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Hopf differentials and the images of harmonic maps
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In [Hz], Heinz proved that there is no harmonic diffeomorphism from the
unit disk D onto the complex plane C. The result was generalized by Schoen
[S] and he proved that there is no harmonic diffeomorphism from the unit
disk onto a complete surface of nonnegative curvature. Unlike conformal or
quasi-conformal maps between Riemann surfaces, the inverse of a harmonic
map is not harmonic in general. Hence it is an interesting question whether
there is any harmonic diffeomorphism from C onto D equipped with the
Poincaré metric. In fact a general form of this question was formulated by
Schoen [S] as follows: Is it true that Riemann surfaces which are related by
a harmonic diffeomorphism are necessarily quasi-conformally related?

Let us first recall some facts on harmonic maps between surfaces. Let
¥; and I3 be two Riemann surfaces with conformal metrics p?(z)|dz|?> and
02(h)|dh|? respectively. The harmonic map equation for maps from ¥ into
Y2 can be written as

h.z + 2(log o) nh hz = 0.

Define ||8h|| = p~lo|h,|, and ||Oh|| = p~'o|hz|. Hence ||Oh|| and ||Oh|| are
the norms of the (1,0)-part and (0,1)-part of dh. The energy density of h
is given by e(h) = ||6h||?> + ||0h||?, and the Jacobian of h is given by J(h) =
||0h||2—||8h||®. The Hopf differential of h is defined as ¢dz? = o2 (h)h,h.dz?,
which is the (2,0)-part of h* (¢%(h)|dh|?). It is well known that if A is
harmonic then ¢dz? is a holomorphic quadratic differential defined on 1, see
[C-G]. If h is an orientation preserving local diffeomorphism, then J(u) > 0,
which implies that ||0h|| > 0 everywhere, and that

™ > ||

where w = log ||0h|.
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In [Wn], the third author proved that orientation preserving harmonic
diffeomorphisms on the hyperbolic plane H? can be parametrized by their
Hopf differentials, provided that they can be realized as the Gauss maps
of constant mean curvature cuts in the Minkowski space M?!. The last
condition is equivalent to the fact that |0h|?|dz|? is a complete metric on D),
where |Oh| is the norm of dh with respect to the Euclidean metric on the
domain and the Poincaré metric on the target. The result was generalized
to harmonic maps from C into H? in [W-A] and to more general surfaces in
[T-W1].

Hence in order to study the behaviors of harmonic maps from C or D into
H? it is useful to study their Hopf differentials. In [Hn], Han proved that
if h is a harmonic diffeomorphism from C into H? whose Hopf differential
is a polynomial, then the closure of A(C) in H2 = H2 U §H? is the convex
hull of a totally disconnected closed set in OH?, provided that |0h|?|dz|? is
complete on C. In particular, A is not surjective. Here OH? is the geometric
boundary of H2. Later in [HTTW], it was proved that the closure of the
image of an orientation preserving harmonic diffeomorphism A from C into
H? is an ideal polygon with exactly m + 2 vertices on OH? if and only if the
Hopf differential ¢ dz? is a polynomial of degree m, i.e. ¢ is a polynomial of
degree m. Note that by [Wn, T-W1], we know that ¢ is of degree no greater
than m if and only if A is of polynomial growth of degree at most m/2 + 1.

In higher dimensions, one cannot expect that such a clean statement
continues to hold. However, in [L-W1], Li and Wang were able to generalized
part of the above result for a much more general class of manifolds. They
proved that if M™ is a complete manifold with nonnegative Ricci curvature
and N is a Cartan-Hadamard manifold with sectional curvature pinched
between two negative constants, then the closure in N UON of the image of
a harmonic map from M™ into N with polynomial growth of degree at most
£ is in the convex hull of finitely many points on the geometric boundary O N
of N. Moreover, the number of points is bounded by a constant depending
only on n and £. Actually, they only assumed that M satisfies the so-called
weak volume growth condition and weak Poincaré inequality. In [L-W3],
they also obtained a sharp estimate for the number of points on the ideal
boundary in case M is a complete surface with finite total curvature.

All these results in [Hn, HT'TW, L-W1, L-W3] are under the assumption
that the harmonic map is of polynomial growth. In this paper, we want to
study harmonic maps from C into H? which grow faster than polynomial.
We will study the images of the harmonic maps by a careful study of their
Hopf differentials.

First we prove that if h is an orientation preserving harmonic diffeomor-
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phism with Hopf differential ¢ dz? such that ¢ is of one of the following
forms then h is not surjective:

(1) ¢ = Prexp[Pyexp|[ - exp [Prexp(Q)] - - -], where P; and @ are poly-
nomials (Theorem 1.2);

(2) ¢ = Pexp(Q) where Q(2) = 2™ + 377, a;z2"J is a polynomial of
degree n > 1, P is entire with order p < n and

YN{z| |z| > Ropand —d <argz <d} =0,

for some = > 6 > 0 and Rp > 0, where X is the set of all zeros of P
(Theorem 1.1);

(3) ¢ = (f')? where f is entire with no finite asymptotic value in the
domain

R={z| g—5<argz<g+6, and |z|>R}

for some § > 0 and R > 0 and f/(z) # 0 for all z in f~1(R) (Theorem
1.3).

In (2), ¢ is of finite order, in (1) ¢ is of infinite order and there is no growth
condition in (3). Note that if ¢ is of finite order then ¢ = Pexp(Q) with Q
being a polynomial and P is entire.

As mentioned above, if |0h|?|dz|? is complete on C and if ¢ is a poly-
nomial, then the image of h is an ideal polygon with finitely many vertices
at OH? [HTTW]. If ¢ is not a polynomial, then h(C) N OH? must consist of
infinitely many points by [HTTW] again and in this case, the image set is
much more difficult to be described. In the second part of this paper, we
want to describe the images of harmonic maps under similar assumptions as
in (1) or (2) above. We prove that if ¢ = P exp(Q) where P and @ are poly-
nomials, then 71(_(C7r1311-112 is countable and consists of exactly n accumulation
points, where n = deg @ (Theorem 3.1). In fact, one can relax the condition
that P is polynomial. If we assume that P is entire with order less than
n and the zeros of P are well distributed, then the same conclusion holds.
Next we consider the case that ¢(z) = P(e?) where P(t) = S p__. axtk
and is non-constant. In this case ¢ is of order one. It is interesting to know
that under this assumption on ¢, h_(@ N OH? has only one accumulation
points in some cases and has exactly two accumulation points in other cases
(Theorem 4.1). In case ¢ has infinite order, then the image set is even more
complicated. We are able to prove that if ¢(z) = exp*)(z)dz?, for some
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positive integer k, where exp_(k)(z) is defined inductively by exp(®(z) = 1
and exp)(z) = exp(exp¥~1(z)), then h(C) N JHZ = U;?___OA]- such that A;
is countable and discrete for each 0 < j < k — 1, A; consists of all isolated
accumulation points of A;_; for 1 < j < k, and Ay consists of only one
point (Theorem 4.2).

In order to prove these results, we have to study the regions where |¢|
grows very fast and the regions where |¢| decays or is bounded. In the
regions where |¢| grows very fast, we refine the technique in [Hn, HTTW]
which was introduced by Wolf and Minsky [Wf, M]. In order to study the
regions where ¢ is bounded, we need other tools. We will use the idea of
the so-called maximal ®-radius of a holomorphic quadratic differential @,
see §2 for definitions. Let @ be a holomorphic quadratic differential on . It
was proved by Anié¢, Markovié and Mateljevié [A-M-M] that the norm of @
with respect to the Poincaré metric is uniformly bounded if and only if the
maximal ®-radius is uniformly bounded. On the other hand, it was proved
in [Wn] that h is a quasi-conformal harmonic diffeomorphism from H? onto
itself if and only if the norm of its Hopf differential is uniformally bounded.
Hence we can conclude that h is quasi-conformal if and only if the maximal
®-radius is uniformly bounded where ® is the Hopf differential of h. In fact,
it was proved in [A-M-M] that if h is quasi-regular harmonic map on H?
then the maximal ®-radius is uniformly bounded. In this work, we will give
a local version of these results. In Theorem 2.1, we will prove that if A is
an orientation preserving harmonic diffeomorphism from D or C into H?,
under certain conditions, h is quasi-conformal on the domains where the
maximal ®-radius is uniformly bounded, where ® is the Hopf differential
of h. In particular, we give another proof of the result in [Wn| mentioned
above. Roughly speaking, in the case of harmonic diffeomorphisms from
C into H?, the domains where the ®-radius is uniformly bounded are the
domains where |¢| is uniformly bounded and decays rapidly at infinity.

In the process of proving Theorem 2.1, we need a refined version of the
result in [A-M-M] on the relation between the maximal ®-radius and the
norm of the holomorphic quadratic differential ®. In particular, we obtain a
pointwise lower bound of the maximal ®-radius (Proposition 2.1). It turns
out that the result also has applications to the problem of finding quasi-
conformal harmonic diffeomorphism on H? with prescribed quasi-symmetric
function on the unit circle S! which is identified as OH?. Let BQD(H?) be
the space of holomorphic quadratic differentials ® on H? such that

l|®[l| = sup ||®]|(2) < o0
z€H2
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where ||®||(2) is the norm of ® at z with respect to the Poincaré metric.
In [Wn], a map B from BQD(H?) to the universal Teichmiiller space T by
sending ® to the class of quasi-symmetric homeomorphism containing the
boundary value of h, which is the quasi-conformal harmonic diffeomorphism
on H? with & as the Hopf differential. The map is injective [L-T3, L-W2]
and an open question is whether this map is surjective. This is in fact a
conjecture of Schoen [S]. There are partial results for this problem as well as
similar problems in higher dimensions [Ak, L-T1, L-T2, L-T3, T-W2, T-W3,
H-W, Y, S-T-W]. In our case, it is not hard to see that if one can prove
that 9B is 'proper’, namely, the inverse image of bounded set is bounded,
then one can conclude that B is onto. Using the pointwise estimate of the
maximal ®-radius and the main inequality of Reich and Strebel [R-S], we
obtain sufficient conditions for certain subspaces of BQD(H?) on which B is
proper. For compact Riemann surfaces or Riemann surfaces of finite type,
this kind of phenomena was studied by Wolf [W{] and Markovié-Mateljevié
[M-M]. In [M-M], a generalized version of the inequality in [R-S] was used.

We organize the paper as follows. In §1, we discuss some non-surjectivity
results of harmonic maps from C into H?. In §2, we study the relation
between maximal ®-radius of the Hopf differential ® of a harmonic map
and quasi-conformality. In §3 and §4, we study the structures of images of
harmonic maps from C into H2. In §5, we use the result in §2 to study
quasi-conformal harmonic diffeomorphisms on H?. In the appendix, we use
Mathematica to produce figures of horizontal trajectories defined by different
types of holomorphic quadratic differentials discussed in this work, so that
one may get some feelings about the images of related harmonic maps.

Finally, the authors would like to thank the referee for pointing out a
gap in the proof of theorem 1.1, which has been corrected accordingly.

1. Results on non-surjectivity of harmonic diffeomorphisms.

In [HTTW], it was proved that a polynomial growth harmonic diffeomor-
phism from C into H? is not surjective. In [L-W1], the result was generalized
to higher dimensions for polynomial growth harmonic maps between a more
general class of manifolds. Not very many results are known if the map
grows faster than polynomial. In this section, we will give results on non-
surjectivity of certain harmonic diffeomorphisms from C into H? with fast
growth rate. Note that the growth rate of a harmonic diffeomorphism from
C into H? can be expressed in terms of the growth rate of its Hopf differen-
tial, see [T-W1]. In particular, such a map is of polynomial growth if and
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only if its Hopf differential is of the form Pdz? with P to be a polynomial.

Lemma 1.1. Let Q be a domain in C which contains every disk

D(v/ =1y, R(y)) with center /=1y and radius R(y) > 2v/2(1+¢)logy for all
y > yo > 0, where yo > 0, € > 0 are constants. Suppose h is an orientation
preserving harmonic diffeomorphism from Q into H? with Hopf differential
® = dz%. Then the length of the image of the half line Sz > yp, Rz =0
under h is bounded by a constant depending only on € and yp.

Proof. Let exp(w) = ||6h|| be the norm of Ok and let e be the energy density
of h with respect to the Euclidean metric in the domain, then the pull-back
metric under A is given by

(1.1) h*(dstz) = (e + 2)dz® + (e — 2)dy?

= 2 (cosh(2w) + 1) dz? + 2 (cosh(2w) — 1) dy*.
As in [Wf, M] and p. 63 in [Hn] we can prove that there is yo > 0 such that
ify > yo

(1.2) 0< w(\/——ly) < Ciexp (—1;—(%)

where C; is an absolute constant. Hence the length £ of the image of {Sz >

Yo, Rz = 0} under h satisfies:

0= /y :° [2 (cosh(2w) — 1)] dy

<Cs /y:o exp (——%)dy

[0 o]
<C / ydy
Yi

0

= Cjs

where C3-Cs are constants depending only on € and yp, and we have used
(1.1), (1.2) and the assumption that R(y) > 2v/2(1+¢€)logy if y > yo. The
lemma then follows. O

The following lemma basically says that if Q(z) = %z+o(1) as Rz — oo,
then the behavior of [ exp(Q(z))dz is similar to that of [ exp(32)dz.
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Lemma 1.2. Let 2 > A > 0 and let Q(z) be an analytic function on the
half strip
S={z|Rz>a>0and§ - A<z <6+ A}

where 0 is a constant. Suppose Q(z) = 1z + q(2) such that |g(z)| < g(R2)
where g(t) > 0 is a function defined on co > t > a which satsifies
lim; 00 g(t) = 0. Then for any 41A > & > 0, there exists a > 0 depend-
ing only on A, &, o and the function g such that if 29 = zo + v/—16 with
zo > a and if

Z
()= [ en@©)d,
20
then { maps S; injectively into (-plane, and {(Ss) D Ras D ((Sas). Here
Ss={z€S8|Rz>z0+6, 0 —A+6<Sz<0+A-4},

Sus is defined similarly and
1 1
Ros = —2exp (5z0> + {CI |¢] > 2exp (E(mo + 26)) ,
%(0—A+25) <arg( < %(0+A—26)}.

Proof. Since lim;_, g(t) = 0, for any € > 0, there is a > « depending only
on a and g such that if Rz > a, then

1
(1.3) |exp (Q(2)) —exp (g)' < eexp <§ERZ) .
Let 2o > a and let f(z) = 2 (exp(32) — exp(320)) with 29 = zo + 0. Let

21 = x1 + vV—1y1, 22 = z2 + V/—1y2 in S such that z;, z2 are larger than
xo. Suppose z1 > z2, then by (1.3)

1¢(21) = C(22) — f(21) + f(22)]
/01 (exp (Q(tz1 + (1 —t)z2)) —exp (%(tzl +(1- t)zz)>> dt‘

1 ! t
< €(|lz1 — z2| + 47) exp (5932) / exp <§(331 - :1:2)> dt
0

< eexp (%xz) [2 (exp (%(ml - xz)) - 1) + 4w exp (%(:m - xz))]

1
< Cireexp (51;1)

= |21 — 29|
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where C] is an absolute constant. Obviously, the inequality is still true if
1 = z3. Hence, we have

(L4 IC(a) = Clen) = () + £(e)] < Creop 5 man{Re, R}

provided Rz;, Rz > xo.
On the other hand, for any 0 < §; < A4 and 21 # 22 € S, with Rz; > Rz

and |¥(z1 — 22)| < 24 — 247, we have
1
1 —exp (5(22 - Zl))l

1
1) = o)l = 2xp (30
where 7 > 0 depends only on A — §; and the lower bound of |z; — 23| where
we have used the fact that |3 (21 — 22)| < 24 — 26; < 47 — 26;. Hence for
any 21 # 22 € S,

(1.5) |f(z1) — f(22)| > Texp (% max{Rz, §Rzz})

1
> TexP(ingl)

where 7 > 0 depending only on the lower bound of |z; — 23]
Let 0 < 81 < A, for any a in S5, N {z| Rz < B} and z on the boundary
of 8%51 N{z| Rz < B+ 161} where 3 is a large number, we have

|[f(2) = f(a)| > Texp (%%z)
2 C'_leK(z) - f(2)|

by (1.4) with z; = z and 22 = 2z, and (1.5), where 7 > 0 is a constant
depending only on §;. Here we take 2; = z and 23 = 2g in (1.4). Choose €
small enough depending only on A and §; such that UTl_e > 1, we have

1f(z) = F(@)] > [{(2) — F(2)|-
Apply the Rouché Theorem to the functions ¢ — f(a), f — f(a) on S 15 N
{z| Rz < B+ 361} and then let B — oo we conclude that for any a € S5

there is one and only one z € S 15 such that ¢(2) = f(a).
On the other hand for such an a, we have

1¢() = ¢(@)] > 1£(2) - £(@)] - 6(2) - ¢(a) — £(2) + £(a)]
> 21#(2) - ()
> [6(2) - £(2)]
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provided € is chosen to be small enough (depending only on A and d7).
Hence there is also exactly one z € S 15, such that f(z) = ¢{(a). From these

the lemma follows by considering the image of f. O

In the next theorem we will study the surjectivity of those harmonic
diffeomorphisms from C into H? whose Hopf differentials are of finite order.

Theorem 1.1. Let h be an orientation preserving harmonic diffeomorphism
from C into H? with Hopf differential ® = P exp(Q)dz? such that

(i) Q(z) = 2"+ X j_; ;2" is a polynomial of degree n > 1;
(ii) P is entire with order p < n;
(iii) there exists = >0 > 0 and Ro > 0 such that
Y N{z| |z2| > Ry and —§ < argz < &} =0,
where ¥ is the set of all zeros of P.

Then h is not surjective. In particular, if P is a polynomial then h is not
surjective.

Proof. By the Hadamard factorization theorem, P(z) = 2™e®?) A(z), where
m is the order of zero of P at z = 0, a(z) is a polynomial of degree less
than p < n, and A(z) is a canonical product of order less than or equal to
p formed by the zeros of P. So we can absorb a(z) to the lower order terms
of Q(2) and assume P(z) has the form z™A(z).

Let ¢; = 2", which will map —§ < argz < J bijectively onto —nd <
arg (1 < né. In the region

R1 = {|¢1] > R} N {—néd < arg (1 < nd}.

n—

_2(n=1)
=n"" " P(G)exp(G)dl
where P(¢1) = P(z(¢1)) exp(35 ajg‘ll ~i/ ™). By (ii), without loss of gener-
ality we may assume that for |¢1| > R%, |P(¢1)] < exp(|¢1[€) for some € > 0
which is small enough such that € < 1. By (iii) and lemma 2.6.18 in [B],

we have for any n > 0, log |A(z)| > —|2|°*" on {z| |2| > Rp and — 4§ <
argz < 0} for a possibly larger Ry and a smaller §. Therefore, we have

'log|15((1)|| = O(]¢1]¢) as {1 = oo for some € < 1. From this, we have
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Vlog |]3(C1)|| =o0(1) on Ry = Ry N {-nd + &; < arg {1 < nd — 8} for any
d1 > 0; and hence |d;‘éllog P|=0(1) as ¢; — oo and ¢; € R;. We conclude

that in 721,
@ = exp(Q1(¢1))d¢?

where

Q1(¢1) = ¢1 + Q2(¢1)
with —nd + é; < arg(y <né — d; and [(1| > Rf. Here Q2(¢1) = o(|¢1]) and
%Qg((l) =o(1) as {; — 0.

Let ¢2 = ¢1 + Q2(¢1). This will map {—m < argy < 7} N {|G1| > Ry}
injectively onto its image for some R; > Rj. Moreover, there exists R > 0
such that Ro = {—m + 201 < arg {2 < m— 261} N {|¢2| > Ra} is in the image
of the map (1 = (3. In Ry, ® can be written in the form

40,12
3= |14 92| oxp(a)ict = exp(@alc2)ad
where Q3(C2) = (2 + o(1) as |Ca] — o0. Let ¢(¢2) = [ exp(Q3(€))d. By
Lemma 1.2, we conclude that {({2) will map a subdomain of Ry bijectively
onto the region

11 11
R= {(l |¢| > R and 571'—552 <arg(< §7r+§52}

for some R >0and d2 > 0. On R, ® =d¢%. Themap ( — (o — (1 — 2
is injective when restricted on R. Hence h(2(¢)) is an orientation harmonic
diffeomorphism from R into H?. By Lemma 1.1, we conclude that the length
of the image of the half line ¢ > ag, R¢ = 0 under h is finite. Here ag is
a large constant. By the definition of {, ¢ — co with R¢( = 0 implies that
z — 0o. Hence h cannot be surjective. a

Please see the appendix for figures showing the behaviour of the horizon-
tal trajectories for some typical examples of holomorphic quadratic differen-
tials discussed here (figures 1-6). If we refine the method of proof in Theorem
1.1, we can generalize the result to some cases that the Hopf differentials
grow very fast (see figure 7 in appendix). First we have the following:

Lemma 1.3. Let Ry > 0 and § > 0 be constants and let h be an orientaion
preserving harmonic diffeomorphism from Qs = {|z| > Ry, |arg 2| < ® — 8}
into H? with Hopf differential of the form '

& = exp[g1 +exp g2 + - - +explgr + Q] - --]] d2®
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where Q(z) = 2™ + }:;;1 ajz"‘j is a polynomial in z and for each j =
1,...,k, |gj(2)| = O(log|z|) as |z| = co. Then there exists a path in §s
diverging to infinity such that its image under h has finite length.

Proof. We will prove by induction on k. For k = 1, ® = exp[g; + Q]d2? and
we can apply the same proof as in Theorem 1.1 to conclude the existence of
such path.

For k > 2, we consider the map ¢ = f(2) = Q(z) + gx(z) on a convex
subdomain R in ;s defined by

™
= > — _
R {zeﬂgl Rz > Ry, +e<argz<2(n_1) e}

2(n—-1)

where Ry > Ry and € > 0 will be chosen later. It is clear that for z = re® €
R with r sufficiently large,

Rf'(z) = nr" L cos[(n — 1)8] + o(r™ 1) > 0.

Therefore, if we choose R; sufficiently large, { = f(z) maps R one-one onto
its image f(R) as R is convex (Proposition 1.10 in [P]). Since

f (Te:ti(Z(n"f—l) _e)) = rneii(nZin”—li_ne) + 0(7‘"),
it is clear that f(R) contains a subset of the form
{larg¢] < nm/2(n—1) — ey, [¢] > Re}.

If we choose € < Wﬁ’ then we can choose accordingly an €; such that
W%S — €1 > m/2. Hence, under this choice of R; and €, f(R) contains a
half-plane {¢ > R»} for some Rz > 0.

On f(R), in particular on the half-plane {¢ > Rz}, ® can be written

as
® = exp [51(¢) + exp [§2(¢) + - - + exp[Gr—1(¢) +exp (] - -] d¢?,

where §1(¢) = g1(f71(¢)) — 2 (5 log f) (F~'(log€)) and g;(¢) = g;(F71(¢))
forj=2,...,k—1.
Now, for any small §; > 0, let us consider the half strip

S={R¢> Ry, [S¢| <7 — b1}



526 T.K.K. Au, L.-F. Tam & T.Y.H. Wan

The exponential map £ = exp { maps S one-one onto the domain
Qs, = {l¢| > Rs, |arg§| <7 —d1},
where R3 = e®2. And on §,, ® takes the form
@ = exp [§1(6) + exp [2(6) + -+ + exp[ge—1(¢) + €] ---]] d?,

where
51(6) = u( " loge)) —2 (- Tog f ) (£ log ) - 21ogeé

and §;(€) = g;(f ' (log¢)) for j = 2,...,k ~ 1.
Since |g;j(2)| = O(log |z|) and { = f(z) ~ 2™ as |z| = oo, we see that

l9;(f 1 (log €))| = O(loglog [¢]) for j =1,...,k~1.

We also conclude from %(z) ~ 2"~ ¢/ a5 |¢| = oo that

(di log f) ( f—laogg))‘ = O(loglog [¢]).

All together we have, as || — oo,
19;(6) = O(log [£]).-

Therefore, induction hypothesis implies that there exists a divergent path
& = v(t) in Q5, such that its image under the harmonic maps ho f~! olog
has finite length. That is, there exists a path f~!(logy(t)) in Qs such that
its image under h has finite length. O

Theorem 1.2. Let h be a harmonic diffeomorphism from C into H? with
Hopf differential of the form

® = Py exp[Pyexp|---exp [Py exp(Q)] - - -]] d22,

where Q(2) = apz™ + -+ and P, j = 1,...,k are polynomials and k > 1.
Then h is not surjective.

Proof. By making a change of parameter of the form z — o exp(v/—16p)z
for some constants 7o and 69, we may assume that Q@ = 2™ + 3 %_; a;2"7.

As P;, j = 1,...,k, are polynomials, there exists Rg > 0 such that there
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is no zeros of any P; in the set {|z| > Ro}. Then for any § > 0, one can
define g; = log P; on the set Q5 = {|z| > Ry, |arg z| < 7 — §} and the Hopf
differential ® can be written in the form required in Lemma 1.3. Therefore,
there exists a path diverging to infinity in Qs such that its image under h
has finite length. Hence, h is not surjective. O

Let us finish the dicussion of this section by giving a different type of
condition for the nonsurjectivity. Recall that a complex number a in the
extended complex plane is said to be an asymptotic value of an entire func-
tion f(z) if there is a path 2(¢), 0 < ¢t < 1 such that lim;—; 2(¢) = o0
and lim;; f(2(t)) = a. If a is a finite number, then it is called a finite
asymptotic value.

Theorem 1.3. Let f be an entire function. Suppose there exist 6 > 0 and
R > 0 such that

(i) f has no finite asymptotic value in the domain

R={C|—g—5<argc<-72£+6, and|C|>R}; and

(i) f'(z) #0 for all z in f~Y(R).

Suppose h is an orientation harmonic diffeomorphism from C into H? with
Hopf differential (f')2dz2, then h is not surjective.

Proof. Let 2 be a component of f~1(R). By (ii), f is a local diffeomorphism
on . By (i), we can conclude that every path in R begins at {y can be
lifted to a path in 2 which begins at a point zp with f(zp) = (p. Since R
is simply connected, f maps § bijectively to R. Hence ho f~1(¢) is a har-
monic diffeomorphism from R into H? with Hopf differential d¢2. Moreover,
F7H(¢) = 0o if ¢ € R and ¢ = co. The result follows from Lemma 1.1. O

2. Maximal ®-radius and quasi-conformal harmonic maps.

Let us recall the definition of maximal ®-radius of a holomorphic quadratic
differential ® on a domain in C. Let 2 be a domain in C and let & = ¢dz2 be
a holomorphic quadratic differential on Q. Let zp € Q such that ¢(z) # 0.
Choose a branch of /@ near zg, and let

w=1(:) = [ VL.
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Let B(R) = {w| |w| < R} be the maximal disk in the w-plane such that f~*
is a conformal diffeomorphism from B(R) into §2. Then R,, o = R is called
the mazimal ®-radius of ® at zy with respect to Q and V; 0 = f~1(B(R))
is called the mazimal ® disk around 2y with respect to 2. We will drop the
subscript € if this will not cause any confusion. Moreover, by convention
if ¢(z0) = 0 we define R,, = 0. In [Hn], it was proved that if A is an
orientation preserving harmonic diffeomorphism from a domain 2 in C into
H? with Hopf differential ®, and if z, is a sequence in 2 with R,, — oo, then
the modulus the complex dilatation of h at z, will tend to 1. Conversely,
one would like to know whether A would be quasi-conformal on a set with
bounded maximal ®-radius. In this section, we will prove that this is the
case under certain assumptions. The result will be useful to study images
of harmonic diffeomorphisms from C into HZ2.

Let Q be a hyperbolic domain in C, i.e. its universal cover is conformal
to the unit disk. Let p?|dz|? be the hyperbolic metric on 2, i.e. the complete
metric with constant Gaussian curvature —1. Then it is known that [Ah]
for any z € Q

2
p(z) < 2. 00)"

where d(z,00) is the Euclidean distance from 2z to 0. If in addition, we
have

c
P2) 2 50y

for some positive constant C for all z € 2, then we say that 2 is strongly
hyperbolic. Please note that our definition is slightly different from that
in [A-M-M]. It is shown in Theorem 5 of [A-M-M] that if Q is bounded
hyperbolic and the diameters of the boundary components are uniformly
bounded from below by a positive constant then 2 is strongly hyperbolic.
Moreover, being strongly hyperbolic is conformally invariant:

Lemma 2.1. Let Q, and Q3 be conformally equivalent domains. Suppose
Q is strongly hyperbolic, so is 2.

Proof. Obviously s is hyperbolic. Let w = f(z) be a conformal diffeomor-
phism from € onto Q. Let p3|dw|? be the hyperbolic metric on 22 and
let p?|dz|? be the hyperbolic metric on €. Let di(z) = dist(z,0) and
da(w) = dist(w, 88), where both distances are Euclidean distances. Then
by well-known fact [V, p. 147], we have

() < a7 ().



Hopf differentials 529

Hence

p2(f(2)) = ' () pr(2)
C
>~
~ di(2)|f'(2)]
C

> Car(s(2)
for some positive contant C, where we have used the fact that 2, is strongly
hyperbolic. Hence 25 is strongly hyperbolic. a

Let Q be a strongly hyperbolic domain and let ® = ¢dz2 be a holo-
morphic quadratic differential on  with hyperbolic metric p?|dz|?. For
z € Q, let ||®(2)|| = p2(2)|¢|(2) be the norm of & at z and let |||®||| =
sup,cq ||®||(2). The following is proved in [A-M-M] (the equation (2) and
the lemma 1.2)

Theorem (Anié-Markovié-Mateljevi¢). With the above notations and
with ) being the unit disk D, there ezists an absolute constant C > 0 such
that for any holomorphic quadratic differential ® on D we have

(2.1) |®]|(2) > C~'R2
for all z € D, and
(2.2) ll|@]|| < CRZ,

where Roo = sup,cp R,.

They actually proved that (2.1) is true for any hyperbolic domain in C.
We will obtain a pointwise estimate for strongly hyperbolic domain which
implies (2.2). The estimate will be useful in applications.

Proposition 2.1. Let Q be a hyperbolic domain and let ® = ¢pdz? be a holo-
morphic quadratic differential defined on Q. Then there exists an absolute
positive constant C such that for z € Q

(2.3) R, < C||3||2 (2).

If in addition Q is strongly hyperbolic then there is a positive constant C'
depending only on Q0 such that for z € Q with ®(z) # 0

. o 1BIPG)

(2.4) R, > 3
el
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We need the following lemmas.

Lemma 2.2. Denote B(r) to be the set of complex numbers with modulus
less than . Let f : B(r) — C be an analytic function, such that f(0) =0
and f'(0) # 0. Suppose |f(z)| < M for all z, then

r2f'(0)] .

(i) f is one-to-one on B(r1), where r1 = —gz>;

.. 2| ¢t 2
(i) f(B(r1) > B(~f-).
Proof. Let us first assume that » = 1, and f’(0) = 1. Then

f(z)=z+ Zanz".

n=2

By Cauchy theorem, we have |a,| < M, and 1 < M. Suppose z; # 2 are
in B(gk7), and 7 = max{|21|, |22|}, then

£(21) = f(z2)| = |(z1 — 22) + ) an(eF — )

n=2

o 0]
> |21 — 22| |1 — MZ:nr”"1

n=2

2—r7r

=|Z1—Z2l M'I‘(l_ )2
> |z — 22|(1 — 8MT)
>0

where we have used the facts that M > 1, and 7 < 8M < 2 Hence fis
one-to-one on B(gky)- Usmg the fact that the Koebe’s constant is § [V,
p. 149], we have f (B( g57)) contains B(s s277)- In general, if f is defined
on B(r) with f(0) = 0 and with b = f'(0) # 0. Deﬁne () = -—(——2 for
¢ € D. Then f(0) =0, and f/(0) = 1. Let My = ;l—[, then M; > |f(()| for

all ¢. Hence f is one-to-one on B(ﬁ) and f (B(ﬁ)) contains B(ﬁ)

Therefore f is one-to-one on B(gzz) = B(r2_|g1’\_/§gl|) = B(r1), and f(B(r1))

contains B(é%) = B(ﬁl{{%ﬁ?j_)lf). -

The following lemma is proved in [A-M-M, see Lemma 1.2].
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Lemma 2.3. Let f : B(r) — C be analytic, and M > |f(2)| for all z.
Suppose £(0) # 0, then f(2) # 0 for all z € B(LOL),

Proof of Proposition 2.1. (2.3) was proved in the Lemma 2.3 of [A-M-M].
In order to prove (2.4), let z € Q, with ¢(z0) # 0. ¢ is analytic on B(z0,70)
where o = %d(zo, 09), where d is the Euclidean distance. By Lemma 2.3,
¢ is never zero on B(zp,r), where

rol¢(20)l

2My

and Mo = supp(, ) |¢|- Hence we can take a branch of square root of ¢
in B(z0,7). Let f(2) = [; V#(¢)d¢, for z € B(zo,7), then f is analytic,
f(z0) = 0 and |f'(z0)| = |¢(zo)|% # 0. By Lemma 2.2, f is one-to-one on
B(r1) where 1 = %T’—)l, where M) = Supp,, ) |f|. Moreover, f(B(r1))

' 1
contains the disk B(R) = B( ﬁ'%)ﬁ) Now M; < rMg implies that

r2g(z0)| _ rolé(0)l®

(25) Rzo Z R= 1 3
32r M2 64 M2

This will imply the proposition because {2 is strongly hyperbolic. O

From the proof of the proposition, we have the following corollary which
will be used in §3 and §4.

Corollary 2.1. Suppose ¢ is analytic on B,,(R) such that a|p|(z0) > |¢|(2)
for some constant o > 0 for all z € B, (R). Let ® = ¢dz®. Then the

1
mazimal ®-radius of zy with respect to B,,(R) is bounded below by ﬂ(ﬂ%z—“z.
Q

Proof. This is a direct consequence of (2.5). a

Lemma 2.4. Let  be a simply connected domain in C and ® = ¢dz? be
a holomorphic quadratic differential on Q. Let 29 € Q such that ¢(zp) # 0
and let R be the mazimal ®-radius of zg with mazimal ®-disk V. Suppose

R < o0 and suppose
=)= [ Vo
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z € V. Then for any 0 < § < R, there exists a point z € V with [¢(z)| = d
such that the ®-radius of z is exactly R — 4.

Proof. By the definitions of V and R, 9~ : Dg — V is a bijective conformal
diffeomorphism, where

Dg = {w| |w| < R}.

It is easy to see that if z € V with |[¢(z)| = § then the ®-radius of z is
at least R — 8. Suppose the lemma is not true, then R, > R — ¢ for any
z € v~ ({w| |w| = 6}). Because R, is continuous, there is € > 0 such that
R, > R —§ +¢ for all z with |[¢(2)| = §. Hence ¥~! can be extended to
an analytic function from Dgy. to §2 such that it is a local diffecomorphism.
In particular, ¢ is not zero in ¢ ~!(Dgic). By the definition of R, there
exist two sequences w, and w0, such that for each n both w, and %, are in
DR+e/ny Wn # Wy but ¥~ (wn) = ¥~ (wn). Without loss of generality, we
may assume that w, — a and W, — b, and

. ~1 T —1/~ \ _
Jim ™ (wp) = lim ¢7 () =c.

Since 9~1 is a local diffeomorphism, a # b. Note that a and b are in Dg.
Let v be the straight line joining a and b and let I' = ¢~!(y). Then T is
a smooth simple closed curve in Q because 1~! is one-to-one on Dg. Let @
be the interior angle at c¢. Apply the Gauss-Bonnet Theorem for the metric
(|¢| + n)|dz|? on Q with n > 0, we have

1 .
——/ Alog(|¢|+n)+/nn=7r+0
2 Ja, r

where (2; is the interior of I', &, is the geodesic curvature of I' with respect
to the metric (|¢| +7)|dz|? and A is the Euclidean Laplacian. Here we have
used the fact that Q is simply connected. Let ci,...,cs be the zeros of ¢
inside ©; with multiplicities k1,...,k; with k; > 0. Let 7 > 0 be small
enough so that 1 < j < £ the disks D; of radius r and centers at c; are
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disjoint and are inside of ;. Then we have
1< 1
nro=-33 [ Atglel+m -3 [
J:l DJ Ql Uj:le

£

1 0 1
= = log(|¢] + —-/

23, e+ =5 [

1Uj=1Dj
1< )
N )
2j§/apjar og 4]+ [

as 7 — 0, where x is the geodesic curvature with respect to the metric
|p||dz|? and we have used the fact that log|¢| is harmonic. Since |$||dz|? is
the pull-back metric under ¥~! of the flat metric in the Dg, we have x = 0
on I'. Let r — 0, we conclude that

Alog(|| +7) + /F oy

Alog(l4] +7) + /P o

¢
T+60=— Z kjm.
—
Since @ > 0 and k; > 0 for all j, this is impossible. O

Theorem 2.1. Let Q be a strongly hyperbolic domain in C with hyperbolic
metric e2*|dz|> and Q1 C Q. Let h be an orientation preserving harmonic
diffeomorphism from C into H? and let w = log |Oh|, where |Oh| is the norm
of Oh with respect to the Fuclidean metric on Q and hyperbolic metric on
H2. Let ® = ¢dz* be the Hopf differential of h and let R, be the mazimal
®-radius of z with respect to C. Suppose sup,cq R, = R < 0o andw > v—-C
on (1 for some constant C and inf,cc\q, R. > 0. Then h is quasi-conformal
on 91.

Proof. Suppose that h is not quasi-conformal on ;. Then there exists
zn € Q1 such that ¢(z;)e~2*(*») — 1 as n — oo. Since R,, < R, we
may assume that lim, ,,, R,, = Ro. Suppose Ry > 0. Let V,, be the
maximal ®-disk with image Dg,, and let { = [ v/@dz = 9n(2). Let
Wn(¢) = (w — 3log|d|)(¥71(¢)) > 0 which is considered as a function on
Dg,_ . Then w, > 0 and

Ay, = e2Un _ o= 2n,
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Then 1wy, are locally uniformly bounded by proposition 1.5 in [T-W1]. Pass-
ing to a subsequence if necessary, 0, converges uniformly on compact sub-
sets of Dg,. Since W,(0) — 0, by mean value inequality, W, — 0 uniformly
on compact sets of Dg,. By Lemma 2.4, for each n there exists ¢, with
|¢n] = 3Rz, such that the ®-radius of 2/, = ¢;(¢n) is $R,,. Moreover,
we still have ¢(2,)e~2(zn) — 1. Continue in this way and by a diagonal
process, if h is not quasi-conformal on €2, then we can find 2, € C such
that

: —2w(zn) _
(2.6) Jim [ (zn)le =1
and
(2.7) lim R, =0.
n—oo

Since inf,cc\q, R: > 0, we may assume that z, € Q; for all n. By Proposi-
tion 2.1, we have

181 (2n)
3
11|l

> 2t [ig(nle )]

> 22 [ig(en)le)]",

where the norm of ® is taken with respect to the metric €2?|dz|2 on Q. Here
we have used (2.3), (2.4), the fact that the ®-radius with respect to £; or Q
is no greater than the ®-radius with respect to C, the assumption that R,
are uniformly bounded by R on € and that w > v — C on Q;. Let n = oo
in (2.8), we have a contradiction because of (2.6) and (2.7). This completes
the proof of the theorem. O

(2.8) R., > Cs

Remark 2.1. In the theorem, we may replace C by the unit disk. More-
over, suppose (2 is a subset of C (respectively H?) and h is an orientation
preserving harmonic diffeomorphism from C (respectively H?) into H? such
that |Oh|%|dz|? is complete in C (respectively H?), where the norm is taken
with respect to the Euclidean metric in the domain. Then the assumption
that w > v — C on £ in the theorem can be replaced by w > v — C on 0
by the comparison principle in [Wn)].

By (2.3), which was proved in [A-M-M], and the above remark, we obtain
a new proof of the following result in [Wn] as a corollary of Theorem 2.1.
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Corollary 2.2. Let h be an orientation preserving harmonic diffeomor-
phism on H? with Hopf differential ® such that |0h|?|dz|? is complete. Sup-
pose |||®||| < oo, then h is quasi-conformal. Here the norm of Oh is taken
with respect to the Euclidean metric in the domain and the norm of ® is
taken with respect to the Poincaré metric while |||®||| is taken with respect
to the Poincaré metric.

3. Image of a harmonic diffeomorphism with Hopf
differential P exp(Q)dz>.

Let h be an orientation preserving harmonic diffeomorphism from C into
H? with Hopf differential ® = ¢dz? = Pexp(Q)dz? where P and Q are
polynomials. By the result of §1, we know that A is not surjective. Assume
that |6h|?|dz|? is complete on C. In [HTTW], it was proved that if Q is a
constant, that is, if ¢ is a polynomial of degree m, then the closure of the
image of h in H2 is the convex hull of an ideal polygon with m+ 2 vertices in
H2. The result is generalized from C to surfaces with finite total curvature
and in higher dimensions in [L-W1, L-W2]. The assumption that ¢ is a
polynomial is equivalent to the fact that h is of polynomial growth. Let
A be the intersection of the closure of the image of h with the geometric
boundary of OH2. If Q is not constant, then A will no longer be a finite
set. In this section, we will prove that in this case, A is a countable set
with exactly n distinct accumulation points where n is the degree of Q.
In fact, we will prove that the result is true for a larger class of harmonic
diffeomorphisms.
First we need a lemma. For a > 0, let

Co ={z| Rz > @, —00 < §z < 00}.

Let h be an orientation preserving harmonic diffeomorphism from C, into
H? with Hopf differential ® = exp(Q)dz? with Q(z) = z + q(z) such that
lg(2)| < g(R=) for some nonnegative function g with lim; . g(t) = 0.

Lemma 3.1. With the above notations and assumptions, we have the fol-
lowing:

(i) There ezist distinct points py, € OH? with k = 0,%1,42,... such that
for any ™ > § > 0 and for any sequence z, € Cy with (2k — 1) +6 <
Szn < (2k+ 1) — 6 and 2, — oo, then h(z,) — pr as n — oo.
Moreover, the py’s are monotone in St.
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(ii) For all § > 0 and € > 0, there is a > 0 such that for any integer k, if
2k + 6 < Sz < 2(k+ 1)m — 4, then dye (h(2),vk) < € for all z € Cq
with Rz > a, where ~y; is the geodesic joining py and Pry1.

(iii) There is b > 0 such that if z, € Cq, Rz, > b and Sz, = +00
(respectively Sz, — —00), then lim,oo h(2n) = p4 (respectively
limp 00 h(2) = p-), where p1 = limg_;00 P and p— = limg—,— oo P-

Proof. For simplicity, we assume a = 0. To prove the existence of those
pr, € OH? in (i), we apply Lemma 1.2 with § = 0 and A = 27 to conclude
that for any @ > & > 0, there exists zg > 0 such that if zp = z¢ and
((2) = f:) exp(2Q(€))dé +exp(§0), then ( is injective on S%J, and C(S%J) D
7?,% s O C(Ss) where S5 and Rs etc. are defined as in Lemma 1.2 (with
A = 27 and 6 = 0). Then h(z({)) is an orientation preserving harmonic
diffeomorphism from ¢{(S 1 s) into H? with Hopf differential & = d¢2. Note
that the maximal ®-radius of any point { = v + v/—1v in Ry s is at least
u— C1 for some constant C; depending only on §. As in [HTTV\?, p. 109], we
can prove that the image under h of any horizontal half line ((¢) = t++/—1vg
inR 15 with ¢ being larger than some constant is asymptotically a geodesic

near infinity and tends to a point in OH? as ¢ — co. By the proof of Lemma
1.1, we can conclude that the image of any vertical line © =constant in R 15
under h has uniformly bounded length. Hence if (, € ’R,% 5> $n — 0o then
h(2(¢n)) — po for some py € OH2. Since ((Ss) C Ris and z, — oo implies
that {(zn) — oo for z, € S;, we have

ai3n, M) = 0.

Similarly, one can prove that for any integer k there exists py € OH? such
that for any § > 0 and 2z, with (2k — 1)7 4+ 6 < Sz, < (2k + 1)m — § such
that z, — oo, then

a3, Pom) = e

To prove the remaining of (i) and (ii), we use Lemma 1.2 again to con-
clude that for all 6 > 0 small enough, there exist a; > 0, b; >0, j =1, 2
such that for any integer k, there is a analytic function ¢ = ¢ (z) which
maps

1
S = {z| Rz > ay, (2k—1)7r+%(5<%z < (2k+3)7r——2-6}
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and
S2 ={z| Rz > ag, 2kn — 6 < Sz < 2(k+ 1)7 + 6}

injectively into (-plane. Moreover, ((S1) D R1, {(S2) C Rq, for j =1, 2.
Here

Ri= {Cl <] > b1, %(2k —-Dr+d<arg( < %(2k+3)7r—5},

Ry = {CI ¢ > b2, % (2kvr - gé) <arg( < % (2(k+ )7+ ga)}

Moreover, the Hopf differential ® of A in the ( coordinates is of the form
d¢%. We will write h(¢) instead of h(2(¢)) if no confusion will arise. Let us
consider the case when k is even. The case that k is odd is similar. By the
previous result, we know that if ¢, € R;1 with R{,, — oo along a half line
$¢=constant, then h(¢,) — px, and if R¢, — —o0, then A((n) = Prt1-

In order to prove that py # px+1 and that py is monotone, we notice that
the length of the curve h(z(¢)) is infinite where ¢ = u++/—1v; with v to be
a constant and —oco < u < co. Moreover, by [Wf, M] or [HTTW, p. 109], the
geodesic curvature of this curve is bounded by € provided v, is large. From
this, it is easy to see that py # pr+1. Since h is an orientation preserving
diffeomorphism, we conclude that py # p; if k¥ # j, and pi is monotone on
S!. In particular, p; = limg_,00 pr and p_ = limg_,_ oo pj exist.

To prove (ii), we observe that for any C > 0 there is vp > 0 independent
of k such that the ®-radius of { € R is larger than C for all ¢ with S¢ > wg.
By the argument in [HTTW, p. 102], we conclude that for any € > 0, there
is vg > 0 independent of k such that if S¢ > v, then dyz (h(()), %) < ¢,
where ;, is the geodesic joining py and pg4+1. From the proof of Lemma 1.2,
we see that given v, there exists a > 0 independent of k such that if z € Sy
and £z > a, then I((z) > vg. From this we can conclude that (ii) is true.

In order to prove (iii), let § > 0 as above but small and let b = a2 which is
in the definition of Sa. Suppose z, € C, with Rz, > b. Let k, be such that
2knm < Sz, < 2(kpn + 1)7. Then lim, o0 kn = 00. For each n, let ¢ = ((n)
as above then ¢, = {(z,) can be defined and ¢,, € Ry. By Lemma, 1.1, for all
¢ € Rz with ¢ > 0 and R¢ = R¢, die (h(Er), R(€)) < Cs for some constant
C: independent of n. From (ii), we conclude that dge (h(¢r),Yk,) < Cs for
some constant C3 independent of n. From this, the result follows. O

Theorem 3.1. Let h be an orientation preserving harmonic diffeomorphism
from C into H? with Hopf differential ® = ¢dz® = Pexp(Q)dz® such that
|Oh|?|dz|? is complete on C and such that
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(i) Qz) =2"+ z _1 a;z2" is a polynomial of degree n > 1;
(i) P # 0 is an entire function with order p < n; and
(iii) there exists 5= > & > 0 and Ry > 0 such that

ZD{zI |z| > Ro and argz—&r- < 1+5}=@\
n 2n

| for all0 < k <n—1, where ¥ is the set of all zeros of P.

Then the closure of the image of h is the convez hull of a countable set A of
OH? with ezactly n accumulation points.

Proof. We claim that for any € > 0 with ne < 7, there exists a constant
C1 > 0 such that the maximal ®-radius R, of z satisfies

(3.1) R, <(C}
for all z € Wi, 0 <k <n—1, where W}, is the wedge
2k +1
Wk={z| a,rgz—g-—i——)E < 1—6}.
n 2n

for 0 < k < n —1. To prove the claim, note that there exists 7 > 0 such
that for z € Wy, R(2") < —7|2|™. By the assumptions (i) and (ii), for any
z € Wi, let v be the half ray y(t) = texp(v/—1arg z) for t > |2|, then

/I 181 (vt

/ exp (——Tt" +C(1 ™+ tﬁ)) dt, for any p < p <m,
<Cs

where Cy and Cj3 are constants independent of 2. Hence the maximal ®-
radius of z € Wy, is uniformly bounded. This proves the claim (3.1).
Next, for each 0 < k <n — 1, and for 6 > 4e > 0, let

Vk,e’:{zl <l+e}.

2n
Define Vj 4¢ similarly. By assumption (iii), we can take a branch of log P
in {z € Vhue| |2| > Ro}. As in the proof of Theorem 1.1, there exist

2km
argz — —
n
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positive constants Ry > R; > Ry, Tp > 11, €1 > 0 and a conformal map
¢k (2) which is of polynomial growth as a function of z and which will map
S§k) = {2z € Viae| |2| > R1} injectively onto its image. For simplicity, we
write ( = (. Moreover, if

5 = {2 € Viel 2] > Ra}

Y
R1 = {¢l |arg¢| < T + 2 and (] > T3 }

and .
Ry = {¢l larg¢l < 5 +er and [¢] > T2 }

then ¢(S™) D Ry 5 ¢(S$M) 5 Ry. Also, in Ry the Hopf differential of h
is of the form & = exp(¢ + Q1(¢))d¢? where Q1(¢) — 0 as { — oo. Choose
a > b > T,. As in the proof of (3.1), we have

(32) R, < 02

for some constant Cy for all z € 8§k) N ¢ 1({R¢ < a}). Moreover, on
R¢ = b, |exp(¢ + Q1(¢))| = C3 for some positive constant C3. Hence if
W = log |¢h| and if €2°|d¢|? is the hyperbolic metric on ¢(S®)) N {R¢ > a},
then @ > ¥ — Cj for some constant Cy because e~2%()|exp(¢ + Q1(¢))| < 1
and ¥ < C on Rz = b for some positive constant C. Let Ty, = ("} ({Rz = a})
and y; = ¢("1({R¢ = b}). Note that for fixed ¢ > Ty, arg(¢ "L (c+v/—1t)) —
(2k + 3)m/n as t — £oo. Let Q be the component containing the origin of
C\URZyT%, and let Q1 be the component containing the origin of C\URZ3 V-
By (3.1) and (3.2) if we choose € > 0 in (3.2) and then choose € > 0 in (3.1)
small enough then we have R, < C; + C for all z € Q, and if e?*|dz|? is the
hyperbolic metric on Q then w = log |0,;h| > v — C for some constant C for
all z € 9,. Here we have used the fact that the hyperbolic metric on 2 is
dominated by the hyperbolic metric on its subdomain.

Next we want to show that inf,cc\, R; > 0. In fact, if z € C\ Oy,
then there is &k such that R(;(z) > b. Apply Corollary 2.1 on the disk with
center (; and radius 1, we can conclude that on R(; > b the maximal ®-
radius is bounded below by a positive constant independent of (j, because
& = exp(Ck + o(1))d¢Z.

Since € is strongly hyperbolic and |0h|?|dz|? is complete in C, h is quasi-
conformal on ©; by Theorem 2.1 and Remark 2.1.

On the other hand, by Lemma 3.1, if we choose a and b large enough,

then for each k, there exist pgk) € 0H2, j € Z, which are monotone in S!
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such that the intersection of the closure of the image under h of the set
{¢ € Rz, R¢ > b} with OH? is equal to

A= U {p§’°’| je Z} UU {pgf),p(_k)} ,
k=0 k=0

where pgf) = lim; 4100 pg.k). Moreover, if {, € Ry with R(, > b and &z, —

+oo (respectively Sz, — —oo) then h(¢,) — pff) (respectively h((n) —
k

)

Since h is at most linear growth in Ry with respect to (, h is of polynomial
growth on V; ., provided € > 0 is small enough. It is easy to see that h is
at most of linear growth on W},. By the definition of Q;, we see that h is of
polynomial growth on ;. Namely, there exist positive constants £ and C
such that

(3.3) die (h(2),0) < C (de(z,0) +1)°

for all z € 1, where o is a fixed point in H? and 0 is the origin of C. We claim
that the image of h is the convex hull of A together with at most finitely
many points g; € OH2. By theorem 4.8 in [C-T] and theorem 5 in [Wn], it
is sufficient to show that h(C) N OH? is {pgk)l JEZ}U {pff) ,p®) } together
with at most finitely many points g;. Suppose qi,...,gn are distinct points
in

(Wc‘)n am?) \ A

There exist disjoint neighborhoods Uy, ...,Un of q1,...,qm respectively in
. We may choose Uj, 1 < j < m small enough so that h‘l(Uj) C 9.
For if this is not true, then there exists g; and a sequence of neighborhoods
Ujn such that N2, Uj» = {g;} and such that A~}(U;,) is not contained
in §; for each n. By choosing a subsequence, we may assume that there is
2p € Uj, such that R(x(2,) > b under the map ¢ described above. Since
h(zn) — g; by construction, we conclude that g; must be pl(k) or pk for some
k and I. This is a contradiction. Hence we may choose U; such that A~1(Uj;)
is contained in €;. Moreover, we may assume that U; is bounded by a
geodesic line in H?. Let f;j(2) = dpe (u(2),H? \ U;), then f; subharmonic
because dp (-, H2\Uj) is convex by [B-0]. Note that f; is smooth in A=1(U;),
fi(2) =0 for z € C\ h™1(U;) and there exists a constant Cj

fi(2) € Cs (de(2) +1)°
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for all z and for all 1 < j < m by (3.3). Since A™}(U;), 1 < j < m, are
disjoint and nonempty, m is bounded from above by a constant depending
only on £ by Theorem 3.4 in [L-W1]. This proves the claim.

Observe that each g; must lie between pff) and p(_k+1) for some k. Here

we use the convention that pgf’) = p(_o) . Since if 1 (t) = ¢~(b+ v/—1t), then

limy— 400 B(7%(t)) = Pk,+, We conclude that h(Q;) is bounded by h(vx) and

the geodesics joining consecutive points of pi, g; and p(_kH), with ¢; between

pﬁ and p(_k'H), and they are oriented positively. Since h is quasi-conformal
on (2, for each k if ¢, € Ry with R, < b and Sz, — +oo (respectively

Sz, — —o0) then h((,) — pgf) (respectively h(¢,) — pﬂ"). Again, using
the fact that A is quasi-conformal on Wy, we conclude that for z € Wy, and
if z — oo then h(z) will converge to a point g in H2. But g must be equal

to pff) and p(_k+1) at the same time. Hence the closure of the image of A is
the convex hull of the set A consisting of pg.k), gr, which is countable and has
exactly n accumulation points. (|

It is clear that the theorem is true for any polynomial Q without requiring
the leading coeflicient to be 1 as long as the zeros of the entire function P
are distributed in the corresponding sections. For instance, we conclude
immediately from the theorem the following.

Corollary 3.1. Let h be an orientation preserving harmonic diffeomor-
phism from C into H? with Hopf differential ® = P exp(Q)dz? where P
and Q are polynomials with degQ = n. Suppose |0h|?|dz|? is complete in
C. Then the image of h is the convex hull of a countable set A of OH? with
ezactly n accumulation points.

Figures 1, 5, and 6 show the horizontal trajectories structures of holomor-
phic quadratic differentials which are included in the corollary 3.1. Figure
1 also shows the image of the harmonic map corresponding to e?dz? which
is the basis of all the discussion in this paper.

4. Images of harmonic diffeomorphisms with Hopf
differentials f(e?)dz?.

In this section, we will study the images of certain harmonic diffeomorphisms
from C into H? with Hopf differentials of the form f(e*)dz2. As before for
a>0,let Co ={z=z++v-1y|z > a}.
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Lemma 4.1. Let h : Cy — H? be an orientation preserving harmonic dif-
feomorphic injection with Hopf differential ® = dz%. Suppose that for some
zo > 0, limy_, ;o0 h(zo + vV—1y) = p1 and limy,_o h(zo + v—1y) = p2 for
some p1, py in OH2. Then py = py = p, and for all zg > 0

lim h(z) =p.
Ri3ey

Proof. By proposition 1.5 in [T-W1], see also [Wn], the energy density of
h in the half-plane 0 < Rz < oo is bounded. Since for some zy > 0,
limy_s o0 A(zo + vV —1y) = p1 and limy,_o h(zo + vV—1y) = p2, where
p1, p2 € OHZ, we conclude that for all z; > zg > 0,

lim h(z)=p1

[z—+o0
rg<Rz<zy

and

Szli—)n-:-lco h(z) = pa.

zog<Rz<zy
Identify H? = H2 U 8H? with the unit disk. We claim that for any zg > 0,
the closure of h(Cg, ) in H2 is  where Q is the domain bounded by the curve
h(zo + v/—1y), —00 < y < oo and one of the arc on S! with end points p;
and pe. Obviously, h(Cy,) is contained in such an Q because h is injective.
Suppose that the claim is not true, then there is g on the boundary of A(Cz,)
such that ¢ € H? and there is a geodesic arc y in h(Cg,) C H? from a point
g1 in h(Cg,) to g with y(¢) = g, where £ is the length of v and is finite.
Without loss of generality, we may assume that v([0,£)) C h(Cg,). Let
B = h~1(y). Then B is a path in C;, such that B(t) — co as t — £ because
g is on the boundary of h(Cg,). Moreover, RG(¢t) — +oo. Otherwise, we
would have B(t) — p; or pa. However, the pull-back metric under A is given
by (e + 2)dz? + (e — 2)dy?, where e is the energy density of h, and e > 2.
We then have

e=/oe [(e+2) (%)2“@-2) (%)Tdt
> 2 (gi_r;;w(f) - :1:(0)>

= 00
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which is a contradiction. Hence h(C,,) = 2. Suppose p1 # p2, then h(Cy,)
contains a nontrivial arc on S'. However, for zo > 0, h is of at most linear
growth. By theorem 3.4 in [L-W1], we conclude that h(Cq,) N OH? consists
of only finitely many points. Hence we must have p; = ps = p. Since his a
diffeomorphism, we must have

lim h(z) =

|z| >0
Rz2zq

O

Lemma 4.2. Let 0 < 8 < 7 and let h : eV"18Cy — H2 be an orientation
preserving harmonic diffeomorphic injection with Hopf differential ® = dz2.
Suppose that for some zg > 0,

lim h (e‘/—_w(:co + \/——l_y)) =p and
lim A ( ‘/_ﬁ(xo + \/—y))

Y—>—00

for some py, ps in OHZ. Then p; # pe and for all o > 0, h(e\/—ﬁ(Czo) n
aﬁﬂQ {plpr}

Proof. As in the proof of Lemma 4.1, we conclude that for any z¢ > 0,

lim h (e‘/"—w(xo + v—ly)) = D1,

Yy—>00

and

y——o00

lim A ( VI8 (2o + \/—_ly)) =

Let o' > 0. Since 0 < 8 < m, by Lemma 1.1, suppose 2, € e‘/:TﬁCzo,
if Rz, — —oo, then lim, o h(z,) = p1; and if Rz, — oo, then
limp 00 h(2) = p2. If 2, = 0o and for all n, 9 < Rz, < z; for some z1,
then h(z,) are uniformly bounded. Hence h(eV=18C,,) N O H? = {p1, 12}

To prove that p; # po. Note that /—In € e“/_ﬂ for any positive
integer n. Moreover, it is easy to see that z, = e‘/_ vV—1In = —nsin @- =+
\/—ncosg and z, = n+ \/—ncosg are in e‘/_—ﬁCm0 if n is large. Let
L, be the horizontal line joining 2z, and Z,. By the arguments in section
3 of [HTTW], we conclude that h(L,) is of uniformly bounded distance
from the geodesic passing through h(z,) and h(Z,). Since h(z,) — p1 and
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h(Zn,) = p2, if p1 = p2 = p then h(L,) — p as n — oco. On the other hand,
h(v/—1n cos 'g) are uniformly bounded. This is a contradiction. Therefore,

p1 # P2 O

Theorem 4.1. Let m, n be nonnegative intergers and let P(t) be a noncon-
stant rational function of the form

P(t) = Xn: aktk,

k=—m

with a—m # 0 # an. Suppose h is an orientation preserving harmonic
diffeomorphism from C into H2? with Hopf differential given by

® = P(e*)dz?

such that |Oh|?|dz|? is a complete metric. Then A = h(C)NOH? is countable
which has ezactly one accumulation point if m or n = 0, and ag > 0; and
has two accumulation points otherwise. Moreover h(C) is the convez hull of

A.

Remark. Figures 1 and 2 in the appendix show horizontal trajectories
structures for the case that m or n = 0, and ap > 0. In fact, in both
figures, m = 0, and agp = 0 and 1 respectively. The other case are showed
by the Figures 3 and 4. In Figure 3, m = 0 but ap = —1. The image of
the corresponding harmonic map has 2 accumulations both are limits from
one side. In Figure 4, both m and n are not zero and the image of the
corresponding harmonic map has 2 accumulations both are limits from two
sides.

Proof. Suppose that m > 0 and n > 0. By the proof of Lemma 3.1, we
can conclude that there exist py, k& € Z such that h({z] Rz > 0} N OHZ is
equal to {pk}rez and the py are monotone on S!. Moreover, if p; — p+ as
k — +oo, then limg, o0, 2250 A(2) = p+ and limg, o, R2>0 h(2) = p—.

Similarly, there exist gx, k € Z such that h({z] Rz < 0} N OH? is equal
to {qr}rez and the g are monotone on S!, and if g — g+ as k — oo,
then limg, 400, R2<0h(2) = ¢+ and limg, oo, R2<0 h(2) = g—. Hence
g+ = p+ and ¢— = p_. Since h is a diffeomorphism, p;y # p_ and A =
{Pk, @k}rez U {p+,p-}, which has two accumulation points.

Next, let us consider the case that m or n = 0. Without loss of generality,
we may assume that m = 0. As before, there exist pi, k¥ € Z such that
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h({z] Rz > 0} N OH? is equal to {px}rez and the py are monotone on S'.
Let p; and p_ defined as above.

Suppose ag = 0. Then we can conclude as in the proof of Theorem 3.1
that p; = p_ = p and A = {px}rez U {p} which has only one accumulation
point.

Suppose m = 0 and ag # 0, let ag = pzez‘/jﬁ with0<gB8<mp>0.
There exists 6 > 0 such that if |¢| < §, we can take a branch of the square
root of P(t) and

P(t) = pe¥ + tg(2),

where g(t) is analytic and
(4.1) lg(t)] < C1

for some constant C for |t| < §. Let §(t) be such that ¢’ = g on || < § and
g(0) = 0. Let 2o < 0 be small enough so that |e*| < § on Rz < zg. Define

)= [ /P

0

=peV ¥ (z — z) + /Z efg(ef)de

To

= pe¥" B2+ §(e*) + Go

for all z with %z < =z, where (j is a constant. Here the integration is along
the straight line from zo to z. Then ( is analytic. By (4.1), if we choose zg
small enough, then ( is injective. Since |g(e?)| < Ca|e?| for some constant
Cs, if we choose zy small enough, then the analytic map z = ¢; = —({ —{p)
will map {Rz < z(} injectively onto its image R. Moreover

emﬁ{C1| Rz > pxo + 1} CRC e‘/"—w{(ﬂ Rz > pPTo — 1}.
The Hopf differential of h in the ¢; plane is given by d(?. As before, we have

Jm h(zo +v-1y) = ps.

Hence if 8 = 0, we have p+ = p— = p by Lemma 4.1 and A is countable with
only one accumulation point. If 8 > 0, we have p; # p_ by Lemma 4.2 and
A is countable with exactly two accumulation points. The last statement of
the theorem follows from Theorem 4.8 in [C-T] and Theorem 5 in [Wn]. O

As an application, we use Theorem 4.1 to study harmonic diffeomorphic
injection from a flat cylinder to a hyperbolic cylinder. Let N be a hyperbolic
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cylinder and let C* = C\{0}. Let &(C*, N) be the set of all Hopf differentials
of orientation preserving harmonic diffeomorphic injections A from C* to N
such that |Oh|?|dz|? is complete on C*. Let P(N) be the set of holomorphic
quadratic differentials on C* defined by

P(N) = {ydzzl P(z) = Z ar2"

k=—m

for some 0 < m,n € Z, and P # ao},

Pi(N) = {P?(Zzldf € P(N)l P(z)= Z arz®

k=—m

with m or n =0, and ag > O}

and Py(N) = P(N) \ P1(N).

Corollary 4.1. With the above notations we have ®(C*, N)NP(N) is either
a subset of P1(N) or a subset of Po(N). Moreover, if ®(C*, N)NP(N) # 0,
then it is a subset of P1(N) if and only if N has a cusp.

Proof. Let 272P(2)dz? € ®(C*, N) be the Hopf differential of an orientation
preserving harmonic diffeomorphic injections h from C* into N. Lifting
h to the universal coverings, we have an orientation preserving harmonic
diffeomorphic injection, denoted by h again, from C into H2?, with Hopf

differential given by
P(e*)dz?

and an element p of the Mobius group which generates 71 (N) such that
h(z + 273) = p(h(z)).

Note that |0h|?|dz|? is complete on C. Let A = h(C) N O H2. Since h is
equivariant, 4 is invariant under p. This implies that the set of fixed points
of p is exactly the set of accumulation points of A. The corollary then follows
easily from Theorem 4.1. O

Remark 4.1. It was proved in [Wn, W-A, T-W1] that given a holomorphic
quadratic differential ® on C or on H? there exists an orientation preserving
harmonic diffeomorphic injection from C or H? to H? whose Hopf differential
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is the given ®. Corollary 4.1 shows that the prescribed Hopf differential
problem is not alway solvable from C* into N where N is a hyperbolic
cylinder.

Our next result is to consider the image of a harmonic map with Hopf
differential of infinite order.

Theorem 4.2. Let h be an orientation preserving harmonic diffeomorphic
injection from C into H? such that |0h|2|dz|? is complete. Suppose that the
Hopf differential of h is given by

® = exp®(2)dz?,
for some positive integer k, where exp(k)(z) is defined inductively by
exp@(2) = 1 and exp¥)(z) = exp(expU~Y(z)). Let A = h(C) N OH2.
Then A = U;?=0Aj such that
o A; is countable and discrete for each 0 < j <k —1;
o A; consists of all isolated accumulation points of Aj_1 for 1 < j < k;

o A; consists of only one point.

Please see Figure 7 in the appendix for the horizontal trajectories struc-
ture of e¢*dz? and the corresponding image of the harmonic map.

Proof. We may assume that & > 2 because k = 1 is a special case of Theorem
3.1. First of all, we want to find out the domains such that ® can be
written in the form of Lemma 3.1. Givenany a« € R, 1 <[l < k-1 and
(n1,n2,...,m;) € Z!, we define the open subsets S(n1,...,n;) inductively by

Stny) = {2 € C|Rz > q, [z —2ny7| < 7}
and
Sing,n) = {2 € Sta,omu_y) | RG=1 > exp D (), |9¢-1 — 2| < 7},

where ¢;_1 = exp("1(z). Then ¢; = e%-1 = exp®)(z) maps S(ny,...,n;) ODE-
one onto the open set

2 =C\ ({6 e Rig <0} {al 6] < expP(@)}),



548 T.K.K. Ay, L.-F. Tam & T.Y.H. Wan

and in terms of (

exp--0(¢)

= — L
5 (log® )2

(4.2)

In particular, for [ =k — 1,

exp(Ck—1) 2
(4.3) _oxP(Ck dc2.
N e (log® ¢ 1) -
k-1
=exp | CGe-1—2) log¥ ¢y | dCR_,
i=1
on

Q1= C\ ({Gem1 € Riges < 03U (G 1G] < exp®(a)})

A further transformation

k-1
n=Ceo1—2) log® ¢y

i=1

will put the Hopf differential into the form of Lemma 3.1 and we can conclude
on the boundary behaviour of the harmonic map h. However, to ensure
that there are no other ideal boundary point, we need to show that A is
quasiconformal in certain domain.

In order to do so, given any B >> 1, we define Eg = {(-1 €
Q-1 |R1({k—1) > B} and claim that for any o € R, there are simply-
connected domains Vp C Vp C {z € C|Rz > a — 1} such that

C \ ‘70 = {?RZ <a-— 1} @] ( U T('nln-,'nk—l))

(nl --'1nk—1)

and
C\W={Rz<a}u ( U T(nl---,nk-1)) ,
(n1...,nk_1)

where T(nz.--,nk-l) (respectively T(n, ... n;,_,)) is the component of the preimage
of Eg41 (respectively Eg), under the map exp*~1)(2) corresponding to the
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branch of log given by (ni,...,mg_1). Moreover, there are constants Cp,
My, 0 with Cy and 6 > 0 such that

(4.4) s‘t_jop R, < Cy, 6{150 R, >4, and g‘l/g(w —v)(z) > My,

where R, is the maximal ®-radius at z, w = log|0h| and €*|dz|? is the
Poincaré metric on Vp. If the claim is true, then the last inequality of (4.4)
implies that w > v — My for all z € Vp, and hence, by Theorem 2.1, one can
conclude that A is quasiconformal on Vj.

To prove the claim, we note that for z € Ty, . n,_,) the image of z
under exp*1) is in Eg. By Corollary 2.1 as in the proof of Theorem 3.1, we
conclude that R, > § > 0 for some § > 0 independent of (n1,...,ng-1). On
the other hand, since e*)(z) — e(*~1)(0) if Rz — —o0, we also have R, > §
by Corollary 2.1 if 2 < a and by choosing a possible smaller §. The second
inequality of (4.4) is proved.

Let z € 8V}, then either Rz = a or the image of z under exp*~1) is on the
boundary of Eg. In the first case, e2*(2) > |e(*=1)(2)| > C for some constant
C > 0 independent of z. Hence it is easy to see that w(z) — v(z) > My for
some constant My because Vj is strongly hyperbolic. In the second case, we
can proceed as in the proof of Theorem 3.1 and obtain the third inequality
in (4.4).

To prove the first inequality in (4.4), we let

Vi1 = Q-1 \ Es C Vie1 = Qg1 \ Ep1.

Then it is easy to see that Vy_; C Vie—1 are simply-connected domains in
Qk—l and there is Ck_]_ such that -

(4.5) sup R, < Cj_1.
Vi1

In fact, for all z € Vi_q, there is a divergent path « in Vj_; such that
La(7v) < Ck-1-

Now, for | = k — 2, we consider subsets in {};_2 containing the preimage
of Vi1 and V;—; under the exponential map (x—1 = exp({ix—2). It is clear
from the property of the exponential map that

Vi—2 = exp™ ' (Vi—1) U [(EUE) N Qk—z]

Vi—2 = exp™*(Vh—1) U [(f/kT_z»U V_[_—g) N Qk—z]
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are simply-connected domains in ;_o such that
VE, C Viez C Viea,
where, for I =1,...,k -1,

V[tl = {z € S(nl,...,m_l) |§RCI—1 < exp(l_l)(a)7 %Q—l > 0}
V;__.l = {Z € S(nl,...,n;_l) |§R<l—1 < exp(l_l)(a); gCl—l < O}'

We note that, for [ =1,...,k — 1,
8(711,--.,711—1) = Vltl uv,,u [U"zez (S(n1,~~~,nz—1,nl) n 8(711,-~~,nz-1))] .

We want to show that there exists C},_, > 0 such that for all z € Vk_z, there
is a divergent path « in Vi_p with La(y) < C}_y- This will immediately
implies that

sup R; < Cg—2

Vi-2

for some Cy_o > 0. To prove this, we note that for all ro > exp(F—2) (),
rdd
/ 1®/1dGe—s] < C =
r=ro, 0<O<T r=ro,0<0<n |Ck—2||log (x—2|- - - |log Cr—2]
< C
logrp-- -log*=2) ry
— 0 as 7 — +00.

Then for all point (x_o € V,f_z, it can be connected to a point on the vertical
line {R¢x—_2 = exp*2(a)} by a circular arc with uniformly bounded &-
length. By using (x—; = exp({x—2) to map a point on 9Q_1, we can find
a divergent path in Vj_; with ®-length bounded by Ci_;. Lifting this path
to Vik_o and together with the circular arc, we find a path starting from any
point in V;cjiz a divergent path in Vie—a. The same is obviously true for other

z € Vj_g since they belong to exp~!(Vj_1). This proves our assertion that

sup R; < Cy_2
Vie—2

for some Cg_g > 0. 3
Continue in this way, for all [ < k — 1 we can define V}, V; and Vf’:, such

that
Vo=exp '(Vi) and Vp =exp”!(})U{z]a—1< Rz < a}.
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Moreover, we can prove inductively that

supR, < C;
Vi

for some constant C). Finally, it is easy to see that R, < C for some contant
C if a — 1 < Rz < a because such a point can be joined by a line with
bounded |¢|-length to a point in exp~1(V1). This completes the proof of the
first inequality in (4.4).

Now we can study the structure of the boundary points of A(C). Firstly,
for any (ny,...,nk_1) € ZF~!, using Lemma 3.1, we can argue as before
to conclude that there exists monotone sequence p(n,,....ns_1)sj0r J0 € Z and
P(n1,inp—1)its P(ni,np_1)i— i1 OH? such that, for 3 sufficiently large,

(4.6) W(S(nymi_r) 0 {2l Rn(2) = BY) N OW?

= {p(nly“'ynk—-l)ijo}joez U {p(nh"':nk—l);""p(nly"':nk—l);_}
jogriloop(nl,...,nk_l);jo = p(nl,...,nk_l);:!:'

Moreover, if z, € Sn,,....ns_y) N {2 R0(2) > B} and 2z, — co then

h(zn) - p(nl!-~-1nk—1);+? lf in(zn) — 00
Plny,nk_r)—r i SM(2n) = —00.

In fact, we conclude by (4.3) that the energy density of h is bounded on the
set 2 € S(n,,....np_,) Such that a < Rn(z) < b and |Sn(2)| > R for any a, b
and R provided R is large enough. Hence we still have h(2n) = D(n,,....np_1)s+
if Sn(2n) = £00, 2n € Sny,...ins_,) a0d @ < Rn(zn) <.

Secondly, for any ni,...,nx_2 € ZF~? and for any ji € Z, the map
(k-1 = exp(Ck—2) will map

{2 € Stny,...mun)| Réi—2(2) > exp® (@), [SC—2(2) — (21 + V7| < 7}
one-one onto

Q1 =C\ ({Ck—l € R|¢k—1 > 0} U {Ce—1] ICe—1] < exp(k_l)(a)}) .

The corresponding curves given by Rn = B in Sy, ni_,pj) and
S(n1,....;nk_2,j1—1) ive us two branches of curve v and v satisfying ®n =
on Q_1 N {S¢k_1 > 0} and Qi—1 N {SC¢k_1 < 0} respectively. Joining the
two branches of curve by a compact curve v in (1, for instance a circular
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arc with sufficiently large radius centered at the origin, gives a subset U
with OU = 4 U+~ U+ on which h is quasi-conformal. By (4.6), h will maps
AU to a curve in H? such that if 31 — oo the image under A will tends to
the point p(n,, . ny_s51+1);—> and if 81 — —oo the image under h will tends
to the point p(n, .. ,.1)+- AS in the proof of Theorem 3.1, we see that
P(ny,...np—g,d1+1);— = Pny,...;nk_2,51);+ which will be denoted by P(ny,cinp—2)ij1°
It is then not hard to see that

h(S(nl,...,'nk_l)) n BHZ = {p(nl,...,nk_l);jo }jOGZ U {p(n1,...,nk_1);+7p(n1,...,nk_1);—},

and
Ao = {p(nl,'-',nkq,nk-l);:io}(nl,...,nk_l)GZ(""l), JOEZ>

is countable and discrete. Now for each (ng,...,ng_2) € Z(*=1) the set
{p(nl:---ynk—2);j1 }jlez

is monotone in j; and we denote p(n,,..ny_o)x = iMjt00 P(ny,....np_s)sj1-
Since the Hopf differential on Sy, . »,_,) is of the same form (4.3), by the
proof of Lemma 3.1, for each (n1,...,nx_1), there is a point z(,; . n,_,) €
S(ni,...,ni_,) and two consecutive points in {p(n, .. n,_,:jo) }ioez such that

(4.7) R (2(ns,....ni_r)) = B

(48) lc\s\‘n(z(nl,...,nk_l))l <m,

and that the distance from h (z(nx,.--,nk_l)) to the geodesic joining these two
consecutive points is bounded by C; for some constant C; > 0 which is

independent of (n1,...,nk_1). From (4.7) and (4.8) we have

(4'9) lim h (z(nly-")nk—Z:jl)) = p(nli"'vn(k—Z));i'

jl—):!:oo
Using (4.2) and (4.9), we can argue as before to conclude that
D(ny,nik—3,d24+1);— = P(n1,..,nk—3,52);+
which will be denoted by p(n,, .. n,_s)j2> and
h’(S(nl,...,nk_g)) n 0H2 = AO ) {p(nl,...,nk_g,nk_g);+7p(nl,...,nk_;;,nk_g);—} .

Let
Ay = {p(nx,---,nk—z);jl}(nu--ynk—z)GZk_z, J1€Z"
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Then A, is countable and each point in .4; is an isolated accumulation point
of Ag. The accumulation points of A; are p(n;...nx_g)ijar (P15---,Mk—3) €
Z*=2) and j, € Z. Continue in this way, we can find A; C OH?2,0<j<k
such that each .A; is countable and discrete for 0 < j < k—1 and Aj; consists
of all isolated accumulation points of A4;_1 for 1 < j < k. Moreover,

h(C) NOH? = U¥_o4;.

Finally, We want to prove that A; consists of only one point. From the
proof, we can see that Ay consists of at most two points p and g satisfying

Jim h(v-1y) =
and
lim h(v-1y) =gq.
Yy——00
Since

exp*1(t) = exp*~1(0) + tg(t)

on [t| < 1, where g(t) is analytic, one can proceed as in the proof of Theorem
4.1 to show that p = q and

h({z] Rz < 0} N OH? = {p}.
Hence A}, is a singleton and this completes the proof of the theorem. a

Remark 4.2. The Theorem 4.1 is also true for the Hopf differential

k-1
exp®~D*(e*dz?) = exp®(2) H [exp(J)(z)]

j=1

In fact, the proof is much easier and can be done by induction since the
form of the Hopf differential is not change under the map ¢ = e*.

Remark 4.3. The Theorem 4.1 is not necessary true in general. In fact, it
becomes very complicated for the general form as in Theorem 1.2. Even for
® = P(z) exp(®)(2)dz?, the Theorem 4.1 need modification. For instance, if
P(z) = /=1, then the same argument as in the proof of Theorem 4.1 and
using Lemma 4.2 instead of Lemma 4.1 on the region {z < a}, we see that
the set Ay consists of two points whether than one. So the best to hope for
is that A has at most two points for the general form in Theorem 1.2.
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5. Harmonic diffeomorphisms on hyperbolic plane.

The result in §2, in particular Proposition 2.1, can be applied to study a
conjecture of Schoen, which says that any quasi-symmetric homeomorphism
on S! can be extended to a unique quasi-conformal harmonic diffeomorphism
on H2. The existence part of the conjecture is still open, but there are
many partial results, see [Ak, L-T1, L-T2, L-T3, T-W2, S-T-W, H-W, Y].
Schoen’s conjecture can be reformulated as follows. Let BQD(H?) be the
space of holomorphic quadratic differentials ® on H? such that

II@]l] = sup ||®]|(2) < o0
z€H?

where ||®||(2) is the norm of ® at z with respect to the Poincaré metric. In
[Wn], the third author proved that for any ® € BQD(H?), there is a unique
quasi-conformal harmonic diffeomorphism v on H? with ® as Hopf differ-
ential. This defines a map B from BQD(H?) to the universal Teichmiiller
space T by sending ® to the class of quasi-symmetric homeomorphism con-
taining the boundary value of u. The existence part of the conjecture of
Schoen is equivalent to the surjectivity of the map B. Let F be a subset of
BQD(H?), we say that 9B is proper on F if for any &, € F with |||®@y||| = oo,
we have d7 (B(®,),0)) — oo, where dr is the Teichmiiller metric on 7. It
is not hard to see that 9B is surjective if B is proper on BQD(H?). It is
also not hard to see that if 9 is proper on the set of ® € BQD(H?) with
Jie |1®||dvge < o0 or even on the set & = ¢dz? with ¢ to be a polyno-
mial, then 9B is proper on BQD(H?). Here, we identify H? with D with the
Poincaré metric. For the sake of completeness, we give a proof of this fact
below. Denote

F= {«1» € BQD(H?)| /W ||®||dvge < oo} :

Note that ® = ¢dz?, then [, ||®||dvge = [ |¢|dzdy.
Proposition 5.1. Let
G={®eF| ®=¢dz?, ¢ isa polynomial}.
Then
(i) If B is proper on G, then B is proper on F.
(i) If B is proper on F, then B is proper on BQD(H2).
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(iii) If B is proper on BQD(H?), then B is surjective.

In particular, if B is proper on G, then B is surjective.

Proof. (i) First we prove that if 98 is proper on G, then B is proper on F.
Let ®, € F such that |||®,]]| = oco. Suppose that there is a constant C;
such that d7(8(®,),0) < C; for all n. Since B is continuous, there exist
dn > 0 such that if |||®, — ¥||| £ &n, then d7 (B(¥),0) < C; + 1. Hence it
is sufficient to prove that G is dense in F. Let ® = ¢dz? € F, then

/ \$ldzdy = / 1% |dvgs < co.
D He2

Apply the mean value inequality on the disk I, , with center at z and radius
r = (1 — |2|), we can conclude that ||®||(z) — 0 uniformly as |z] — 1. For
0 < R<1,let ®r(z) = ®(Rz). For any € > 0, we can find 1 > § > 0 such
that if 1 — & < |2| < 1 then ||®||(z) < ge. Then for 1 — 16 < |2| < 1 and for
R large enough, so that R|z| >1—-4§
(122 1
S S ot IV < Ze.

128l = =l (R) < ge
On the other hand, for |z] < 1 - %(5, #r(z) = ¢(z) uniformly, ds R — 1.
Hence we can find R large enough, so that

1®r(2) — 2(2)|| < €

for all z € D. Hence |||®r—®|||pgp < €. But & is analytic on |2| < % which
is large than 1. So it can be approximated uniformly on D by polynomials.
This completes the proof of (i)

(ii) We will prove that if 9B is proper on F, then B is proper on BQD (H?).
Let & € F and let B(®) = [f] where f is a quasi-symmetric homeomorphism
of S! fixing 1, 4, —i. Let d7([f],0) = Ci. Then there exist diffeomorphisms
of S gy, fixing 1, i, —i such that g — f in C* norm for some 1 > a > 0 and
such that d7([gk],0) < C2 which depends only on C;. Moreover, C; — oo if
and only if C — oco. These follow from theorem 2 and remark (1) in [D-E].
By theorem 6.4 in [L-T3], see also [T-W2], for each k there exists a unique
), € BQD(H?) such that B(¥;) = [gx] with ¥} € F. By the assumption,
we have |||Uk||| < Cj for all k, where C3 depends only on C;. Note that Uy
is the Hopf differential of quasi-conformal harmonic diffeomorphism on H?
with boundary value g;. Hence ¥y (z) — ®(z) for all z € D and so

limsup ||| @] > |||®]]]-
k—o0
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From this, it is easy to see that B is proper on BQD(H?).

(iii) We will prove that if 8 is proper on BQD(H?), then B is surjec-
tive. Let [f] be a class of quasi-symmetric homeomorphism on S! such that
[f] is in the closure of B(BQD(H?)). Then there exists f, quasi-symmetric
homeomorphisms on S! fixing 1, 4, —i such that f, — f uniformly, and
[fa] = B(®,). Since [f,] are uniformly bounded on 7, &, are uniformly
bounded in BQD(H?). By theorem 13 in [Wn], the quasi-conformal har-
monic diffeomorphisms u,, with Hopf differentials ®, has complex dilata-
tion p, satisfying |u,| < p < 1 for some constant y independent of n.
Passing to a subsequence if necessary, u, converges uniformly on D to a
quasi-conformal harmonic diffeomorphism on H? with boundary value f.
Hence [f] is in B(BQD(H?)). Combine with the theorem 4.1 in [T-W2], we
conclude that B is surjective. O

Proposition 5.2. Let ®, € BQD(H?) satisfying [i ||®nl] < oo and
[||®n||| = oo. Suppose for all k > 0,

. Ju, 12n]ldvge
lim =2—«— =
n—oo f]Hp ||@n||dvge

where s
Up = {2z € H?| ||@n]|(2) < kIl|@alll7}.

Then d7(B(%,),0) — co.

Proof. Identify H? with the unit disk D equipped with the Poincaré metric.
Let ®, = ¢ndz>. Let Lin,0 be the supremum of the modulus of the complex
dilatation of B(®,), then

14+ pno

1
dr(B(24),0) = 5log 720
n’

Since
/ |r|dzdy =/ [|@n]|dvn < oo,
D H?2
we can apply the main inequality in [R-S] and conclude that

1 / / 1
D, ||dvge < ——||®n||dv
s i 12l < [ il dve

where p,, is the complex dilatation of the quasi-conformal harmonic diffeo-
morphism with Hopf differential ®,. Let 1 > § > 0 and & > 1 be fixed

(5.1)
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numbers. Define

Dy = {2 € B| ||@4]|(2) > Kll@all0p),

3
Un ={z e B| ||®al|(2) < k“@vtllﬁQD}'
We have

1 1
5.2 /————@ndv =(/ +/>————‘I> dupp .
( ) lHl21+|/J"nI” || H2 D, : 1+|/J“nl|| 'n” H2

By Proposition 2.1, for any z € D,, the maximal ®,-radius R, . satisfies
R, . > Cik for some absolute constant C; > 0. By the result on page 63
of [Hn], we have |u,| > n(k) for some constant n(k) such that n(k) — 1 as
k — oo. Hence we have

1 1
69 [ el < g [, el

For any 0 < § < 1, there exists ng such that if n > ng then

/U el < 0 /W X

Combine this with (5.1)-(5.3), we have for n > ny,

1 1
®,||d 5—/ ®,||dv +5/ @, ||duge .
i o Weellve < s | i@l +6 [ @allduce

Hence

1 < 1
1+ Hn,0 1+ ﬂ(k)
Let £ — oo, and then let 6 — 0, we have

+4.

1

lim su < -

n—)oop 1+ Hn,0 -2
Since 0 < ppo < 1 for all n, we have lim, ;o0 f1n,0 = 1. From this, it is easy
to see that d7(B(®,),0) — co. O

Corollary 5.1. Let F be as in Proposition 5.1. Let &, = ¢pdz® € F.
Suppose |||®nl|| = 1. Let An = [ [|®n|ldvie = [p|#nldzdy. Suppose
liMp—s00 @n/An = ¢ such that [ |¢|dzdy = 1, then B(tn®n) — oo for any
t, — 0o. In particular B is proper on any finite dimensional subspace of F.
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Proof. For any 1 > § > 0, we can find 1 > 9 > 0, such that

[ Wwldzdy=1-5,
0
where D, = {|z| < ro}. We have
6l
5.4 Wnl 5 1 _ 96,
(5.4) [

0

1
provided n is large enough. For any k& > 0, let ¢, = kt, *, where ¢, — oo.
Let

3
Un = {2z € B?| [[ta®l|(2) < Kll[tn®nll|5} = {2 € H?| [|®4]|(2) < €n}-
Note that if ®, = ¢,dz2, then for z € U, N Dy,
|6nl(2) < C1(1 —70)2[|®nll(2) < €n(1 —10)72

for some absolute constant C;. Hence by (5.4),

(5.5) /Un«bnndvms /U |Guldzdy + / |aldzdy

NDr, D\Dy,
7Clen
< ——= +204,.
Since [||®4||| = 1, by applying the mean value inequality to |@,|(z) at a
point z, with ||®,||(2x) > 3, we conclude that A, > C; for some abolute
constant C3 > 0. By the definition of ¢,, we have €, — 0 as n — oo. Hence

(5.5) implies that we have

. fUn [[tn®n||dvge . fU,, [|®n||dve
lim sup = —_
n—»00 fﬂz |Itn¢n|dvn-]12 n—o00 A,

< 26.

Since § is arbitrary, ¢,®, satisfies the conditions in the Proposition 5.2.
Hence the first part of corollary is proved.

To prove the second part of the corollary, let H be a finite dimensional
subspace of F with basis ¥y,...,¥. If &, € H is such that |||<I>n||L——> 00,
then ®, = t,®, such that |||®,||| =1 and &, = E;;l an,;¥; with 357 afm-
being uniformly bounded. From this, it is easy to see that the second part

of the corollary follows. O
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Let ® = ¢pdz? € F. Define

. |1 —az|* . z
®| = inf f
(oo = inf sup [6()| (i — oy = f sup 19e())

where (Z)adg‘ 2=%and ¢ = .

az

2lz: = [ Ioldody = [ 18lldurn.
D H2

Note that

| \etdody = [ |Boldzdy

if ¢ and @, are related as above.

Corollary 5.2. Let 7; = {® € BQD| |||®||| = 1,|®|c < 00}. Let

1
®, € F1, and t, — oo be a sequence such that |<I>n|°°|<1> |L1 = o(t}), then
d7(B(th®,),0) — 0. In particular, if |Pn|co|Pn | < C for some constant
C independent of n, then dr(B(t,®,),0) — oo, for any t, — co.

Proof. For each n, by the definition, by a linear fractional transformation of D
if necessary, We may assume that &, = @ndz?, with (sup,cp |6n|(2)) |$nl77 o=

o(tn). Let M, = sup,cp |¢n|(2) and I, = |¢n|r1. We claim that
(5.6) 2< M,

for all » and for some absolute constant C;. Fix n, take rg such that

1
/ |¢'n|dmdy = §In,
D(ro)

where D(rg) = {z| |z| < ro}. Since |||®,]|| = 1, we have

C,
“1-79

(5.7) = / \¢uldedy < Ca / (1-r)2<
2 D(ro)

where C5 is an absolute constant. On the other hand

1

= / \$uldady < My - 27(1 — 10).
2 D\D(ro)
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Hence
1 Cy
—1I
27"~ 11— T0
2w M, Co
= %In

From this (5.6) follows.
Now for any k > 0, let

Un = {z € H2| ”tnq)n”(z) < kllltn®n|||3/4}
= {z € H?| ||®n]|(2) < kenll|®all*/*}

1 1
where €, = t, *. Let 6, = (A—/I’Z—G_,ﬂ_—f) ? . By (5.6) and the fact that e, — 0,
we have 6, — 0 as n — oo. Ans in the proof of Corollary 5.1, I, > Cjs
for some absolute constant C3. Hence 6,I;1 — 0 as n — oo. If n is large
enough so that 6,I;! < 1, then we take r,, such that 1 —r, = §I;!. Denote
D(rn) = {2| |2| < Tn}. Then

(5.8) / |pn|dady < 27 M, (1 —72)
(D\D# )NUn
< dr(MnI;%)6,1,.

On the other hand, as in the proof of (5.7), we have

/]];( AU, I¢n|d$dy < C4k€n(1 - Tn)—l
= Cakend; I,

for some constant C4 independent of n. Hence
/ |¢n|dzdy < Cs { MnI 26, + kendy '} In
Un

1
= 2C5 {kenaMpI; 2} I,
for some constant Cs independent of n. Hence if n is large enough,

fU,, |pn|dzdy
Jp |énldzdy

By the assumption, the right side of the above inequality tends to zero as
n — 0 and the corollary follows. d

< 205 {ken M 172} E |
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Example 1. Let &, = ¢,dz® = c,n%2"dz?, where c, is chosen so that
[l|®x]l] = 1. Direct computations show that C~! < ¢, < C for some
positive constant C independent of n. Then sup,¢p [¢n|(2) = cpn?, and
Ip |nldzdy = %ﬂ Hence the |®p]oo|®n|7> < C' for some constant C'
independent of n. Hence by Corollary 5.2, for any subsequence ny and for

any tx — oo we have d7(B(tx®Pn,),0) = oco.

Example 2. Consider (z — 1)"dz%. Then direct computation shows

sup(l — 2%z = 1" = cpn~22"
2€D

where C! < ¢, < C for some constant C > 0 independent of n. Let ®, =
chn?27"(2—1)"dz? = ¢n(2)dz?, where ¢}, is chosen so that |||®,||| = 1. Note
that C~1 < a < C for some C > 0 independent of n. Let a = —M,
note that —1 < a < 0.

(5.9)

sup dn () (1 — om0 L - azl’

mp =cn?2™™ sup e — 1" |1 — ae|*(1 — a?)72

0<0<2n

0
=c,n? sup sin" - [(1 —a)? + 4asin® —] (1—a?)~2
0<o<2r 2
=c,n® sup t"[(1-a)®+ 4at2]2 (1—a?)~2
0<t<1

Let f(t) = t* [(1 — a)? + 4at?]?, then f(0) = 0. Suppose f(t), 0 < ¢ < 1
attains its maximum at ¢y € (0, 1), then f/(¢p) =0, and

nt2 1 [(1 - a)® + 4atd]> + 7 - 2 [(1 — a)? + 4atl] - 8ato = 0.

Hence 2 = —%%;—ﬁ% = 1 by the choice of a, which is impossible. Hence, for
0 <t <1, f(t) attains its maximum at ¢t = 1. By (5.9), we have

=cin?(l+a)’(1—a)72%

Bnloo < yn? [(1 - a)? + 4a)” (1 — a?) 2

Since a < 0,1 —a > 1. Also

n+8—4yntd -8+4/n+4
- :

n

l+a=1-
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Hence
(5.10) |®n|oo < C11

for some constant C; independent of n. On the other hand

0 prl
/ [z — 1|"dzdy = / / [r? +1 — 2r cos 6|z rdrdf
D 27 JO

kg 1
= / / [r? + 1 + 27 cos 6|2 rdrdf
-7

/ /(r-l-l)"ll )2|2rdrd0
/("Jrl)n( 2 (1+r)2) rr

> 032"71 2
1
2> Cyn?

for some constants C-C4 independent of n. By Corollary 5.2, we also have
B(trP,,) — oo for all subsequence ny and for all ¢t — oo.

In the last section of [Wn], it was proved that B is continuous, and in
section 4 of [T-W2], it was proved that the image of B is open and B is a
diffeomorphism from BQD(H?2) into 7. From the proof of the proposition 14
in [Wn], 98 is in fact uniformly continuous on bounded subsets of BQD(H?).
On the other hand, we have the following:

Proposition 5.3. Let R > 0 and let
B(R) = {2 € BQD(H?)| [(|2|| < R}.

Let T(R) = B (B(R)). Then B! is uniformly continuous on T(R).

Proof. For any complex measurable function p on D such that ||u||e < 1,
denote F* to be the unique quasi-conformal map on D with boundary value
f# which fixes 1, 4, —i. Suppose f¥ can be extended to a quasi-conformal
harmonic diffeomorphism, then the harmonic map will be denoted by ol
and its complex dilatation is denoted by ji. By theorem 13 in [Wn], there
exists 0 < k < 1 such that if [f] € T(R) then ||p|lc < k, where p is the
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complex dilatation of an extremal quasi-confomal map with boundary value

in [f].
T*(R) = {u| p is measurable, ||u|| < k and [f¥] € T(R)}.

Note that if 4 € 7*(R), then f* can be extended to a quasi-conformal
harmonic diffeomorphism with Hopf differential in B(R). We claim that for
any € > 0, there is § > 0 such that if g, v in T*(R) and ||p — V||ec < 6
then || — 7|/ < €. If the claim is true, then by the definition of d7 and
by the method as in the proof of proposition 14 in [Wn], one can conclude
that B! is uniformly continuous on 7(R).

First we prove the following, given € > 0, there is § > 0 such that if
p and v are in 7*(R), then |(0) — #(0)| < e. Suppose not, then there is
€ > 0 and two sequences fin, vn in T*(R) such that ||un — tnlleec — 0, but
[in(0) — 7,(0)] > €. Since ||fin|lc < k1 and |[|Pnl|lg < k1 for some 0 <
k1 < 1by [Wn] passing to subsequences if necessary, Fen and F¥» converge
uniformly on D to normalized quasi-conformal harmonic diffeomorphisms
H; and Hj respectively. Since ||ttn — vn|loo = 0 and pn, v are in T*(R),
H, and Hy must have the same boundary value and so Hy = H2 by [L-T3].
It then follows that |fi,(0) — #,(0)| — 0, which is a contradiction.

Now, for any € > 0, let § > 0 be as above. Let u, v be in 7*(R) such
that ||u — ¥||e < 8. Let a € D and ¢(2) = (2 — a)/(1 — az). Define p; and

v by \
mw&»=maQ380

and

¢'(2)

(6 =@ (5

¢ (2)]
Then f#1 = h*o fFo ¢!, and f1 = h¥ o f¥o ¢~1 where h* and h” are
the linear fractional transformations which map D onto itself and are chosen
so that f#1 and f*! fix 1, i, —i respectively. Obviously f#1 and f** have
quasi-conformal representatives Fm and F“1. In fact,

FM = pto FFo ¢!

and )
F' =pFoFY oL,

Moreover, the Hopf differentials of F#1 and F*t are in B(R). Hence Ui, 1
are in 7*(R) becasue ||fi1]loo = [|ttlloo < & and [|71]lo0 = [|V]loo <
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We also have

/ 2

@) = i) ()
and , 0

76@) =26) (5.
Note that

llu1 = villoo = [l = Vlloo < 6.
Therefore

lu(a) — v(a)] = |p1(0) — 11 (0)| < e.

Since a is any point in D, the claim follows. (]

Appendix: Trajectories and Image Accumulation.

In this appendix, seven figures of horizontal trajectories of holomorphic
quadratic differentials are shown. These pictures of trajectories are pro-
duced by programming in Mathematica. Some trajectories may be broken
due to slow convergence of the algorithm. In fact it should be smoothly
defined for all time. Nevertheless, the qualitative behavior of the trajec-
tory patterns is shown clearly. In some figures, the correponding harmonic
map produces an image which has a good accumulation structure on the
boundary. This structure is also shown on the unit disk.
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Finitely Many Accumulations.

Figure 1. & = e*dz?%.
(See Theorem 3.1 and Corollary 3.1.)

This example is the basis of all others. The trajectories have a 27 peri-
odicity. The image of the corresponding harmonic map has an accumulation
point at —1.
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Figure 2. & = (e + 1)dz%.
(See Theorem 4.1.)
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Figure 3. & = (e* — 1)d22.
(See Theorem 4.1.)

From this and the previous one, a lower order term may significantly
change the behavior of the harmonic map. This one has two accumulation
points at +1 while the previous one has only one.
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Figure 4. & = sinh? 2dz2.
(See Theorem 4.1)

This is another example that the fundamental region is different while
there are also two accumulation points.

L

S

—p o~y

4

—

e



Hopf differentials 569
Figure 5. ® = (22 — 1)e*"dz22.
(See Theorem 3.1 and Corollary 3.1.)

The image of this example should have 2 accumulation points.

L

i\

4 —— ~ e
A

Figure 6. & = ¢+ dz2.
(See Theorem 3.1 and Corollary 3.1.)

The image of this example should have 3 accumulation points.
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Accumulation of accumulating points.

Figure 7. & = e® d2?%.
(See Theorem 4.2)

Finally, this is an example about accumulation of accumulations. The
image has infinitely many accumulation points marked by dots outside the
unit circle, which in turns accumulate at —1.




[Ab]

[Ak]

[A-M-M]

(B]
[B-O]

[C-G]

[C-T]

[D-E]

[Hn]

[HTTW]

[H-W]

[Hz]

Hopf differentials 571

References.

L.V. Ahlfors, Lectures on quasiconformal mapings, Van Nostrand,
1966.

K. Akutagawa, Harmonic diffeomorphisms of the hyperbolic
plane, Trans. Amer. Math. Soc., 342 (1994), 325-342.

I. Anié, V. Markovié¢, and M. Mateljevié, Uniformly bounded maz-
tmal ¢-disks, Bers space and harmonic maps, Proc. Amer. Math.
Soc., 128 (2000), 2947-2956; article electronically published on
April 7, 2000.

R.P. Boas, Entire functions, Academic Press, 1954.

R.L. Bishop and B. O’Neill, Manifolds of negative curvature,
Trans. Amer. Math. Soc., 145 (1969), 1-49.

S.S. Chern and S. Goldberg, On the volume-decreasing property
of a class of real harmonic mappings, Amer. J. Math., 97 (1975),
133-147.

H.I. Choi and A. Treibergs, Gauss map of spacelike constant mean
curvature hypersurface of Minkowski Space, J. Differential Geom.,
32 (1990), 775-817.

A. Douady and C.J. Earle, Conformally natural eztension of
homeomorphisms of the circle, Acta Math., 157 (1986), 23-48.

Z.C. Han, Some Remarks Concerning the Geometric Behavior
of Harmonic Maps between Surfaces, in ‘Elliptic and Parabolic
Methods in Geometry,” Ed. B.Chow, R. Gulliver, S. Levy, & J.
Sullivan, 1996, A K Peters, (1994), 57-66.

Z. Han, L.F. Tam, A. Treibergs, and T. Wan, Harmonic maps
from the complez plane into surfaces with nonpositive curvature,
Comm. Anal. Geom., 3 (1995), 85-114.

R. Hardt and M. Wolf, Harmonic extensions of quasiconformal
maps to hyperbolic space, Indiana U. Math., 46 (1997), 155-163.

E. Heinz, Uber die Losungen der Minimalfiachengleichung, Nach.
Akad. Wiss., Gottingen Math. Phys. Kl. IT (1952), 51-56.



572

[L-T1]

[L-T2]

[L-T3]

[L-W1]

[L-W2]

[L-W3]

[M-M]

[M]

[P]

[R-S]

S-Y]

[S-T-W]

T.K.K. Ay, L.-F. Tam & T.Y.H. Wan

P. Li and L.F. Tam, The heat equation and harmonic maps of
complete manifolds, Invent. Math., 105 (1991), 1-46.

P.Li and L.F. Tam, Uniqueness and regularity of proper harmonic
maps, Ann. Math., 136 (1992), 169-203.

P. Li and L.F. Tam, Uniqueness and regularity of proper harmonic
maps I, Indiana U. Math. J., 42 (1993), 593-635.

P. Li and J.-P. Wang, Convez hull properties of harmonic maps,
J. Differential Geom., 48 (1998), 497-530.

P. Li and J.-P. Wang, Harmonic rough isometries into Hadamard
space, Asian J. Math., (1998), 419-442.

P. Li and J.-P. Wang, Counting massive sets and dimensions of
harmonic functions, J. Differential Geom., 53 (1999), 237-278.

V. Markovi¢ and M. Mateljevi¢, New versions of Grotzsch prin-
ciple and Reich-Strebel inequality, in ‘4th Symposium on Mathe-
matical Analysis and Its Applications, Arandelovac, 1997, Mat.
Vesnik, 49 (1997), 235-239.

Y. Minsky, Harmonic maps, length, and energy in Teichmailler
space, J. Differential Geom., 35 (1992), 151-217.

Ch. Pommerenke, Boundary behaviour of conformal maps,
Springer-Verlag, 1992.

E. Reich and K. Strebel, On quasiconformal mappings which keep
the boundary points fized, Trans. Amer. Math. Soc., 136 (1969),
211-222.

R. Schoen, The role of harmonic mappings in Tigidity and de-
formation problems, in ‘Collection: Complex Geometry (Osaka,
1990),” Lecture Notes in Pure and Applied Mathematics, 143,
Dekker, New York, (1993), 179-200.

R. Schoen & S.-T. Yau, On Univalent Harmonic Maps between
Surfaces, Invent. Math., 44 (1978), 265-278.

Y.-G. Shi, L.-F. Tam, and T.Y.-H. Wan, Harmonic Maps on
Hyperbolic Spaces with Singular Boundary Value, J. Differential
Geom., 51 (1999), 551-600.



[T-W1]

[T-W2]

[T-W3]

[W-A)

[Wi]

[Y]

Hopf differentials 573

L.F. Tam and T.Y.-H. Wan, Harmonic diffeomorphisms into
Cartan-Hadamard surfaces with prescribed Hopf differentials,
Comm. Anal. Geom., 2 (1995), 593-625.f

L.F. Tam and T.Y.-H. Wan, Quasi-conformal harmonic diffeo-
morphism and the universal Teichmiiller space, J. Differential
Geom., 42 (1995), 368-410.

L.F. Tam and T.Y.-H. Wan, On quasiconformal harmonic maps,
Pacific J. Math., 182 (1998), 359-383.

W.A. Veech, Second course in complex analysis, W. A. Benjamin,
Inc., 1967.

T.Y.-H. Wan, Constant mean curvature surface, harmonic maps
and universal Teichmiiller space, J. Differential Geom., 35 (1991),
643-657.

T.Y-H. Wan and T. Au, Parabolic constant mean curvature
spacelike surfaces, Proc. Amer. Math. Soc., 120 (1992), 559-564.

M. Wolf, High energy degeneration of harmonic maps between
surfaces and rays in Teichmiller space, Topology, 30 (1991), 517-
540.

D. Yang, Deforming a map into a harmonic map, preprint.

DEPARTMENT OF MATHEMATICS

THE CHINESE UNIVERSITY OF HONG KONG
SHATIN, HonG KoNG

FE-mail address: thomasaumath.cuhk.edu.hk
FE-mail address: 1ftammath.cuhk.edu.hk
E-mail address: tomwanmath.cuhk.edu.hk

RECEIVED JUNE 15, 2000.



