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Let M be a compact n + 1-dimensional manifold with boundary S. A 
Riemannian metric g on the interior M is conformally compact if for any 
defining function r of the boundary g = r2g extends to a C3 metric on M. 
The conformal class of the metric g|s is invariantly defined and is called the 
conformal infinity of g. We also assume that |dr|| = 1 on E. This condition 
is invariantly defined and is satisfied if g is conformally compact Einstein, 
i.e., Ric(flf) = -ng. 

It was proved by Mazzeo [7] that the continuous spectrum of the Lapla- 
cian on such a Riemannian manifold consists of the ray [n2/4,oo) with no 
embedded eigenvalues; however, in general there may be finitely many eigen- 
values in the interval (0,n2/4). If the metric is conformally compact Ein- 
stein, one might expect a relationship between its spectrum and global con- 
formal invariants of its conformal infinity. This is justified by the following 
beautiful theorem proved by Lee [6]. 

Theorem 0.1. Let (M,p) be an (n+ I)-dimensional conformally compact 
Einstein manifold. If its conformal infinity has non-negative Yamabe invari- 
ant, then Xo(g) = n2/4. 

In this short note by using ideas in Witten-Yau [8] and Cai-Galloway [2] 
we give a simple proof of Lee's theorem. This new proof avoids the delicate 
analysis in Lee's original proof and is quite robust. It is possible to adapt 
the idea to other similar situations of interest. 

Proof By Mazzeo's result, it suffices to prove Ao(5) > n2/4. We first deal 
with the case that the conformal infinity has positive Yamabe invariant. We 
choose a metric h in the conformal class such that its scalar curvature s 
is positive. Then there is a unique defining function (see [4]) r in a collar 
neighborhood of E such that 

g = r-2(dr2 + hr), 
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where hr is an r-dependent family of metrics on S and /ir|r=o = h. Moreover 
we have the following expansion (see, e.g., [5]) 

<l> ^ = ''-^(Ril;(',»-2(^T)ft)+<>(*'2)' 

Near infinity we have the unit vector field v = rJ^ which is the outer 
unit normal of the level sets of r. Define 

Se = {x e M\r(x) = e}. 

For e small, this is a compact hypersurface in M isotopic to E. Its mean 
curvature is easy to calculate and we find, using (1) 

H = div v 

(2) =n-^Tr(hr'1hr)\r=e 

= n + se2/2(n- l) + o(e2). 

As the scalar curvature 5 > 0 on S, for e small enough there exists a constant 
c > 0 such that Ee has mean curvature 

(3) H = divv > n + ce2. 

Let S be an (oriented) compact hypersurface in M.  For any constant 
S £ R following Witten-Yau [8] we consider the functional 

(4) L5(S) = A(S)-(n + S)J A, 

where -4(5) is the area of 5 and A is an n-form such that 0 = dA is the 
volume form of M. Note that if 5 is the boundary of a domain £2, we have 

(5) Ls(S) = A(S)-(n + 6)V(n), 

where V(Q) is the volume of Q. We prove by contradiction that Lo(S) > 0 
for any compact hypersurface 5 in M. Suppose there exists a compact 
hypersurface 5i with LQ(SI) < 0. Choose e > 0 small enough such that 
5i is enclosed by X!e and the mean curvature of Ee satisfies (3). Then 
choose 0 < 6 < ce2 such that Ls(Si) < 0. We minimize the functional Ls 
on the compact manifold Me = {x G M\r(x) < e} in its homology class 
represented by 5i. By geometric measure theory a minimizer 5o exists. By 
(3) and divergence theorem 5o does not touch Ee (for detail see [8]). Since 
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Ls(So) < Ls(Si) < 0, the hypersurface 5o is nontrivial. But as shown in [8] 
this leads to a contradiction with the second variation formula. Therefore 
L>Q(S) > 0 for any compact hypersurface S in M. This implies that the 
isoperimetric constant 

_      . fA(dtt) 
/l = infW-n' 

where the inf is taken over all compact domains Ct C M. The theorem then 
follows from the well known fact (see e.g., [3]) that 

AoG?) > f. 

If the conformal infinity has zero Yamabe invariant we take the metric 
h to have scalar curvature 5 = 0. Then by (2) the mean curvature H of X!e 

satisfies 
H-n = o(e2). 

Fix o G M. By the formula for g near infinity it is easy to see that 

d(o,Ee) < -21og€ + C. 

Let e'k —> 0 be a sequence and denote £& = Eefc. By the above two estimates 
the mean curvature Hk of S/. satisfies 

(6) lim (Hk - n)e2d(3'Efc) = 0. 
k—>oo 

Consider the functions /3k = d(o, S^) — d(x, S^). By a simple and beautiful 
comparison argument, Cai-Galloway [2] prove that A/3fc > n^ in the support 
sense and lim^-^oo nk = n- Let Q, C M be a bounded domain. We consider 
its first eigenfunction 

f-A/ = A/,/>0inn, 
l/|an = 0. 

Suppose /en/3fc/2 achieves its maximum at p E fi. Let 0^ be a C2 lower 
support function for /?*. at p, i.e., 

(7) (/>$ < /3k in a neighborhood U of p, 

(8) Mp)=Pk(p),&Mp)>nk-5. 
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As fik is Lipschitz with Lipschitz constant < 1, it is easy to prove 

(9) |VMp).<l. 

The C2 function fen<^8'2 on U achieves its maximum at p, so we have 

(10) V/(p) = -|/(p)V^(p), 

(11) A (/e
n^/2) (p) < 0. 

We calculate, using (8) (9) and (10) 

A (/e^/2) (p) 

= cn**W/2 (A/(p) + nV/(p) • V^(p) 

+ n2/(p)| V^|2(p)/4 + n/(p) A&(p)/2) 

= c»**(p)/2/(p) (_A _ n2|v^|2(p)/4 + nA4>6(p)/2) 

> en(t,s^/2f(p) (-A - n2/4 + nfa* - <5)/2) 

Therefore A > n(nk - J)/2 - n2/4. Let 5 -)► 0 we get A > nnk/2 - n2/4. 
Let k -¥ oo we get A > n2/4. As this is true for any bounded domain fi, 
X0(g) > n2/4. D 
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