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In [19] G. Tian proved that the defect measure of a weakly converg- 
ing sequence of Yang-Mills Fields on a riemannian manifold (M, g) 
of dimension n (n > 4) is carried by a n — 4-rectifiable subset S of 
M. In the present paper we complete the picture of weakly con- 
verging sequences of YM Fields by proving that, in 4 dimension, 
the defect measure is quantized: at any point of S it is the sum 
of L2 energies of YM fields on S'4. This result is extended to any 
dimension under some additional assumption on the W2'1 norm 
of the curvature. In the last part we study non-linearities issued 
from curvatures in general and we prove that strong convergence 
in W1)nl2 of Coulomb gauges of connections over a n-dimensional 
manifold preserves the topology of the bundle at the limit. 

I. Introduction. 

The first step in the program of building up a Gauge theory in higher di- 
mension (higher than the conformal one) proposed by S.K. Donaldson and 
R.P. Thomas is to give a precise picture of the non-compactness in I? of 
Yang-Mills fields on a manifold M bellow some energy level. 

Let E be a vector bundle over a riemannian manifold (M, g) with struc- 
ture group a compact Lie Group G (denote by © its Lie Algebra). We will 
adopt the notations of [6] Chapter 2. A connection A on E is character- 
ized by its corresponding covariant derivative V^ acting on sections of £?, 
fi0(E) into sections of E ® T*M. From V^ one may constuct the exterior 
derivative CIA from E-valued p-forms, fi,p(E) into E-valued p + 1-forms ([6] 
p. 35). We will denote by FA the curvature of A which is a two form into 
the 0-bundle deduced from the principal bundle of E for the adjoint repre- 
sentation (FA E fi>2{®E))- A Yang-Mills Field of E is a critical point of the 
Yang-Mills action 

(1.1) / I^AI
2 
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where the scalar product on fi2(0£) is deduced from the Killing form of G 
and the metric g on M (see [6]). FA is Yang-Mills if and only if it solves the 
Euler-Lagrange Equation 

(1-2) d\FA = 0 

where d*A is the adjoint of d^ for the above mentioned iy2-scalar product on 

In [19] G. Tian studied sequences of smooth solutions of (1.2) having 
uniformly bounded energy. One among the main results of Tian's paper can 
be stated in the following way. 

Theorem 1.1 ([19]). Let Ai be a sequence of Yang-Mills connection with 
uniformly bounded energy, then one may extract a subsequence Ay such that, 
modulo gauge transformation, 

FA^ —^ FA     weakly in L2 

where FA is the curvature of a smooth Yang-Mills connection outside a subset 
S of M having finite n — A-Haussdorff dimension, 

WA,? dV9 —> \FA\
2
 dvg + @un-\s 

as Radon measures where dVg denotes the volume form on (M,g), T-Ln~^ is 
the n — 4 Hausdorff measure, S is a n — 4 rectifiable subset of M containing 
E, H71-4!^ is the restriction to S of the Hausdorff measure and Q is a 
mesurable fonction on S admiting a positive lower bound depending only on 
n. 

Of course the main difficulty in the above stated result is to establish 
the rectifiability property of the energy defect measure of the sequence Ay : 
p = &nn-A[S. The proof in [19] follows the approach of F.H. Lin in [9] 
where the rectifiability of the defect measure of stationary harmonic maps 
was established. 

The main question we adress in the present paper concerns the multiplic- 
ity O of the defect measure in Theorem 1.1. In the particular case when we 
are dealing with special YM connections which are fi-anti-self-dual for some 
closed n — 4 form $1 (see [19]) G. Tian proved that Q(x) is an integer, sum 
of the energies of anti-self-dual 4-dimensional instantons that concentrate 
at a;, which means that there is no loss of energy between "bubbles". This 
phenomenon can be called the no neck property (see discussions about the 
existence or non existence of necks in bubble trees for harmonic maps and 
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"almost"-harmonic maps on surfaces in [5] and [16]). This no neck property- 
was previously established in [6] in dimension 4 for sequences of anti-self- 
dual Yang-Mills fields and was a important step in the compactification of 
the moduli space of ASD-connections on a compact 4-manifolds. 

Here we will extend this no neck property to sequences of general smooth 
YM Fields in dimension larger or equal to 4. We will use the following 

notation: IV^VA^AI = \/^2i,j iViVji^l2 and V* denotes the covariant 
derivative induced by A along the i—th direction of W1. Our first main 
result is the following. 

Theorem 1.2. Let n > 4 and let /i = 6 S[T-Ln~4i be the defect measure 
of a sequence of Yang-Mills connections given in Theorem 1.2, assuming in 
the case where n > 4 that WVA^AFAWL

1
 ^

S
 uniformly bounded, then /i is 

quantized: 

Nx 

for Hn-A a. e. xeS        &(x) = J^ \\FBj |||2 

i=i 

where Nx is a positive integer and Bj are Yang-Mills connections of G- 
bundles over S4 issued from Ay and that concentrate at x as i —> +oo. 

Remark LI. We believe that the assumption HV^VA^AIIL
1
 to be uni- 

formly bounded in dimension strictly larger than 4 could be removed from 
the statement of Theorem 1.2 above as it is here for n = 4. 

Remark 1.2. The result above is extended to sequences of eventualy sin- 
gular Yang-Mills Fields that are stationary in [13]. 

The meaning of issued from Av and that concentrate at x as i —t +oo 
has to be understood in the following way : There are conformal maps ip7- 
from S4 minus a fixed number of balls shrinking to zero, U^S^ •, into Nx 

disjoint subparts of the 4-dimensional plane perpendicular to TXS in TXM 
such that the pull-back bundle ^ exp* E extends to the smooth bundle over 

S4 on which Bj is defined, moreover the pull back curvature ipj exp* i^., 

converges strongly in L2^4 \ UkBfj) to FBJ (modulo changes of gauge), 
exp^. denotes the exponential map from (T^M, gx) into (M,g). 

The above stated quantization result we shall prove bellow is established 
using technics introduced by the author in collaboration with F.H. Lin while 
studying Ginzburg-Landau vortices in [10]. Right after this work we realized 
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that these techniques could be developped in order to prove the correspond- 
ing statement to Theorem 1.2 but for harmonic maps between manifolds 
in [11] (see also [12] for an adaptation of these techniques to parabolic sit- 
uations). As the main tool we introduced the use of Lorentz Spaces on 
subspaces having the conformal dimension of the problem. More specificaly 
the originality of these works was to present a use of the Z,2'00 — L2'1 duality 
as the right substitue of the apparently natural L2 — L2 duality in which we 
got stucked for quite a long time. This slight shift in duality is also the key 
point of the analysis we will present bellow. In the last part of the paper 
we extend the use of Lorentz Spaces to general curvatures of bundles over 
manifolds. One of the crucial observation is the following (for instance in 
4-dimension): assume we are working in a Gauge A which is controled in 
the W1,2-norm (the conformal invariant 1 in 4-dim) from the Peetre-Sobolev 
embeddings [15] we deduce that A is controled in the Lorentz norm L4,2 and 
from standard properties of products in Lorentz Spaces we obtain that [A, A] 
is controled in L2'1 norm: in other words in the curvature FA = dA + [A, A\ 
we observed that the non-linear part [A, A], which makes the analysis of cur- 
vatures usualy quite delicate, is in fact slightly more regular (in L2,1) than 
the linear part dA itself which is a-priori only in L2. This kind of idea is also 
adapted to Yang-Mills equations (see Lemma II.3). In the last theorems of 
the paper we prove that strongly converging sequences of Coulomb gauges 
in W1'71'2 for a given bundle over a n-manifold preserve the topology of the 
bundle at the limit. This was well known in W1^ for p > n/2 (see [21]) and 
is not true anymore in W1^ for p < n/2. These borderline situation is solved 
by the mean of Brezis-Wainger-Sobolev embeddings for Lorentz Spaces (see 
[3])- 

Acknowledgments. The author is very gratefuhl to Fanghua Lin for the 
exchanges of ideas which have motivated some aspects of this work. The 
author would like also to express his gratitude to Haim Brezis and Luc 
Tartar for their comments and stimulating discussions on Lorentz Spaces. 

II. Proof of Theorem 1.2 for n > 4. 

In order to simplify the presentation of the proof again, since the result is 
essentially local, we take the basis of E to be the flat unit ball Bn of R71. 

Let S be the rectifiable subset carrying the defect measure u = 6 7/n~4 [S 
of the sequence Ai of Yang-Mills connections. For H71-4 a.e. XQ G 5, S 
admits a unique tangent plane PQ at ZQ, moreover for Hn~4 a.e. XQ E S we 
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have 

(III) lim^r f        |-FA|
2
 = 0 

where A is the limiting admissible connection. This last fact is a consequence 
of a Federer-Zimmer type covering argument detailed in [19] p. 222. For any 
A > 0 we denote by GA the following subset Bn which has to be a subset of 
S 

JBr(x) J 
GA — { x;   liminfliminf  

I r^O     i-^+oo rn 

For any 5 > 0 we may assign to each a; in GA a positive radius rx < S such 
that 

Vr < rx        liminf-L f       \V^V^i%I > «. 

From (Srx(x))a;€GA we may exti*act a Besicovitch covering of GA, 

(Brk(xfc))keK-, where K is at most countable, such that each point of Bn 

is covered by a number of balls Brk(xk) bounded by a universal number. 
Then, for any finite subfamilly J of if, we have an nj such that 

r4A 
JBrjiXj) 

summing over j because of the Besicovitch property we deduce that 

2-s  3       - A 

where C is a universal number independent on J. Thus we deduce 
X^fceiV^-4 < ^ and since £ can be chosen as small as we want, we have 
Un-^{G^) < C/A. Prom this we deduce 

?r-4(nAGA) = 0. 

In other words we have For H"~4 a.e. xo 6 S 

(II.2) liminfliminf^/'        IV^V^^I < +00. 
r->0     1->+oo rn   4 yBr(IO) 
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Choose now XQ in E such that E admits a tangent plane PQ at XQ and both 
(II.l) and (II.2) hold. Let (j)r(x) = rx + XQ, the previous statements imply 

lim   lim   ^^^lim-^-^lFAl2 dx + ^-T(f);enn-4[S 
r->0 z->+oo r71-4   r r->0 r71-4   r'      ' r71-4 L 

-e(a;o)7/n-4LPo 

where //^ denotes the measure /i; = 1^4J2 dx (dx is the Lebesgue measure). 
Prom (II.2) there exists r^ —>• 0 as A; —>• +oo such that for all k 

»->+«> rfc     ysrfc(xo) 

where C is fixed. Then for any A; we may find ik large enough such that 

1 
lim #^=^0)7^-^0 

and 

Vk       -1=1 f \VAityAikFAik\<2C. 

Let Ak(x) = rkAik(rkX + XQ) for x in ^(O), we deduce that 

\FAk\
2(x)dx = -l^tt^u —> &(xo) nn-4[Po 

and 

L VA,Vlt^J<2C. 
Bn k k k 

Thus modulo an adapted rescaling of Ai at such XQ, our tangent defect 
measure 6n_4(/i,rro) = 6(^o) ^"^[PQ is the defect measure of a sequence 
of Yang-Mills connections converging weakly to a flat connection A (FA = 0): 

(IL3) iFA^dx - e(xo) nn-A[Po in BL 

To simplify notations we can take XQ = 0 and PQ to be the n — 4-dimensional 
plane {xi = 0} for i = n — 3 • • -n. We will simply denote 6(2:0) by 0 
that we assume to be non zero.  Observe that we can also have chosen XQ 



Interpolation Spaces 689 

and the rescaled rate such that our rescaled connection Ai verifies for any 
k = l---n-4 

(11.4) lim 
i-H-oo j Bl JBI   dxk 

dx = 0 

(cf. Lemma 3.3.2 of [19]) where gf-L^A* denotes the contraction of -^- and 
FAi that lies in fi1 (©£;). 

We   use   the   following   notations   Xi    =    (xi • • • xn-^)   and   X2    = 
(xn-s"'Xn). Let 

n—4 

fi(Xi) dxk 
[FA, = (        E y{xi}xB*(o) fc=1 

Since /j —)• 0 in L1(S"~4(0)), its maximal function 

M/i(X1) = sup-^/ /< 
r>o rn     JB?-*^) 

tends to zero in L1     , : 

.lim   || A|{Xi; M/ipTi) > A}| ||Lo 
2->-+00 

= 0. 

Thus there exists a set ffc, |J5i| > 0,99|B]l_4(0)| such that 

(11.5) IIM/illico^) -> 0. 

Using the fact that HVAiVA^AjlL^B71) is uniformly bounded and Kato 
inequality [rflV^-FiH < WA^Ai^i^ (we keep denoting the curvature of Ai 
by Fi) we deduce that 

(11.6) /    iv^it + idiv^ll^c 
JSi(O) 

where C is independant on i.  By Fubini there exists a measurable subset 
Gi of Sf-4(0), verifying |Gi| > 0,99|Bp4| and such that 

(11.7) VXi G Gi 
J{Xi}xBj (0) 

IV^FiP + ldlV^ill^C 

where C is independant on i and Xi in G^.  Using now the embedding of 
Wl'l(B4i) into the Lorentz Space Lz>l(B^) (this embedding was first noticed 



690 Tristan Riviere 

by J. Peetre [15], see also [18] and a short proof in [8] Theorem 3.3.9) we 
get that 

(II.8) VXiGGi        IIVA.^II   4, ,      <C 

which yields, by Kato inequality, 

(ii.9)        vxieG(   \m\\\Lu«x^Bimic- 
C again is independant of i. We may also have chosen Gi such that, for any 
Xi in G^ //x1}xJB4(o) l^l2 is bounded independantly of i preserving the size 

of d : \Gi\ > 0,99|Sf "4|. Using now theorem 8 of [18] we get that the L2'1 

norm of Fi on {Xi} x B*(0) is uniformly bounded 

(11.10) VXi e Gi        II-^IIL2.I({XI}XJB4(O)) < C- 

We will call a "good slice" a point Xi e Gi fl ^ (this set has a measure 
bounded from bellow independantly of i). 

We claim that for any Xi G Bi~A(0) and any fixed S, for i large enough, 

(11.11) sup    5*-n [ \FAi\
2>e(n) 

X2£Bl(0) JBs(XuX2) X2£Bt(0) 

where e(n) is the Uhlenbeck constant given in Theorem 2.2.1 of [19]. That 
yields to the control of the L00 norm of the curvature in the ball of half 
radius. If (11.11) would not hold we would contradicts the concentration 
phenomenon and the fact that G ^ 0. 

Pick now an arbitrary sequence of "good slices" {XI} as i —> +oo. Be- 
cause of (11.11), since each Ai is smooth, we may find a sequence Si —¥ 0 
such that 

(11.12) max*?-" / |i%|2 = Sf'n f \FAf = ^ 
^2 JBSi(X\,X2) JB5i(Xi,Xi) * 

(1/2 can be replaced by any positive number between 0 and 1). In other 
words X2 is located at a bubble of characteristic size Si. More precisely, if 
one introduces Bi = rfAi where r^ : X —> ^X + (X|, Xrj,), we have, following 
[19] p. 237 that, modulo extraction of a subsequence and eventually changes 
of gauge, 

(11.13) FBi -»■ FB in tfoc(B?-4(0) x M4) 
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moreover B is gauge equivalent to the pull-back by the orthogonal projection 
map of a non flat Yang-Mills connection on {0} x M4. This is the first bubble 
we detect. 

At this stage of the proof it is tempted to compare 9 and /(OJXR
4
 I^BI

2 

and to deduce from the above convergence that 6 > fsQ\x^4 \FB\
2
' This will 

be a consequence of the following lemma 

Lemma II.1. Let Ai be a sequence of Yang-Mills connections on B™ such 
that 

(11.14) IFAifdx—teoH^lPo 

as Radon measures, where 0o is a positive constant and PQ is the n — 4 plane 
{xk = 0; k = n — 3 • • ■ n}, assume also that 

4   AlFAi_o     »L*W) (11.15) V Jb = l---n- 

then for a.e. XiEPo 

(11.16) lim 
JiX^xBfiO) 

Proof of Lemma 11.1. The idea of the proof comes from Lin's work [9] in 
the context of stationary harmonic maps. Computations which are required 
to prove the lemma can be found in [19] part 3. 

Let (p G C^{Bf{0)) such that 0(^2) = 1 in J5^2(0), introduce 

mi H(-Yi)= f       cf)2\FAi\
2(XllX2)dX2 

following (3.3.19) of [19] we obtain that mi solves the following equation: 

(11.17) gradra^ = fi + divui 

where ft : B^ -+ W1'4 and m : S^"4 ^ E71"4 x M71"4 verify 

(11.18) WML^B^-
4
) + II^IILI^"

4
) —> 0- 

(11.15) is of course used to establish (11.18.) From Allard strong constancy 
Lemma [1] we deduce the existence of a constant Ci such that 

(11.19) IK-Ci||Lll  (sr4)^0- 
loc    1 
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Since JBn-4mi -> |^~4| 0o, we deduce that Ci -^ &o as i ->- +00 and 
Lemma 11.3 is proved since ji^J converges to 0 in J3f \ PQ- □ 

Because of (11.16) we may of course choose XI in Ei fl Gi such that 

(11.20) lim f \FAi\
2 = e. 

Thus at this stage of the proof we have shown that 

(11.21) 0 > f  \FE 
^R4 ^|2 

where B is a non flat YM-connection of M4. 
We can restate the goal to achieve in order to prove Theorem 1.2: the 

aim is to show that 

(11.22) .lim 7 \FAf = ^2       IFBJ]
2 

where FBJ are non flat Yang-Mills connections on E4. This will be shown 
by induction on the total number of bubbles m. Indeed we know that 
each concentration generating a bubble has a cost of energy bounded from 
bellow by a positive number e(4) (recall that e(4) is the Uhlenbeck constant 
in 4 dimension see [20]). Thus the number of possible bubbles is uniformly 
bounded. 

Assume first we have only one bubble which is the one already detected 
of characteristic size 5i. Clearly we have 

(11.23) f   \FB\2=   lim   .lim   f \FAi\\ 

In order to prove that 

(11.24) e=.lim   f \FAi\
2= [   \FB\2 

we have to prove that 

(11.25) lim     lim   / \FAi R-^+00^+(x>J{X[}xBt\B4
RS.(X

t
2) 

2 = 0 
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in other words that there is no "neck" formation and no loss of energy which 
is not quantized (see [7] and [16] for "neck" phenomenon in bubble trees). 

To simplify notations we take (Xl^X^) to be the origin (0,0). 
We claim that for any e there are sufficiently large R > 0 and IQ E N 

such that 

\/i>io   VR6i<r<- 

(11.26) 

-^zi / \FA.\2<e- rn      JB?-
4
(O) JB%r(0)\B$(0) 

Assume this is not the case, then we may find an so > 0, a subsequence 
if -» +oo (still denoted i) and a sequence r^ such that 

4=1 f    4      / l^|2>£o 
(n.27) ^       JB?-A(0)JB$r.(0)\B*.(0) 

Oi 

(We may allways assume that rj —> 0 since .FA; —>• 0 in Bn \ PQ.) Let 
\i —> 0 such that ^ = o(l) and Ajj1 —>• +oo. Consider the dilation map 
Ti{X) — riX in W1 and let Bi = T*Ai, thus Bi is a Yang-Mills connection 
on B^-4(0) x B|/A.(0) \ B*. and satisfies 

(11.28) / /* iFa.l^eo. 
yBr4(o) JB$(O)\BI(0) 

Taking into account the translation by (XI,X^), (11-5) implies 

(11.29) lim sup —^ /       f 
i->+oo   r    r"   4yB?-47B|/A (0)\B1|.(0) 5a;/ L^ o. 

Thus, from Proposition 3.1.2 of [19], modulo extraction of a subsequence 
and eventually changes of gauge, we have 

F* - FBoo in Lfoc(5r4(0) x R4 \ {0}) 

where 

Vfc = l---n-4       —-L^Boo^O 
dxk 

l        4 '^ JBr-^OlxK4 
(IL30) /* 1^   l2<+oo 

^^-4(0)xE4 

Boo is an admissible YM connection 
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arguing like in [19] p. 237 we deduce that FB^ is gauge equivalent to the pull- 
back of the projection on {0} x M4 of a Yang-Mills connection on {0} x M4 \{0} 
which has to be smooth at {0} because of the removability singularity result 
of Uhlenbeck [20]. Thus Boo is gauge equivalent to the pull-back of an M4 

YM-connect ion. If BQQ is not flat we already get a contradiction because we 
just exhibited a new bubble. If FB^ is flat, that means that the convergence 
of FBi to FBQC admits a non zero defect measure 

\FBi\
2^v = f(x)Hn-4lX 

and because of (11.29) we easily deduce, using arguments like in the proof of 
Lemma II. 1, that E is contained in n — 4-planes Pi parallel to {x^ = 0; k > 
n — 3} and that / is constant on each of the P^s: 

(ii.3i) u = J2cjn
n-4[pj 

3 

where the Cj are non zero constants. Following again [19] page 235 we get 
a new bubble and this contradict our assumption that there is only one 
bubble. 

Thus in any cases (11.27) yields a contradiction and (11.26) holds. For 
e small enough in (11.26) we are in the setting of Uhlenbeck e-regularity 
theorem ([19] Theorem 2.2.1 or[14]) and we deduce the existence of SQ such 
that for any e < £o5 there exists R > 0 and IQ E N such that 

(11.32) Vi>io   \/\X\>R6i       |X|4|i^.|2<£ 

restricting F^. to the plane {0} x M4 we deduce from (11.32) 

(IL33) II^IIL2,OO({O}XB4/2\£^ ^ € 

where Z,2'00 is the Lorentz Space defined for instance in [17].   Combining 
(11.33) with (11.10) and using the L2'00 - L2'1 duality (see [17]) we deduce 
that for every e < SQ there exists an R such that for any i > ZQ we have 

(11.34) ll^Ji^^^Ce. 

This implies (11.25) and Theorem 1.2 is proved in the case of 1 bubble. 
The case of more than 1 bubble can be handeled in a very similar way 

and we just give few details for m = 2. 
The proof starts the same untill (11.26) which cannot hold anymore oth- 

erwise we would have had 1 bubble only as it is explained above. Thus we 
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may extract r^ such that (11.27) holds. We have two possibilities the first: 
FBi has no defect measure and the convergence is strong and it remains to 
show that 

(11.35) lim     lim   f l^|2 = 0 
fl_>+ocu_>+00 J r0|xB4        \£4 mxB^Biu. 

and 

(11.36) lim     lim    / \FB.\2 = 0. 
R^+0o z->4-oo J{0}xBf/2\B4

Rri 

This can be done exactly like in the proof of (11.27) since we already got the 
second bubble given by FB^. The second situation is when |FBJ

2
 has some 

non-zero defect measure and it is given by (11.31). We need to have FB^ = 0 
otherwise there would be too many bubbles. Thus since FB^ = 0 we are back 
to the case m = 1. In this case also one has to establish (11.35) and (11.36) 
and this can be done again following word by word the proof of (11.27). The 
case m = 2 is proved. For larger m one follows exactly the same strategy. 

□ 

III. The conformal dimension n = 4. 

In this part we explain, in the case n = 4 how we can omitt the hypothesis 
on the W2,1 bound of the curvature to prove Theorem 1.2. Theorem 1.2 was 
not known at the conformal dimension n = 4 in general but only established 
for ASD connections in this dimension (see the analysis in [20], [21] and [6]). 
We follow the same strategy as the one developped in part II and we keep 
denoting Si the caracteristic size of the first bubble given by (11.12) that we 
assume to be centered at the origin. In order to clarify the presentation we 
assume that there is only one bubble so that (11.26) holds: 

We    3R = R£    s.t.     Vz > iQ    Vr s.t. R£ Si < r < 4 

(III.l) 

^J6p(0)\^(0) 

We claim the following lemma holds: 

/ I^I2<£. 
JB$aJO)\Bi(Q) 

Lemma III.l.   There exists SQ > 0 such that for any e < e^There exists a 
trivialization of the bundle on B4 \ £#^(0) such that, in this trivialization 

WAWw^iB^Bn^m 
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is uniformly bounded, independently on i and e. 

Proof of Lemma III.l. We first have a fixed trivialisation over B4 (coming 
from the bundle we fixed) in which we have no control of the sequence of 
connections Ai which are 1-forms defined on all of B* into the Lie algebra 
0 of the structure group G. Let R given by (III.l) for an e that will be 
fixed later on in the proof. We introduce the following family of annulii 
centered at 0 : Tk = .^-^(O) \ ^2-^-2(0) for the integers going from 0 to 
Ni = [log2(l/i?^) + 2] ([5] denotes the integer part of the real s). Applying 
Uhlenbeck's Theorem 1.3 in [21], for e chosen small enough, independent 
on i or A;, for any k = 0- • -iVi, there exists a change of gauge af on Tk 

such that if we denote Ak the connection expressed in this gauge (A^ = 
(of )~lAi<T$ + (<Ti)~ld<T%) we have 

(IIL2) f   |V4*|2 + ^f < c f   \FAi\
2 < ce 

(observe that we have no control on the of but only on the transition func- 
tions (crf)-1^-1 as we will see bellow). Using again Uhlenbeck regular- 
ity theorem in ([20] p. 18), we have the estimate in the smaller annuli 
7;* = S2-t+i(0)\B2-*-i(0) 

-.1/2 
(111.3) |V'4| < Ci 

x\l+1' 

On fk n f1*-1 = B2-k+i(0) \ B2-k(0) let g*'" l be the transition function 
given by 

9i        = (<Ti)    ai     ■ 

We have 

(III.4) drf'*"1 = rf•fc-1,4*-1 - A^'1 

and from (III. 3) we deduce 

(IIL5) IV^''"1! < Ctl\x\        and        IV2^"1! < Cel\xf. 

Then there exists g^ ~1 in G such that 

(III.6) \\g\^ - ^-'llL-^nr*-!) ^ ^ 
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Let hk = UiKk-id1/'1 (ordered product ^~1'A:~2^"2'A:~3....), replacing 

S?'*"1 by g-^'1 = (h^g^-1^-1 we have 

(nL7)    \\9i ,fc~1 - id||Loo(f knf k-i) = ||5»' ~1 ^' ~1 - id||Loo(f fcnr*-i) ^ £' 

So changing cr^ into cr^/i^, we may assume 5^' ~ =id. We assume now 
that e is chosen small enough so that Uhlenbeck's Theorem (III.2) applies 
and so that, in view of (III.6), gi' is in the neighborhood of the identity 
where exp is invertible. The goal is to express gi' as transition functions 
(eventualy on smaller intersecting set than the Tk D T^"1) of a sequence 
of trivialisations pk on which we have some control.   Let </> be a smooth 
map on £2(0) such that </> = 1 on B2 \ B 1 and (j) = 0 on Bi. Denote by 

2 2 

(f)k(x) = (f)(2kx). pk is now defined by induction on k. Let p^ = 1. assume 
now p^_1 is constructed, we denote 

y^exp-1^-1^-1) 

and we choose on fk = B2-k+i(0) \ B2-k-i/2{0), pk := exp(-0/i; Yf). Since 
pk-i ^j^ on B2_k+l we have 

l l 

Thus from (IIL6) and (III.7), we have for / = 0,1,2 

(III.8) \Vlpk\<e/\x\l 

and from (III.2) and (IIL4) 

(in.9) f  |V^|2 + ^<(7/   |^|2. 
JTk \x\* JTk 

Moreover on fk D T^-1 = B2-k+i \ B2-k+i/2, by construction g^'1 = 
(pk)~1pk~1.    Let Fi be the two form on B2 \ BR^ into the Lie algebra 

of G that coincide with (p*""1)"1!^"V*"1 = {Pki)~lFiPki in tiTk, i* is our 

original sequence of curvatures F^. expressed in the trivialisation that co- 
incide with pkak on the tiTk's. the corresponding 1-form expressing the 
connection in this gauge is Ai = (pk)~1^p^ + (pk)~ldpk on Tk. Combining 
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(III.2) and (IIL8) and (IIL9), we have 

/ ij^ + |Vi,|2 < ^E /   ^ff + Iv4|2 

(iii.io) JB
*

B
^ 

lx] tJ^ M2 

<C  f \FAi\
2. 

Finally the L2'1 estimate of the curvature and the quantization property 
(Theorem LI for n — 4) is a consequence of inequality (III.IO) and the 
following observation. 

Lemma III.2. Let A be the 1-form of a Yang-Mills connection on a given 
trivialization of a principal bundle over B4", the following estimate holds 

(111.11) ll*U||L'.l(5?/2)   <  C  [11^11^1,2(54) + 11^11^,2^4)" 

where FA is the curvature FA = dA + [A, A] and || ||L2,i denotes the Lorentz 
norm of the space dual to the weak L2 space. 

Proof of Lemma 111.2. Using whitney extension theorem we may find an 
extension A of A on all of M4 such that H^UVF^^R

4
) < ll^llw1.2^4)- Then 

Using the Lorentz-Sobolev embeding of J. Peetre [15], we have 

(111.12) ||A||L4,2(B4)   <   ||i||L4,2(R4)   <  6711^11^1,2^4) 

where L4,2 denotes the Lorentz Space of function / such that /R /2(t) t-1/2 < 
+oo (/* is the decreasing rearrengement of /). Now using the following 
property on multiplication of functions in Lorentz Spaces 

(111.13)       Va,6funct. on S4        II^IIL
4
/
3
'
1
^

4
) ^ IMIL

4
>
2
(£

4
)II

&
IIL

2
>
2
(.B

4
) 

(L2'2 is the usual L2 Space) see [18]. Since F = dA + [A,A\ solves 

dF = - [A, F] and        d*F = -* [A, *F]. 

Combining (III. 12) and (III. 13) we get 

(111.14) 11^1^4/8,1(54)  +  11^^1^4/3,1(54)   <   11^11^1,2(54)1^11^(54)- 

let G on B4 such that dG = dF, d*G = d*F and L^QAG = 0 (where LdB4 is 
the embedding oidB4 in B4). The operator that assign to the pair (dG, d*G) 
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the tensor VG = Y^k=i JF" ® ^xk ls a weak (r, r) operator for r between 1 
and oo, then using Theorem 3.15 Chapter V of [17] we obtain 

(111.15) 

11^1^2(^4) + ||VG||L4/3,1(B4)  < ^||dG||L4/3,l(B4) + ||d*G||L4/3,l (B4) 

<  11^11^1,2(54)11^1^2(54). 

Since F — G is an harmonic form on i?4 with an L2 control on F and an L2 

control on G we get 

(111.16) ||V(F - G)||L4/3.i(Bj/2) < C i\\A\\w^m + !) Wnvm- 

Combining (III. 15) and (III. 16) we obtain 

(111.17) l|VF||L4/S.l(B4/2)   < C (11^11^.2(54) + 1)  \\F\\L,{Bi). 

Using now the Lorentz-Sobolev embedding of J. Peetre (see [18] Theo- 
rem 8) we get the desired estimate on the L2,1 norm of the curvature and 
Lemma III.2 is proved. □ 

We show how to adapt the arguments above to the present situation: we 
have only a gauge in B\ \ Bj^. in which we control the W1,2 norm of the 
Gauge independently of i and e. Let x be a cut-off function equal to 1 on 
Bi \ B2R5i and 0 on JBRJ., such that ||Vx||oo < C/RSi. Let's take F the 
curvature in the Gauge given by Lemma III.l and consider x^- It solves 

dixF) = -X[A, F} + dxAF     and     d{*{xF)) = -x[A *^] + dx A *F. 

We use the arguments above to deduce that \\x[A,F]\\ 4A 4 < G and 

similarly ||x[A, *F]|| 4 1, 4. < G. From the L00 estimates established for 

the curvature in the previous part we deduce that 

G G 
\dxA*F\ < and \dx A F\ < 

(RSi)3 ' A       ' - (i?^)3 

and this terms are supported in the annulus B2R5i \ BRsi and using the 
i i definition of the Ls'1 norm we easily get that 

||dxA*F||   4,    ,   <G and IMxAFll   4,    ,   < G 
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where C is independent on i and e. So argueing as in the previous lemma 
we have established that 

(111.18) \\F\\L2HBt\B*RSi) < C 

where C is independent on i and s and the proof of Theorem 1.1 follows 
from the arguments of section 2. □ 

IV. Some more applications of Lorentz Spaces to the 
analysis of non-linearities issued from curvatures. 

In this part, which is independent from the rest of the paper, we aim to 
present how Lorentz spaces are helpful to establish properties relative to 
strong converging sequences of connections of a given bundle over a rieman- 
nian manifold. Prom now on the Lie group G is a subgoup of SO(k) seen as 
a submanifold of the vector space of A; by A; matrices. 

We first establish the following result: 

Theorem IV.1. Let Q be a principal G-bundle over a compact n-dimen- 
sional riemannian manifold M. Assume there exists on Q a sequence of 
connections Di, a fixed covering of M (JAa) and a trivialization af overUa 

such that if Af = afDi(af)-1 - d is a Coulomb Gauge for A (d?A? = 0) 
that converges strongly to some A^ in Wl'nf2, then A^ defines a connection 
of the same bundle Q: there exists a connection D^ of Q and a system of 
trivialization a"  such that 'oo 

where d denotes the exterior differentiation. 

Remark IV. 1. In other words we prove that the strong convergence of 
coulomb gauges of connections in Wl>n/2 preserves the topology of the bun- 
dle. It was well known (see [6]) that weak convergence of connections in 
W1,n'2 does not preserve the topology of the bundle. It is straightforward 
to check that strong convergences of connections in W1,p for p > n/2 pre- 
serves the topology. It is well known that strong convergence in W1^ for 
p < n/2 does not preserve the topology of the bundle (Ex: the bubbling 
phenomenon for ASD connection in 4-dimension). So the theorem above 
solves a borderline case. 
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Proof of Theorem IV. 1.    Denote g^     the sequences of transition function 
from Ua H Up into G. The transition functions solve 

(IV.l) dgf* = gfAf - A^gf. 

From Sobolev embedding we deduce that 

(IV.2) I      \dg^\n < C 

where Ua^ = Ua D U^. Let p < n, for any i, j € N we have 

(IV.3) 

/     \dgf - dgff < [     \At- Afp + f     \A^ - A*? 

+ [j 0 \A?r + \4\n + \^\n+i4in)" {juat0 bf* -9?\~' 
Prom (IV.2) there exists a subsequence (still denoted g?) such that g^ —> 
g%? in Lq{Ua^) for any g < +00, thus from (IV.3) we deduce that g°>P -+ 

g%f in Vr1^(Wa'^) for any p < n. Consider a strict subcover of Ua denoted 
Va with WnW C Ua>P. Let 5 > 0, there exists ps such that for any p < p5, 

maxz^a||Aa\\wi,n/2fB fz\\ < (f) • We can cover Va^ by a fixed union of 

balls Bp(z) included in Ua^ such that p < ps and such that, applying Fubini 
Theorem, modulo extraction of a subsequence 

(iv.4) [      Mg^- sgftr-i ->0. 

On any such a B2p(z) from (IV.l) and the Coulomb gauge condition we have 

(IV.5) -Ag?'1* = * [ds?'* A *4a] + * [*ilf A dg?'*   . 

Since c/f '0 € ^2'n/2(WQ'6eta) (from (IV.l)) using the Peetre-Lorentz-Sobolev 
embedding presented in [18] Theorem 8, we have gf^ E U1*71'2. Using now 
the multiplication property of functions in Lorentz Spaces given in [18]: the 
product of 2 functions in L71'71/2 is in L71/2'71/4. Thus, from (IV.5) again, we 
deduce that kg* is bounded in Ln/2>n/A(B2p(z)), reducing a bit the size of 
the ball (from 2p to 3p/2), using the weak (r, r) property of Riesz operator 
and Theorem 3.15 of Chap.   V of [17], we have that ||V2gf'^||Ln/2,n/4 is 
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bounded independently on i. Bootstraping this information again in (IV.5) 
we get that Ag?'p is bounded in Ln^n/6{B2P{z))... and so on untill the 
second exponent reaches j^. So we deduce that 

(iv.6) rofV*,™,^ 

where C is independent on i. We have (all norms above being taken over 
BP(z)) 

(IV.7) 

9i    -yoo J\\L%,I \\A(g^-g^\ 

<   || V^  -^)||L-,./.-,    [ll^a|lL..»(^W) + Pf llLn,f " 

+ [M? -i4S,llL-.» + Pf -^llL-.»] [llVfl^V^ + HVfl^ll^-i,]. 

Since we have JB^z) \Af\2 + |VAf|f < 6, we deduce that JB (z) \A?\n < 

(52ln + pn-252ln)n < C(52 where C is a universal constant (we may allways 
assume that p < 1). Using the embedding of W1-"/2^) into Ln'n/2(Bp), 
taking into account the two previous estimates and the common scaling 
behavior of the norms Ln, Ln'n/2 and the pseudo-norm: gradient in L"/2 in 
n dimension, we have 

(IV.8) II4
?
IIL-.«/»(*,) < GS

2
. 

Let h solving 

(IV9) Uh = Aig?>P-g$P) mBp(z) 
\h = 0 ondBp(z). 

Standard result on Riesz Kernel gives that the operator that assign V2h to 
^(di — 9oo) is a weak (r,r) operator for r between 0 and oo. Thus we 
have 

(IV.10) \\Vh\\Ln,^{Bp) < l|VA||L»,i(Bp) + \\V2h\\Ln/2,1{Bp) 

<C\\A(g^-g^)\\Ln/2,HBp) 
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where C is independent on p. Let now k solving 

'Afc = 0 va.Bp(z) 
(IV.ll) 

^ = 9^-9^ ondBp(z). 

Prom standard elliptic estimates we have 

(IV. 12) \\k\\wl-l<°(dBp(z)) - Cll^, 9™   K^-^dB^z)) 

for s 
= "(*^) 

> n. Thus we deduce 

(iv.13) Ivtn^A,,,,,,, < c,!^ - sS"!!,,,,,-j,^„„• 

Combining (IV.7)...(IV.13) 

(iv.i4)     liv^-^)!!,..^ 
(Bp(z)) 

<c8>m9?>e-9«j)\\Ln,A{Bp{z)) 

+ C [WA? - ^OIIL».»/
2
(BP(Z)) + ll-^i  _ A00\\L„,n/2(Bp(z)) 

and from (IV.4) and the embedding of W1'™/2 into Ln>n/2 we deduce that 
Af ->■ A^ inLn'^2, thus 

llv^-sS^IU^ 0. (IV-15) n • vat ^oo  /iiL"'»=2(Bp(a)) 

Bootstraping this information into (IV.7) we get 

(IV.16) ||A(g^ - 9^)\\Ln^iBp{z)) -► 0 

thus for any A < 1 we have, using again the weak (r, r) property of the Riesz 
operator, 

l|v2(^-^)||^(Bv(2))^o. 
Using now a Lorentz-Sobolev embedding (Theorem 8 [18]) we deduce 

(IV.17) ||V(9^ - 9^)hnA{Bxpiz)) -> 0. 
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At this stage of the proof we are going to use the key embedding established 
by H. Brezis and S. Waigner [3] which says that a function on W1 whose 
derivatives are in L71'1 is in L00. This can be shown in the following way: 
assume V/ G iT1'1^), we have f(x) = div/En G(x - y) f(y) where G is 
the Kernel of the Laplacian on W1. Then since |VG(a;)| < C/lx]71'1 we have 
|{a; ; |VG|(a;) > A}| < C/A"71/71"1 which means that the weak L^-^norm 
of the derivatives of G is bounded: ||VG||    n.,^        < C. The claim follows 

then from the duality L71'1 — L^111'00. Thus, granting this embedding and 
inequality (IV. 17), we deduce, since the balls Bp cover Va D V^, 

Using now Proposition 3.2 of [21] we deduce that, for i large enough, gf^ 

and g^f are equivalent cocycle for the Cech cohomology (see [4]), in other 
words there exist trivialisations pa over sets (eventually slightly smaller than 
the Va) such that (gf'P)-1g&P = pa (p^)-1. The equivalence of the cocycles 
imply that they define toplogically the same bundles and Theorem IV. 1 is 
proved. □ 

If we do not assume anymore that we are working with Coulomb gauges 
we have the following result that generalises the previous theorem. 

Theorem IV.2. Let Q be a principal G-bundle over a compact n dimen- 
sionnal riemannian manifold M. Assume there exists on Q a sequence of 
connections Di, a fixed covering of M (Ua) and a trivialization af overUa 

such that if Af = afDi(af)~1 —d converges strongly to some A^ in T^1'71/2 

and if d*Af strongly converges to d*A(£0 in the Lorentz space IS1/2'1, then 
A^ defines a connection of the same bundle Q: there exists a connection 
Doo of Q and a system of trivialization a^ such that 

AZo = <rZ0Di(aZ0)-
1-d 

where d denotes the exterior differentiation. 

Remark IV.2. In the particular cases where the topology of the bundle 
is given by the second Chern class only, for instance for G — SU(2) over 
an orientable 4-manifold, the result above does not require anymore d*Ai 
to converge in L2,1 but only in L2,2 (we only assume that Ai converges in 
W1,2). This is a consequence of the integral formula for the Chern class 
(see [22]). To know whether the strong I,71/2'1 convergence of d*Af is really 
needed in the statement of Theorem IV.2, remains an open question. 
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Proof of Theorem IV.2. The goal is to find a change of trivialisation in which 
we fulfill the assumption of Theorem IV. 1: strong W1'71/2 convergence of the 
new A? that will be Coulomb d* A? = 0. 

We can assume that the Ua are diffeomorphic to B™ and that the W1,n/2 

norm of A^ on Ua is bellow the range K where Uhlenbeck's theorems in [21] 
apply. First of all we show that we can assume that d*Af -> 0 in Ln^2,1(Ua). 
Indeed let aa be the change of gauge for A^ given by Corollary 2.2 in [21]: 
we have that A% = {a^A^a" + (aa)-1daa verifies 

(IV.18) d*i^ = 0     and     \\AUwMW°) < C^ 

since (PA^ = 0, aa solves 

(IV.19) Aaa = *[daaA*A<Z0\-d*A<Z0(j
a + *[*A(Z0Adaa]. 

Argueing as in the proof of the previous theorem, we have ll-AgJI^.n^ < 
C, ||^||Ln,n/2 < C and thus ||daQ:||Ln,n/2 < C, using the hypothesis of 
the theorem and multiplication properties in the Lorentz spaces mentioned 
above we have 

(IV.20) l|Ac7a||Ln/2,n/4(^)  < C. 

Using the weak (r,r) property of the Riesz operator and Theorem 3.15 
Chapter V of [17], we deduce that for any UJ CC Ua 

(IV.21) ||V2c7-||Ln/2,n/4(a;)<C. 

Having taken a slightly larger ball than Ua from the begining, we may 
always assume that the inequality above holds for cu = Ua. Then we deduce 
that \\nabla<ja\\Ln,n/4(Ua\ < C and as in the proof of Theorem IV.l we keep 
bootstraping this information in (IV.19) untill reaching 

(IV.22) IIVV*!!^,!^)^. 

We then proceed to the change of gauge given by aa for the complete 
sequence Af and we denote Af = (a^^Af aa + (aa)~ldaa clearly we have 
that the hypothesis of the theorem are preserved and that d*Af —> 0 in L71'1. 
At this stage of the proof we will need the corresponding lemma to Lemma 
2.7 of [21] but with Lorentz norms: Denote 

WI'^^B"^) = {ae W1^2(A1Bn,(5)] d*a £ L71/2'1}, 

wffl2(Bn,G) = [sG W2^2(Bn,G); V2s E L71/2'1 and s = id on 0Bn}. 

Using the above notations we have 
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Lemma IV. 1. There exists S > 0 such that if A in W1»n/2(A1Bn; 0) veri- 
fying d*A = 0 and \\A\\wi,n/2 < 5, then there exists e > 0 such that for any 

a G W^™'  (A1Bn^&) verifying ||a||^i,2 < e, the non linear equation 

d*(s-lds + s-1{A + a)s) =0 

has a solution s in W-^Q    (Bn,G) that depends smoothly on a G W^71'  . 

Proof of Lemma IV. 1.   Consider the spaces 

wffi2(Bn, 0) = {if e W2^2{Bn, G); V2U G Ln^\ U = 0 on dBn\ . 

Using Brezis-Wainger-Sobolev embedding we have 

(IV.23) ll^llL»(B»)<Cn|^„/a(Bn). 

This is the key point that permits to adapt Uhlenbeck arguments to the 
present situation and the L71/2'1 assumption on the second derivatives is 
crucial at this stage. From (IV.23) we deduce that the maps U —> exp(U) 

or exp(—U) from W1 Q     into L00 are smooth. Thus the map 

wffl2®w}>n/2-+Ln'2>1 

(U, a) —> d* [exp(-C/)dexp([/) + exp(-U)(A + a) exp(?7)] 

is smooth (we also use that d*A = 0, and again that for U in W1 'Q     and a 

in Wr
1

1'n/2, dU G Ln'^2 and a G Ln'n/2 too - we even have dU G I/1'1). At 
(J7, A) = (0,0) we consider the linearized operator 

Hty) =rf,,# + *([*A,#]). 

Because of the boundary condition U = 0 on SS71, d*dip = Aip is invertible 
from WIQ into L71/2,1, where we use again that Riesz operator is weak 
(r, r) and Theorem 3.15 Chapter V of [17]. Thus we have 

\\HmLn/2,i > ciM^ -c2\\A\\Ln,n/2\mW2;2. 

Thus choosing H-AH^i.n^ small enough makes ||A||Ln,n/2 small, which 
makes H invertible and applying the local inversion theorem we establish 
Lemma IV. 1. □ 
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End of the proof of Theorem IV.2. We can apply Lemma IV.18 above to A = 
A£o and a = Af — A^ for i large enough such that ||-4f — A^H^i.n^ < e and 

we generate a last change of gauge that put us in the setting of Theorem IV. 1 
above that we can apply and Theorem IV.2 is proved. □ 
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