U(n) U(n) U(n) x U(n)/U(n) 
Sp(p, n-p) Sp{n, n) Sp(n) x Sp(n) Sp(n) Sp(n) x Sp(n)/Sp(n) 

0*(2n) 0*(4n) U(2n) Sp(n) U{2n)/Sp(n) 
0(n,q 0(2n,C) 0(2n) U(n) 0(2n)/U(n) 

n even, Spn(C) Sp2n(C) Sp(n) U(n) Sp(n)/U(n) 
n even, Spn(M-) 5p2„(ffi) U(n) 0(n) U(n)/0(n) 

In each case £(U © W) is a compact symmetric space (see   [5]). 

Theorem 2.2 (Compactification of Type I Classical Groups). For 
every classical group of type I, there exists an analytic compactification (i,X) 
where X is a compact symmetric space. 

For the first three cases, in C{U®W), O(n), U{n) and Sp(n) are embed- 
ded diagonally in their products. For any Lie group G?, let A be the diagonal 
embedding of G into G x G. We can define an identification of G x G/A(G) 
with G as follows 

m: {91,92) ->9i921' 

Thus we obtain a canonical identification of C(U ® W) with O(n), U{ri) or 
Sp(n) in each case. Let G = £/, Sp, O. Notice that for the groups G{p,n—p), 
the vector space {U © W, SI) only depends on n, not on the signature of the 
original sesquilinear form (,). Hence the vector space {U ffl W,Q) can be 
identified for all G(p,n — p)'s with the same n. 

Theorem 2.3. Let G = U, Sp, O. The groups G(p, n — p) (V 2p < n) can 
be simultaneously compactified into their common compact form G(n). 

The question of how all these groups fit into their common compact 
form depends on the splitting of the sesquilinear form Q, consequently on 
the ordering of the basis on U ffi W. From the view point of representation 
theory, this theorem also suggest that the unitary duals of G(p,n—p) should 
somehow be studied as one object. 

2.3. Proof of the Main Theorem I. 

Notice that the set i(G(n)) is already a G(U) x G(W)-ovbit. It suffices to 
show that the number of G(U) x G(l^)-orbits on £(U © W) is exactly r + 1. 
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All the other statements are more or less obvious. We prove this theorem 
via the following lemmas. 

Lemma 2.1. Suppose V is a Lagrangian subspace of (U © W, ft) and Vi = 

U fl V, V2 = W n V. Then we have 

ker(7ri|y) = V2        ker(7r2|y) = Vi        (trivial) 

7r1(V) = V1
±       *2{V)=V2\ 

dim.D Vi = dim.£) V2. 

The proof can be carried out in the same fashion as the case G = 
Sp2n (K). We omit the proof. 

Now we define the index of V G C(U ffi W) to be 

dimD(Vn U) = dimD(V n W). 

Then the index of V is preserved under the action of G(U) and G(W). We 
denote the set of Lagrangian subspaces of index i by £(U®W)i. We observe 
that V fl U is an isotropic subspace of U and W fl V is an isotropic subspace 
of W. But the maximal dimension of isotropic subspaces of U is r. Therefore 
i can be at most r. We obtain 

Lemma 2.2. C(U © W) is the disjoint union of C(U ffi W)i. 

£{U ®W) = Ur
QC{U ®W). 

Each C{U ffi W)i is G(U) x G(W)-stable. 

Let us consider C(U ffi W)o first. As we expected, C(U ffi W)Q is in 
one-to-one correspondence with G(n). 

Lemma 2.3. We have C(U ffl W)Q = i(G(n)). In particular, G(U) and 
G(W) both act transitively on C(U ffi W)Q. 

The proof is essentially the same as the proof of Theorem   1.1. 

To analyze the degenerate orbit C(U ffi W)i1 we first fix an i / 0. Let 
V\ = V D U and V2 = V fl W. Then Vi is an isotropic subspace of (,). Let fii 
be the reduced sesquilinear form on V^/Vi. We define a new nondegenerate 
sesquilinear form 

t*((xuVi)>(x2iy2)) = ViixuVi)- V2{x2,y2) (Xi,yi E V^/Vi). 
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This is the reduced sesquilinear form of Q on 

(Vi e V2)±/(v1 © V2) 

which can be canonically identified with 

Vf/ViQVf/Vt. 

Lemma 2.4.  There exists a fibration: 

^(V^/Vi © Vf/Vz, /i)o ^ £(U © W^ -> I(U, i) x 1(W, i). 

Furthermore 

dimR(C(U © W)i)) = dimE(G(n)) - diniR^2. 

Proof. The fibration follows from the proof of Theorem 1.2 without any 
change. According to the previous Lemma, the dimension of the fiber is 
equal to 

dim^GiV^/Vi)) 

and diniD Vi = i. Prom basic Lie group theory, we have 

2dimR{l{U,i)) = 2{dimR(G(U)) - dimR^)) = dimR(G(U)) - dimR^). 

Here Li is the Levi factor of Pi and U £* G{X^/Xi) x GL(i,D) (see [7] 
and  [8]). We compute the real dimension 

dimR{C{U © W)i) = 2dimR(l(U,i)) + dim^G^/Vi)) 

= dimR G(U) - dimR G{X±/Xi) 

(7) - dimR GL(i, D) + dimR Giy^/Vy) 

= dimR G{U) - dimR GL{i, D) 

= dimR(G(n)) - dimRp)^2. 

D 

Since the dimension of C(U 0 W)i{i > 0) is less than the dimension of 
£(U © W)o, by Lemma 2.2, £(U © W)Q is open and dense in C(U © W). 
To finish the proof of the Main Theorem I, we need one more lemma. 

Lemma 2.5. C(U ® W)i is a single G(U) x G(W)-orbit. 
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Proof. Without loss of generality, we choose Xi = U HW = V HW'. We 
consider the fibration 

cixf/Xi e xj-fXi, /i)o -> c{u e w)i -> GiuyPi x GiwyPi. 

From Lemma 2.3, the fiber can be identified with isomorphisms of X^/Xi 
that preserve the reduced sesquilinear form of (,), i.e., G(X^/Xi). We 
know that both left and right Pi actions factor through G(X^-/Xi). Thus 
the Pi x Pi action on C(X^/Xi © X^/X^/^o is transitive. It follows that 
the G(U) x G(W) action on C(U © W)i is transitive. D 

Now we know that C(U®W) is a disjoint combination of £(U@W)i(i G 
[0,r]) and each £(U © W)i is a G{U) x G(VF)-orbit. Therefore, there are 
r + 1 G(U) x G(W)-oibits. This finishes the proof of the Main Theorem 
I. □ 

Proof of Theorem 2.2: Since C(U © W)Q = i(G) is open and dense in 
C(U © W), the embedding i is an analytic compactification. □ 

Finally, for a complex group G, we observe that i preserves the complex 
structures on G and on C(U © W). 

Theorem 2.4. For G = 0(n,C) or Sp(n,C), {i,X) is a complex analytic 
compactification. 

3. Compactification of Classical Groups of Type II. 

3.1. Main Results. 

Classical groups of type II are general linear groups. There are three of 
them, namely, GL(n,IR), GL(n,C) and GL(n,M). The compactifications of 
these groups have slightly different flavor. 

Let D be a division algebra over M. Let G be GL{n,D). Let U and W 
be two identical copies of Dn (regarded as right D-module). Let G{U®W, n) 
or (?(2n,n) be the Grassmannian of n-dimensional subspaces. For any V G 
£(2n,n), we define 

9192V = {(£iu,#2w) I {u,w) E V}. 
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This is a GL(U) x GL(W) action on Q(2n,n). For each g € G, we define 
i(g) e g{2n,n) by 

i(9) = {(v,gv)\g€Dn}. 

This identifies G with a subset of Q(2n,n). 

Theorem 3.1 (Main Theorem II). 
There are (n+1)2(n+2) GL(U) x GL(W)-orbits in G{2n,n) and i(G) is open 
and dense in Q(2n,n). 

Therefore, (i, Q(2n, n)) is an analytic compactification of G(ri). We fix a 
K(2n)AN decomposition of G(2n) such that N is strictly upper triangular 
and A is diagonal. Since G(2n) acts on £(2n, n), let Pn be the isotropic sub- 
group of G(2n) stabilizing a chosen Xn G G(2n, n). Then the Levi subgroup 
of Pn will be the block diagonal matrices with block size (n,n). We obtain 

g(2n,n) = G(2n)/Pn ^ K(2n)/K(2n) fl Ln. 

Here K(2n) D Ln is a maximal compact subgroup of Ln. The exact forms 
of G^2n, n) are 

2? = M,        ^(2n,n) = 0(2n)/0(n) x <3(n), 

Z? = C, £(2n,n) = U(2n)/U(n) x ?7(n)5 

£> = D, G{2n1n) = Sp{2n)/Sp(n) x S'p(n). 

They are all compact symmetric spaces (see   [5]). 

3.2. Proof of the Main Theorem II. 

Let us fix a division algebra D and a group G = GL(n, D). We will fix an 
n. We will write GL{n) for GL(n,D). All the groups and homomorphisms 
and dimensions are with respect to D unless stated otherwise. We will use 
dimM to represent real dimension. Let <?(n,i) be the Grassmannian of i- 
dimensional subspaces of Dn. Let {ei, 62, • • • , en} be a basis of Dn. Let Xi 
be the D—linear span of {ei, 62,... , €{}. Let Pi be the parabolic subgroup 
of G stabilizing Xi. Let Ni be the nilradical of Pi. Let Q; be the sub^oup 
of Pi fixing ei, 62,... , ez-. Then Q; can be identified with GL(n — i) 

For i < n, let Hom(JD
i,D7l)o be the space of injective homomor]. ^ 

from .D^ to .D™. The set Hom(JD
i, D71)^ possesses a left GL(i)-action and a 

right GL(n)-action. Furthermore, GL{n) acts transitively on }lom\D\ D71)^ 

I{om(D\Dn)o = GL(n)/Qi. 
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Similarly, we know 
g(n,i)**G/Pi. 

Definition 3.1. For each pair (i,j) e N2 such that i + j < n, we define 

Q(U®W:n)ij = {V eQ{U®W,n) | dimD(UnV) = i,dimD{VnW) = j}. 

For each V G Q(U © W, n)ij, we have 

dim(g1g2V nU) = dim(V n g^Q^U) = dim{V n C/) 

(V  (ft € GL(L/),<72 G GL(W)), 

dim(£i£2^ n W) = dim(F n ^^f1 W) = dim(F n W) 

(V gieGL(U),g2eGL(W)). 

Therefore 5152^ G g{U © W, n)ij. Hence 5(C/ © W, n)ij is preserved by the 
action of GL(U) x GL(W). 

Theorem 3.2. Q(U © W,n) is the disjoint union of Q{U © W^n)i^.  Each 
Q{U © W,n)ij is a single GL(U) x GL{W)-orbit 

Proof. We prove this theorem via the following lemmas. 

Lemma 3.1. Suppose dimll > dimW > m.   Then there exists a natural 
principle fibration 

GL(m) -> Horn (Dm, U)o x Horn {Dm, W)o -> Q{U © W, m)o,o. 

Furthermore, we have 

dimM(^(?7 © W,m)o,o) = ra(dimMD)(dim£7 + dimW - m). 

Froo/. The natural projection TT is given by 

(</> G Horn {Dm, U)o, tl> G Horn {Dm, W)o) ^ {(#, ^x) \ x G ^m} G 

^(C/ffi^m)o,o. 

To compute the fiber, suppose 

7r(</>i,V>i) =7r(^2,VJ2). 
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In other words, we have 

{(&*, Vi*) | x e Dm} = {{ct>2x^2x) | x e Dm}. 

We define a map A from Dm to D™ as follows: for each x E Dm, there exist 
a unique y G Dm such that 

(<l>ix,il>ix) = {foyifoy) 

we define y = ^4a;. Now it is easy to show that A is linear, and nondegenerate 
and 

Hence the fiber can be identified with GL(m). To compute the dimension 
we have 

(8)       dimM(£([/eT^,m)o,o) 

- (dimR.D)(dimHorn {Dm,U)o x Hom(I>m, W)o - dimGL(m)) 

= (dim^ D) (m dim U + m dim W — m2) 

= m(dimRD)(dim(7 + diml^F — m). 

□ 

Since Horn (I}™, ?7)o x Horn (Dm, W)o is GL{U) x GL(W)-homogeneous, 
^(17 © W,77i)o,o is automatically GL(U) x GL(Wr)-homogeneous. 

Lemma 3.2. ^(C/ © VF,ra)o,o is a GL(U) x GL(W)-homogeneous space. 

The orbit £/(Z7© W)o,o can be regarded as the only nondegenerate orbit. 
For the other degenerate orbits, we wish to single out the degenerate and 
nondegenerate structures. 

Lemma 3.3.   We have the following fibration 

QiD71-1 © £>*-', n-i- i)o,o -+ Q(Dn © Dn, n)y -^ ^(n, t) x G(n, j). 

Furthermore, we have 

6hn^{g{U ®W,n)iJ) = (dimRjD)(n2 - i2 - j2). 
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Proof. Let us examine the natural surjection: 

mj : G(U@W,n)ij -> g(n,i) x g{n,j) 

defined by 
icij(v) = {vnu,vnw). 

Now if we fix iTijiV) = (Vi, V2), then 7r^(Vi, 1^) is in one to one correspon- 
dence with 

GiU/VLeW/V^n-i-fiofl. 

The first statement is proved. We compute 

dim(g(n,i)) = dimGL(n) - dimP; = i(n-i). 

Therefore 

(9) 
dunsi(g(U@W,n)ij) 

= dimR(^(n5 i)) + dimR(a(n, j)) + dim^giD^ ® Dn'^ n-i- j)o,o) 

=(dimR D){i{n - i) + j(n - j) - {n - i - j){n - i + n - j - (n - i - j))) 

={dimRD){n2-i2-j2). 

D 

Proof of the Theorem 3.2: Let us fix Xi G g{U,i) and Xj G ^(17, j)- 
From the last lemma, we have 

GiU/Xi 0 W/Xj.n - i - j)o,o ^ ^^ e W, n)^ -+ GL{U)lPi x GL^WyPj. 

It suffices to show that Pi x Pj acts on g(U/Xi 0 W/Xj,n - i - j)o,o tran- 
sitively. In fact, this Pi x P^-action descends into a GL(n — i)x GL(n — j)- 
action. From Lemma 3.2, GL(n - i) x GL(n - j) acts transitively on 
g(Dn~i 0 Dn~i,n - i - j)o,o- Therefore, Pi x Pj acts transitively on 
giD^QD^.n-i-j)^. □ 

Proof of the Main Theorem II: The number of G{U) x G(Wr)-orbits 
in g{U © W,n) is equal to the number of (i,;) G N2 such that i + j < n. 
It is just (n+1Kn+2). From our dimensional discussion, only one orbit i(G) 
has the maximal dimension n2 dimRD. Therefore i(G) is open and dense in 
£(2n,n). □ 

For G = GL(n,C), from our construction, we can see that i is complex 
analytic. Therefore we obtain 
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Theorem 3.3. For G = GL(n,C),  {i,U{2n)/U{n) x U(n)) is a complex 
analytic compactification. 

4. Remarks. 

1. In this paper, I address the question of compactification for the clas- 
sical groups. One natural problem to explore is the compactification 
of exceptional groups. The methodology used in this paper must be 
modified. For example, one can not choose a group bigger than Fs but 
of the "same" type. Nevertheless, one can explore it either abstractly 
using root systems or do a case by case study. 

2. Another question is analytic compactification of an arithmetic quotient 
of a classical group. In [1], Baily and Borel proved the analyticity of 
their compactification using automorphic forms. In our case, since X 
inherits 3,0 xG action, we will have a set-theory based quotient X/T. 
But it needs not to possess a nice topology to make it compact. We 
may take some categorical quotient. Nevertheless, we do not know how 
to make it a real variety. 

3. Philosophically, based on our construction in [9], the compactifica- 
tion of symplectic group is closely related to the oscillator representa- 
tion. An indicated in my thesis [8], the nonvanishing of theta corre- 
spondence is tied to the properties of compactification of the classical 
groups. Therefore, it is desirable to explore this connection from the 
view point of representation theory of classical groups. I will address 
this question in future. 

4. Finally, I should also remark that the compactification (i,X) can not 
be obtained by pulling back the compactification of the corresponding 
symmetric space G/K. Here K is the maximal compact subgroup 
of G. In fact, in our construction, the group K will not acts freely 
on X except in a few cases. Nevertheless, there might be a strong 
connection between our compactification and the Satake-Furstenberg- 
Martin compactification. 

5. Appendix: Explicit Computation. 

The symmetric space U(2n)/0(2n) can be identified with S2n, the set of 
2n x 2n symmetric unitary matrices.   In   [9] and   [10], I constructed the 
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compactification (%, S2n) as follows: for 

A   B 
C   D 

To certain extent, this formula is still mysterious. Vogan conjectured that 
{/H,S2n) can essentially be identified with (i,C(U © W)) we constructed in 
this paper. I will prove this conjecture in this appendix. 

We prove this conjecture in three steps. First we cite some (defining) 
characterizations of (U, c>2n) under KAK decomposition from [9]. Then we 
give an exact identification between £(M4ri) and 8271- Finally, we show that 
(i,£(M4n) satisfies the same defining characterizations as (?-/,c>2n)- 

Let K = Sp2n(I&)nO(2n). Then K can be identified with U(n) as follows 

*=(-B   f )-»*c-^-«- 
It is easy to see that 

k1 -> fee  = ^r1- 

We identify U © W we defined earlier with C271 by choosing the real basis 
to be 

{iei,... ien, ei,... en, /1,... , /n, i/i,... i/n} 

such that 

(10) U = span(iei,... 2en, ei,... en) 

(11) W = span(fu... Jn,ifu'.>ifn)' 

Let (, )c be the complex inner product on f/ffi W such that {e^, jfy} is an or- 
thonormal basis. Let (, )M be the real inner product such that {e;, iej, fk,ifi} 
is an orthonormal basis. Then the imaginary part of (, )c is exactly the sym- 
plectic form Q, we defined earlier. Furthermore we have, for k G K, under 
the basis {ie^ej}, 

(12) k( y
x J =k^(x + yi) 
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under the basis {fi^ifj}-, 

(13) k(X \ =kc(x + yi). 

Let H = diag (Hi,... , Hn) and a — diag (expiJ, exp(—H)). Then SfonW 
has a KAK decomposition. 

Theorem 5.1 (see   [10], [9]). (/H,S2n) can be characterized by the follow- 
ing properties: 

nm =[^ ]) nig) ( ^ J 

0   l1 ) ^(ff) ( 0   (Afc1)' «(»*) = (   n     I.-1    ) «(») l    n     tu-XM 

ill \ — (    ^an^1(^)      —isech(iif) 
/iW" V -isech(iJ)    tanh(il) 

Now we wish to construct an identification between C(U © W) and 8271- 
For any V E >C(?7©Vr)5 

we choose a real orthonormal basis {Xi, X2,... ^n}- 
Then 

(-Yi,-XJ-)R = ^- 

Because V is Lagrangian, we have 

ftp^-X^O. 

Therefore 

(-Yi,-X'i7-)c = ^- 

Hence {-X"i,... ,X2n} is a complex orthonormal basis for U © W. 
We write {Xi,...,X2n} as column vectors in terms^of the basis 
{ei,... , en, /1,... , /n}. We can construct a unitary matrix V by^combining 
all the Xis as column vectors. Since V is a real vector space, V is unique 
up to right actions of 0(2ri). Then we identify C(U © W) with Sin by 

v -> yf*. 

This identification does not depend on the choice of the orthonormal basis 
{XL, ... ,X2n}. 
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Theorem 5.2. For g G 5p2n(K), we define 

i{g) = {{x,gx)\xeR2n}. 

Then we have 

no) = ii-g^i-o1) ■ 

Proof. It suffices to show that i{—g*)i(—g1) satisfies the three properties in 
Theorem  5.1. Notice that we will NOT have 

*(-#*) = -%*)• 

Before we prove this theorem, we need one more notation. Suppose X is an 
arbitrary matrix. We define < X > to be the real linear span of the column 
vectors in X. 

• Let k e Sp2n{^) n 0(2n). Under the basis {iei,ej,fk,ifi}, we have 

«V) = ( ^ 
Then we must have 

f )H^» 
Since k is in S^nW? we have 

Since A; is in 0(2n), the right-hand side is already a real orthonormal 

basis. Therefore it can be chosen as i(—g1^). Now we switch to the 
complex basis {ei,/j}. According to Equation 12, k acts on the first 
n coordinates by fee- Therefore, 

• Notice that 

-k>g'j/-\y   k> 
n-M.n   '   \\-/(-(r>)' 
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According to Equation 13, k acts on the second n coordinates by fcc- 
Therefore, k* acts on the second n coordinates by A;^1. Following the 
previous proof, we have 

^(—ktg^^—ktg1) il-A^^'dl 
• Now it suffices to show that 

i(-a)i(-a)   =H(a). 

Without loss of generality, we assume n = 1. Then we have 

\ 
i(-a) 

(        1 0 

0 1 
-expiJ 0 

V       0 -expC-i?) y 

By taking the orthonormal basis (in our case, just normalization), we 
can choose «(—a) to be 

/ :^exp(-JH'/2)(sechF)i 0 \ 

0 ^3exp(#/2)(sech.H')i 

-^exp(if/2)(sechfl')2 0 

y 0 -^=exp(-F/2)(sechfi")5 

Therefore under the complex basis, we have 

^ = I 72 eM-H/2) (sech H) 5    ^ exp(JH
r/2) (sech H) I        \ 

\ -^exp(fl'/2)(sechJH")2    -^5exp(-5"/2)(sechF)2 J 
V2 

We conclude that 

tTri^-f   tanh^      -^ech(if) 
n   a)i{   a)  ~\-isedi(H)   tanh(iZ-) H(a). 

D 
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