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Schrodinger Flow on Hermitian Locally Symmetric 
Spaces 1 

PETER Y.H. PANG, HONG-YU WANG AND YOU-DE WANG 

In this paper, we show that there exist global (inhomogeneous) 
Schrodinger flows from the real line i?1 as well as the circle S1 into 
Hermitian locally symmetric spaces. Moreover, the Schrodinger 
flows obey a conservation law. Via the correspondence between 
the Schrodinger flow on complex Grassmannians and the matrix 
nonlinear Schrodinger equation (focusing case) on the real line R1, 
Terng and Uhlenbeck recently established the existence of global 
Schrodinger flow from R1 into complex Grassmannian manifolds 
using methods of complete integrability and inverse scattering. In 
a particular case, our result provides a geometric analytic approach 
to this global existence result on i?1. 

1. Introduction. 

Let iV be a complete Kahler manifold equipped with a Kahler form a;, a 
complex structure J, and the Kahler metric /*(•,•) = a;(-, J-). Then, given 
a map UQ from a Riemannian manifold (M, g) into iV, the Schrodinger flow 
(see [5]) u(',t) : M —> N for UQ is defined by the Cauchy problem 

(i.i) 
dtu = J(u)r(u), 

u(x^0) = UQ(X). 

Here, r(^) is the tension field of u; in local coordinates, 

1 Partially supported by National University of Singapore Academic Research 
Fund Grant RP3982718, the National Science Fund for Distinguished Young 
Scholars 10025104 (third author) and the National Key Basic Research Fund 
G1999075107 (third author). Work done while third author was visiting the De- 
partment of Mathematics, National University of Singapore; hospitality extended 
gratefully acknowledged. 

653 



654 P. Pang, H.Y. Wang, & Y.D. Wang 

where A is the Laplace-Beltrami operator on M with respect to the metric 
g and F^ are the Christoffel symbols of the target manifold N (see [7]). 

In [20], H.Y. Wang and Y.D. Wang formulated an inhomogeneous version 
of the Schrodinger flow as follows: 

Given a scalar-valued, nonnegative function f(x) on M, define the in- 
homogeneous energy Ef(u) of a map u e ^(M^N) with respect to the 
coupling function f(x) by 

Ef{u)=l-f  \du\2f(x)dM, 

where \du\2 = Trace^/i, u*h being the pull-back of the metric tensor h on 
N by u. With respect to an orthonormal frame {e^} on M, the Z,2-gradient 
of Ef at ix, denoted by Tf(u), can be expressed as 

Tf(u) = fr(u) + V/ • du. 

Here V/ • du = $^li(Vei/)diA(ei), m = dimM, and Vg^ denotes the co- 
variant differential. In particular, in the case where M = O is a domain in 
Euclidean space i?m, 

1 = 1 

We will call Tf(u) the inhomogeneous tension field of u with respect to the 
coupling function /. The inhomogeneous Schrodinger flow is then given by 

'fyu = J{u)Tf{u) = J{u){f{x)r{u) + Vf(x) • du}, 
(1-2)        { 

u(x,0) = UQ(X). 

When N = S'2, the equation in (1.2) reduces to the inhomogeneous 
Heisenberg or ferromagnetic spin chain system, also known as the Landau- 
Lifshitz equation [14]: 

dtu = f(x)(u x Au) + Vf(x) • (u x Vu), 

where u takes values in S2 C i?3 and x denotes the cross product in i?3. 
For details, we refer the reader to [4] and the references therein. 

Also recall the nonlinear Schrodinger (NLS) equation 

ifpt + ^xx + 2tt|V>|2'*/' = 0, 
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where K ^ 0 is a constant. This equation, which has many applications in 
physics, has been widely studied, see for example [2, 11, 23]. In particular, 
the lattice nonlinear Schrodinger equations with ^ = ±1 can be written 
respectively as Hamiltonian equations on 52 and the Lobachevskian plane, 
and thus represent respectively SU(2) and SU(1,1) magnetic models (see 
[8] for details). 

Zakharov and Takhtajan [24] and Lakshmanan [13] pointed out that the 
Heisenberg spin chain system defined on R1 is gauge equivalent to the non- 
linear Schrodinger equation with K, = 1 (focusing case), thus establishing 
a deep relation between these two integrable systems. Fordy and Kulish 
[9] further observed that these systems have a gauge equivalent geometric 
formulation. In particular, they studied the integrability and Hamiltonian 
structure of matrix nonlinear Schrodinger equations associated with Hermi- 
tian symmetric spaces. 

In [5], W.Y. Ding and Y.D. Wang studied the Schrodinger flow from 
M = S1 into a general complete Kahler manifold (iV, J, h). Via an ana- 
lytic approach, they proved that the Cauchy problem admits a unique local 
smooth solution if UQ is smooth. Further, if N is compact with constant sec- 
tional curvature K, the solution is in fact global. These results have been 
extended by Pang, Wang and Wang [15, 16, 20] in various directions. 

Chang, Shatah and Uhlenbeck [3] considered the Cauchy problem for the 
Schrodinger flow from M = Rm, m = 1,2, into a closed Riemann surface. 
By a generalized Hasimoto transformation, they showed that, for m — 1 
and smooth Cauchy data IZQ, the global smooth Schrodinger flow exists. For 
m = 2, they considered radially symmetric maps, and equivariant maps 
when the target surface has S'1 symmetry, and proved global existence and 
uniqueness in the small energy case (see [3] for details). Recently Terng and 
Uhlenbeck [18, 19] showed that the Schrodinger flow from i?1 into a complex 
Grassmannian manifold is gauge equivalent to the Cauchy problem of the 
following matrix nonlinear Schrodinger (MNLS) equation: 

(1.3) Bt = i(Bxx + BB*B), 

where B is a map from R1 x [0, oo) to the space Mkx(n-k) ofkx(n — k) 
(n > k) complex matrices, and B* = B1 is the adjoint. This equation was 
first studied by Fordy and Kulish [9] as a generalization of the nonlinear 
Schrodinger equation. As a consequence of this correspondence, Terng and 
Uhlenbeck [18, 19] established the global existence of Schrodinger flow from 
M = Rl into a complex Grassmannian. 

In this paper, we consider the inhomogeneous Schrodinger flow from 
M = Rl or 5'1 into a Hermitian locally symmetric space.   Examples of 
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such manifolds include bounded symmetric domains, complex Grassmanni- 
ans, complex hyperbolic spaces CHn with the Bergmann metric and their 
compact or noncompact quotients by isometric subgroups. Adopting the ap- 
proach in [5] we will prove the global existence of Schrodinger flow by means 
of a conservation (or semi-conservation) law. More specifically, we have the 
following results (the definition of ^^(i?1, JV) will be given in Section 2): 

Theorem 1. Let (N, J, h) be a complete Hermitian locally symmetric space. 
Suppose the coupling function f(x) G C00(R1) satisfies mfxeRi f(x)>0 
and \\d%f\\co(Ri) < C for any 1 < k < I — 1, where C is a universal 
constant and l > 4. Then, given an initial map UQ G T-L^2(Rl,N) with 
bounded image set UQ(R

1
)} the Cauchy problem (1.2) for the inhomoge- 

neous Schrodinger flow from R1 into N admits a unique global solution 
ueL%c([0,coy,Ht>2(R\N)). 

As a direct consequence of Theorem 1, we have the following result. This 
provides a geometric analytic approach to the global existence result on R1 

of Terng and Uhlenbeck [19]. 

Theorem 2. Let (AT, J, h) be a complete Hermitian locally symmetric space. 
Then, given an initial map UQ G Ti^'2 (R1, N), £ > 4; with bounded image set 
uoiR1), the Cauchy problem (1.1) for the Schrodinger flow from R1 into N 
admits a unique global solution u G L^c([0, oo);^'2(i?1,N)). 

The analogues of these results for M = S1 are given below: 

Theorem 3. Let (AT, J, h) be a complete Hermitian locally symmetric space. 
Let f(x) G C00(S1) be a positive function. Then, given an initial map 
UQ G W^2(iSfl,iV") where £ > A, the Cauchy problem (1.2) for the inhomo- 
geneous Schrodinger flow from S1 into N admits a unique global solution 
«eL&([0,oo);W^2(S1,J\0). 

As a direct consequence of Theorem 3, we have 

Theorem 4. Let (AT, J, h) be a complete Hermitian locally symmetric space. 
Then, given an initial map UQ G W£'2(S1,N) where I > A, the Cauchy 
problem (1.1) for the Schrodinger flow from S1 into N admits a unique 
global solution u G L£c([0, oo); W^2(S\N)). 

The proofs of Theorems 2 and 4 will be omitted as they are direct con- 
sequences of Theorems 1 and 3. In fact, only the proof of Therorem 1 needs 
to be given as it also covers the proof of Theorem 3. Briefly, the method for 
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establishing Theorem 1 can be summarised as follows: First, we use a family 
of periodic Schrodinger flows, defined on [—Di,Di], Di t oo, to approximate 
the Schrodinger flow from Rl. As the approximate equations can be viewed 
as flows on circles, they have unique local solutions (see [5, 20]). By uniform 
estimates of the covariant derivatives of the solutions with respect to i, we 
show that the domain on which the local solutions are defined is indepen- 
dent of the parameter i. Thus, taking limit, one obtains a local Schrodinger 
flow u. Finally, using the (semi-)conservation laws for the energy E(u) and 
II
T

(^)IIL
2
5 

we can extend u to a global flow. 
This paper is organized as follows: In Section 2, we recall some facts and 

notations in differential geometry and some relations among Sobolev norms. 
In Section 3, we establish the local existence of the Schrodinger flow from i?1 

into a complete Kahler manifold. In Section 4 we prove global existence and 
uniqueness by exploiting the geometric symmetries to derive some (semi- 
)conservation laws. The paper ends with a few concluding remarks. 

A note on notation: We will use C generically to denote constants ap- 
pearing in the estimates in this paper. Some of these may depend on certain 
parameters, geometric properties of spaces, or the Cauchy data UQ. When 
we wish to specify this dependence, we will include the relevant spaces or 
quantities as arguments, e.g., C(||T(IAO)||2,^(^O)) means that C depends 
on the quantities ||T(^O)||2 and ^(^o) only. Unless otherwise specified, C 
depends on its arguments smoothly. 

2. Preliminaries. 

Let u : (M, g) -» (iV, h) be a smooth map between Riemannian manifolds. 
Let r(TM) denote the space of smooth sections of TM. We will use V to 
denote the covariant differential on <g)pT*M ® u*TN induced by the Rie- 
mannian metrics on M and iV. Thus, for X E r(TM), in local coordinates, 
we have Vd/^.^X) = u*Vu*(d/dxi)u*(X)- We will use the shorthand no- 
tation Vi for V'o/dxii or> when dim M = 1, Vx for Vd/dx- Sometimes, to 
further simply notations, we may also denote Vxu by ux. 

We shall denote the bundle-valued Sobolev spaces by iJ^, and their 
norm functions by || • H^r. For example, 

W^X^WH^ 

In particular, || • ||#o,r = || • ||L^, which is also denoted by 
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We may regard the exterior derivative du, also denoted by VIA, as a 1- 
form with values in the pull-back bundle u*TN, i.e., du G T(T*M®u*TN). 
In terms of local orthonormal frames {e^} (with dual frames {e*}) on M 
and {eo;} on N, 

du = (u*ei)aei ® ea. 

The energy density of u is defined by e(u) = ||rfw|2, which is written in local 
coordinates as 

1   • • dua du^ 

The energy functional is then defined by 

(2.1) E(u) = [ e{u)dx = \ [  \du\2 dx. 

Critical points of the energy E as a functional on C1 (M, TV) are exactly the 
harmonic maps cite? and the L2-gradient of E is just the tension field that 
was mentioned in Section 1, i.e., T{U) = Vi(u*ei). 

Henceforth, we shall always embed the manifold N into a Euclidean 
space Rn. Thus, the map u can be viewed as a mapping from M into Rn. 
We will denote the Sobolev norm of u E Wk>p{M,Rh) by ||^|U,p. Note that 

For any interger £ > 1, define 

■H^{R\N) = {u£ W£{R\N) : ||3>||2 < oo,   » = !,...,£}. 

We note, by Proposition 2.3 stated later in this section, that T-^'2(i?1, iV) 
can also be defined by 

n^{R\N) -{we W^{R\N) : ||V>||2 < oo,   % = 1,... ,£}. 

We now mention several results concerning Sobolev norms which will be 
of use later. For a positive number D, let Sl(D) = Rl/DZ, where Z is the 
set of all integers, denote the circle of length D. We remark at this point 
that a key ingredient in the proof of Theorem 1 will be estimates on Sl{D) 
that are independent of D. 

Proposition 2.1. Let M = S1(D) and let q,r be real numbers satisfying 
l < q^r < oo; and j, n be integers such that 0 < j < n. Then there exists k7 

a constant depending only on n,j,q:r,a and not depending on D, such that 
for all u e C00{S1{D)) with fsl{D)udx = 0, 

||V%||p<A;||V^||r
a|N|J-a, 
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where 

-=j + a[--n) +(l-a)-, 
P V       ) q 

for all a in the interval ^ < a < 1 for which p is nonnegative. Ifr = ^^ / 1, 
then the above inequality is not valid for a = 1. 

The proof of this proposition, which will be omitted, relies on a rescaling 
argument. We thank Professor W.Y. Ding for pointing this out to us. 

The next result concerns integrals of the type 

G = /       IV^V^HV^1 Vxu\ • • • |V2Vxu\ dx. 
JS1(D) 

Proposition 2.2. Let D > 1, k > 2, k > Si > 0 for i = 1,... ,/;  and 

Yli=isi ^ k.   Then there exists a positive constant C(\\Vxu\\ffk-i,2), which 
does not depend on D, such that 

(2.2) G < C{\\Vxu\\Hk-i,2) { 1 + /        |V£+1u|2 dx \ . of,/ 

Proof. For any function g defined on S1(D)J set 

raQ?) = — /        gdx. 
DJs1{D) 

By applying Proposition 2.1 to 1^1 — m(\ux\) and noting the Kato inequality 

||VX|V^|||2<||V^||2, 

we have 

\Vxu\\co-m(\Vxu\) < C||V^||f IHVsul -m(|Vxu|)|||. 

As 

If 1 
\Vxu\ -m(\Vxu\)\\2 < \\Vxu\\2     and     — /        \Vxu\dx < —=\\Vxu\\2, 

VJSHD) VD 

we have 

(2.3) ||Vxu||co < CllVlulllUVa-ulll + ||Vxu||2. 
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Similarly, for s > 1, 

(2.4) HV'uHco < C||V*+1ii||l||V£u||| + ||V*«||2. 

Now, we turn to the integral G. Without loss of generality, we may 
assume that si > 52 > • • • > si > 0. First, we consider the special case 
k = 5i > 52 = • • • = si = 0. Obviously 

G < HV^HJTO
1
 f       |V*+1ti|2da;. 
JS^D) /51(D) 

Thus the desired inequality follows from (2.3). 
If k — 1 > .si > S2 > - • • > si > 0, we need to argue the following two 

cases: 

Case (i): k = 2. In this case G takes either of the following forms: 

G= f       |V^||V^|2|V^|Z-2^       or 
Js1(D) 

G= [      IV^IIV^IIV^I'-1^. 
Js1(D) 

For the former, by applying Holder's inequality we derive 

(2.5) G < llV^lbllV^lbllV^llcollV^H^2. 

Plugging (2.3) and (2.4) with 5 = 2 into (2.5), we obtain the desired in- 
equality. In view of (2.4), we can also prove that the inequality holds when 
G is of the latter form. 

Case (ii): k > 3. In this case G takes either of the following forms: 

(2.6) G = [      IV^V^V^V^HV^2Vxu\ • • • |V2Vxu\ dx, 

where k — 1 > 52 > • • • > 5/ > 0; or 

(2.7) G= f      \Vk
xVxu\\Vs

x^xu\ ■ • • |V? Vxu\ dx, 
JS^D) 

where k — 1 > si > • • • > si > 0. Applying Holder's inequality to (2.6), we 
obtain 

G < llV^ulbllV^lhHV^+Mlco • • ■ l|V£+1«||co. 

Substituting (2.4) with k — 1 > S2> - • • > si >0 into the last inequality, we 
derive the desired inequality (2.2). A similar argument applies to (2.7) and 
the proof of the proposition is complete. 



Schrodinger Flow ... 661 

Proposition 2.3. Let N be a complete Riemannian manifold and E be a 
compact subset ofN. Ifu : S1{D) -> E C N is in Wk^(S1{D),Rfi)J k>0 
and D > 1, then 

\\dxu\\l,2 < 2|| Vj+1u||§>2 + C{k, S, \\dxu\\k-i,2), 

where C does not depend on D. In particular, if u : R1 —> E C N is in 
l-Lk'>1(Rl,N)7 k > 1, then the above inequality holds. 

Proof. We note that for k > 1, 

Vk
x
+1u = dk

x
+lu + V(u)(dxu,...1dk

xU), 

where V is a polynomial satisfying 

ji+-+jz=fc+l 

\r(u){dxu,...,d£u)\<c  Yl       E     IW-'-I^H 
2<KA;+1       l<ji<A; 

By arguments similar to those in the proof of the above proposition, the 
desired result follows from Proposition 2.1. For details, see [5]. 

Now suppose (TV, J, h) is a Kahler manifold (hence V J = 0) and let 
i?(-, •, •, •) denote its Riemann curvature tensor. Then, we recall that 

(i) R(J.X, JY, Z, W) = R{X, Y, JZ, JW) = R(X, Y, Z, W)\ 

(ii) fl(-,-)oJ = Joii(.,.). 

If iV is a Hermitian locally symmetric space, by Cartan's theorem, we have 
the additional property that the curvature is covariant constant, i.e., 

(iii) Vi? = 0. 

We note that a Hermitian locally symmetric space is the quotient of a Her- 
mitian symmetric space by an isometric subgroup and recall the following 
facts about Hermitian symmetric spaces: Irreducible Hermitian symmetric 
spaces are classified into compact and noncompact types. The sectional 
curvature of a space of noncompact type is nonpositive and bounded from 
below. The scalar curvature of a Hermitian symmetric space is constant. 
For further details, we refer the reader to [10, 12]. These facts will be used 
freely in the remainder of the paper. 

To end this section, we recall a local existence result for the smooth 
inhomogeneous Schrodinger flow from the circle. 
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Proposition 2.4 ([20]). Let M = Sl and {N,J,h) be a complete Kahler 
manifold. If f{x) G C00^1) with mmxeSi f{x) > 0; and UQ £ C00^1, TV), 
then the Cauchy problem (1.2) of the inhomogeneous Schrodinger flow has 
a unique smooth solution u G C^dO.T) x S^iV)) for some T G (0, oo]. 
Furthermore, the energy is conserved along the solution, i.e., Ef(u(x,t)) = 
Ef{uo(x)). 

3. Local Existence of Schrodinger Flows from R1. 

We now consider the local existence of the (inhomogeneous) Schrodinger 
flow from R1 into a complete Kahler manifold. 

Theorem 3.1 (Local Existence). Let N be a complete Kahler manifold. 
Suppose the coupling function f(x) G C00(R1) satisfies infxeRi f(x) > 0 and 
W^xfWc^^R1) < C for any 1 < i < I — 1, where C is a universal constant and 
£>4:. Then, given an initial map UQ G T-L^2(Rl^N) with bounded image set 
uoiR1), there exists a positive T = T(N, f,E(uo), ||T(I/O)||2) such that the 
Cauchy problem (1.2) for the inhomogeneous Schrodinger flow from R1 into 
N admits a unique local solution u G L00([Q,T},Hi',<1{R},N)). 

In order to prove the local existence theorem, we need to establish the 
following lemma: 

Lemma 3.2. Let D > 1 and N be a complete Kahler manifold. Suppose the 
coupling function f(x) G C00(S1(D)) satisfies mmxeSi^ f(x) > 0. Then, 
given an initial map UQ G W^2 (S1 (D), TV) where £ > A, then there is a 
positive T = T(iV, /,E(uo), ||T(I4O)||2)> which does not depend on D, such 
that the Cauchy problem (1.2) for the inhomogeneous Schrodinger flow from 
S1(D) into N admits a solution on the interval [0, T] satisfying the following 
estimates: 

sup   llVtr^lb^C^TJlV^oll^+i.^min/JI/H^-M),   i = 0,1, ...,£- 2, 
te[o,T] 

where Ci do not depend on D. 

Proof. First, suppose ?io is C00. Proposition 2.4 (or Theorem 3.1 in [20]) 
tells us that there exists a T such that the Cauchy problem (1.2) admits a 
unique smooth (local) solution u on Sl{D) x [0,T] satisfying 

(3.1) Ef{u(x,t))=Ef(u0{x)). 



Schrodinger Flow ... 663 

Let Q = {p e N : distN(p)uo(S1(D))) < 1}. Then ft is an open subset of 
TV with compact closure 0,. Let 

T' = sup{t > 0 : u(S1(D),t) C fi}. 

Then we have 

(3.2)   ^ f       \ut\
2 dx= f       (uu Vt(Jrf(u))) dx 

atJsl(D) JS1{D) 

= /       fi^uJVlut) + (ut,R{u){ux,ut)Jux)}dx 
Js1{D) 

+ I        (dxf)(uuJVxut)dx, 
Js^D) 

where R is the Riemann curvature tensor of N. 
Integrating by parts on the right hand side of the above equation and 

noting the antisymmetry and integrability of J, we obtain from (3.1) and 
(3.2) that 

(3-3) II /        \ut\2dx= f(R(u)(ux,ut)Jux,ut)dx. 
citJs^{D) Jsl(D) 

Hence, it follows by the Holder inequality that 

(3.4) ± [       \ut\
2dx < C(nj) [       \ut\

2\ux\2dx. 
dtJsl(D) JSl(D) 

It is easy to see that (2.3) implies 

(3.5) K||co < CtfXJS^tio)* + \\VXUX\\IE}{U0)-*), 

where C does not depend on D. Noting |M(|
2
 = |r/(M)|2, it follows from (3.4) 

and (3.5) that 

|l|r/(«)|ll < C(fi,mm/, WfW^Ef^)) {l + \\Tf{u)\\l} , 

where C does not depend on D. It follows from this ordinary differential 
inequality that for any constant C > ||T/(UO)||2, we can find a positive T* = 
T*(C,a,f,Ef(uo), Ur/Mlb) such that 

sup   \\Tf{u)h<C. 
te[o,T-] 
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This also implies that 

(3.6) sup   ||T(ti)||2 <C(C,Ef(^Uf\\c^^Rf,T*). 
te[o,r*] 

Next, we compute the derivative with respect to t (G  [OJT
7
]) of the 

integral 

f       \Vxut\2fdx. 
JS^D) 

Keeping the integrability of the complex structure J in mind, we have 

(3-7)      ITJ      \^xut\2fdx= f      (VxuuVtVx{JTf{u)})f dx^ L 

We now compute /. 

(3.8) /= /       (VxuuJ{fVtVxVxux + 2dxfVtVxux})fdx 
Js1{D) 

+ f       (Vxuud
2

xfJVxut)fdx 
Js1(D) 

= j        {VxuuJ{fVtVxVxux + 2dxfVtVxux})f dx. 
JS1{D) 

By the definition of the curvature operator, 

Vt^xUx = VxVxut + R(ux,ut)ux. 

Hence, 

(3.9) V^V^r^) =VxVxVxut + R(j{u),ut)ux + R(ux, Vxut)ux 

+ 2R(ux,ut)r(u) + (VxR)(ux,ut)ux. 

Substituting the above curvature identities into the right hand side of (3.8) 
and integrating by parts, we obtain that 

(3.10)     /= /       {VxuuJ{fVxVxVxut + 2dxfVxVxut})fdx 
Js1(D) 

+ /        (Vxuu fJ{R(T(u),ut)ux + R(uXlVxut)ux})f dx 
JSHD) 
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+ / {VxuufJ{2R{ux,ut)T(u) + (Va.i2)(ua.,tit)tia;})/cfa 

+ /        (VxuuJ{2dxfR(ux,ut)ux})f dx 
JS1(D) 

= /        (VxutiJ{R{T(u),ut)ux + R(ux,Vxut)ux})f2dx 
JS1(D) 

+ /        (Vxixt, J{2R{ux,ut)T(u) + {VxR){ux,ut)ux})f2 dx 
Jsl(D) 

+ 2 /        (VxuuJR(ux,ut)ux)(dxf)fdx. 
JSUD) ISHD) 

Hence, it follows that for t < T", 

(3,11) 

I < C(n,C,f) f      {|Vxnt|
2|ux|

2 + iVxUtllu^HutKlT^)! + \ux\ + \ux\2)}dx. 
JS^D) 

Applying the Holder inequality to the right hand side of (3.11), we obtain 
that, for i<min{T*,T"}, 

(3.12) 

li f      \Vxut\
2fdx < C(n,C,f){\\Vxut\\l\\ux\\lo + (||T(«)||2 

+ IKIIc° + IIWxIlcoJIKIIcoll^llcollVxUtlU}. 

From (2.4), we deduce that for D > 1, 

(3.13) 

IMIco < c(IIVx«tll2 + KIlD'Iklll + Kb 

<C(/)|K|||| f       \Vxut\2fdx+ f       |r(ti)|2/2^r + ||«t||2. 
Js^lD) JSHD) 

Plugging (3.1), (3.5), (3.6) and (3.13) into (3.12), we obtain that, for 
«<min{T*,T'}, 

di [      IV^l2/dx < C(fi,C,uo,f)(l+ [      IVxut|
2/dx) 

JS^D) \        JSl(D) J 
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Thus, as iV^t]2 = \VxTf(u)\2, 

dt 
[       \Vxrf(u)\2fdx<C{n,C,uoJ)ll+ f       \VxTf(u)\2fdx 

JSHD) \       JSHD) J 

By the Gronwall inequality, for t < min{T*,T'}, 

(3.14) \\VxTf(um\2 < (1 + ||VxT/(^o)||i)exp(Ct) - 1, 

where C = C(fi,C, ||VxMo||iy2,2,min/, ||/||c2) does not depend on D. This 
implies that, for t < mi^T*,^}, 

(3.15) \\VXT(U)\\2 < C(^C5||V^ok2,2,min/,||/||c2). 

Note that a positive lower bound for T' can be derived from (3.15). 
Indeed, it is easy to see from (3.13) that for t < min{T*,T"}, there exists 
some M such that 

IMIco < M. 

It follows that for t < minlT*,^}, 

sup   distN(u(x,t),uo(x)) < Mt. 
xes1(D) 

If T' > T*, then T* is a lower bound. So we may assume that T" < T*. 
Letting t -> T' in the last inequality, we get MTf > 1. Therefore, if we set 
T = min{-^, T*}, then (3.6) and (3.15) hold true for t G [0, T]. We re-iterate 
that T = T(C, f£,/, E(uo), \\T(UQ)\\2) depends only on C, fi, min^^^i^)/, 
||/||C2, E(uo), and ||T(WO)||2, and not on D. 

We proceed with the proof by induction. Assume that for i = 
0,1,... ,fc-l, 

(3.16) sup  ||Vir(ti)||2 < Ci(T, \\Vxuo\\Hi+it2,mmf, ||/||c«+i), 
te[o,T] 

where Ci do not depend on D. We note also that these estimates imply the 
following inequalities which will be used later: 

sup  \\Vl
xTf(u)\\2 < Ci(T,\\Vxuo\\Hi+i,2,mmf,\\f\\Ci+i), 

z* = 0,l,... ,k-l. 

With the estimates (3.16) at hand, we consider the integral 

U      \Vk
xUt\

2fkdx^I*. 
(itJs1(D) 
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By virtue of the commutation relation of the covariant derivatives, we 
deduce that 

VtVk
xut = P(Vxu,... , V£ti, ut,... , V£-V) + Vk

xVtutl 

where P(-, ...,•) is a vector-valued multilinear functional satisfying 

(3.17) ^(V^^V^ut,...^*"1^)! 

{k2M<k-l)l<ki 

Y^      iv^uiiv^utliv*3^! 
ki+k2+k3=k 

+ Q(|Va-tij, . . . , IVr^l, jutl, .. . , |V*-^|), 

where 

(3.18) 

Q(|Vxu|,... , IV*"1"!, I«t|, • • • , IV*- «tl) 

iki+k2-i \-ks=k 

E              E |vS1«t||V*2«t||V*s«|---|V*'ti| 
fe>s>4A;i,A;2<A;-2; fo,.--,fcs>l 

Then, J* can be written as 

(3.19) r= f       (Vk
xuuV

k
xVtut)f

kdx 
JSHD) 

+ f      (Vkuu P(Vxu,... , Vk
xu, uu ... , V*-1*!*))/* dx 

Js1(D) 

def r*       y-* 
— il +i2- 

Next, we estimate /*, i = 1,2. It follows from (1.2) that 

(3.20) JJ = /       (Wk
xuu JVk

xVtUVxux + (dxf)ux))fk dx. 
Js1(D) 

By a tedious but direct computation and applying the commutation relation 
of the covariant derivatives, we obtain (see [20] for details) 

(3.21) 

J? = /       {Vk
xut,fJVk

x(R(ux,ut)ux)+dxfJWk
x-

1(R(ux,ut)ux))fkdx 
Jsl(D) 
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+ /       (^ut,J^CiMVk
x-

iVtVxux\f
kdx 

/       ( Vk
xut, jj^Cid^fVl-'V^t ) fkdx, 

JSHD) \ jri I 
+ 

where Ci
k = k\l{k-i)\%\. 

By a direct computation, it is not difficult to see that the right hand side 
of (3.21) can be bounded by integrals of the following form: 

/       |V*+1Vxti||V£ Vstil • • • |V£Vxu\ dx, 
Js1(D) 

where Si > 0, 1 < i < /, and Y^i=i Si < k + 1. By applying Proposition 2.2 
to the above integrals, we can deduce from (3.21) and (3.16) that 

(3.22) i?<C7(r,tio>/){||V*T/(Ti)||l + l}. 

Similarly, in view of (3.16)-(3.18), we may also apply Proposition 2.2 to 
1% to derive 

^<C(T,uoJ){\\Vk
xrf(u)\\22 + l}. 

Noting that 

r= f    Iv^/Mi2^, 
JSHD) 

it follows from (3.22) and the last inequality that 

4 /       \Vk
xTf(u)\2dx < C(T,uo,f) \ I       Wk

xTf{u)\2dx + 11 . 

This implies that 

sup  ||V*r(u(t))||2 < Ck{T, ||V^o||^+i,2,min/, \\f\\Ck+i), 
tG[0,T] 

where Ck does not depend on JD,  but only on the geometry of fi, T, 
||VXUQ 11^+1,2, m\nxeSi(D} f and ||/||cfc+1- This completes the induction. 

With these estimates, we argue that the solution must exist on the time 
interval [0, T]; otherwise, we may always extend the time interval of existence 
to cover the interval [0,T]. 
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Finally, when UQ G W^2{S1{D),N), £ > 4, but not C0 

a sequence of C00 maps ^^o : ^(D) -> N such that 
we may choose 

\UiO £,2 -* 0  as  i -> oo. 

Using t^o as the initial data of the Cauchy problem (1.2), for each i we get 
a solution Ui, defined on [0,2$]. The above arguments, however, show that 
there is a uniform lower bound for T^. Furthermore, denoting this lower 
bound by T, the unique local solution u to the Cauchy problem (1.2) with 
initial data UQ exists on [0,T] and is given by the limit of {ui} by sending i 
to oo. Obviously, all the desired estimates on u also hold true. This finishes 
the proof of the lemma. 

Proof of Theorem 3.1. First, assume that iV is compact. Our strategy is 
to construct a sequence of periodic inhomogeneous Schrodinger flows with 
periodic initial maps to approximate the Cauchy problem defined on R1. 
Since UQ G T^'^i?1, AT), one can approximate UQ by a sequence of maps {t^o}, 
where t^o G ?^,2([—A? A], iV) for some Di > 2 and Di t oo. More precisely, 
choose C00 cut-off functions A^ satisfying |^Ai| < CA, j = 0,1,... ,<£, where 
C\ does not depend on i, and 

Xi(s) -{i SG[-A + I,A-1], 
s0[-A,A]. 

Define 

and let 

l{x) = /   Xi(s) 
Jo 

ds 

Uio(x) = uo(y(x)) Mx) = f(y(x)) 
l-Di,Di] 

We can extend uio and fi to [—2Z)j, 2Z)j] as follows: 

[-A,A] 

UJO(Z) 

nio(-a;-2A), 

k «io(-a; + 2A), 

x e [-2A, -A], 
a:e[-A,A], 
a:€[A,2A]; 

/iC-rr - 2A), 

/iC-a: + 2A), 

As Uio € PF£'2([-A, A],iV), we may regard UM G ^'2(51(4A),iV). Simi- 
larly, we may regard fi as a periodic function with respect to x. 

x E [-2A, -A], 
rEG[-A,A], 
a;e[A,2A]- 
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We consider the following periodic Cauchy problem on R1 x [0, oo): 

-Q£ = J(Ui)Tj.(Ui), 

Ui(x + 4:Di) = Ui(x). 

By Lemma 3.2, for each i, the above Cauchy problem admits a unique 
local smooth periodic solution Hi with period 4.Dj, defined on 51(4JD2) x 
[0,Ti]. Furthermore, there exist constants 

Ci = Ci(Ti,k,f, \\VxUiQ\\Hk,2([_2Di,2Di])) 

which do not depend on Z^, such that for k = 1,... , £, 

sup    ||V^i||L2([_2jD.)2jD.]) < Q. 

By the construction of UiQ, it is not difficult to find that 

/       |r(fiI-o)|2da;=   2/      |r(^o)|2^ 
J-2Di J-Di 

<    C(N)(\\r(uo)\\lHRl)+E(uo)^ 

( \ f2Di 
E
 (^0|[-2^,2A]J =      / WxUitfdx 

J — 2Di 

=   2/     |V^o|2^<C(iV)^o), 
J-Di 

and that for 1 < k < £, 

f2Di nDi (   k } 

j_2D \Vk
xuio\2dx = 2j^ |V^o|2^<C(iV) j^llV^ol^i)^ 

where C is independent of i. Similarly, we have 

WMca^DitDv^cmifWcm- 
Hence, from Lemma 3.2 it follows that there exist a uniform lower bound T 
of Ti with respect to i and a uniform upper bound C = C(T, fc, ^o, /) of C^ 
such that for 0 < k < £ — 1 and all i, 

(3.24) sup  ||Vxtii||jy*f2(r 2i>.j2JDi]) < C(T,Mo,/). 
te[o,T\ 
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We emphasize that C depends only on the geometry of TV, T, fc, mixeRi /, 
ll/llc^i*1) and l|VxUo||tf*,2(rti). 

Restricting to [—D^A], we have ui = ui and fi = fi 
[~Di,Di\ [—Di,Di\ 

Then, obviously, Ui satisfies the following Cauchy problem on [—D^Di] x 
[0,T]: 

f dtUi = J(i4i)r/.(i4i), 
(3.25) < 

[ ixt(a;,0) = iiio(^)- 

By virtue of the estimate (3.24) and Proposition 2.3, there exists a subse- 
quence, denoted again by {i^}, such that 

m u        [weakly*]     in    Loo([0,T];^'2(i?1,7V)). 

It is easy to see that the limit u G L
OO

([0,T];^'
2
(JR

1
, JV)) is a solution to 

(1.2) oni?1. 
When iV is a noncompact complete manifold, we need to modify 

the above arguments slightly. According to the hypothesis of the theo- 
rem, UQ{R

1
) is contained in some compact set. Let ^o(^1) denote the 

closure of UQ(R
1
),   S   =   {p   :   distN(p,uo(R1))   <   1}  and O;   =   {p   : 

distN(p, Uio([—2Di, 2Di\)) < 1}. Obviously, Cti C S for i = 1,2, Now we 
consider the Cauchy problem (3.23) for each i. From Lemma 3.2 it follows 
that for each i a unique solution to (3.23) exists on S1(4:Di) x [0,Ti], where 
Ti depends on fi^. It is not difficult to see from the proof of Lemma 3.2 that, 
in the discussion of the local well-posedness of (3.23), if we replace fi; with 
5, then there is a positive real number 

^ = ^(C,5,/JS(fiio),||r(fiio)||2) 

such that for each i, a unique solution to (3.23) exists on S1(4:Di) x [0,T/]. 
We can then argue that there exists a uniform lower bound T of T-. The 
arguments for the compact case now apply, and the proof is complete. 

4. Global Schrodinger Flow. 

In this section, we first establish a semi-conservation law. It will then be 
used to establish the existence of global Schrodinger flows from R1 and S1, 
viz. Theorems 1-4. 

Lemma 4.1. Let N be a Hermitian locally symmetric space and f G C^i?1) 
be a positive function. Let u : R1 x [0, Tmax) -> iV, with u(-, t) G 'H4'2(i?1, N) 
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for any t G [0,T]; be a sufficiently smooth solution to the Cauchy problem 
(1.2) of the inhomogeneous Schrodinger flow from R1 into N.   Then, for 

sup   /    \ \T(U)\
2
 - -R(ux, Jux,ux, Jux) >f2dx < C(T,uoJ), 

0<t<TjRi   I 4 J 

where 
C(T,uo,/) = C(T,||V^o||ffi,2,inf/,||/||C3(Ki)) 

is finite when T < oo. 

Proof Since u(-, t) G H4'2^1, N) for any t G [0, T], as in the proof of Lemma 
4.2 in [20], we obtain 

(4.1)   ^[ \T(u)\2f2dx = -2[ {R{ux,uuux,Jut)f + {ux,ut)fdlf}dx, 

where R denotes the Riemann curvature tensor of N. 
As iV is a Hermitian locally symmetric space, V J = 0 and VR = 0. 

Thus, 

(4-2) 37 /    R(ux,Jux,ux,Jux)f2dx 
dt JRi 

=  /   lR(JVtux, ux, Jux, ux) + R(Jux, VtuXl Jux, ux) 

+ R(Jux, ux, JVtux, ux) + R(Jux, ux, Jux, Vtu^u2 dx 

= 4 /   R(Jux, ux, JVxuu ux)f2 dx 
JR

1 

= 4 /   R(Jux, ux, Vx(Jut),ux)f2 dx 
JR

1 

= 4 /   jVX(R(Jux, ux, Juu ux)) - R(JVxux, ux, Juu ux) 

- R{Jux, Vxux, Jut, ux) - R(Jux, ux, Jut, Vxux)p2 dx. 

Integrating by parts, we get 

(4.3) 

dt 
/   R{ux, Jux, ux, Jux )f2dx 
Js1 
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= -4 /   |i?(JVxux, ux, Jut, ux) + R(Jux, Vxux, Jut, ux) 

+ R{Jux, ux, Juu Vxux) |/2 dx - 8 /   R(Jux, ux, Juu ux)fdxf dx. 

As 
f^xUx + {dxf)ux = -Juu 

it follows that 

(4.4) — /   R(ux,Jux,ux,Jux)f2dx 
at Jsi 

= -4 /   |i?(iit, ux, Jut, ux) + R{Jux, -Jut, Jut, ux) 

+ R(Jux, ux, Juty-Jut)\f dx + A      \R(J{dxf)ux, ux, Jut, ux) 

+ R{Jux, dxfux, Jut, ux) + R(Jux, uX) Juu (dxf)ux)>f dx 

— 8 /   R(Jux,ux,Jut,ux)fdxfdx 
Jm 

= 4 /   \R{J{dxfux),ux, Juuux) + R(Jux,dxfux. Jut,ux) 

+ R(Jux, ux, Jut, dxfux) \f dx - 8 /   R(ut, ux, Juu ux)f dx 

- 8 /   R(Jux, ux, Jut, ux))fdxf dx 

= -8 /   R(uu ux, Juu ux)f dx + A     R(Jux, ux, Juu ux))fdxf dx. 
JRi JR1 

Combining (4.1) and (4.4), we obtain 

(4.5) &    A lr(w)|2 ~ -£R{ux,Ju>x,ux,Jux) \ f2dx 

= -2      {ux,ut){dlf)fdx- /   R(Jux,ux,Juuux))fdxfdx. 
JR1 JR1 

Note that by the Holder inequality, we have 

(4.6) /  (ux,JVxux)(d3
xf)f2dx 

JR1 
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< C(T,Eiuo),^ f, \\dxf\\c3m) {JjTiutffdx + 1 j . 

Also, by the interpolation inequality, the Kato inequality and (3.1), we have 

(4.7) J   \uxfdx<c(j   \ux\2dx\   j   \Vxux\2dx 

<C(T,\\f\\co)(E(uo))2f \T(u)\2dx. 
Jm 

Let us look at the second term on the right hand side of (4.5).  It follows 
from the Holder inequality and (4.7) that, for t 6 [0, T], 

(4.8) /   \R(Jux,ux, Jut,ux)fdxf\dx 

<C(\\f\\cl)f \ux\3\T(U)\dx 
JS1(D) 

<C(T,||/||cl)|^iK|6^ + ^i|T(«)|2da;} 

<C(r,||/||ci,^(Uo))/  \T(u)\2dx. 

Plugging (4.6) and (4.8) into (4.5), it follows that, for t G [0,T], 

^4'9^ di / i I 'T^'2 _ 4^^'JUx, nx'JUx^ f ^ dx 

<C(T,N,E(Uo)J)lJRi\T(u)\2f2dx + iy 

Considering the geometry of Hermitian locally symmetric spaces, we 
need to discuss the following two cases according to the sectional curvature 
KN of N: 

Case (i): Let —Bi < K^ < 0, where Bi is a positive constant. Then (4.9) 
implies that on [0,T], 

(4.10) 

-TL I    \ kHI2 - ^R{ux, Jux, ux, Jux) \ f2 dx 

C(T,KN,E{uo),f) | f{\r(u)\2 - ^R(ux, Jux,ux, Jux)}f2dx + l| 
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By the Gronwall inequality, we conclude that for any T > 0, 

sup   /    I \r(u)\2 - -R(ux,Jux,ux,Jux) > f2 dx 

<C(T,KN,\\Vxu0\\Hi,2J), 

where C(T,KN, HV^^olliji^,/) is finite when T < oo. This is the desired 
result. 

Case (ii): Let B2 > if/v ^ 0, where B2 is a positive constant. (Thus iV 
is compact.) In this case we need to modify the previous argument slightly. 
First we note that the interpolation inequality and the Kato inequality imply 
that 

3 
2 

2dx 

(4.11) flu^dx^CiS^tflu^dx]2 (f\Vx\ux\\2dx 

< C ( f  \ux\2dxj    ( f  \T(U)\
2dxj   . 

Since inf^g^i / > 0 by assumption, it follows that on [0,T], 

(4.12) 

J  \ux\*f2dx < C(T,f) j Ulu^fdxY UjT{u)\2f2dx\ 

< C(TJ) | (J^fdxy + \jR\r{u)\2f 

By integrating both sides of the inequality (4.9), it follows that 

(4.13) / ^ < \T{U)\
2
 - -R{ux,Jux,ux,Jux) > f2dx 

<  /    <\T(uo)\2--7R{uox,Juox,UQX,Juox)}f2dx 

+ C(T,E(uo)J)[ dtf \T(u)\2f2dx + tC(T,E(uo)J). 
Jo     JR

1 

By applying again (4.12) to control the second term of the left hand side of 
the above inequality, it follows that, for t G [0,T], 

/ jT(u)\2f2dx < 2 /    < \T(UO)\
2
 - -R(uox, Juox,uox, JUQX) > f2 dx 
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+ C(T,KN,E(iio),f)f dtf \T(u)\2f2dx 
Jo     JR

1 

+ tC(T,E(Uo)J) + C(T,KN,E(Uo)J). 

Applying the Gronwall inequality, as in [20], we deduce from the last in- 
equality that there exists a constant C(T,KN, ||V^^o 11^1,2,inf /, H/Hc3^1))) 
which is finite when T < oo, such that 

(4.14) sup   [  Ir^lV'^^CCT^ArJlV^olliyi^inf/JI/lbs^i)). 

Immediately, the desired estimate follows. This completes the proof of the 
Lemma. 

Proof of Theorem 1.   It suffices to consider the following two cases: 

Case I: Let N be an irreducible Hermitian symmetric space of noncompact 
type. 

In this case, we first note that the holomorphic sectional curvature is 
bounded from below, i.e., there exists a positive constant KQ such that 

(4.15) -i^oKl4 < R(u', Ju', v!, Jv!) < 0. 

C    /*7max ^ 

Now, invoking Theorem 3.1, let u be a maximal local smooth solution 
defined on Rl x [0,Tmax) for the Cauchy problem (1.2) and consider the 
quantity 

r rT™ 
dmax =  SUp 

xeR1 

Noting the semi-conservation law in Lemma 4.1 and keeping Vi? = 0 
and VJ = 0 in mind, we can see from (3.7)-(3.13) that 

(4.16) | [  \VxUt\
2fdx = ±[  \VxTf(u)\2fdx 

atJRi atJRi 

<C{NMfA\f\\c^\r{uo)UE{u0))^jjVxTf{u)\2fdx + \^ 

= C(iV,inf/,||/||C3,||TM||2,£;M){^i|V^i|
2da; + l|. 

By the Gronwall inequality, 

(4.17) / \sIxut{t)\2dS<{l + \\VT{uQ)\\l)^{Ct)-l, 
JR

1 
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where C = C(N, inf /, ||/||c35 lk(wo)||2j J5(^o)) depends only on the Sobolev 
constant of R1, the upper bound KQ of the absolute value of the holomorphic 
sectional curvature of iV, / and UQ. Prom (4.17), it follows that 

(4.18) |Mlc°(*i) < C{{1 + ||Vr(fio)||l)exp(Ct) - 1}. 

for any te [0,Tmax). 
Now suppose Tmax < oo. Then, it follows from (4.16) and the assumption 

that wo(-R1) is contained in a compact set of N that oJmax < oo. This indicates 
that the image set of u is contained in some compact subset Q, C N. In this 
case, for a small a > 0, consider the Cauchy problem 

(4.19) (dtv = J(v)Tf(v), 

\ v(x,0) = w(x,Tmax-cr). 

By repeating the arguments in Theorem 3.1, we can show that there exists a 
positive real number To, which depends on fi but not on cr, such that (4.19) 
admits a local smooth solution v on R1 x [0,To). Thus u can be extended 
to R1 x [0,Tmax + TQ — cr). Since the uniqueness theorem given in [5, 20] is 
also valid for the case at hand, we know that v(a;, t) = u(x, Tmax — a +1) for 
any t E [0, TQ) SO the extended u is still the solution for the Cauchy problem 
of the inhomogeneous Schrodinger flow. Choosing a small enough so that 

-^max -r J-0 — & > -^max 

provides a contradiction to the fact that Tmax is maximal. Thus Tmax must 
be oo. 

Case II: Let N be a compact Hermitian locally symmetric space. 

With inequality (4.14) (Lemma 4.1) at hand, the proof proceeds similarly 
as above. The issue of uniqueness can also be addressed as in [5, 20]. This 
finishes the proof of Theorem 1. 

The proof of Theorem 3 follows directly from Lemma 3.2 and Lemma 
4.1 (see also [20]), so we shall omit it. 

Remark 4.1. If f(x) = 1 (the homogeneous case), then (4.5) implies the 
following conservation law: 

(4.20) — /    I \r(u)\2 - -R(ux,Jux,ux,Jux) > dx = 0. 
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We end this section with a comparison between the conservation laws 
for the Schrodinger flow from R1 into a complex Grassmannian and MNLS 
(focusing case) on i?1 using the correspondence given in [18, 19]. 

First we note that MNLS is an infinite-dimensional Hamiltonian system 
[7] with Hamiltonian functional 

(4.21) H(B)= [ {tj:(BxB*)-ti(BB*BB*)}dx 

on the space ^(JR
1
, Mkx(n-k)) 0^ smooth maps of Schwartz class from R1 

to Mkx(n-k) with the symplectic form 

(4.22) UJ(B\B
2
)= f  (-iB\B2) 

defined using the Hermitian inner product 

(B1,B2) = Re tviB'B2*),        B\B2 G Mkx{n-k). 

Thus, MNLS has conservation laws provided by the L2-norm and the Hamil- 
tonian along the solutions, namely, if B is a solution of (1.3), then 

(4.23) 4- I   \B\2dx = Q 
at JRi 

and 

(4.24) 4- f {te{BxBx*) - tT{BB*BB*)} dx = 0. 
dt JRi 

Now let us recall the correspondence of Terng-Uhlenbeck [18, 19]: Let 
B e Coo([0,oo), SiR1, Mkx(n-k))) be a solution of (1.3). Let 

u on (    0      B \ n       ( -iBB*     iB* 
(4-25)        V= { -B*    0 ) '        Q2 = {    iBl      iB*B 

and 

1 / ilk        0 
<4-26) °=2V   0     -il^ 

Then there exists a gauge transformation g 6 C00^1 x [0, oo), (7(n)), satis- 
fying 

f 9~l9x=v, 
(4-27) _1 

I g  gt = Qz, 
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such that u = gag"1 is a solution of (1.1). It is easy to see that u G C00(R1 x 
[0, oo), Gr(ifc, Cn)) and uf{-,t) £ 5(jR1,TGr(fc, Cn)), where Gr(fc, Cn) denotes 
the complex Grassmannian manifold. As a Hermitian symmetric space, 

Gr(k,Cn)^ U{n) 

U{k) x U{n - k)' 

and has a canonical complex structure given by ad a where a is given by 
(4.26). It follows that the Schrodinger flow on Gr(A;, Cn) is given by 

(4.28) ut = [u,uxx] 

where [•, •] denotes the Lie bracket. In terms of the above correspondence, 
the following proposition can be verified by direct calculation: 

Proposition 4.2. Let B be a solution of the focusing MNLS on R1 and let u 
be the corresponding Schrodinger flow on Gr(A;, Cn) defined on R1. Then, the 
conservation laws (4.23), (4.24) for MNLS correspond, respectively, to those 
for the energy functional E defined by (2.1) and (4.20) for the Schrodinger 
flow. 
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