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0, Introduction. 

In this article, we consider the class of immersed, complete, complex 
submanifolds Mn in C^ which are developable, that is, the Gauss map 
F : M —» Grc(TtjN) of such an M into the complex Grassmannian (with 
T(x) = the subspace parallel to the tangent space TXM) is everywhere de- 
generate. Let r < n be the dimension of the image of F. When r = 1, the 
classical Hartman-Nirenberg cylinder theorem, and its complex analogue 
due to Abe ([A]), state that M must be a cylinder. When r > 2, there 
are non-cylinder examples found by Dajczer-Gromoll [D-G], Bourgain, Wu 
[W], and Vitter [V]. We are interested in the case when such an M is not a 
cylinder. 

Let C be the Gauss foliation of such an M, i.e., the leaves of the holo- 
morphic foliation C are the level sets of the Gauss map F of M which are 
necessarily (n — r)-dimensional linear subvarieties of C^ (cf. e.g., [F-W]). 
Then M not being a cylinder means that these leaves are not all parallel 
to each other. Nevertheless, we shall show that when r = 2 and Mn is 
not a cylinder, then M is the total space of a holomorphic fiber bundle 
over a Riemann surface, and is foliated by linear subvarieties of dimension 
n — 1 each of which is the union of parallel (n — 2)-dimensional leaves of C 
(Proposition 5 and Corollary 1 of Theorem 2 in §4). If Mn is furthermore 
an embedded hypersurface in C71"**1, then our first major result is that Mn 

can be completely described in terms of two pieces of data: 

a (complex) plane curve S in C2 = {(t/i,^)} so that its pro- 
jection Q = ^1(5) into the first coordinate axis is a non-empty 
open subset of C, and 
a holomorphic map / : Q, -> Cn \ {0} 

1Research partially supported by NSF Grants. 
2The second author was also supported by an Alfred P. Sloan Fellowship. 
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(Theorem 3 of §5). Note that, in [D-G], Dajczer and Gromoll gave a de- 
scription of the structure of real analytic hypersurfaces with Gauss rank 2 
with the exception of M3 C R4 having non nilpotent conullity operators. 
Because we deal with holomorphic objects, our Theorem 3 is much more 
precise, and it is worth pointing out that the proof of our theorem is not a 
"complexification" of theirs. 

Our second major result concerns the general case when the rank re- 
striction is removed. In that case, introduce an equivalence relation among 
these leaves as follows: Let Cv denote the leaf of L passing through p, then 
by definition, Lp is equivalent to Lq iff they are identical or parallel to each 
other. Denote the union of all the leaves equivalent to Cv by C,v. The pos- 
sibility arises that these ^'s are submanifolds of M of a fixed dimension 
strictly bigger than that of each >Cp. In that event, these jCp's are cylinders 
which foliate M and whose generators are the leaves of the original Gauss 
foliation £. In the case of rank 2, we saw above that these LpS are in fact 
co-dimension 1 linear subvarieties (Corollary 1 of Theorem 2 in §4). In an 
unpublished manuscript, [V], Al Vitter called such an M a twisted cylin- 
der and raised the question of whether every complete complex developable 
submanifold of C^ is a twisted cylinder. In Theorem 1 of §2, we show that 
if the dimension r of the image of the Gauss map of an n-dimensional com- 
plete developable complex submanifold of complex Euclidean space satisfies 
r = n — 1 or r < 4, then M is always a twisted cylinder, but that if r = 5, 
then there are counterexamples (Lemma 2 in §3). The proofs of Theorem 1 
and Lemma 2 are based on an algebraic result (Proposition 2 in §2) which 
is the main technical part of this article. 

A key ingredient in the proofs of these results is the nilpotency of the 
so-called conullity operators ([A]) associated with the Gauss foliation. This 
nilpotency is a consequence of the completeness of the developable subman- 
ifold. We clarify this situation by proving that the nilpotency is essentially 
equivalent to completeness of the leaves: along each leaf of the Gauss folia- 
tion, the manifold can be extended indefinitely (Proposition 1 in §1). 

In the last section, §6, we raise some questions related to the topolog- 
ical version of the cylinder theorem and the holomorphic deformability of 
a developable submanifold into a cylinder. We also prove that when the 
sectional curvature of Mn (of the restriction metric of the usual complex 
Euclidean metric) is non-positive, then the completeness and the developa- 
bility condition r < n imply that M must be a cylinder (Theorem 4). 

We hope that this article will generate some interest in this special class 
of Euclidean submanifolds, which is rich in examples and yet very restrictive. 
We believe this topic deserves more attention from differential geometers as 
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well as workers in topology and several complex variables. 
Both Theorems 1 and 3 were inspired by the considerations in Vitter's 

manuscript ([V]). Leaving the precise bibliographical details to the appro- 
priate places later in this article, we wish to thank Vitter warmly for sending 
us the manuscript. 

1. Preliminaries and Gauss completeness. 

Let us fix some notations. Throughout this paper, by an immersed complex 
submanifold (M71,^) in C^ we mean a holomorphic immersion L from a 
connected complex manifold Mn of complex dimension n into C^. (Mn, L) 

is said to be complete, if L*(ds2) is a complete Kahler metric for the usual 
Euclidean metric ds2 on C^. 

Definition. An immersed complex submanifold (Mn,L) in C^ is called 
developable, if it admits a holomorphic foliation F which is developable, 
that is, for each leaf F of F, L(F) is an open subset of a linear subvariety, 
and the tangent space dt{TxM) is constant for all x e F. Such a foliation 
f is called a developable foliation. 

Note that relative to the usual Euclidean metric ds2 on C^, those L(F) 

are totally geodesic in C^ (hence totally geodesic in (Mn,L*(ds2))). How- 
ever, this definition is independent of the specific choice of ds2, it is an affine 
concept (in fact, a projective concept to be more precise). Prom now on, we 
will simply use the fixed Euclidean metric ds2 on C^, and use the induced 
metric L*(ds2) on M. That is, i is considered as a holomorphic isometric 
immersion now. 

There are two essentially equivalent ways to characterize this class of 
submanifolds. The first one is introduced by Chern and Kuiper ([C-K]). 
Let 

II: TMxTM -+TM1 

be the second fundamental form of (Mn,/,) in C^ , where TM1- is the 
normal bundle of M in C*. For x € M, let Cx = {V e TXM | II(F, •) = 0} , 
and let v(x) = dim (Cx) and u = mm{u(x) : x € M}. v is called the index 
of relative nullity of M. When v > 0, they showed that in the open subset 

M' =  {x E M | u(x) = i/} 

the distribution £ is integrable and gives rise to a developable foliation, 
called the nullity foliation, and any developable holomorphic foliation on 
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M' is a subbundle of £. We shall adopt the usual practice of identifying an 
integrable distribution with the foliation it defines. 

The second characterization is studied by Griffiths and Harris in [G-H] 
and also by Fischer and the first author [F-W] using the Gauss map 

T:M -*Grc(n,N) 

into the complex Grassmannian. It is defined by T(x) = dL(TxM), which is 
identified with the n-dimensional complex vector subspace of C^ by parallel 
translation. 

For x € M, let r(x) be the (complex) rank of drx, and call r = 
max{r(a;) : x G M} the Gauss rank of M. Since the differential dT can 
be identified with the second fundamental form II of M, u(x) + r(x) = n 
for all x e M (cf. e.g., [F-W]), and the nullity foliation C is just the kernel 
foliation of dT. For this reason, we shall also call C the Gauss foliation or 
Gauss ruling (a foliation on M is called a ruling if its leaves are mapped 
by L onto open subsets of linear subvarieties). We shall call M' the Gauss 
domain. 

In particular, from these descriptions we know that if (Mn,^) in C^ 
is developable, then it has a degenerate Gauss map, i.e., its Gauss rank 
r < n, and conversely, if r < n, then at least the open dense subset M/ is 
developable. Here Mf = M\S , where S is the complex analytic subvariety 
of M where rank(<ir) < r. 

Next, let us recall the notion of conullity operators introduced by Abe 
([A]). It is also called splitting tensor in some literature. We refer the readers 
to [D-G, §1] for an excellent account of this tensor. 

For an immersed complex submanifold (M71, L) in C^ with r < n, with 
the usual Euclidean metric ds2 on C^ and let g = L*(ds2), denote by C^ 
the orthogonal complement of Cx in TXM. Then C1- is a rank r complex 
subbundle of TM in Mf. Let TMR = £R 0 C111 be the corresponding 
real spaces, and let Z = Zc © Z^ be the corresponding orthogonal 
decomposition for any Z G TM11. 

For any X G £R, x G M', define the conullity operator Cx ' £i"R -* 
^Rby 

CX(Y) = -(VyX)-1,   YeC^ 

where V is the covariant differentiation in (C^ds2), and X is any local 
section of £R with Xx = X. It is a well defined tensor field, which in 
addition satisfies the equation (see [A]) 

Vx1C
rX2 = Cx2 0 Cxi       V-Yi, X2 G Cx , 
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and is symmetric with respect to the second fundamental form of M: 

ll(Cx(Y), Z) = II(Y, Cx(Z)) ,   VXeC?,\/Y,Z£££R 

Furthermore, Cx0J = JvCx, VX, where J is the almost complex structure. 
So Cx respects the type of a tangent vector and induces a complex linear 
map from C^r to £^-. We still denote it by Cu, with U G Cx now. 

When (Mn, L*(ds2)) is complete, along any geodesic line ^(t) contained 
in a leaf of £, write T — ^(t). Then CT satisfies the matrix Riccati equation 
V^nCr = (CT)

2
- A simple deduction then shows that CT cannot have any 

non-zero real eigenvalue. The commutativity of CT and J also implies that 
it can not have any non-zero complex eigenvalue either, so that CT (or 
CT-^IJT) *

S
 
always nilpotent. This result is due to Abe ([A]), and we 

shall refer it as Abe's nilpotency theorem from now on. See also p.3-4 of 
[D-R] for a more transparent proof. We note in passing that this nilpotency 
assertion fails in the real case even when real analyticity is assumed; see 
Lemma 3 in §3. 

In the following, we shall show that a partial converse of the nilpotency 
theorem holds. That is, when the conullity operators are all nilpotent, M is 
Gauss complete, in the following sense. 

Definition. An immersed complex submanifold (Mn, L) in C^ with Gauss 
rank r < n is called Gauss complete, if for any x £ M', there exists a 
neighborhood U of x such that L(U) is an open subset of a holomorphic 
immersion a : JB£ X Cn~r ~> C^, where B^ denotes the ball of radius e 
in Cr, so that (i?£ xCn~r,cr) is a developable submanifold and its Gauss 
foliation is defined by the leaves {p}x Cn~r for each p G B^. 

In other words, Gauss completeness means the leaves of the Gauss foli- 
ation are de facto complete because, locally at least, they can be extended 
linearly along the C direction to give a developable submanifold whose Gauss 
foliation consists of complete linear varieties. The following partial converse 
to Abe's nilpotency theorem says that, in the C direction, the nilpotency of 
the conullity operators is exactly what completeness can offer. 

Proposition 1. Suppose an immersed complex submanifold (Mn,L) in CN 

has Gauss rank r < n. Then M is Gauss complete if and only if the conullity 
operators are all nilpotent 

Proof. The "only if part is just Abe's nilpotency theorem, so we need only 
to prove the "if part. Fix a point x G Mf. Choose a small neighborhood 
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U of x in M' so that L\U is an embedding. Suppose V = L{U) is defined by 

Zp = fizi, • • • , ^n),       M = n + !) ' ' ' ) N 

where (^i,... ^z^) is an unitary complex linear coordinate system of C^ 
with TL(X)V spanned by ei,..., en, where ej = d/dzj for j = 1,..., n. 

Without loss of generality, let us assume i(x) = 0 and dL(Cx) is spanned 
by er+i,..., en. Let B^ C Cr be the ball of radius e centered at the origin. 
For u e i?e, define 

<f>(ui,...Ur) = (uu...,ur; 0,...,0; ... iffaO),....) 

Thus (/>(Bl) C V for all sufficiently small e. Fix such an e, then there is a 
holomorphic frame of dL(C) along  </>(££) of the form: 

f(«) = (5
il(«),...,5

ir(n); O,...,!,...^; ... ./^(u),...) 

where i = r + 1,..., n. We may further assume that V is a union of open 
balls each of which lies in a leaf of £ which intersect <f>(Bl). Since the tangent 
space of V is constant along each Cx (now regarded as a linear subvariety 
of C^), the {£*} extend by (Euclidean) parallel translation along each £x 

to a frame field of C in V. Similarly, if c/)^ denotes dcfi/dup for 1 < /? < r, 
then {(frfi} extend by parallel translation along each Cx to be vector fields 
tangent to V. Clearly, {</>,/?} and {£*} form a holomorphic frame field of TV 
in V for 1 < (3 < r, r+1 < j < n. Thus for a = 1,..., r, each ^a is a linear 
combination of {0,/?} and {£2}, say 

=   {Ax,..., Ar; 0,..., 0; *,...,*) + (*,..., *; Br+i,..., Bn; *,..., *) 

=   (*,•••, *;-Br+i,---)-Sn; *,...,*) 

However, a direct computation with {£*} shows that 

Za = (9%---,9%; 0,...,0; *,...,*) 

where 5^ = dg%l/dua, etc. This is possible only if i?r_}_i = ... = Br = 0, so 
that 

=    (^1,...,^r; 0,...,0; *,...,*). 
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Thus A^ = g]a for each /? = 1,..., r and so 

& = ]L^S^'    forl<a<r,   and r + 1 < i < n 

Now consider F{u,t) = (j){u) + Er=r+i^fMi where u € S€
r and £ G Cn-r. 

For small u and £, {ti,i} define holomorphic coordinates of V near 0, with 

F-(£H'' *(£)-(**+X>!0*'- 
Let Za = (F^d/dua))1 be the orthogonal projection of F*(d/dua) on £-L. 
Note that if Z' = F*(d/dua) — ZQ, then Z7 is tangent £, so that by the 
constancy of £* along each leaf £3;, Vz'C = 0 for each i. 

That is to say, 

for each 2. Hence 

which implies 

Therefore 

AF*(^-)=det(7-ci:^)A^ 
rv ^ a ' /-v 

Since Cv^f^u) ^s nilpotent for any small u and any t, the preceding deter- 
minant is never zero. Hence F is an immersion of entire B^ x Cn~r. It 
follows that V is a subset of a strip of developable submanifold which has 
closed Gauss leaves. □ 

Remark. In the real case, that is, if / is an isometric immersion into R^ 
with relative nullity Uf > 0, the proof of Proposition 1 implies that, / is 
Gauss complete if and only if the conullity operators do not have any non- 
zero real eigenvalues. 
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2. Conullity foliation. 

Let us consider the ruling Gauss map 

$:M' -±Grc{n-r,N), 

defined by $(a;) = dL(Cx), which is identified with the (n — r)-dimensional 
complex vector subspace of C^ parallel to dL(£x). If M' is a cylinder (with 
respect to the Gauss foliation £), then all the leaves of £ are parallel and 
$ is constant. The nonzero rank of $ is thus a measure of the failure of Mf 

to be a cylinder. Let M" C M' be the open dense subset where $ reaches 
its maximum rank. Then within M", the kernel distribution ker(<i$x) is of 
constant rank, and it defines a foliation JC. Note that £ C /C C TM, and 
K = TM iff M is itself a cylinder with respect to the Gauss foliation £. 
This foliation /C was first studied by Vitter in [V], and we will follow him 
and call /C the conullity foliation of M (strictly speaking, of M"). Prom 
the definition, it is easy to see that if x G M", then the entire Gauss leaf 
£x Q M". (Note that by [F], when M is complete, the Gauss leaf £y for 
any y £ Mr is closed in M, and thus L\cy is a biholomorphism onto a linear 
subvariety Cn~r). 

The proof of the following lemma is omitted since it is a straight-forward 
computation. 

Lemma 1. For any x € M", JCX = £x ® {nx^er(^)}^ where the inter- 
section is taken over all X in £x. 

So each leaf of /C is a cylinder consisting of parallel leaves of £. If 
rank/C = dimKx (for any x) is bigger than rank£ = dim £x, then although 
M" may not be a cylinder, it is foliated by ^-cylinders. Vitter called such M" 
"twisted cylinders". Vitter raised in [V] the question (cf. the Introduction) 
of when will rank /C be greater than rank £? The following theorem says 
that when the Gauss rank r is less than 5 or equal to n — 1, this will be 
the case. We also produce examples in §3 showing that for 5 < r < n — 2, 
there are complete developable hypersurfaces Mn C Cn+1 with Gauss rank 
r but with /C = £. This is the other extreme of /C = TM, showing that, 
in general, complete developable complex submanifolds need not be twisted 
cylinders. 

Theorem 1. Suppose an immersed complex submanifold (AP,*,) in CN is 
complete and has Gauss rank r < n. If either r = n — 1 or r < 4, then the 
conullity foliation JC of M is strictly bigger than £ in ranks. 
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Remark 1. The case r = 2 is due to Vitter ([V]) and Dajczer-Rodriquez 
([D-R]). In fact, the result in [D-R] is much stronger: its Theorem 2 says 
that, for any minimal immersion / : M2n —>- R^ of a complete Kahler 
manifold M2n, if the real Gauss rank (namely, the real dimension of the 
image of the Gauss map) r < 4, then either it is a cylinder: M2n = N4 x 
R2n~4 and / = fi x id, or M2n admits a complex foliation whose leaves are 
isometrically mapped by / onto affine subspaces R2TI

~~
2
. 

Proof, Fix a generic point x € M". Let {X^Y^Z^} be an unitary ba- 
sis of C^ at x, such that TXCX is spanned by the X^'s, and the Z^s are 
perpendicular to TXM. Here again we use the index range 

1 < a, /?,... < r,     r + 1 < i, j,... < n,      n + 1 < //, ^,... < N 

Extend this basis into a tangent frame {JY*; Ya] Z^} in a neighborhood of 
x so that they are parallel along the leaves of C. The developability of the 
foliation C guarantees that this can be done. 

For any i or /x, consider the complex r x r matrices A1, E^ defined by 

^ = -<vn,xi>Ftt>,   ^ = <Vy/,ya,zMj 

A2 is just the matrix of the conullity operator Cxt with respect to the basis 
{■^}, while E^ is just the Z^-component of the second fundamental form 
II(ya, Yp) = EM^/x. We claim: 

(1) E^ and E^A1 are symmetric for any i, /J,, and Y^u^n+i ^^ > 0; 

(2) For any t = («r+1,..., tn) € Cn~r
;   Sr=r+i ^i^ is nilpotent 

The symmetry of JS^ and E** A1 is a consequence of the symmetry of the 
second fundamental form II itself and the symmetry of Cx with respect 
to II. The meaning of ^E^W > 0 in (1) is that the matrix ^E^W 
is Hermitian positive definite. The fact that it is Hermitian positive semi- 
definite is clear. Suppose it is degenerate, then there is a nonzero column 
vector v = (vi... VrY so that ^ E^E^v = 0. This implies ^ E^v = 0, so 

that if Y = 52pVpYp, then (Vyya,ZM) = 0 for every a. Thus II^Ya) = 0 
for every a, implying that the second fundamental form II is degenerate 
on Z/1*, contradiction. This proves (1), and (2) is just the Abe nilpotency 
theorem. 
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Let Ni = {v E Cr\Alv = 0}. Here v is a column vector. Then Ni 
is just the kernel of Cxi • So by Lemma 1 above, we know that the proof 
of Theorem 1 will be complete as soon as we prove the following algebraic 
result, Proposition 2. (In the case r = n — 1, there is only one A1, so the 
nilpotency always guarantees that the (common) kernel is non-trivial).    □ 

Proposition 2. Let {A1} be linear transformations of Cr and let {E^} be 
symmetric bilinear forms on Cr so that each A1 is symmetric with respect 
to all the E^ 's. With respect to a basis {ei,..., er} of Cr

; let the matrices 
of A1 and E^ continue to be denoted by A1 and E^ respectively for the sake 
of simplicity. Suppose A1 and E^ satisfy conditions (1) and (2) above. If 
r < 4, then  n*JVi ^ 0 . 

Remark. 

(a) For linear transformations {A1} and bilinear forms {E^}, if their ma- 
trices satisfy (1) and (2) with respect to one basis of Cr, they do so 
with respect to all bases. 

(b) The symmetry of the bilinear forms E^ and the symmetry of each A1 

with respect to E^ of course imply that the matrices E^ and E^A1 are 
symmetric. So the first part of condition (1) is automatically satisfied. 

The rest of the section will be devoted to the proof of the this algebraic 
proposition, which is the main technical part of this article. 

Proof of Proposition 2. Let V = spaii{j4r+1,... ,An}. Notice that any 
matrix A € V also satisfies conditions (1) and (2) above. Let I be the 
maximum rank of all the A G V. We claim that there is a basis {JB1,..., B3} 
of V so that all the B^ 's have the same Jordan canonical fohn and the same 
rank /. This can be seen as follows. Let V0 be the subset of )Xconsisting of 
all the elements of V which have rank /. Then V0 is an open dense subset 
of V. Each A G V0 is a nilpotent r x r matrix of rank Z, so the number 
of possibilities of the Jordan normal form of such an A is finite in number. 
Thus V0 is partitioned into a finite number of equivalence classes Vi,..., Vp, 
where the elements in each Va have the same Jordan normal form and if 
a T^ p, the Jordan normal forms of Va and Vp are distinct. Suppose none of 
Vi,..., Vp contains a basis, then each of span Vi, ..., span Vp is contained 
in a hyperplane, and V0 = Vi U ... U Vp C span Vi U ... U span Vp = a finite 
number of hyperplanes. Contradiction. Thus one of them, say Vi, contains 
a basis I?1,..., Bs of V, and this is the desired basis. 
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For simplicity, we shall henceforth assume that the given Ar+1,..., An 

are such a basis of V = span{Ar+1,..., An}, i.e., they are all of the same 
maximum rank I (I < r), and all have the same Jordan normal form. 

We will always consider the matrices A1 as linear transformations on 
column vectors. Notice that for any nilpotent matrix A) N(A) fl R(A) ^ 0, 
where N(A) is its kernel, and R(A) is its image. Another observation is the 
following: 

(*) For r + 1 < t, j < n,  A^NiA*)) C 12(4*). 

Recall that Az and A7 are all assumed to have maximum rank among 
all matrices in V, so assertion (*) follows from a more general assertion: if 
A, B are linear transformations on a vector space V such that rankl? > 
rank {tA + B) for all t G C, then A{N{B)) C R{B). Indeed, if R{B) = V, 
this is trivial. So suppose dimi2(B) = r < dimF. Then dim R(tA + B) < 
dimV for all t. liA(N(B)) g R{B)y then for some v E N{B)9 A{v) £ R(B). 
However, by assumption, {R(tA + i5)| t G C} is a continuous family of 
proper subspaces of V of which R(B) is a member. Thus for a t sufficiently 
small and t ^ 0, .A(v) £ i2(*A + S). But A(u) = (tA + 5)(iv), so we 
have (tA + -B)(iiO ^ i2(til + B), which is absurd. Assertion (*) is therefore 
proved. 

We now divide our discussion into the following cases. 

Case 1:   1 = 1 (arbitrary r). 

Let ei,..., er be a basis of V = Cr such that R(An) = Cei, N(An) = 
span{ei,...?er_i} . For any r+1 < j < n-1, by (*), we have AJ'(iV(An)) C 
R{An) . So either A^(N(An)) = 0, in which case N(A^) = iV(An), or 
Ai(N(An)) = i2(4n), in which case i?^') = ^(^l71). Thus with respect 
to such a basis e = {ei,... ,er_i}, the condition of Z = 1 will force the 
transformations in V = span{ilr+1,... ,An} to be, respectively, all in the 
form B or all in the form C, where 

B = 

0    . 

0   . 
0   . 

0   * 

0   * 
0   0 

and    C 

0    * 
0   0 

0   0 

,.    * 
.   0 

In particular, ei is in  f] N(Al). 
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Remark. 

(a) If r = 2, then I < 1. Thus Case 1 already proves Proposition 2 in case 
r = 2. 

(b) As noted above, the assumption r < 4 never entered into the preced- 
ing argument. Moreover, since R(A^) C N(A'1) for all ijj, we have 
Y^j R(A^) = f^ N(At). These remarks will be important in the proof 
of Theorem 2 in §4. 

Case 2:   I = r - 1, r = 3,4. 

In this case, the Jordan form of any A1 is B = 
0 0   0 
1 0   0 
0   1   0 

for r 

and = for r = 4.   Let us assume that An = B.  Now for 

0   0   0   0 
10   0   0 
0    10   0 
0   0   10 

each //, El* is a symmetric matrix.  But E^B^ E^A71) is also symmetric, 
so by multiplying out E^B, we see that each E1* has the form 

ai 0,2 as 

0,2 as 0 
as    0     0 

or 

ai a2 as a4 
a2 as a4 0 
as a4 0 0 
a4 0 0 0 

depending on r = 3 or r = 4, respectively, where the a/s are arbitrary 
complex numbers. We express this fact symbolically in the following way. 

"0001 

Let J = 
0 
1 
0 

for r = 3, and = 
0 0   1 0 
0 1   0 0 
1 0   0 0 

for r = 4. Then 

^ = 7(^1 + Or-iB + ... + aii?r-1). 

For at least one JE^, its ar must be non-zero, i.e., det E^ ^ 0, since otherwise 
E^er = 0 for all fi and this would contradict condition (1). Take such an E^, 
and denote it by E. Then E = Jf{B), where f(s) = ar+ar-is+.. .+ai5r~1 

satisfies /(0) ^ 0. Let g(s) be a complex analytic function near 5 = 0 such 
that g(s)2f(s) — 1, and consider the change of basis in Cr under #(#)*. With 
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respect to this new basis, A1 becomes g(B)  1Alg(B) so that An becomes 
p(B)-1^np(B) = g(B)-lBg{B) = B, while the bilinear form E becomes 

g{B)tEg{E)   =   g(B)tJf(B)g(B) 
=   Jg(B)f(B)g(B)       (because B'J = JB) 
=   Jg(Bff(B) = J, 

because g(s)2f(s) — 1. Thus, we may assume, with respect to an appropriate 
basis of Cr, that E = J while An = B. 

Relative to this new basis, since JAl is symmetric for each z, all A1 are 
symmetric with respect to the anti-diagonal line. 

Subcase 1:   I = 2, r = 3. 

For any r + 1 <j <n — 1, since A? is also trace-less, it can be written 
as 

A3 = 
a d e 
6 -2a d 
c      6      a 

By condition (2), tB + A7 is nilpotent for any complex number t. So by a 
direct computation (e.g., expand (tB + A7)3 as a polynomial in £ and equate 
all the coefficients to 0), we get a = d = e = 0. Thus any A7 must be strictly 
lower triangular. In particular, es is in the intersection of the kernels of all 
the A>'s. 

Subcase 2:   I = 3, r — 4. 

Just as in the preceding subcase, we may write any A* (r+1 < j < n— 1) 
as 

A' = 

a     b      c d 
f   — a     e c 
g     h — a b 
kg      f a m 

Again, by the condition that tB + A7 is nilpotent for any £, we get after a 
computation: 

a = b = c = d = e = 0. 

So each A*7 is strictly lower triangular and f] • N(A3) D {64} ^ 0. 

Case 3:   r = 4, / = 2. 
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We divide the discussion into two subcases according to whether the 
Jordan normal form of the A* 's is 

Ci = 

0   0 0   0 
10 0   0 
0   0 0   0 
0   0 10 

or  C2 = 

0   0   0 0 
10   0 0 
0   10 0 
0   0   0 0 

Subcase 1:   The Jordan form is Ci. 

This is exactly the case when all (A*)2 = 0. So   N(A^) = R(A*). Let 
{ei, 62} be a basis of iV(^4n) = R(An) and complete it to a basis {ei,... 64} 
of C4.   Fix any j between r + 1 and n - 1.   Since   Aj(N(An)) C R(An) 
relative to  {ei,..., 64}, A71 and A7 are in the block form: 

An = 
0   * 
0   0 

and  AJ = 
*    * 
0    * 

By performing a change of bases within span {ei, 62} and span {63,64} and 
making use of the nilpotence of An and A7, we may assume that 

An = 

0 0 ao bo 
0 0 co do 
0 0 0 0 
0 0 0 0 

and  AJ = 

0 a a    b 
0 0 c   d 
0 0 0/3 
0 0 0    0 

If a/? 7^ 0, then i?(AJ) D span {61,63}. Since I = 2, necessarily R(A^) = 
span {61,63}. Then N(A^) = R(A^) = span {61,63} ==> a = c = 0. Repeat 
the same argument with A7 replaced by A^+eAn for a positive 6, we conclude 
also that ao = CQ = 0. This contradicts the fact that An has rank 2. So 
suppose ft = 0. We claim: a = 0. This is because (3 = 0 =$> R(A^) C 
span{ei,e2},=> i2(j4J') = span{61,62} since A-7 has rank 2. So if a ^ 0, 
then 62 ^ N(A:j), which contradicts i£(-AJ') = N(A:j). The claim is proved. 
Similarly, if a = 0, then 0 = 0. Therefore ^(A-7) = span {61,62} = ^(A71) 
for all j. 

Subcase 2:   The Jordan form is (72. 

\   In this case, we have N(At) ^ R(Al) for any i. 

Claim 1.   For any i, j,  iV^) n iV(^) ^ 0. 

Assume the contrary.   Then we can find a basis {61,... ,64} of C4 so 
that   N(Ai) = span {61,62}   and   N(Aj) = span {63,64}.  Since N(A7') ^ 
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RiA'), and JV^*) D i?(Ai) ^ 0, dim(iV(Ai) n RiA1)) = 1. Thus by a 
change of bases within span{ei,e2} and span{e3,e4}) we may assume that 
R(Ai) D ^(^4*) = Ce2, so that A1 can be brought to the form: 

A%=. 

0 0 0a 
0 0 10 
0 0 0   1 
0 0 0   0 

Because ^'(JV^*)) C i?^') = {e2,aei + 63}, it follows that with respect 
to this new basis, 

ac   ae   0   0 
b     d    0   0 
c     e    0   0 
0     0    0   0 

4J' = 

Since A7 is nilpotent and has rank equal to 2, we have 

ac + d = 0 ,    o(cd — 6e) = 0 ,    fee — cd ^ 0. 

So a = 0 = cf, be ^ 0. Now look at the combination tAl + A? 

tAl + A' 

0 0 0 0 
b 0 t 0 
c e 0 t 
0 0 0 0 

Thus trace {tAi + A^)2 = 0 implies 2et — 0. This being true for all t, e = 0, 
and A* has rank 1. Contradiction. This completes the proof of Claim 1. 

Claim 2.   n?=r+i^(^)^0. 

Assume the contrary. Since all A1 have rank equal to 2, Claim 1 implies 
that there will be three matrices A = A1, B = A* and C = Ak such that 
N(A) fl N{B) H N(C) = 0 , and a basis {ei,..., 64} such that 

N(A) = span{61,62} ,   N(B) = span{62,63} ,   N(C) = span{63,61}. 

Let V = span {ei5e2,e3} = N(A) + N(B) = N{B) + N(C) = N(C) + N(A) 
and  W = i2(i4) n R(B) n fl(C).   Since 63 G JV(B) n iV(C), ^63 G i2(B) n 
/2(C) C W. Similarly, J5ei , Ce2 are also in W. Note that ^63, J5ei, and 
Ce2 are all nonzero because A, J5, and C have rank 2. Hence dimW > 1. 
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A'   * ' 
, B = 

" B'   * ' 
and C = 

' C * 
0    0 J    ■*"' 0    0 0 0 

If dim(W) = 2, necessarily R(A) = R{B) = R(C). Then with respect to 
a new basis {e^,..., e^} such that  R(A) = span {e^, e^}, we have 

i4 = 

where ^4', 5' and C" are 2x2 matrices and all their linear combinations are 
necessarily nilpotent. It is then easy to see that they must have a common 
kernel, which contradicts our assumption that ^(^4) fl N(B) n N(C) = 0 . 
So W must be one dimensional. Rescale e,- if necessary, we may assume 

Aes = Bei = Ce2 , and it spans W. 

,3 , then since 

ta   sa   a   * 
tb    sb    b   * 
tc    sc   c   * 
0     0    0* 

A +1J3 + sC = 

and is nilpotent for all t, 5, its upper left 3x3 block is also nilpotent, hence 
trace-less. This implies that a = & = c = 0, a contradiction. 

(ii) W is not contained in V. Replace 64 by Ae^, then relative to the new 
basis, 

A = 

0 0   0 a 
0 
0 

0   0 
0   0 

1 
oc' 

;   5 = 

0 0   1 0 _ 

0   0 0 8' 
0   0 0 5 
0   0 0 e 
10 0 0 

C = 

0 0   0/3 
0 0   0/3' 
0 0   0   c 
0 10    0 

Because A2, B2, and C2 are trace-less, a' = 6' — ft = 0. Moreover, A + 
tB + sC is nilpotent for any t or s, so (A + tB + sC)2 is trace-less for any t 
or 5, and hence e = —a, £ = —7, and J = — /?. Hence 

A + iB + sC = 

£M 

"0   0   0     a + s/3 
0   0   0      7-t0 
0   0   0   -to-57 

_ t   5    1          0 

same basis as 

a    e    h   j 
e    b    f    i 
h   f    c   g 
j    i   g   d _ 

• 
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Then by the symmetry of EtJ'(A + tB + sC) for any t or 5, we get g = i = 
,7 = 0 and 

d = — e/3 — /ia = e/3 — /7 = /ia + /7. 

Sum up these three distinct expressions of d gives 3d = 0, so £^64 = 0 for 
any /i. This contradicts the fact that 

N 

So we have completed the proof of Claim 2 and hence also the proof of 
Proposition 2. □ 

Arguing along this line further, we get the following, whose proof is is 
left to the readers. 

Proposition 3. Let A1, E^ be as in Proposition 2. Then for 2 < r < 4, 
there always exists a basis {ei,... ,er} such that the linear span Ar of the 
transformations A% {on column vectors) is contained in one of the following 
linear spaces: 

AzQ 

A2Q { 
"0   *"> 

0 0 1 
"00*" 1       ( r 

0   0   * or 
0   0   0 J I 

0x*' ) 
0   0   a; 
0   0   0 / 

AA C 

0   0   0*" 
X ' 

0   0   0* 
0   0   0* 

>     or   < 

0   0   0   0 J 

0 * * * > 

0 0 * * 
0 0 0 0 
0 0 0 0 _ / 

or 

0 0 * * \ 

0 0 X * 
0 0 0 X 

0 0 0 0 _ * 

or 

0 x y * 
0 0 * y 
0 0 0 x 
0 0 0 0 

3. Examples, 

First of all, let us give an example which shows that in Proposition 2, the 
upper bound for the Gauss rank r is necessary. Its verification is straight- 
forward computation, so will be omitted. 
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Example 1.   Let A, B, E be given respectively by 

0 0 0 0   0 " 
1 0 0 0   0 
0 1 0 0   0 ) 
0 0 1 0   0 
0 0 0 1 o. 

0   0   10    0 
0   0   0-20 
0 0 0 
0 0 0 
0   0   0 

0 
0 
0 

1 
0 
0 

0 0 0 0 1 
0 0 0 10 
0 0 10 0 
0 10 0 0 
10   0   0   0 

Then E is symmetric and non-singular, EA, EB are symmetric, and for any 
complex numbers t and s, the combination tA + sB is always nilpotent. So 
they satisfy condition (1) and (2) in §2. But clearly, N{A) D N{B) = 0. 

The following lemma says that for any given E and {jl*} satisfying con- 
ditions (1) and (2) of §2, there is a properly embedded developable hyper- 
surface Mn C C"+1 such that its conullity operators are given by these ^'s 
(along {t = 0}). It then follows that this lemma, coupled with Example 1, 
give a counterexample to Theorem 1 in case r > 4 and r ^ n - 1. 

Lemma 2. Suppose E,AT+1, ...,An are complex r x r constant matrices 
such that E is symmetric and non-singular, each EA1 is symmetric, and 
£<=r+i M| is nilpotent for any t = (tr+1,... ,tn) £ Cn-r. Let B = (I + 
]Cr=r+i tiA1)' E~l; it is well defined for any t by the nilpotency assumption. 
Then the smooth complete hypersurface Mn C Cn+1 defined by 

Mn = I (z,t,w) € Cr x Cn-r x C  |  w = J2 B^azp 
I a,/3=l 

has Gauss rank r < n, and, along t = 0, its conullity operators are given by 
the -Ai 's. 

Proof. Let {ea}, 1 < a < n + 1 be the standard basis of Cn+1. As before, 
we will use the index range 1 < a,/?,... < r and r 4- 1 < i,j,... < n. 
Consider 

<K«)     =     13U«e« + 5^(-Erl)«/»t*«U0en+l 

£l(u)   =   ,^2lA
%

a0
uaep + ei + (AiE-1)apuaupen+i 

where u = (wi,...,«r) e Cr. Then F{u,t) = <j>(u) + £*<?'(«) gives 
a global holomorphic parametrization of M for the following reason.   If 



Developable Submanifolds in Euclidean Spaces 629 

we let C = (/ + EiM*), then B = C^E'1 is symmetric, F(w,t) = 
{uC>t,uCE-1ut), and 

uCE"1^ = uCiE'1)**? = uCiCBfu1 

= (iJ^)B(uC)t = YtBafi(uC)a(uC)p 

Comparing with the definition of M, this shows that the image of F is 
exactly M. Note that, by definition, M is foliated by linear subvarieties of 
dimension (n — r). Since E"1 and A^E"1 are both symmetric (the symmetry 
of AlE~1 is straightforward to show), the partial derivatives with respect to 
ua are 

P 

P P 

So for any i or a, we have 

Therefore along each linear subvariety £w = F{{u} x Cn~r), the tangent 
space TM is constantly spanned by (^a and £l, where a = l,...,r and 
i = r + l,...,n. That is, the ruling foliation £ is a developable folia- 
tion. A direct computation of {V^ ^ | all a,^} (taking into account of 
V(/>„(/)£ = (jt^ap) shows that the second fundamental form is nondegenerate 
on span {</>,<* | all a} along {t = 0} = F{Cr x {0}), so that £ is indeed the 
Gauss foliation of M. We claim that the conullity operator along Cr x {0} 
are just the {—A1}. Briefly, this is because at a point of Cr x {0}, 

and V£j£l = 0 for all i, j, so that if Ya is the orthogonal projection of <£ia 

on £J- at that point, then 

P 

Prom this, it follows immediately from the definition that 

P 
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□ 

Note that this construction also works for real developable submanifolds. 
For example, one may state the following 

Lemma 3. Suppose E, Ar+1,..., An are r x r real matrices such that E 
is symmetric and non-singular, each EAl is symmetric, and Yl^r+i ti-A1 

has no non-zero real eigenvalue for any t = (tr+ij--• >*n) € Rn~r. Let 
B = (I + SiLr+i**^*)""1-^""1/ 2"* 25 we^ defined for any real t. Then the 
smooth complete hypersurface Mn C Rn+1 defined by 

Mn = I (z,t,w) € Rr x Rn-r x R   |   w =   J2 Bccl3Z*Zl3 
[ cc,P=l 

has Gauss rank r < n, and, along t = 0, its conullity operators are given by 
the -Ai 's. 

In particular, the conullity operators for complete real analytic devel- 
opable submanifolds in R^ are no longer always nilpotent. 

Example 2.   Consider 

E 

Then both E and EA are symmetric, E is non-singular, and A has no real 
eigenvalue. The corresponding manifold is the complete smooth hypersur- 
face  M3 C R4  defined by 

M3 = {(z,y,*,u;)eR4  |  w = {x2 - y2 + 2txy)/(l + t2)} 

This cubic threefold has Gauss rank r = 2, and it is not a cylinder. Note 
that the conullity operator is not nilpotent here. 

Remark. For an immersed complex submanifold (M71,*,) in C^, consider 
the projective ruling Gauss map 

$':   M'   —>G = Gr(CPn-r,CPiV) 

x    i—> [Cx]. 

Let EM be the image. It is an immersed complex submanifold of dimension 
r in G. The examples in Lemma 2 are exactly those M whose EM has 
vanishing third fundamental forms in G. This connection was brought to 
our attention by Robert Bryant. 

" 1 0 
,    A = 

0     1 " 
0 -1 J -10 
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4. The image distribution. 

Let us continue the discussion along the line of Theorem 1. Recall that the 
conullity foliation /C on M" is the kernel of the differential of the ruling 
Gauss map $ defined by §(x) = di{Cx) and Kx = Cx ® {f>|xker(Cx)} 
(Lemma 1). Now consider for each x G M" the subspace 

nx = cx® Yl R(cx) 
xecx 

where R(Cx) is the range (image space) of the conullity operator Cx at x. 
Let M'" be the open dense subset of M" where these subspaces TZX have 
constant (maximal) rank. Thus K is a holomorphic distribution in M'" 
contained in /C. The following lemma is needed for the proof of Theorem 2. 

Lemma 4. Suppose Mn C C^ is a piece of complex submanifold with 
Gauss rank r. For a point x G M'", let U be a complex r-dimensional sub- 
manifold of M containing x and is transversal to C, and let u = (ixi,... ,ur) 
be a holomorphic coordinate system on U. Suppose {£2(^)} is a holomor- 
phic frame of C along U constant along the leaves of C as usual Then as a 
subbundle ofTxMf 

K = span{£\^a;    1 < a < r, r < i,j < n}, 

where as usual, £fa = dtf /dua. 

Proof. Suppose U is parametrized by 0(it). Then M is parametrized by 
F(ix, t) = (f>(u) + ^2 UC(u)i and {CJ"> ^.a} are a basis of vector fields tangent 
to M (shrink U if necessary). The developability of C in terms of the second 
fundamental form implies that all the ^'s are tangent to M. Hence we may 
write 

0 j 

Also write (f>^ = Xp H- ^ Dpj^, where Xp is the component of cj)^ orthog- 
onal to C. Then, 

C = E 4**/> + E [ E £*Dei + Bi) #' 
P   ■ j     \  0 J 
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By the definition of the conullity operator, the following is valid at each 
point of M: 

=     - 2 A1c*0X0 

The ctsserted equality of the lemma now follows from the definition of TZ. □ 

Theorem 2. For a complete immersed complex submanifold (Mn, t) in CN 

with Gauss rank r < n, if 71 C K,, then IZ is a ruling foliation, i.e., the 
{image under L of the) leaves of 71 are open subsets of linear subvarieties in 
CN. 

In particular, if the maximum rank I of all Cx is 1, then 71 C K, so 
within M"', the Gauss foliation C is contained in a ruling foliation TZ, which 
has strictly larger rank when M is not a cylinder. 

Proof. When I = 1, Case 1 in the proof of Proposition 2 in §2 (see the Remark 
after Case 1) says that 7ZX C ]CX for any point x e M'n. So assuming the 
first part of Theorem 2, the second part follows. 

To prove the first part, let us assume that 71 ^ C, as otherwise all 
Cx = 0 and M would be an £-cyUnder. Fix a point x G M,n. Let W be 
a neighborhood of x in Mm which is a union of the leaves of the foliation 
K near x. We shall prove that TZ is integrable in W and that its integral 
submanifolds are subsets of linear subvarieties. Now TZ C K, by assumption, 
so if TZ is restricted to a leaf K of K in W, TZ becomes a subbundle of the 
tangent bundle TK of K. If TZ is integrable, its integral submanifolds must 
therefore foliate each leaf K of K. To prove the theorem, it therefore suffices 
to restrict TZ to a fixed leaf KQ of /C. To this end, we proceed as follows. 

Since C and K, are foliations on W and C C /C in a self-explanatory sense, 
there exists a holomorphic coordinate system 

(u', u", V) = (tti, . . . , <,<+!, • • • , <, Vr+li • • • > Vn) 

on W, such that 

the leaves of K are defined by {u' = constant}, and 
the leaves of C are defined by {u' = constant, u" = constant}. 



Developable Submanifolds in Euclidean Spaces 633 

For any leaf K of K in W, if p and q are points in K, then Cp and Cq are 
parallel linear subvarieties. This is because the leaves of /C are the level sets 
of the Gauss ruling map $. Consequently we may choose a holomorphic 
frame {£r,..., £n} of C in W so that {£*} is independent of u" and ^. Thus 
each £ is a function of u! alone, i.e., £* = £*(?/)• Now fix a leaf JiTo of /C. By 
Lemma 4, we have in KQ, 

ft = span {£z, d^/du'e \ 1 < a < s, r <i,j < n}. 

Since each d^ /du^ is necessarily also independent of n" and i>, the dis- 
tribution 7?. in KQ is independent of u" and T;. That is, TZ is a constant 
distribution (i.e., parallel with respect to CN) on i^o- In particular, it is a 
totally geodesic (auto-parallel) distribution on KQ. Because totally geodesic 
distributions with respect to a torsionless connection must be integrable, TZ 
is integrable on i^o- The constancy of TZ on KQ then leads trivially to the 
fact that its integral manifolds are subsets of linear subvarieties. □ 

The following special case is due to Vitter ([V]). 

Corollary 1. For a complete immersed complex submanifold (Mn, L) in CN 

with Gauss rank r — 2, if M is not a cylinder, then TZ = /C is a ruling 
foliation with n — 1 dimensional leaves. 

Proof. In this case, Cx are 2x2 nilpotent matrices which are not all zero, 
so at any point x e M'", KX = TZX^ C71"1. □ 

Fix a point x € M"' and an unitary frame for C1- in a small neighbor- 
hood U of x. Denote by Ay = span{Ci,..., Ck} the subspace of Mrxr(C) 
spanned by the conullity operators at y £ U. The condition TZ C K can be 
equivalently stated as CiCj = 0 in 17, for any i, j. On the linear algebra 
level, since ^2R(Ci) C dN^j), we can always choose a basis {ei,... ,er} 
of each C^ such that {ei,..., ep} spans ^ -R(Ci)> while {ei,..., eq} spans 
P| N(CJ), where 0 < p < q < r. So with respect to this basis, all the Ci are 
in the following block form 

Vpxq     * 
0      0 

Conversely, for any 0 < p < q < r, any two matrices in the above block form 
have zero product. Incidentally, this way of expressing the fact that TZQK 
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gives a direct proof that if the maximum rank of each conullity operator is 
1 then Tl C K. 

Let us conclude this section by an example, which falls into the situation 

Example 3.   Consider the quintic hypersurface 

M4 = {z e C5 | F(z) = z1+ z2{zl + zl) + z3(z
2

4 + zl)2 = 0} C C5. 

It is a graph, hence smooth and properly embedded. The Gauss rank is 3, 
and 71 = K is a C2 ruling. 

This example can be easily generalized to the following. 
Let Ua C Ca be an open subset, Vb be a complex manifold of dimension 

b. Let h : U —> V and / : V —> Cm \ {0} be holomorphic maps. Consider 
the complex hypersurface 

Ma+m-l = ^ z)eUxCm\ f(h(u)) • Z = 0} C Ca+m 

where w-z = wiz\ +.. . + wmzm. Suppose h has a ^-dimensional image and 
/ is non-degenerate in the sense that / A fVl A ... A fVb is not identically 
zero. Here subscripts denote partial differentiation with respect to a local 
coordinate system in V. We then have 

KDn = {7}±DC = {7,jri,...,7^}±. 

Here JL means the orthogonal complement in Cm. Of course M could be 
closed in Ca+m for suitably chosen data. 

In Example 3,   h(z4, zs) = z\ + z2   and  f{v) = (1, v, v2). 

5. Submanifolds with Gauss rank 2. 

In this section, we will study the structure of r = 2 case in some more detail. 
Let L : Mn —> CN be a complete holomorphic immersion, with Gauss 

rank r = 2. Assume M is not an C cylinder. Then by Corollary 1 in the 
last section, we know that the Zariski open subset Mm in M is foliated by 
the holomorphic foliation /C = 71 whose leaves (under L) are open subsets of 
linear subvarieties of dimension n — 1. The following completeness result is 
due to Vitter ([V], Theorem B) and Dajczer-Gromoll ([D-G]). 

Proposition 4. For a non-cylinder, complete holomorphic immersion L : 
Mn -> C^ with r = 2, the leaves of K = 71 are complete. 
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We omit the proof here, since it can be found in [D-G] (Proposition 
2.1), where the authors proved the completeness of /C for complete isometric 
immersion into R^ with Gauss rank 2. Their result is stronger since it 
covers the C00 case. The proof can be easily adapted to the complex case. 

Proposition 4 will be used only in this section. 

Proposition 5. Any non-cylinder, complete holomorphic immersion L : 
Mn -» C^ with r = 2 is the total space of a holomorphic fiber bundle 
TT : Mn —> S over a Riemann surface S. Each fiber of TT is identified by t 
with a linear subvariety C71-1 in CN. 

Proof. First let us extend the holomorphic foliation K in M"' into a holomor- 
phic foliation on the entire M. Fix any point x E M\M///. Let U be a small 
neighborhood of x such that L\U is an embedding. We will identify U with 
its image in C^. Since Mm is dense in M, and K, is a ruling foliation, so for 
any sequence {xi} in U fl M'" approaching rr, there will be a subsequence 
{x^} such that the linear subvarieties containing /C^. converges to a limit 
position P, which is a linear subvariety of dimension n — 1 passing through 
x. We claim that this limit position is unique at x. Assume the contrary, we 
will have two sequences in U fl M'", {xi} —> x and {x'A -* #, such that KXi 

converges to P and /Cx/. converges to P\ with P ^ P'.  By Proposition 4, 
3 

each }CXi or JCX>. is a translate of a C71-1, and hence so is P or P7. Because 

r = 2, we have n > 3. Consequently, the fact that dimP = dimP7 = n — 1 
implies that POP' ^ 0 for dimensional reasons. Denote by TT the restriction 
on U of the orthogonal projection from C^ to TXM, it is a biholomorphism 
when U is sufficiently small. Since TT is (the restriction of) a linear map, for 
z, j sufficiently large, the linear subvarieties 7r(/Cx.) and 7r(lCxt.) will intersect 
in 7r(U). That is, )CXi will intersect X^/. in [/, which is impossible. Since 
holomorphicity follows from the continuity here, we have a holomorphic fo- 
liation JC' on M which extends /C, and the leaves of K' are complete (n — 1) 
dimensional linear subvarieties. 

In order to see the bundle structure, let us consider the holomorphic map 

* : M -> GVctCP71-1, CP^) £ Grc(n, JV + 1) 

which sends x G M to the CP71""1 containing ^(/CJ.). Denote by y the image 
$(M). let {C/fc}fcLi be a countable open covering of M such that each Uk 
is the union of (complete) leaves of /C7 which is biholomorphic to a direct 
product Ck x /C^, where C^ is a nonsingular holomorphic curve transversal to 
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K,' and K,'x is a leaf of K' in Ufa and ^ is injective on each Ck- By shrinking 
Uk if necessary, we may further require that ^(Uk) lies in a coordinate 
neighborhood of Grc(n,N + 1). Let 5 be the quotient space of the union 
Ufc{QJ> where the equivalence relation is: Xk G Cfc is equivalent to ^ G Cj 
iff rcfc and Xj belong to the same leaf of /C'. S has an obvious topology that 
makes it a Hausdorff space. Note that each ^(Uk) is a subvariety germ of 
euclidean space at each of its points. Thus by pulling back the sheaf of 
germs of holomorphic functions on ^(Uk) to Ufa S acquires the structure of 
a 1-dimensional analytic space. Let S be its normalization. Now there is a 
natural map S -» Y that sends the equivalence class [y] of y € M to ^(y). 
The map # : M -» Y lifts to a map * : M -» 5, which in turn lifts to a map 
^ : M --> S. It is straightforward to verify that the latter is a holomorphic 
bundle with fibre C""1. D 

Next, let us consider the special case when M is a hypersurface and is 
embedded. Let us construct an example first, which is the abstract form of 
the complete non-cylinder examples constructed in [W] and [V]. 

Example 4. Let S be a (complex) plane curve in C2 = {(^1,^2)}. S is not 
assumed to be nonsingular or a closed subset in C2. Write fi = ui(S). We 
assume that fi is a nonempty open subset of C. Suppose / : fi —> Cn \ {0} is 
a holomorphic map. We now associate with the pair S and / a hypersurface 
M%j in ft x Cn C Cn+1 defined by: 

M^ = {(y,s) € ft x C" I  (y,/(y) •*) € 5} 

where  /(y) • z = XlILi fi(y)zi ^s ^e formal complex dot product. 
Write ir(y,z) = (y, f(y) • z). Then TT : M —> S is a holomorphic fiber 

bundle with fiber C"""1. 

Claim (A). Notation and assumption as above, S is a nonsingular plane 
curve if and only if the hypersurface M<f * is a nonsingular subvariety of 

Cn+1. 

First assume S is nonsingular, and we will prove Mg * is nonsingular. Let 
po = (yo, ZQ) G ft x Cn, and we will show that the germ of M (= Af^y.) at po 
is nonsingular. Let 5 be defined at 7r(po) by a local coordinate function w, 
and let G be the function germ at po in M defined by G(p) = ie/(y, /(y) • jzr). 
Then the zero set of G near po is the germ of M at po- We claim that 
the complex gradient VG = (dG/dzi,..., dG/dzn+i) of G is nowhere zero 
near po> which would prove our assertion. Still using the notation (y,z) to 
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represent a point p of Q x Cn, we compute: 

VG(P) = (—("(p)) + ^<<p)){f{y) ■ *), ^(*(p))/(y)) • 

^ow 15ul> lIvZ <^0 no* simultaneously vanish at any point of 5. So suppose 
§%(Tr(p)) ± 0, then already VG(p) ± 0. If however ^(7r(p)) = 0, then 
g-(7r(p))^0,sothat 

VG(p) = (^(p)),0)^0. 

This being true for every p G M, the claim is proved. 
Now the converse. Suppose M is nonsingular subvariety, and we must 

prove that S is a nonsingular plane curve. Suppose not, then S has a 
singularity at some 7r(po) for a po £ M. Let the ideal of the germ of S at 
7r(po) be generated by a function germ (/?. Consider the function germ g 
at po defined by g{p) = <p(y, /(y) • z) for p near po- Since S is singular at 
7r(po), we have ^-(^(po)) = J^MPO)) = 0, but at least one of J^Mp)) 

and g^j-(7r(p)) is nonzero for any 7r(p) of 5 near 7r(po) but p =£ po- Because 
M is locally defined by a coordinate function ( and g vanishes exactly on 
M, g = go(k for some integer k > 1 and for some holomorphic function c/o 
vanishing nowhere on the germ of M at po- Hence on the germ of M at po, 
Vg is either nowhere zero (k = 1) or identically zero (k > 1). But 

V5W = (S:(7r(p))+£(7r(p))(/,(y) • ^ £(7r(p))/(y)) • 
So if for one p £-M, ^(^(p)) ^ 0, the fact that /(y) ^ 0 implies that 
V#(p) 7^ 0 and hence Vy is nowhere zero on M near po. In particular, 
Vy(po) 7^ 0. However, the fact that J^Mpo)) = J^MPO)) = 0 implies 

that Vy(po) = 0, a contradiction. Hence •§^(/n(p)) = 0 for any p on M near 

Po- Take a pi near po but ^ po- Then J^MPI)) 7^ 0 (5 is nonsingular at 
pi). Thus 

Vff(pi)=(^(pi))lo)#0> 

and therefore Vy must be nowhere zero near po. In particular, Vy(po) ^ 0, 
and we have reached the same contradiction as before. □ 

By Claim (A), we know that M (= Mg^) is an embedded smooth hy- 
persurface in ft x Cn C Cn+1. Define p(f) = dimspan{/(y) | y £ ft}. p(/) 
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is the dimension of the minimal subspace of Cn containing /(fi). We can 
now produce developable submanifolds: 

Claim (B).   Let S be a nonsingular plane curve and let the hypersurface 
Mgj be complete. 

(0 If P(f) = 1, then Mgj is a cylinder of Gauss rank r < 1. 

(ii) If p(f) = 2, then Mgj is a cylinder of Gauss rank r = 2. 

(iii) If p(f) > 3, Mgj is a developable submanifold with Gauss rank r = 2 
but is not a cylinder. 

For any p0 = (y0lZo) e M, let Vpo = {(y0,zo + v)\v e CnJ(y0) . v = 
f'(Vo) -v = 0}. Note that Vpo C M, and 7r(^0) = 7r(po). 

Suppose /?(/) = 1, then f(y0) is proportional to f'(y0) and therfore T^ is 
an (n - l)-dimensional linear subvariety passing through po- We now prove 
that VG is constant on Vpo. As before, let S be defined at 7r(po) by a local 
coordinate function w, and let G be the function germ at po in M defined 
by G(p) = w(y, f(y) - z). Then the zero set of G near p0 is the germ of M 
at po- We see that the complex gradient VG = {dG/dzi,..., dG/dzn+i) of 
G is 

vow ^ (^(-W) + g(,(p))(/'fe) •,), ^(.WJ/W) . 

It follows immediately from this formula that if PQ = (yo^o) as above and 
P = (j/o,zo + v) eVPQ, then 

=   VG(po), 

so that VG is constant on T^0 for each such pQ. Since the tangent plane of 
M at p is defined by p+{w € Cn+1| VG(p) -tu = 0}, the tangent planes of M 
are constant along VPo, as claimed. Hence the Gauss rank r < 1. By Abe's 
theorem ([A]; see Theorem 4 of [W] for a different proof), M is a cylinder. 

Suppose p(/) = 2. Because / A /' is not identically zero, for all but a 
discrete set of yo's, the set {v € Cn| f(yQ) ■ v = f{yQ) ■ v = 0} is an (n - 2)- 
dimensional subspace of Cn. Thus there is a Zariski open set of ptfs for which 
Vp0 is an (n - 2)-dimensional linear subvariety passing through PQ. The fact 
that the tangent space of M is constant along VPo for all such po is proved in 
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the same way as before. This proves that r < 2. To show r = 2, it suffices 
to show that r = 1 leads to a contradiction. If r = 1, the same theorem 
of Abe shows that M is a cylinder with (n — l)-dimensional rulings. Thus 
(with notation as above) the complex gradient VG is orthogonal to (n - 1) 
orthonormal vectors Wu W2, ..., Wn-i. Write Wi = (a;», W/) G fi x Cn as 
usual. We claim that at least one Ui ^ 0. If not, the fact that (VG, Wi) = 0 
for all i (where (,) denots the ordinary Hermitian inner product on Cn+1) 
implies that 

for all i. Thus the linear span of f(Q) is orthogonal to the (n—l)-dimensional 
linear span of wi, W2, ■■■ , Wn-i in Cn. But p(f) = 2 means that the linear 
span of /(fi) has dimension 2, and this is impossible for dimensional reasons. 
So let us say ui ■£ 0. For simplicity of notation, let us write u; for w\, W 
for W{, and W for Wi, so that W = (w.W) and <VG(p),W> = 0 for all 
p G Q x Cn. Writing p = (y, z), we have that for all p G M: 

0   =   (VG(p)tW) 

dw-(*(p))(f(y),w'). 

Ld 

du2 

Now let po = (yoj^d) as before. We have seen that J^f-Mpo)) 7^ 0 for a 
Zariski open set of po's in M. For such a poj let i;7 e Cn so that /(yo) • v7 = 0 
but ff(yo) - vf =^ 0. Define p = (yo> ^0 + ^0 where t is an arbitrary complex 
number for the moment. Note that 7r(p) = 7r(po) because f(yo) - v1 = 0. So 
with this choice of p, we have: 

0   =   <VG(p),W0 

= {^;(7r(po) + ^Wpo))(/'(yo)-2o+*/,(2/o)^'))}^ 

+ ^(T(po))</(y),W,> 

=   {£(^o) + g(-(Po))(/'(yo)-,o}aJ 

+ * {^^bo))(/'(t/o) V)}E7+ ^(^0)) </(»), W), 

for any choice of t G C. Because {J-£0r(po))(/'(yo) • v')}^ ^ 0 by choice, 
this is impossible. Therefore r ^ 1, and necessarily r = 2. 
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It remains to see that M is a cylinder. For each p = (y^z) G fi x C71, 
let Sp = span{/(i/), f'(y)}. Then (observing that /(y) • 2; = (z,f(y))) each 
P^ is an (n — 2)-dimensional linear subvariety in Cn orthogonal to <Sp. We 
have observed that for a Zariski open subset MQ of M, dim 6^ = 2 for 
all p e MQ.. NOW let S = span{/(y) | y € fi}. Clearly, Sp C S for all 
p G M. By hypothesis, dime? = 2. Thus for dimensional reasons, Sp = S 
for all p € MQ. It follows that if S1- denotes the orthogonal complement 
{v 6 Cn I (v, S) = 0} of S in Cn, then for every p £ A/Q, T^, is just the linear 
subvariety p+ (O^S1). In particular, all the V^'s are parallel and therefore 
M is a cylinder, as claimed. This completes the proof of case (ii). 

Finally, let p(f) > 3. Then as in case (ii), each Vp0 is an (n — 2)- 
dimensional linear subvariety orthogonal to Sp0 for all po in a Zariski open 
subset MQ of M, and the Gauss rank of r = 2. To see that M can- 
not be a cylinder in the present situation, consider two points pi and P2 
in MQ, with pi = (yi,^i) and P2 = (2/25^2) so that the linear span of 
{f(yi),ff(yi)if(y2)1f

,(y2)} has dimension > 3. The subspaces Sp1 and Sp2 

being distinct 2-dimensional subspaces of Cn, their orthogonal complements 
<S^ and 6^ (defined as in the preceding paragraph) are no longer parallel, 
and therfore the linear subvarieties V^ and Vp2 are also not parallel to each 
other. So M is not a cylinder. □ 

In the Introduction, we defined a hypersurface MQ = {x1xi + (x4 — l)x2 + 
(X4 — 2)xs = 0} in C4. In our present notation, MQ can be alternatively 
described as follows. In C2, the Riemann surface S is defined by U2 = 0 so 
that S is just the ^i-axis and Q — C. The function / : C —* C3 \ {0} is now 
given by /(y) = (y2, y - 1, y - 2), so that M is given in C4 by /(y) • z = 0, 
i.e., y22i + (y - 1)*2 + (y - 2)2:3 = 0. 

We would like to remark that in Example 4, S does not have to be a 
closed subset in C2 even when Mn is closed in Cn+1. For example, consider 
tt = C\{0}, 

5, = {(»,c^ I yGfi}cC2 

and let / : ft -> C3 \ {0} be the map defined by /(y) = (y,y2,y3). Then 

M%1 = {(y,zi,z2,Z3) € C4  I y(^i+y2:2 + y22;3) = e2/} 

is closed in C4, while 5 is not closed in C2. 

Theorem 3. Let Mn C C71^1 6e a complete embedded hypersurface with 
Gauss rank r = 2. Assume that M is not a cylinder, then there exists S and 
f as in Example 4 so that M = Mgj. 
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Proof. It follows from Theorem 2 and Proposition 4 that the leaves Kx of K, 
are (n — 1) planes. The key point of the proof is that, under the codimension 
1 and embeddedness assumption, these (n — 1) planes will have a common 
normal vector in C71^1. In order to see this, let us fix a generic point x on 
M. Under congruence let us assume that x = 0 is the origin in Cn+1 and 
M is locally given by 

^n+l = h{zi,. ..yZn) 

with £o = span {ei,..., eri_2}, /Co = span {ei,..., en_i}, and TQM = 
span{ei,... ,en}, where ei = ^7. So h(0) = 0, dh(0) = 0. 

Consider the curve C(s) = (0,..., 0,5, /i(0,... 0, s)) in M, \s\ < e. By 
the definition of C and K = 11, there exists holomorphic vector fields £l(s) 
(1 < i < n — 2) along C{s) such that Pc^a) and /Cc(5) are spanned by 
{£l; 1 < * < n—2} and {£*, ^l/; 1 < i < n~2} , respectively, where £*' denotes 
dt?/ds. Without loss of generality, we may assume ^ A ... A ^n~2 A ^1/ 7^ 0 
at s = 0. Under the choice of our coordinates, 

£c(0)    =   C{ei,...,en_i}CMn 

/Ccw   =   ^) + C{^^1,...,r"2} = {n^t)}iECn-i    where 
n-2 

F(5,t)     =     CW+^tirW+^n-l^'W- 
i=l 

The last two components of F(s,t) are 

n-2 

Fn     =     * + £ti£(s)+in-l#00 

n-2 

Fn+i     =     /l(0,..-,0,«)+^ti^+i(fi)+tn-ieiVlW. 
i=l 

Now we claim that the two (n — 1) holomorphic vectors (£*,..., £™~2,£n ) 
and   (£^_|_i,..., £n+i»Cn+i) are always parallel to each other for any |s| < e. 

Assume the contrary, that is, their wedge is not identically zero. Then 
for any generic point 5 in the punctured e-disc, there will be some t G C71-1 

such that Fn = Fn+i = 0, that is lCc(o) ^ ^C(s) ¥" $1 which contradicts 
Proposition 5. 

Now we know that (£,..., £-2,£') is parallel to (^+1,..., ^, ^Vi) 
for any small 5. This implies that there exist constants a and 6, not both 
zero, such that 

ad(s) + &e+i(s)   =   0      Vt,   V|S|<e, 

<*£'(*)+ ^£+100   =   0      V|S|<6. 
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Because £*' 6 spanf^1',^1,... ,^n~2} for any i, it follows that for any small 
5, /C(7(5) is perpendicular to (the complex conjugate of) — ben + aen+i. By 
analyticity, we know that all the leaves of fC are perpendicular to a fixed 
direction in Cn+1. (Since M is assumed to be non-cylinder, such a direction 
must be unique.) 

Now if we rotate our coordinate {^}, we may assume that this common 
normal direction for K is just ei. Let fi = zi(M) C C. For each constant c, 
the intersection Mc = {zi = c} fl Mn is a disjoint union of parallel (n — 1)- 
dimensional linear subvarieties, which are leaves of /C. Write Vc = C71-1 

for the linear subspace in Cn = {zi = 0} that is parallel to the linear 
subvarieties in Mc. 

Denote points in Cn+1 as (zi,zf), where z' = (^2,... ,^+1). Define a 
map p : 0 -» CP71"1 as follows. If c G ft, let K be defined in Cn = 
{^1 = 0} by C2Z2 + ... + Cn+iZn+i = 0 for some constants C2, ..., Cn+i. 
Then by definition, 5(c) = [C2 : ... : Cn+i] (homogeneous coordinates). 
5 is clearly holomorphic. Since ft C C, by the Weierstrass theorem, there 
will be a global holomorphic map / : Cl —> Cn \ {0} that lifts #, that is, if 
f(u) = (ai, ... an), then g(u) = [ai :  ...   : an]. 

Now consider the complex plane curve S in C2 defined by: 

5 = {(u, }{u) 'Z,)\  uen, (u7 z') € M}. 

It is also clear that, for this S and /, M is just the hypersurface Mg* 
defined in Example 4. (Note that because of Claim (A), 5 is a nonsingular 
plane curve, and because of Claim (B) and the hypothesis that M is not a 
cylinder, p(f) > 3.) This completes the proof of Theorem 3. □ 

Remark. A semi-global version of Theorem 3 was due to Vitter ([V], The- 
orem C). 

The codimension 1 condition is obviously necessary in Theorem 3, as 
illustrated by the following example. 

Example 5. Consider F : C3 -> C5 defined by F(sJti1t2) = ip(s) + 
ti$'(s) + t2$(s), where 

V> = (0,0,0,0,5),      £ = (l,S,s2,S
3,/i(s)) 

with h(s) an arbitrary holomorphic function on C. It is easy to check that 
F is indeed an embedding, that the leaves of the Gauss foliation are the 
£2-curves, and that the conullity foliation /C is the obvious one, namely, if 
x = F(s,ti,t2) and Vx = span{£'($),f(s)}, then Kx = x + Vx. Clearly, there 
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is no direction in C4 that is perpendicular to all the leaves of /C so that 
JP(C) can never be represented as an Mj y. 

The embeddedness condition in Theorem 3 is also necessary for the con- 
clusion to hold. Consider the following example: 

Example 6. Suppose S is any non-compact Riemann surface, £, ip are 
holomorphic maps from S into C4 such that for any s E 5, (ip' A £ A £' A 
£")($) ^z 0. (This condition is obviously independent of the choice of local 
holomorphic coordinate at 5). Then the holomorphic map F : SxC2 —> C4 

defined by F = if) + ti£' + ^ is an immersion. When £ is non-degenerate 
(i.e., £(5) does not lie in any proper linear subvariety), the leaves of K 
(which are the translates of the subspaces span {£'(s), £(s)}) do not have a 
common normal direction. So again, F(S x C) can never be an Mj r. 

For a specific example, one can take S = C, i/) = £" and £ = (1, s, s2, s3). 
In this case, F(s + j, -65,12S2) = F(s, 65,1252) for any s E C and any 5 E 
C*. In particular, F is not proper. In fact, if we replace the embeddedness 
condition in Theorem 3 by requiring the hypersurface M to be properly 
immersed, then the leaves of /C again will have a common normal direction, 
and one gets a similar (but slightly more complicated) description as in 
Theorem 3. We will omit the details here. 

Remark. In the real case, in [D-G], Dajczer and Gromoll were interested 
in this r = 2 class from the point of view of isometric deformations. In 
view of Theorem 1 of this paper, it would be very interesting to explore 
the structural results for complete, non-cylinder developable submanifolds 
of low Gauss ranks, e.g., r=3 or 4, both in the real and the complex cases. 

6. Topology. 

In this section, we will discuss the topological aspect of developable subman- 
ifolds. We would like to raise the following question (topological cylinder 
conjecture): 

Question 1. Suppose (Mn,^) is a proper holomorphic immersion in C^ 
with Gauss rank r < n. Is it true that Mn is always biholomorphic to a 
cylinder Xr x Cn~r for some Stein manifold Xr ? 

Towards this direction, we observe that, using the proof of Andreotti- 
Prankel to the Lefschetz hyperplane section theorem ([A-F]), the homotopy 
type of such a manifold Mn is that of a CW complex of dimension r or less: 
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Proposition 6. A properly immersed developable complex submanifold 
(Mn, L) in CN of Gauss rank r < n is homotopy equivalent to a CW complex 
of dimension < r. 

Proof Let S = M \ Mf be the singular set of the Gauss map F. Pick a 
generic point p in C^, so that p is not on ^(M), not a focal point of ^(M), 
and not in the normal space M^x) for any x G S. Then the square of the 
distance from p to L(M) induces a positive proper exhaustion function on 
M, which is a Morse function. At any critical point q £ M of this function, 
using the defining property of Cq via second fundamental form, the same 
proof in [A-F] yields that index of q must be less then or equal to r. □ 

It is worth noting that the above result does not hold for non-developable 
ruled submanifolds. For instance, consider the smooth quadric M2 = {z2 + 
z$ + z% = 1} C C3. It is foliated by straight complex lines. But its second 
betti number 62 = 1+&1 > 0, since its Euler number e = 1—61+62 = 4—2 = 2 
as M is the complement of the diagonal line in CP1 x CP1. (Another way 
to look at it is, M2 is a holomorphic line bundle over CP1.) 

Question 2. Suppose (Mn,^) is a proper holomorphic immersion in C^ 
with Gauss rank r < n. If it is not a cylinder, is it true that Hr(M, Z) = 0? 
Is this true at least when M is a properly embeded hypersurface? 

By Proposition 5, this is the case for r = 2. The reasoning here is that, 
intuitively, when M is further and further away from being a cylinder, its 
topology seems to be more and more restrictive. 

If we push Question 1 one step further, we may even ask the following 

Question 3. Suppose Mn is a properly embedded complex submanifold in 
C^ with Gauss rank r < n. Is it true that there always exists a continuous 
path 7 : [0,1] -> Aut(CN) in the (holomorphic) automorphism group such 
that 7(0) is the identity, while 7(1) maps Mn onto a cylinder Nn = Cn~rxXr 

and carries the Gauss leaves of M onto those Cn~r in N? In other words, 
even though M is not isometricly a cylinder, can it be deformed (by ambient 
automorphisms) into a cylinder? If so, what is the smallest subgroup of 
Aut(CN) within which this can be done? 

We hope these questions and the general discussion can generate some 
interest towards this special class of submanifolds. In particular, we believe 
that the structure of the singular set S = M \ M' of the Gauss map should 
be analyzed and it should contain a lot of information about M. 
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Finally, let us close our discussion with the following observation, which 
is the direct consequence of Theorem 7 in [A] — to the effect that for a 
developable submanifold N in Cn, if the holomorphic curvature of a plane 
orthogonal to a leave of the Gauss foliation is always nonzero at one point, 
then N is a cylinder, — together with the fact that, on a non-positively 
curved Kahler manifold, the vanishing of the holomorphic sectional cur- 
vature in a direction implies the vanishing of the Ricci curvature in that 
direction (cf. [Z]). 

Theorem 4. Suppose (Mn,*,) is a complete immersed complex submanifold 
in CN with Gauss rank r < n. If for some complex Euclidean metric ds2 on 
CN, the pull back Kahler metric L*(ds2) has non-positive sectional curvature, 
then M is a cylinder, that is, there exists complete holomorphic immersion 
i! : Xr -» C^-""1"7* such that L = i! x idCn-r. 

Proof. Let x € M'. By Theorem 7 of [A], it suffices to show that the holo- 

morphic sectional curvatures RYYYY ^ ^ ^or an^ ^ € ^' t^ie orth0gonal 
complement of Cx in TXM. Assume that RyvYY ~ ^ ^or some ^ ^ ^x • ^or 

any Z G TXM not parallel to V, consider the complex plane spanned by Y 
and Z. By [Z], Ryy7y = 0. Since Z is arbitrary, the Ricci curvature in Y is 
also zero, which contradicts the fact that Cx = {X G TXM \ Riccix^ = 0}. 

□ 
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