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Harmonic maps and strictly pseudoconvex CR 
manifolds 

ROBERT PETIT 

We study harmonic maps from strictly pseudoconvex CR mani- 
folds into Riemannian manifolds of nonpositive curvature. Some 
CR analogues of the Corlette and Siu-Sampson formulas are ob- 
tained using tools of Spinorial Geometry (Dirac bundles and Dirac 
operators). As a main application, we obtain results about the 
curvature of strictly pseudoconvex CR manifolds. In particular, a 
rigidity theorem for Sasakian manifolds is proved. 

1. Introduction. 

It is now well known that harmonic maps are a powerful tool to investigate 
the geometry of Riemannian manifolds. In particular, the famous rigidity 
results on Kahler structures with strongly negative curvature (Siu [20]) and 
also on the symmetric spaces (Corlette [4], Mok-Siu-Yeung [16]) have been 
obtained in this way. 

The purpose of this article is to study harmonic maps in the framework of 
strictly pseudoconvex CR manifolds and to deduce from that, results about 
the geometry of such manifolds. Remember that the strictly pseudoconvex 
CR manifolds are abstract models of strictly pseudoconvex real hypersur- 
faces in complex manifolds. Standard examples are the odd-dimensional 
spheres and the Heisenberg groups. A strictly pseudoconvex CR manifold 
is endowed with a natural connection called the Tanaka-Webster connec- 
tion for which the complex structure, the pseudo-Hermitian structure, and 
the canonical metric are parallel tensors. The basic idea of this article is 
to derive, for any Dirac bundle over a strictly pseudoconvex CR manifold, 
Bochner-Weitzenbock type identities for the Dirac operator defined from 
the Tanaka-Webster connection (Proposition 2.2 and Corollary 2.1). In the 
particular case of the Dirac bundle associated to a smooth map from a 
strictly pseudoconvex CR manifold into another Riemannian manifold (cf. 
Paragraph 3), these formulas are the CR analogues of the Corlette and 
Siu-Sampson formulas (Propositions 3.1 and 3.2). 
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Most of our results deal with strictly pseudoconvex CR manifolds for 
which the Tanaka-Webster connection has pseudo-Hermitian torsion zero 
(cf. Definition 2.2 ), i.e., Sasakian manifolds. Actually, let M be such a 
manifold that we assume to be compact. In Paragraph 4, we prove (Theorem 
4.1) that 

any harmonic map from M to a Riemannian manifold N with nonposi- 
tive sectional curvature is trivial on the Reeb field associated to the pseudo- 
Hermitian structure. 

As a consequence, we obtain that (Theorem 4.3) 

M admits no Riemannian metrics with nonpositive sectional curvature. 

This theorem can be seen as the Ci2-analogue of the Hernandez theorem 
(cf.  [11]). 

In Paragraph 5, we consider maps from a compact Sasakian manifold of 
dimension m > 3 into a Kahler manifold or a Sasakian manifold. In this 
case, remember that a CjR-holomorphic map in the sense of Definitions 5.3 
and 5.6 after, is always a harmonic map. In Theorems 5.3 and 5.4, we prove 
the Ci?-holomorphicity of harmonic maps under additional assumptions. 
Actually, if <f) : M —> N is a harmonic map with rank > 3 and 

i)  if N is a Kahler manifold with strongly negative curvature, then (j) is 
CR-holomorphic or CR-antiholomorphic. 

ii) if N is a Sasakian manifold with strongly negative Tanaka- Webster 
curvature and if (/) preserves the contact forms, then (j) is a CR- 
holomorphic isometric immersion. 

These results are the Ci?-analogues of the Siu Strong rigidity Theorem. 

As a consequence of Theorem 5.3, we obtain the following factorisation result 
(Corollary 5.1): 

if M is fibrated over a compact Kahler manifold M, then, any harmonic 
map with rank > 3 from M into a Kahler manifold N with strongly negative 
curvature, factors into a unique holomorphic map from M into N. 

There are many relations between harmonic maps from Kahler manifolds 
and holomorphic structures on vector bundles (cf. [3], [5], [19], [20]). In 
particular, any harmonic map from a compact Kahler manifold into a locally 
symmetric space of noncompact type induces a holomorphic structure on the 
pullback of the complexified tangent bundle of the target space. An analogue 
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of this result for the compact Sasakian manifolds is the following (Theorem 
5.1): 

any harmonic map <$> from M into a locally symmetric space of noncompact 
type N, induces a holomorphic structure on (jfT^N and dcf) restricted to the 
holomorphic tangent bundle is a holomorphic (f)*TcN-valued I-form. 

In Paragrah 6, we consider minimal (resp. CR-holomorphic) isometric 
immersions defined on a strictly pseudoconvex CR manifold M of dimension 
2d + 1 (not necessarily Sasakian nor compact) into a Riemannian manifold 
(resp. Sasakian manifold). Theorems 6.1 and 6.3 give obstructions to the 
existence of such immersions. Actually, we prove (Theorem 6.1) that 

if N is a Riemannian manifold with nonpositive complex sectional curvature 
and if the pseudo-Hermitian torsion satisfies at a point, |T|

2
 < d{d—1); then 

there is no minimal isometric immersion from M to N. 

Moreover, if M is not Sasakian (i.e., r ^ 0), we obtain that (Theorem 6.3) 
there is no CR-holomorphic isometric immersion from M into a Sasakian 
manifold. 

This last result generalizes the result of Barletta and Dragomir[l] on the 
non existence of Ci?-holomorphic isometric immersions from some compact 
quotients of the Heisenberg group into the Heisenberg group. 

A last application deals with the curvature (of the Levi-Civita connec- 
tion) of strictly pseudoconvex CR manifolds. It is well known that the 
sectional curvature of a Sasakian manifold is positive on any planes contain- 
ing the Reeb field. Theorem 6.2 asserts that, on any strictly pseudoconvex 
CR manifold, there exists, at each point, a complex 2-plane for which the 
complex sectional curvature is positive. 

The author wants to thank professors Ahmad El Soufi, Eric Loubeau, 
Jean-Louis Milhorat and Michel Rumin for their comments on this article. 

2. Strictly pseudoconvex CR manifolds and Dirac bundles. 

Strictly pseudoconvex CR manifolds. 

A smooth manifold M of real dimension m = 2d + 1 is said to be a CR 
manifold (of CR dimension d) if there exists a smooth rank d complex 
subbundle T^0M C TCM such that: 

T^M H T^M = {0} 
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and 
[r^M^rcr^M)] c r(TlfiM), 

where T^M = r1»0M is the complex conjuguate of T^M. If M is a CR 
manifold, then its Levi distribution is the real subbundle H of TM defined 
by H = Re{T^0M 0 T^M}. There exists on iJ, a complex structure J, 
given by J(Z + Z) = V^iZ - Z) for with Z E TlfiM. 

Assume M to be orientable. Then, the real line bundle H1- C T*M 
over M admits a global nonvanishing section 9. Such a section 6 is called a 
pseudo-Hermitian structure. In this case, the Levi form LQ, is the Hermitian 
form on Hc = T^M 0 T^M defined, for any Z, W G T1'^, by: 

Lo(Z}W)   =   -V-ld0(Z,W) 

Le(Z,W)   =   Le(Z,W) 

Lo(Z,W)   =   L9(Z,W) = 0. 

If X, Y G i? are real vectors, then 

Definition 2.1. An orientable Ci? manifold endowed with a pseudo- 
Hermitian structure is called a pseudo-Hermitian manifold. A pseudo- 
Hermitian manifold (M, 0) is said to be a strictly pseudoconvex CR manifold 
if its Levi form Lg is positive definite. 

If (M, 9) is strictly pseudoconvex, then there exists a unique nonvanish- 
ing vector field £ on M, transverse to -ff, satisfying 0(£) = 1 and d9(£,.) = 0. 
Now, extending J on TM by J£ = 0, we can extend LQ on TM by the same 
formula as above. This allows us to define a Riemannian metric #0, called 
the Webster metric, defined for all X, Y G TM, by: 

ge(XJY) = Le(X)Y) + 9(X)9(Y). 

As a consequence of the J-invariance of d0, we obtain that gg^X, JY) = 
^(X,y) - 0(X)0(y), and that, the 2-form u0 defined by U9(X,Y) = 
go(JX^Y) coincides with the 2-form d9. Notice that the norm of wo is 
constant and equal to y/d. 

Example 2.1. 

1) The odd-dimensional spheres. The odd-dimensional sphere 52cf+1 has 
a standard CR structure given by T^S2**1 = T1*0^1 n CrS2d+1. 
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The pseudo-Hermitian structure is given by i*0 where i is the canonical 
injection S2^1 C Cd+l and where 9 is the 1-form on C*4"1 given by 

o = ^(B-e)\z\2. 

2) The Heisenberg group and its quotients. 
The Heisenberg group denoted by 7id is obtained as Cd x M with the 
group law 

(z, t).(w, s) = (z + w, t + s + 2Im(z, w)), 

where ( , ) is the Hermitian product (cf. Dragomir [6]). The CR struc- 

ture is given by Tl'0Hd = J2j<dCZJ> where Z3 =  aTT + ^^Qt 

and -— = -(—— '— V^-l o—)) wi^ zi = xi + V—lyj-  The pseudo- 
ctej      2 OXJ oyj 

Hermitian structure is given by 

6Q = dt + 2 ^^(xjdyj — yjdxj). 
j<d 

Let 5S : Hd - {0} -» «d - {0}, s > 0, be the dilatation defined 
by <$s(2,£) = (sz,s2t). For m G N*, we set 6™ = 5S o ... o S3 (m 
factors) and S"™ = S™.   For d > 1 and 0 < s <  1, the discrete 

group Gs = {c^, m e Z} acts freely on 7^ — {0} as a properly 
discontinuous group of CR automorphisms of 'Hd — {0}. The quotient 
space Tid(s) = (?^ — {0})/Gs (cf. Dragomir[7]) is a compact strictly 
pseudoconvex CR manifold diffeomorphic to E2d x 51, where S2d = 

{x G ?^d, \x\ = 1} and |x| = (H4 + t2)5 is the Heisenberg norm of 
x = (2:,^). Let TT : ?/d — {0} —> Hd(s) be the natural covering map. 
Then the pseudo-Hermitian structure is given by 

9(ir(x)) = \x\-26o(x) o (d7r(x)y\ 

with x G Hd - {0}. 
An other example of compact strictly pseudoconvex CR manifold ob- 
tained as a quotient of W* by a discrete group is the Heisenberg nil- 
manifold (cf. Urakawa[23]). 

3) Other examples. 

Remember that the Siegel domains are domains of Cd+1 defined by: 

l<j<d 
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with (a,/?) = (ai,... ,<y.d,P) € Z^1. The boundaries of these do- 
mains, called Pseudo-Siegel domains, are strictly pseudoconvex CR 
manifolds (cf. [1]). Note that the Heisenberg group is diffeomorphic 
to the boundary of -Di,i. Other examples are given by the unit tangent 
bundle over a constant curved manifold (cf. [22]) or the total space of 
the Boothby-Wang fibration over a compact Hodge manifold. 

On a strictly pseudoconvex CR manifold, there exists a canonical con- 
nection preserving together the complex structure of the Levi distribution, 
the pseudo-Hermitian structure and the Webster metric. Actually 

Proposition 2.1 (Tanaka-Webster connection cf. [21], [25]). Let 
(M, #,£, J^ge) be a strictly pseudoconvex CR manifold, then there exists a 
unique affine connection V on TM (called the Tanaka-Webster connection) 
such that: 

a) The distribution H is parallel for V. 

b) Vg0 = 0, V J = 0, V<9 = 0 (hence V£ = Vco^ = 0;. 

c) The torsion TofV satisfies for any X, Y e H, T(X, Y) = -uo(X, Y)£ 
andT(^JX) = -JT{^X). 

Note that, unlike the Levi-Civita connection, the torsion of the Tanaka- 
Webster connection is always non zero. 

The pseudo-Hermitian torsion, denoted r, is the TM-valued 1-form de- 
fined by T(X) = T(£,X). Note that r is ^-symmetric and trace-free. 

Definition 2.2. A strictly pseudoconvex CR manifold is called a normal 
strictly pseudoconvex CR manifold or a Sasakian manifold if the pseudo- 
Hermitian torsion is zero. 

Pseudo-Siegel domains (in particular the Heisenberg group) are Sasakian 
manifolds. The compact regular strictly pseudoconvex CR manifolds, such 
as the odd dimensional spheres or the Heisenberg nilmanifold, are examples 
of compact Sasakian manifolds. On the contrary, the manifolds Hd(s) are 
examples of compact strictly pseudoconvex CR manifolds which are not 
Sasakian (the calculation of the pseudo-Hermitian torsion associated to 0 = 
f9o is obtained using formula (2.16) in [15, p. 164]). 

The curvature of the Tanaka-Webster connection V, denoted i?, is given 
for any X, Y € TM by 

R(X,Y) = VyVx - VxVy + V^yj. 
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The Bianchi identities are the following (cf. [21], [10], [17]): 

R(X,Y)Z + R(Z,X)Y + R(Y,Z)X   =   uJe(X,Y)T(Z) +UO(Z,X)T(Y) 

+Lj0(Y,Z)r(X) 

R(X,t)Z + R(t,Z)X = (Vxr)(Z) - (VZT)(X)    (X,Y,Z G H), 

where, (VXT)(Z) = VXT(^) - T(VX^)- 

The Ricci endomorphism Ric is defined by: 

Ric(X) = J2R(ei>X)ei' 
i 

where {e*} is a ^-orthonormal basis. 

Note that Ric($) = Jr with Jr = - ^(Veir)(ei).   Unlike the Kahler 
i 

case, R and i?zc are not in general J-invariant. Nevertheless, we have the 
identities: 

R(X, Y) - R(JX, JY) = JT{X) f\Y- JT{Y) AX-r(X) AJY + r(Y) A JX 

(1) Ric(JX) - JRic(X) = 2(d - I)T(X)    (X, Y e H). 

Dirac bundles and Dirac operators over strictly pseudoconvex 
CR manifolds. 

In this paragraph, all the canonical connections will be denoted by V. 
Let M be a strictly pseudoconvex CR manifold and TM, its tangent 

bundle. Endowed with the Webster metric and the Tanaka-Webster con- 
nection, the bundle TM is an oriented Riemannian vector bundle with a 
Riemannian connection. Since TM is an oriented vector bundle, then the 
Clifford bundle Cl(M) is well defined (Definition 3.4 Chapter II of [14]). 
The Webster metric and the Tanaka-Webster connection extend from TM 
to Cl{M) in such a way that the induced connection on Cl(M) be a Rieman- 
nian connection acting as a derivation on Cl(M). Now, let S be a vector 
bundle over M of left modules over C7(M), endowed with a Riemannian 
metric and a Riemannian connection. In addition, we assume that the unit 
vectors in TM act isometrically on S and that the connection on 5 is a mod- 
ule derivative.  Then, under the previous assumptions, S is called a Dirac 
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bundle (cf. [14] for more details). Let S be such a bundle over M, then the 
canonical Dirac operator V acting on T(S) is given by: 

i 

where {e;} is a local orthonormal tangent frame. 
In this context, we define two other differential operators on T(S) (which 

will play an important role later on). The first, associated with J and 
denoted by T>j is defined by: 

i 

The second, associated with r and denoted by VT is: 

i 

The operator Vj (resp. VT) will be called the J-twisted Dirac operator 
(resp. the r-twisted Dirac operator). In the following, we denote by A. the 
endomorphism of V{S) given by left module multiplication by a form or a 
vector field and by [, ] (resp. { , }) the commutator (resp. anticommutator). 

Lemma 2.1.  The operators V, Vj and VT satisfy the following identities: 

(2) {2?>Af} = -2V€ 

{DT)A^} = 0 

[V,\Ue\ = 2Vj. 

Proof. Since £ is parallel for the Tanaka-Webster connection, the endomor- 
phism A^ is parallel (i.e., [V, Af] = 0). We deduce that 

{£>, AJ   =   V o Ae + Ae o V = ^(ei.Vei o Ae + ^.V*) 
i 

=   X)(e,-^ + let). Ve, = "2 X) 9(ei) V«* = -2V£> 
i i 

and 

{£>T, A J = PT o Ae + Ae o Pr = Y^M + M- Vrfe) = ~2 J] Vr(0 = 0. 
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Since OJO is also parallel, [V, A^] = 0 and therefore 

i 

i 

Let E be a Riemannian vector bundle over M and a be a E-valued p-form 
on M. Setting an = a o H where 11 : TM —> H is the canonical projection, 
we have (cf. [18]) the decomposition a = an + 0 A i(£)a (A denotes the 
exterior product). Moreover, under the J-action, we have OLJJ = a# + OL^J 

with otjj (respectively a^) is the J-anti-invariant part of an (respectively 
the J-invariant part of a^) (i.e. a^- = \(OLH ± ^if 0 J))- In particular, we 
have T = T£ + 6AT) with T£ = -UJQ ® £. 

In the following, V2 denotes the second covariant derivative on r^S') 
(i.e., S/XY 

= ^x^Y — ^Vx^) and V*V the rough Laplacian (i.e., V*V = 
-trace^V2,.). 

Proposition 2.2 (Weitzenbock formulas).   The operators V2  and Vj 
satisfy the relations: 

(3) V2 = V* V - Ao,, o V^ + KH + A^ o (Dr - 2A^ o ^) 

^J - vle = v*v - x»eo v^ + n% - n-H, 
tyftere T^if, 71^ and TZ^ are the endomorphisms given respectively by: 

Proof. In a local orthonormal tangent frame, we have: 

(4) D2   =   J]ei.Vei(ej.Vei) = 5](ei.(Veiej).Ve.+ei.ej.VeiVei) 

=   X]ct-ej.(Ve<Vci - Vve^,) = X^.e^.V2.^. 

h3 
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Since V^x - V^y = R(X, Y) - VT(X)r) and R = RH + 6 A i^)R, we de- 
duce that 

v^x - v^y  - ^(x,y) + u>o(x,Y)ve + 0pO(i2(&y) - vr(r)) 
(5) -0(Y)(RfoX)-Vrix)). 

Moreover, we have ^ = ]P#(e2)e; and, by the isomorphism A*M ~ Cl(M), 
i 

wo = « ^J^(et>ej)et.ej. Hence (4) becomes: 

* *ti 

i 

Using the relations e*.^ = —£.6* - 2gd(^ei) and T(£) = 0, we obtain the 
formula. 

We have for Vj: 

(6) Vj = ^(^.(Vje^.O.Vje, + ei-ej-.Vje, Vje,) 

= ^^^-.(Vje.Vje. - VjvJe.ei). 

Since VJ = 0, (6) becomes: 

^     "- 2-/ ^JeuJet ~ 2 ^ Zi'Zj'i^JejtJei ~ ^Je^Jej)' 
i h3 

Using, on the one hand, the identities 9 o J = 0 and ue o J = UJQ, and, on 
the other hand, Ro J = RH o J = R+ o J + i?" o J = R+ — R^^ we obtain 
from (5): ■ 

VJ = - Yl Vjajei -"e-vf - j Eei'e3'RH(e^ ei) + 25 ei'erRH^ eo)' 
i i,3 i,j 
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Now, in a local orthonormal tangent frame {ei,... e^, Jei,... Je^ OJ where 
{61,... €4, Jei,... Je^ is a local orthonormal frame of if, we have: 

v*v=-x;v£
2
ii€<-Evk^-vi,. 

i<d i<d 

Hence, 

= v*v + v|>£. 
This concludes the proof of the second identity. □ 

In the following, a local orthonormal tangent frame {ei,..., e^, Jei,..., 
Jtdi £}> where {ei,... e^, Jei,... Je^} is a local orthonormal frame of i?, will 
be called an adapted frame. 

Corollary 2.1.  The following identities hold: 

(7) l-[V\\i]=VT-2\ioni 

(8) _lAe o {P2, AJ = V* V - A,, oVt + KH = V2j- V^ + 2^. 

Proof. We have 

where A^ o [D2,Af] (resp. A^ o {I)2,A^}) anticommutes (resp. commutes) 
with Ae. Since [i?(X, F), A^] = 0, we have [ftjf,Af] = 0 and {^'Ae} =:= 0- 
Now, since [V, Af] = 0, [A^jA^] = 0 and {Pr,Af} = 0, we deduce that the 
first three terms in the right-hand side of (3) commute with A^, meanwhile 
the last anticommutes with A^. By identification, we obtain 

1 

and 

-Xio[D\\i)^Xio{VT-2\ioni), 

■-Af o {D2, AJ = V*V - A^ o Vi + KH. 
2 

The last equality in (8) follows from the Weitzenbock formula for V2.      □ 

Under the assumption that M is compact, the operators £> and Vj have 
the following property: 
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Proposition 2.1.   The operators V and Vj are formally self-adjoint for the 
natural inner product on T(S) given by: 

JM 
901 

M 

where Vge is the canonical volume element (i.e., Vg0 = 0 A (d6) ). 

Before the proof of this proposition, remember (cf. [23]) that for any 
E-valued p-form a, the covariant derivative and the exterior derivative of a 
are given by: 

(Vxa)(X1,...,Xp) = V%a(X1,...,Xp) 
P 

+ ]L a (Xl > • • •'Vx Xi > • • • > XP )' 

(da)(Xl,...,Xp^) = Y^(-iy+\VXia)(X1^..,Xu...1Xp+1) 

(9) +(QTa)(X1,...,Xp+i), 

where Xi means that the term Xi is omitted and where QT is the operator 

(QTa)(Xi,...,Xp+i) 

= YJ(-l)i+i*(T(Xi,Xj),X1)...1Xi,...,Xj,...,Xp+1). 

The divergence of a is defined by: 

(10) (Sa)(Xu...,Xp-l) = -traceg0(V. a)( . ,Xi,... ,Xp_i). 

Note that 6 is not the formal adjoint of d. 

Proof Let (71,(72 G IXS), then (cf. [14, p. 115]) 

(Vai, (T2)vgd - (cri, Va2)vge = Ja v^, 

where a is the 1-form given by a(X) = (cri,X.<72).   Using S7vge = 0 and 
(10), we have, with respect to an orthonormal tangent frame {e^}: 

P+i 

5a Vge(ci,..., em) = - J^ ^T^i^eA^Vg,J (ci,..., e;,..., em), 
i=l 
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where a$ is the vector field canonically associated to a. So, using (9), we 
obtain 

8<xvg0(ei,...Jem)= ^-d^a8)^ + QrW^KJjCei,... ,em). 

Now, in a local orthonormal tangent frame {/i,... /2d, ^}, where {/i}, i < 2c? 
is a local orthonormal frame of H, we have: 

(Qr»(a!l,)wflB)(/i,...,/2d,0 

=   E  (-l)<+i+W/i./>W(all.e,/i,..-,/<,.-.,/i,...,/2d,0 
i(j<2d 

+ E(-l)Xe(a«)r(/i))/1,...,/i)...,/2d) 
i<2d 

= a(0 E (-i)W(/<)./i)«JW(e,/J-,/i,-.-,/i,...,/M) 
i,j<2d 

= a(OE(-1)W(/0i/iKttJi,/i,--.,/i,-..,/2d) 
i<2d 

Hence, Ja ^  = — d(i(cfl)vge).   The result immediately follows from the 

Stokes formula. Since Vj = -[2?, A^], the result for Vj is deduced from the 

previous one. D 

3. Corlette and Siu-Sampson type formulas. 

In this section, we use the previous identities to obtain Corlette and Siu- 
Sampson type formulas for maps from strictly pseudoconvex CR manifolds 
into Riemannian manifolds. 

Let (M, 9, £, J, go) be a strictly pseudoconvex CR manifold of dimension 
m — 2d+1 > 3, endowed with its Tanaka-Webster connection V and (iV,^ ) 
be a n-dimensional Riemannian manifold endowed with a metric connection 
V' on TN with torsion f'. 

Let 0 : M -» N be a differentiable map and c^TN the pull-back bun- 
dle endowed with the metric and the connection induced by those of TJV. 
The canonical isomorphism A*M ~ Cl(M) allows to consider the bundle 
A*M (g)(f)*TN as a Dirac bundle over M. Note that dcj) is a section of this 
Dirac bundle, more precisely, a (/>*TiV-valued 1-form. The covariant deriva- 
tive of any (jfTN- valued 1-form cr is given by: 

{Vxa){Y) = vJ*TJV«7(y) - a(VxY), 



588 Robert Petit 

where V denotes the connection induced by V on (jfTN. The exterior 

derivative and the divergence of a are respectively denoted by dv a and 

5    a. The expressions are given by formulas (9) and (10). 

Lemma 3.1. For any map </>: M —> N: 

:^'(#)H-(V^)(0- 

+ e/\{d<t>oT-i{0{<t>*T')) 

(ii)        Vd4> = s^ {d4>)H - {v^m - {<?¥)„ -ue® ^(0 

and 

VJW)   =   -Aedtff ')H + we ® c^(0) + 4'^^ - (^r')^ 
(12) +eAj(vfd0 + t(O(^*r')-#oT)> 

dfjdtf = (d^Jd<t>)H, (cj>*f')JH(X,Y) = (<j>*f')H(JX,Y)+(<f>*T')H(X,JY) 

and Ao((p) = ^tracegeip(^ J.). 

Proof. The Dirac operator V associated to the Dirac bundle A*M(g)(f)*TN 

coincides with the operator .A(V) + 8V , where ^l(V) is the anti-symmetri- 

sation of the covariant derivative on A*M 0 cffTN. Hence, Vdcf) = 5V d(j) + 
A(V)d<p. First, we have 

(Vx#)(r) = (Vxd(f>)H(Y) + e(Y)(Vxd(f>m 
= ^x(d4>)H)(Y) + e(Y)(Vxd4>m. 

Hence, 

S^d4>   =   -tracege(Vd(l))(.) = -tracege(VXd(t>)H)(.)-(V^d4>)(0 

=   ^'(d^-(Ve#)(0. 

Now, for any X, Y € TM, we have: 

(A(V)d4>)(Xt Y) = (Vxd<P)(Y) - (Vy#)(X). 

Formula (9) yields: 

(d^d<P)(X,Y) = (A(W)d<t>)(X,Y) - d<j>{T(X,Y)). 
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Now, we have 

Vj*TWc^(y) - V'yTNd<f>(X) - d4>({X,Y]) = -f''(d<t>(X),d<i>(Y)). 

Hence 

(<?'d4>)(xtY) = v^^^^-Vy'^^W-^itx.y]) = -^f (x.r). 

Since T = —we ® £ + 9 A r, we deduce that 

(^(V)d0)(X,y)   =   -(i>*T'{X,Y)-ue{X,Y)d<t>{0 + {9^dc|>oT){X,Y) 

=   -(<j>*f)H(XtY)-Ue(X,Y)d4>^) 

(13) +(fl A (# o r - i(0(<f>*f')))(X, Y). 

The first formula holds. Now, Vjdcj) coincides with A{V o J)d(f> + (5V Jd(f>, 
where 

(A(V o J)d4)(X, Y) = {Vjxd<t>){Y) - (Vjy#)(Z) 

and _, 
<5^ Jd^ = -tracege(yjd4>){.) = -tracege(Wjd(f>)(.). 

Using (13) and the fact that J is parallel, we obtain 

(A(VoJ)d(f>)(X,Y) 

= (Vy#)(JX) - (Vxd<l>)(JY) - 9(Y)(d<t> o T - i(t;)(<j>*T'))(JX) 

+ 9(X)(d<f> o r - i(0(<t>*f'))(JY) - (<i>*f')H(X, JY) + (<t>*T')H(Y, JX) 

= (VxJdMY) - (VyJ#)(X) - (^f )a(X,y) 

-^AJ(#oT-^)(^r')))(^^) 
= (A(V)Jd<t>)(X,Y) - (<j>*f')JH(X,Y) 

-(9 A J(d<j> o r - *(0(^f')))(X>Y) 
= (A(V)Jd<l>)H(X, Y) + (9A Ve JdfliX, Y) 

- {<t>*f')JH{X, Y) - (6 A J(# o r - t(O(0*T')))(*, y) 

= (AWJdtMX, Y) - (<i>*f')JH(X, Y) 

+ (9AJ(Vid4> + i(Z){<t>*T')-d<j>oT))(X,Y). 

Formula (9) yields: 

(dtjd<j>)(X,Y) = {d?' Jd4>)H{X,Y) = (^(V)J#)ff(X,y). 
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We deduce that 
.£:/ .£*.J A{V o J)d4> = d% Jd<t> - (<f)*T'yH + 6 A J(V^d<t> + i(^)(^*T') - <ty o r). 

Now, with respect to an adapted frame {ei,... e^, Jei,... Je^,^}: 

/ d 

Sv Jd<j> = -J2((VjeMid) - (V£<#)(J6i))• 

Using (13), we obtain: 

d 

Sv J#   =    _^((Vei#)(j6i)-(VJei#)(6i)) 
2=1 

d 

+ J2 {{^f')H{Jeh e^ + MJeu 6i)#(0) 
1=1 

d 

i=i 

=   -~(JV J# - 2Ae((<l)*T )H + UJO® #(0). 

Hence the second formula. □ 

Prom now, we assume that the curvature of the metric connection on 
N satisfies the first Bianchi identity. This allows to consider the notions 
of curvature tensor and curvature operator. In the following, we denote 
respectively by R and p the curvature tensor and the curvature operator 
of N. The natural extensions of p and ( , ) to AT^iV (where T^N is the 
complexification of TyN) will be respectively denoted by pc and ( , ). 

Proposition 3.1 (Corlette type formula). Let M be a compact strictly 

pseudoconvex CR manifold. For any map </> : M —> N such that i(£)((/>*T ) = 
0, we have: 

(14) 

fM WWHI
2+\\^^m)\2+^'(#)tf i2 - ^'#i2 -1# o T\2vge 

JM 

where 
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Proposition 3.2 (Siu-Sampson type formula). Let M be a compact 
strictly pseudoconvex CR manifold. For any map (j> : M —> N such that 

((t^T')H = 0, we have: 

(15) / \d%Jdct>\2 - |^'(#)H|2 + T{<t>) v9e=4f (<!>%)- vge, 
JM JM 

where 

T(<f>) = \Ae((<l>*F)H+»o®d<l>(m2 " K^^ + ^^^OI2 

+ 2(d[- l)(d<f>oJoT,d<f>), 

and where, in an adapted frame {ei,... e^, Jei,... Je^, ^}, 

i,j<d 

with rjfj = d0(Z») A ^(Z,), Zi = ^(e.- + v/Zl^). 

The proof of these propositions needs some lemmas. 

Lemma 3.2. For any map cfi : M -> N such that i(€)(<f>*T') = 0; the 
following formula holds: 

(16) (2?T#, t.d<l>) = -^ - 2(Vf#, # o r) 

+ 2|# o r|2 + <d0(fltc(O), #(0). 

?i;/iere 7^ is ^/ie 1-form defined by ^(X) = ((<i0 o r)(X),d^(^)). 

Proof. We have: 

i 

Now, for all a,^ e fi1^) and all a,7 6 fi^IW), we have (cf. [9]): 

(17) (a-a^.T) = (a,/?><(7,7) + (i(^)a,i(7^) - (i(<r)i8>t(7)a). 

Hence, 

i 

(18) -((Ve^XO^MeO))). 
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We have,   on the one hand,   (r(e»),^)   =   0,   and,   on the other hand, 
(Vx#)(r(y)) = (Vxcty o T)(Y) - #((Vxr)(y)). 

Hence (18) becomes: 

<2>Td0,e#) = S<(Ve,^ o rXei), dm) - X)<(Ve,<ty)(0. (# 0 ^)(ei)) 
i i 

+ (#(5T)>#(0>. 

Consider the 1-form 7^ defined by 7^(X) = {(d^oT)(X),cUf>^)), then 

i i 

=   -£(eiW°T)(eO»#(0> - (WorJ^eO.^O)) 
i 

i 

-E((Vei^)(0,(#OT)(ei)) 
i 

(19) =   -^;((Ve<#or)(ei),#(0) -^((V^^CO.WorJCei)). 
i * 

Using (19) and the equality 8T = .Ric(£), we obtain: 

(20) {VTd<j)^.d4>) 

= -S^-2Y^((VeM(0Ad<t>°T)(ei)) + mRic(Z)),d<i>(0)- 
i 

Using (13) and the assumption i^fflf') = 0, we have 

i<m i<™> 

=    (V?#, d(j)OT)- |# o r|2. 

By substituting it in (20), we obtain the required expression. □ 

Lemma 3.3.  We have 

(21) (IZtdfrdt) = -(<£*£% + ^ W(i2ic(O),d0(O> 

and 

(22) (^d^, #) = -2((J>*PC)H + (d-l)(d4>oJo r, #). 
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Proof. We have: 

i i 

Using (17), we obtain 

<^#,#> = \J52((m,ei)d<l>)(ei),d<l>(0) - ((R&eiWmMiei))). 
i 

Now, we have 

(R(X,Y)d(f))(Z)   =   ^TN{X,Y)d(j>{Z)-d(t){R{X,Y)Z) 

(23) =   R,(d(l>(X))d(j)(Y))d(l)(Z)-d(l)(R(X,Y)Z). 

We deduce from (23) that 

(n^4>,d<t>)   =   ^(-2</»*JR'(e,ei,e,ei)-(#(JR(^ei)ei),#(0) 
i 

+(d</»(i?(e,ei)0,#(ei))) 

i 

Hence the first formula. Now, always using (17) we have: 

(IZffdcf), dcj)) 

hi 

= - X^((^(^, ej){d4)H){ei), (dfyxiej)) 
hi 

= -I J2^R^^ tiW^H - RniJei, Jej){d4>)H){ei), (d0)jy(ej)>- 2 
hj 

Using (23) together with the Bianchi identity for i?', the previous expression 
becomes (cf. [9]): 

(Tlfldcf)) dcj)) 

= -j ^ ( ^B^H&^i^i^i) - 2(<l>*3)H(eiiJeiiei>Jei)) 

+ 2 Yl^d^H(RH(ei, efia - RH(JC.-, Je^Jei), (^^(e^)), 
^j 
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where (^*R')H   =   (</>*#') oil.    Now,  in an adapted frame {€!,...,€<*, 
Jei,..., Jed^}: 

(24) <^d^, #) 

+ <l)*BL{J6i, Jej, Je^ Jej) - 20*#'(€;, Je^, ej, Je^J 

+ ^ 5](W(i2ic(et) + JRiciJei))^^)) 
i<d 

+ (#(i?2c(Jei) - Ji2ic(€i)),#(JeO))• 

The first five curvature terms of (24) are -2 J^ (pcivfj)^vfj)• Finally, using 

(1), we obtain: 

\^2({d4>(Ri^) + JRic(Jei)),d(f)(ei)) 
i<d 

+(d<t)(Ric(Jei)-JRic(ei)),d<f)(Jei))}    =   (d- l)(#o Jor,#), 

this concludes the proof. C 

Proo/ of Proposition 3.1.   Using (7), we have: 

(25)        J / ([^2,A?]#,^#)^ = / (VTd<i>^.d<t))-2(Ksd(t>,d(l))vl 
2 JM «/M 

Now, using (2) we have 

/ ([P2,AS]#,^#K    =    / (l?(t.d4>M.d4>)-(V2d<l>,d4>)vi 
JM JM 

= [ \v^.d4>)\2 - mm\, 
JM 

=    / |£.£>(#) + 2V$#|2 - [VidfiW 
JM 

=   4 / (e.I>(#),Ve#) + |V^|2^ 

^tf- 

^ 

'^ 

'99' 
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Equation (11) gives: 

- I(V^)(0|2 - (V^, # o r - iiOipf')). 

Since 

= l^'(#)ifl2 + l(v^#)(OI2 - 2((V^)(0,^'(^W 

and i(0(<l>*T') = 0, we deduce that 

(C-D(dcf>),Vtd<t>) = l\S^(d<t>)H\2 - i|^'#|2 

Hence, 

[ {[v2,\s}d<t>,z.d(f>)v9e = if iv^d^f + hd^id^^-hs^dcpi2 

i, 
(26) +^l(Ve#)(0|2 - (V^^OT)^ 2' WS9- 

Using (16),(21) and (26) in (25), one gets the result. □ 

Proof of Proposition 3.2.   Using (8), we have 

\fM({V
2,\s}d<t>,Z.d<t>)vgg= J  \Vj(d<t>)\2-(Vlid<j),d4>)+2('R,J[d<f>,d(f>)vgg. 

Since for any function /,  /   £/%, = 0, 
JM 

f (Vlsd<t>,d<f>)vge = f (£<V?#,#) - IV^I2)^ = - / IV^W,. 
JM JM JM 

Hence, we have 
(27) 

/ pj(#)|2 + |V€#|2 - h{V2,XtWAdfivg, = -2 / {K-Hd<t>,d<t>)v9e. 
JM t JM 
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Using (11), we have 

(28) / ({V2,\s}d<l>,td(l>)v9g 
JM 

= [ p(e.#)|2 + P(#)|\e 
JM 

= [ 2|P(#)|2 + 4(Z.V(d<P),Vzd<!>) + 4|Ve#|2 vge 
JM 

= 2 f |^'(#)ff|
2 + |v$#|2 - Kv^xoi2 

JM 

+ |V?#-#or + i(O(0*r')|2 

+ l(^2:i')jy + wtf®#(0l\fl. 

Using (28) and (12) with (4>*f')H = 0, the left-hand side of (27) becomes: 

f |d^Jd0|2 + |J(V€d0-d0oT + t(O(0*r'))|2 

JM 

+ l(Ve#X£)l2 - |Ve# - # o r + i(0(rT,)|2 

- |^' (d<f>)H|2 + |Ae((^f ')„ + w* ® #(0)|2 

-l(^')/f + ^®#(OI%e- 

Noting that for any 1-form a, \a\2 — \Ja\2 + |a:(£)|2, we obtain the re- 
quired expression. Using (22), we obtain the right-hand side of (27) and 
consequently the formula. Q 

Remark 3.1. Note that if V is the Levi-Civita connection, then T = 0, 
and therefore Formulas (14) ,(15) are valid for any map (f): M —> N. 

4. Harmonic maps and the geometry of Sasakian manifolds. 

Let (/) : (M,g) -> (N,g) be a differential map between Riemannian mani- 
folds. Then, the Hessian of (p is defined by: 

(Dd4>)(X,Y) = (Dxd4>)(Y) = D'^TNd^(Y) - d<f>(DxY), 

where D* (resp. D) is the Levi-Civita connection on TN (resp. TM). The 
map 4> is called harmonic if r(^) = traceg(Dd(/))(. , .) = 0. 
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Lemma 4.1. Let (M,gQ, V) be a strictly pseudoconvex CR manifold and 

(JV, g , V ) 6e a n-dimensional Riemannian manifold endowed with a metric 
connection. Then, for any map </>: M —> N we have: 

8^dcj) = -r(0) - tracegd^U\ 

where U  is the 2-tensor U' = V' — D*. 

Proof. The difference between the Levi-Civita connection D and the Tanaka- 
Webster connection V is given by (cf. [6]): 

where Ag(X, Y) = ge(T(X)y Y) and where 0 denotes the symmetric product 
(i.e. for any X,Y G TM, (^ © J)(X,y) = ^(X)jy + ^(y)JX). Hence, 

(29) (Vx#)(y) = (^^)(y) + ^C/' + i(0 0 ^ o J)(X, F) 

+ ^(x,y) - ^(x,y)) #(0 - e(y)(#or)(x). 

Now, taking the trace with respect to an orthonormal tangent frame, we 
obtain the result. □ 

In the following, we assume that N is a Riemannian manifold endowed 
with its Levi-Civita connection, hence V' = D*, ll' = 0 and T' = 0. In this 

case, a harmonic map (j): M -> N satisfies Jv d(f) = 0. 

Theorem 4.1. Let M be a compact Sasakian manifold of dimension m > 3 
and N be a Riemannian manifold with nonpositive sectional curvature. Then 
any harmonic map (j) : M —> N satisfies d0(£) = 0. 

Proof. Let (j) : M —t N be a harmonic map. Then, under the assumptions 
T = 0 and r = 0, we deduce from (11) that Vdcj) = —oJo®d(j)(£). Moreover, 
Equation (14) gives: 

/ IV^^ + KV^KOI
2
^ = [ WR')^. 

JM JM 
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Since the sectional curvature of N is nonpositive, ((l)*R )c is nonpositive. 
Hence, we deduce from the previous equation that V^dcf) = 0. It follows 
from (13) that 

(30) VxTNdm = (Vx#)(0 = (Ve#)P0 = 0. 

Since 00$ is parallel, we deduce using (30) that Z>2<i</> = 0. Now, integrating, 
we obtain 

u9o- 0= f (v2dcf>,dcf))v9e = f \vd<f>\2vg9=d [ mow 
JM JM JM 

Therefore d<l>(£) = 0. D 

Suppose that M is a Sasakian manifold which is the total space of Rie- 
mannian submersion with minimal fibers over a Kahler manifold. Then, we 
have 

Theorem 4.2. Let M be a compact Sasakian manifold of dimension m > 3 
and N be a Riemannian manifold with nonpositive sectional curvature. Let 
(M, J) be a Kahler manifold and TT : M —> M be a Riemannian submersion 
with minimal fibers. If G?7r(£) = 0, then, for any harmonic map (j) : M —> iV, 
there exists a unique harmonic map 0 : M —>► N such that 0 = (f) o TT. 

Proof For any harmonic map ^ : M -> N, we have by Theorem 4.1, d</>(£) = 
0. Since d7r(£) = 0, it follows from Proposition 4.2 of [12], that there exists 
a unique map </>: M -» N such that </>■= (f) o TT. NOW, we have 

(Vxd4)(Y) = (Ddn{x)d4>)(dTr(Y))+d4>((Vxd*)(Y)), 

where 

{D^d<p){Y) = V^      d<f>(Y) - d(t>(DxY)       and 

(Vxdir)(Y) = D*x™dK{Y) - d^VxY). 

Since TT is a harmonic Riemannian submersion, we deduce the harmonicity 
of 4> by taking the trace in the above formula. □ 
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Application to geometry of Sasakian manifolds. 

The sectional curvature of a Sasakian manifold is always positive when re- 
stricted to planes containing £ (cf. [2]), and consequently, the sectional 
curvature cannot be nonpositive. This fact arises from a more general re- 
sult: 

Theorem 4.1. On a compact manifold of odd dimension m > 3, both a 
Sasakian metric and a metric with nonpositive sectional curvature cannot 
exist 

Proof. Consider the identity map / : (M, g) —» (M, h) with g a Sasakian 
metric and h a metric with nonpositive sectional curvature. In its homotopy 
class, / contains a harmonic representative (cf. Eells-Sampson [8]) with 
maximal rank at a point, contradicting Theorem 4.1. □ 

As a consequence of this theorem, we recover the fact that the Heisenberg 
nilmanifold does not admit any flat metric. 

Remark 4.1. The previous results deal with Sasakian manifolds. The as- 
sumption Sasakian is a technical assumption which allows to obtain a van- 
ishing theorem (Theorem 4.1). For the moment, we don't know if these re- 
sults can be extended to strictly pseudoconvex CR manifolds with pseudo- 
Hermitian torsion non zero even if we do some assumptions on pseudo- 
Hermitian torsion. 

5. Harmonic maps and Ci?-holomorphic maps. 

Definition 5.1. Let (N,g ) be a m-dimensional Riemannian manifold en- 
dowed with its Levi-Civita connection. Remember that the complex sec- 
tional curvature of a 2-plane P = C{Z, W} C Ty

cM, is defined by: 

(pc(ZAW),ZAW 
KC(P)=KC(ZAW) = ^         -' 

(ZAW.ZAW) 

The sign of the complex sectional curvature always determines the sign 
of the sectional curvature (cf. [9]). The converse is only true in dimension 
3. Note that the assumption of nonpositive (resp. nonnegative) complex 
sectional curvature is satisfied if the curvature operator is nonpositive (resp. 



600 Robert Petit 

nonnegative). In particular, locally symmetric spaces of noncompact type 
(resp. compact type) are examples of Riemannian manifolds with nonposi- 
tive (resp. nonnegative) complex sectional curvature. If (N,g ) is a locally 
symmetric spaces of noncompact type, the curvature operator of the Levi- 
Civita connection is given by p {Z A W) = —[Z, W]. 

Definition 5.2. Let E be a complex vector bundle over a strictly pseudo- 
convex CR manifold M. A holomorphic structure on E is a linear map 

dE : T(E) -+ TdT^M)* ® E) 

such that 

and 

(dzdw - dwdz - d[z,w])(a) = 0> 

for all Z, W e T^M, f G Cg(M) and a G T{E). 

Let d(f> be the restriction of dcj) to r1,0M. Remember that d(/) is said to 
be holomorphic if 

(V^flMZ) := ^^"^(Z) - ^(V^rZ) = 0. 

Theorem 5.1. iei M be a compact Sasakian manifold of dimension m > 3 
and N be a locally symmetric space of noncompact type. Then any harmonic 
map (j) : M —> N induces a holomorphic structure on (f)*TcN given by 

V' . Moreover, d(j) is a holomorphic ^T^N-valued l-form. 

Proof. Under the assumptions of the Theorem, we have for any harmonic 
map 0 : M -> N: 

(si) / iv^^^p + kv^cop + Ji^^^^i2^^ / (0*£V^ 
JM l * JM 

(32)   [ \dtjd<l>\2-\6V(d<l>)H\2+d(d-l)mt)\2vge=4[ {<i>*Pc)~Hv9e, 
JM JM 

with 

(^')e = -Eiwo,#(^)]i2 

i<d 
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and 

WPCTH = - E i^(^)' ^(^)]i2- 
i,j<d 

Since (0*JR )^ and ((f)*Pc)H are nonpositive, we deduce by (31) and (32), 

that S^\d4)H = 0, df J# = 0 and [d0(^),#(i^)] = 0, i,j < d. Hence, 

for any Z,W e T^M, R'^^.faW) = [<ty(Z),£ty(W)] = 0. We deduce 

that V defines a holomorphic structure on (f)*TcN. Now, by an easy 
calculation, we have 

(vg^Wxz) = -(4V#)(JX,y) - /=T(df Jd4>)(x,Y) = o. 

Hence 5^ is a holomorphic (f)*TcN-valued 1-form. D 

Definition 5.3 (cf. [13]). Let (M, J) be a strictly pseudoconvex CR man- 
ifold and (JV, J ) be a Kahler manifold. A map (f) : M -> N is called a 
CjR-holomorphic (resp. (7i?-antiholomorphic) map if dcj) o J = J o d^) (resp. 
d(j)o J = —J o dcjx). 

Note that a Ci2-holomorphic (resp. Ci?-antiholomorphic) map is always 
a harmonic map (cf. [13]). 

Suppose that M is a Sasakian manifold which is the total space of a 
Ci?-holomorphic Riemannian submersion over a Kahler manifold. Then, we 
have 

Theorem 5.2. Let M be a compact Sasakian manifold of dimension m > 3 
and N be a locally symmetric space ofnoncompact type. //(M, J) is a Kahler 
manifold and TT : M —» M is a CR-holomorphic Riemannian submersion, 
then, for any harmonic map (j) : M —> N, there exists a unique harmonic 
map <f> : M -» N such that (j) = 4> 0 TT.  Moreover, </> induces a holomorphic 

structure on 4>*TCN given by V' and d(f> is a holomorphic (jf>*TcN- 
valued 1-form. 

As examples of such Sasakian manifolds, we can quote the compact regu- 
lar Sasakian manifolds. Such a manifold can be realised as the total space of 
a fibration over a compact Kahler manifold (the Boothby-Wang fibration). 

Proof of Theorem 5.2. Since any CitJ-holomorphic Riemannian sub- 
mersion is a Riemannian submersion with minimal fibers and satisfies 
^(f)   =  0, we deduce from Theorem 4.2 that for any harmonic map 
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(j) : M —> N, there exists a unique harmonic map <f> : M -> N such that 

<f> = (f> o TT. Now, we prove that dv Jdcj) = 0 (i.e., $ is pluriharmonic). Since 
(Vx#)(y) = (^7r(X)#)(^(^)) + #((Vxcf7r)(y)) and that TT is holomor- 
phic, we have: 

(df J#)(X,y) = (d^ Jd$)(d<K{X),d<K(Y)) +d4>((d%Jd7r)(X,Y)). 

Prom d^ Jd(/) = 0, we deduce that 

(d*' Jd4>)(dTr(X),dir(Y)) = -d^{{d^Jd^){X,Y)). 

Using (13), we obtain 

(dgjd7r)(X,y) = (Vrd7r)(JX) - (Vxd7r)(jy) 

= J((Vyd7r)(X)-(V^7r)(y)) 

= -a;^,y)Jd7r(O = 0. 

Hence, dv Jd<^ = 0 (since TT is a Riemannian submersion) and V^ *d(f) = 0. 
□ 

A rigidity result for harmonic maps from Sasakian manifolds to 
Kahler manifolds. 

Definition 5.4. A Kahler manifold N has a strongly negative curvature 
(resp. strongly positive curvature) at a point y G N if the complex sectional 
curvature Kc at y is negative (resp. positive) on planes P — C{Z, W} C 
T^N such that (Z A W)1'1 ^ 0. 

Theorem 5.3. Let M be a compact Sasakian manifold of dimension m > 3 
and N be a Kahler manifold with strongly negative curvature. Then any 
harmonic map (/> : M -> N with rankx((j)) > 3 is CR-holomorphic or CR- 
antiholomorphic. 

This theorem is an analogue of the Siu theorem (cf. Siu[20]). 

Proof of Theorem 5.3. Since N has a strongly negative curvature, the 

complex sectional curvature is nonpositive. Hence {(j)*R )£ and (</>*Pc)iy are 

nonpositive. As in Theorem 5.1, we obtain that if 0 is harmonic, d</>(£) = 0 

and (^*PC)H 
= 0- Now, the end of the proof follows from the proof of 

Theorem 4.1 of [9]. □ 
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Corollary 5.1. Let M be a compact regular Sasakian manifold of dimen- 

sion m > 3 and TT : M —> M be the Boothby- Wang fibration over a compact 
Kdhler manifold M. Then any harmonic map with rank > 3 from M into 
a Kdhler manifold N with strongly negative curvature, factors, via TT, into a 
unique holomorphic map from M into N. 

A rigidity result for harmonic maps between Sasakian manifolds. 

In this section, we assume that (M, #,£, J^go) and (iV, 0 ,£ ,J ,<?■ ,) are 
Sasakian manifolds endowed with their Tanaka-Webster connections. Hence, 
V = V , where V denotes the Tanaka-Webster connection of N. Hence 
U' = -1(0' © / - fy, (g £') and f' = -Qf (8) C 

As we saw it in Paragraphe 4, the complex sectional curvature (for the 
Levi-Civita connection) of a Sasakian manifold N cannot be nonpositive. 
Now, since the curvature of the Tanaka-Webster connection of a Sasakian 
manifold satisfies the Bianchi identity, the complex sectional curvature as- 
sociated to the Tanaka-Webster connection is well defined. We call it the 
Tanaka-Webster complex sectional curvature. Note that the parallelism of 
J and £ implies that the Tanaka-Webster complex sectional curvature is 
non-zero only on planes P = C{Z, W} C T^N such that (Z A W)1,1 ^ 0. 
Now, we can define the concept of strongly negative (or positive) curvature 
for a Sasakian manifold. 

Definition 5.5. A Sasakian manifold N has a strongly negative Tanaka- 
Webster curvature (resp. strongly positive Tanaka-Webster curvature) at 
a point y G iV if the Tanaka-Webster complex sectional curvature 2?c at 
y is negative (resp.   positive) on planes P = C{Z, W} C T^iV such that 

(ZAW)M^0. 

Definition 5.6 (cf. [6], [12], [24]). Let (M,J,#) and (N,j',H') be 
strictly pseudoconvex CR manifolds. A map (j> : M —> N is called a CR- 
holomorphic map if d</> o J = j' o d</>. A map (j>: M —>• N is called a Cii-map 
if d(j){H) C H' and {d(f> o J)H = (f o d<j>)H. 

Note that a Ci?-holomorphic map is always a CiJ-map, but the converse 
is, in general, not true. A Ci?-holomorphic map is a harmonic map (cf. 
[12]). Conversely 

Theorem 5.4. Let M be a compact Sasakian manifold of dimension m > 3 
and N be a Sasakian manifold of dimension n with strongly negative Tanaka- 
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Webster curvature. Then any harmonic map <j): M —> N with rankx((j)) > 3 
and such that (j)*9 = 9, is an isometric and a CR-holomorphic immersion. 

Proof. First, since <f>*6' =6, we have 4>*U' = -^(9 © f o d<j> - ue <S> ^') and 
^*JI' _ _a;^ ^ ^'   -^-g (jg^ycg ^jj^ any harmonic map <f> : M -» JV satisfies 

(Jv'# = /^(O and |(5V'#|2 = |^ - #(0|2- Now, since i{C){(t>*T') = 0 

and ((t>*T')H = 0, Equations (14) and (15) yield: 

(33) J^ IV^)^2 + iiowxoi2 + ^l^'w^l2 

~ie'-#(oi2^= / (^^w> 
^ JM 

(34) / |4'^#|2 - 1^' (#)if I2 + d(d - 1)1^' - dm? v9e 
JM 

= 4 /   ((t)*Pc)H vg(n 
JM 

Since AT has a strongly negative curvature, the Tanaka-Webster sectional 
curvature is nonpositive, hence (^*iZ )c is nonpositive. Using (33), we deduce 
the following inequality: 

JM JM 

Substituting it in (34), we obtain 

f I4V#I
2
 + (d2 - d - IJK' - dm? v9e<4[ {4>*PCTH vge. 

JM JM 

Since N has a strongly negative curvature and d > 2, the previous inequality 

yields dcj)^) = £ and (</>*Pc)# ~ 0. The assumptions on the curvature and 
on the rank of (p imply using a similar proof as in Theorem 4.1 of [9] that 
j' o dcf) = dcj) o J or j' o d<f) = —dcf) o J. Using (f)*0 = 9, we deduce that 
necessarily f o dcj) = dcj) o J. Hence, (f> is Cit!-holomorphic and, by Theorem 
2.1 of [12], is an isometric immersion. □ 

6. Minimal isometric immersions and pseudo-Hermitian 
immersions. 

The following formulas for isometric immersions are the local analogues of 
(14) and (15). 
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Proposition 6.1. Let M be a strictly pseudoconvex CR manifold and N be 
a Riemannian manifold endowed with its Levi-Civita connection.  For any 
isometric immersion cf): M —>- N we have: 
(35) 

|V?(#)HI
2
 + ^l(vc#)(OI2 + ^'(#)tf I2 - ^'#l2 - M2 = (^3% 

and 

(36) |4' J#|2 - |^' (#)tf |2 + d(d - 1) = Wffch- 

Lemma 6.1. Let 4> be an isometric immersion, then, for any X,Y,Z € 
TM: 

(Y.Vxdfr Z.d<i>)   =   uoiX, Z)9(Y) + uiB{Y, Z)6(X) - UJ9(X, Y)e{Z) 

(37) +2(d(Z)A6(X,Y)-6(Y)Ae(X,Z)). 

Proof. For any map <f>: M ->■ TV and any X, Y, Z G TM, we have 

{VxPg'W, Z) = {(Vxd<fi)(Y), d<p(Z)) + (d<t>(Y), (Vxd0)(Z)>. 

If (f) is an isometric immersion, we have 0*</ = gg- Hence, V^g = 0 and 
((Vxd<t>)(Z),d<t>(Y)) = -((Vx#)(^),#(Z))- Using both (17) and the 
previous equality, we obtain 

(Y.Vxdfr Z.d4>)   =   goiY, Z)(Vxd(f>, dcf) + {{Vxd^Y), d<f>(Z)) 

-((Vxd<t>)(Z),d<P(Y)) 

=   2{{Vxd4>)(Y),d<t>(Z)). 

Now, using (29), we have 

((Vx#)(y),#(Z)) 

= \ (e(x)u9(Y, z) + e{Y)^{x, z)) 

+ (^(x,y) - ^(x,y))0(z) - ^(y)^(x,z) 

= i (ofcpr, z)e(r) + a;e(y, z)^(x) - Wtf (x, r)e(z)) 
+ ^(z)^(x,F)-^(y)^(x)z). 

Hence the result. D 
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Proof of Proposition 6.1. Let (j) be an isometric immersion. First, since 
\d(t)\2 = m, we have (V| jrf0,d^) = -\V^d(/)\2. Now, following the proof of 
Proposition 2.3, we have 

(P2#,#)-|P(#)|2 = 5a, 

(2?5W),^>-pj(d0)|2 = ^, 

where a, /3 and 7 are the 1-forms respectively given by a(X) = {Vd^, X.dfy, 
P(X) = (Vj(d(l>),JX.d(j)) and 7(X) = (©(f.d^X.f.cty). It follows from 
(37) that a and ^ are zero. Using (2) and (37), we obtain 

<y(X)   =   (£(£.#),Xe.#) = -(fi.V{d(j)),X.Z.d<i>) - 2(Ve#, Xe.#) 

=    (D(#),X.#) - 2e{X){V{d(j))^.d(t)) + 2(XVe#,£.#) 

=   0. 

Always using (37), we have (VTd(f)^.d(f)} = 2|r|2. Now, by noting that 
(d<f>oJo r,#) = -(^^(9) = 0 and (#(.Ric(f)),#(0) = 0> we conclude 
the proof as in propositions 3.1 and 3.2 using Lemma 3.1 and Lemma 3.3. 

□ 
Remember that a harmonic isometric immersion is said to be a minimal 

isometric immersion. The following Theorem holds 

Theorem 6.1. Let M be a strictly pseudoconvex CR manifold of dimension 
2d + 1 and N be a Riemannian manifold with nonpositive complex sectional 
curvature. If |T|

2
 < d(d — 1) at some point, then there is no minimal iso- 

metric immersion from M to N. 

Proof First, suppose that d > 1. If 0 : M —> JV is a minimal isometric 

immersion, then Sv {d(j))H = (V£<i0)(£)- Hence, adding (35) and (36), we 
obtain 

|VC(#)^|2 + Idtjdtl2 + d(d - 1) - |r|2 = (<I>*R\ + 4(^pcV 

Now, at a point where |T|
2
 < d(d— 1), we deduce, using the previous equation 

and the curvature assumption, that |r|2 = d(d — 1) and ^((d(f>)H = 0. In 
this case, Equation (13) gives for any X e H 

(VX#)(0 = -(#°T)P0. 
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Now, on the one hand, we have for any X, Y € H 

{(VxdmUmY))) = -9e(r(X)MY)). 

On the other hand, using (37), we have 

{(VxdmUcf>(r(Y))) = ^(X,r(y)) - ge(r(X),T(Y)). 

We deduce that UJQ(X,T(Y)) = 0 for any X,Y E H, and consequently, 
r(y) = 0 (because r(Y) G H). Hence r = 0 at this point, which contradicts 
|r|2 = d(d — 1). In the case d = 1, M is assumed to be a Sasakian manifold, 
hence following the proof of Theorem 4.1, the result holds too. □ 

Theorem 6.2. Let M be a 2d + l-dimensional strictly pseudoconvex CR 
manifold (2d + 1 > 3) endowed with its Webster metric and with the asso- 
ciated Levi-Civita connection. At each point of M, there exists a complex 
2'plane for which the complex sectional curvature is positive. 

Proof. Since the identity map 7 is a minimal isometric immersion, we obtain 
using (36): 

\d^JI\2 + d(d-l)=4(pc)-. 

Now, for any X, Y E TM, we have by (29): 

(VjXI)(Y) = ~0(Y)X + \ge(X, Y)Z - ^(r(X), Y)£ + 9(Y)(J o T)(X). 

Hence, for any X, Y G JT, 

(d%JI)(X,Y) = (dDJI)(X,Y) = (yjXI){Y) - (VjYI)(X) = 0. 

We deduce that: 

d(d-l)=A(flC)g. 

The theorem is directly deduced from this last equation. □ 

Remark 6.1. Applying (35) to the identity map, we recover the relation 
between the Ricci curvature and the pseudo-Hermitian torsion obtained by 
Rumin ([17]). 
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A nonexistence result for pseudo-Hermitian immersions. 

In this subsection N is a Sasakian manifold endowed with its Tanaka- 
Webster connection V . A pseudo-Hermitian immersion (f> : M —> N is 
an isometric (with respect to the Webster metrics) and a Ci?-holomorphic 
immersion. Note that a pseudo-Hermitian immersion satisfies 0*0 =6 and 

Theorem 6.3. Let M be a non-Sasakian strictly pseudoconvex CR mani- 
fold.  Then, there is no pseudo-Hermitian immersion between M and N. 

As a corollary, we obtain (cf. [1]): 

Corollary 6.1. There is no pseudo-Hermitian immersion from Hd(s) into 
Pseudo-Siegel domains. 

Proof of Theorem 6.3. Suppose that there exists a pseudo-Hermitian 
immersion (j) : M —> N. Then, since (j) is pseudo-Hermitian, we have 
(Vx#)(0 = V^' = 0, for any X G TM. Since <£*f' = -UQ <g> #(0 , 
we deduce from (13) that 

Vf d(/> = dcj) o r. 

And consequently, 
(V^#,#or) = |r|2. 

On the other hand, since ^ is a pseudo-Hermitian immersion, we have (jfU = 
-\{d 0 dcf) o J - UQ ® #(0)- Now> we have from (29): 

(V^cty, d(j)OT) = (£>f#, # o r) = 0. 

Hence r = 0, contradicting the assumption on M. □ 
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