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In [Hz], Heinz proved that there is no harmonic difFeomorphism from the 
unit disk D onto the complex plane C. The result was generalized by Schoen 
[S] and he proved that there is no harmonic diffeomorphism from the unit 
disk onto a complete surface of nonnegative curvature. Unlike conformal or 
quasi-conformal maps between Riemann surfaces, the inverse of a harmonic 
map is not harmonic in general. Hence it is an interesting question whether 
there is any harmonic difFeomorphism from C onto D equipped with the 
Poincare metric. In fact a general form of this question was formulated by 
Schoen [S] as follows: Is it true that Riemann surfaces which are related by 
a harmonic diffeomorphism are necessarily quasi-conformally related? 

Let us first recall some facts on harmonic maps between surfaces. Let 
Ei and £2 be two Riemann surfaces with conformal metrics p2(z)\dz\2 and 
cr2(h)\dh\2 respectively. The harmonic map equation for maps from £1 into 
£2 can be written as 

hzj + 2(log (T)hhzhz = 0. 

Define \\dh\\ = p"V|^|, and \\dh\\ = p~la\hzl Hence \\dh\\ and \\dh\\ are 
the norms of the (l,0)-part and (0, l)-part of dh. The energy density of h 
is given by e(h) — ||<9/z||2 + ||d/i||2, and the Jacobian of h is given by J(K) = 
\\dh\\2-\\dh\\2. The Hopf differential of his defined as (frdz2 = a2(h)hzhzdz2, 
which is the (2,0)-part of /i* (a2{h)\dh\2). It is well known that if h is 
harmonic then (j)dz2 is a holomorphic quadratic differential defined on £1, see 
[C-G]. If h is an orientation preserving local diffeomorphism, then J{u) > 0, 
which implies that \\dh\\ > 0 everywhere, and that 

e2w > \<t>\ 

where w = log \\dh\\. 
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In [Wn], the third author proved that orientation preserving harmonic 
diffeomorphisms on the hyperbolic plane H2 can be parametrized by their 
Hopf differentials, provided that they can be realized as the Gauss maps 
of constant mean curvature cuts in the Minkowski space M2,1. The last 
condition is equivalent to the fact that |9/i|2|d^|2 is a complete metric on D, 
where \dh\ is the norm of dh with respect to the Euclidean metric on the 
domain and the Poincare metric on the target. The result was generalized 
to harmonic maps from C into H2 in [W-A] and to more general surfaces in 
[T-Wl]. 

Hence in order to study the behaviors of harmonic maps from C or D into 
H2 it is useful to study their Hopf differentials. In [Hn], Han proved that 
if h is a harmonic diffeomorphism from C into H2 whose Hopf differential 
is a polynomial, then the closure of h(C) in El2 = H2 U dW2 is the convex 
hull of a totally disconnected closed set in dH2, provided that |<9/i|2|Gk:|2 is 
complete on C. In particular, h is not surjective. Here 5H2 is the geometric 
boundary of H2. Later in [HTTW], it was proved that the closure of the 
image of an orientation preserving harmonic diffeomorphism h from C into 
H2 is an ideal polygon with exactly m + 2 vertices on dH2 if and only if the 
Hopf differential 0 dz2 is a polynomial of degree ra, i.e. </) is a polynomial of 
degree m. Note that by [Wn, T-Wl], we know that <p is of degree no greater 
than m if and only if h is of polynomial growth of degree at most m/2 + 1. 

In higher dimensions, one cannot expect that such a clean statement 
continues to hold. However, in [L-Wl], Li and Wang were able to generalized 
part of the above result for a much more general class of manifolds. They 
proved that if Mn is a complete manifold with nonnegative Ricci curvature 
and N is a Cartan-Hadamard manifold with sectional curvature pinched 
between two negative constants, then the closure in iV U ON of the image of 
a harmonic map from Mn into N with polynomial growth of degree at most 
£ is in the convex hull of finitely many points on the geometric boundary dN 
of N. Moreover, the number of points is bounded by a constant depending 
only on n and £. Actually, they only assumed that M satisfies the so-called 
weak volume growth condition and weak Poincare inequality. In [L-W3], 
they also obtained a sharp estimate for the number of points on the ideal 
boundary in case M is a complete surface with finite total curvature. 

All these results in [Hn, HTTW, L-Wl, L-W3] are under the assumption 
that the harmonic map is of polynomial growth. In this paper, we want to 
study harmonic maps from C into H2 which grow faster than polynomial. 
We will study the images of the harmonic maps by a careful study of their 
Hopf differentials. 

First we prove that if h is an orientation preserving harmonic diffeomor- 
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phism with Hopf differential </> dz1 such that (j) is of one of the following 
forms then h is not surjective: 

(1) (j) = Pi exp [P2 exp [• • • exp [Pk exp(<2)] •••]], where Pj and Q are poly- 
nomials (Theorem 1.2); 

(2) (p = Pexp(Q) where £(*) = ^n + Y,%ia3zn~j is a polynomial of 
degree n > 1, P is entire with order /? < n and 

E fl {si \z\ > Ro and - S < arg * < 5} = 0, 

for some ^ > 6 > 0 and PQ > 0, where E is the set of all zeros of P 
(Theorem 1.1); 

(3) (j) = (/')2 where / is entire with no finite asymptotic value in the 
domain 

Tl = <z\ ^ - S < argz < ^ + S, and \z\ > R\ 

for some S > 0 and P > 0 and /'(z) 7^ 0 for all z in f~l{TVj (Theorem 
1.3). 

In (2), (j) is of finite order, in (1) (j) is of infinite order and there is no growth 
condition in (3). Note that if </> is of finite order then (j) = Pexp(Q) with Q 
being a polynomial and P is entire. 

As mentioned above, if |<9/i|2|Gte|2 is complete on C and if 0 is a poly- 
nomial, then the image of h is an ideal polygon with finitely many vertices 
at dU2 [HTTW]. If (/) is not a polynomial, then h(C) D <9H2 must consist of 
infinitely many points by [HTTW] again and in this case, the image set is 
much more difficult to be described. In the second part of this paper, we 
want to describe the images of harmonic maps under similar assumptions as 
in (1) or (2) above. We prove that if 0 = Pexp(Q) where P and Q are poly- 
nomials, then h(C)ndW2 is countable and consists of exactly n accumulation 
points, where n = deg Q (Theorem 3.1). In fact, one can relax the condition 
that P is polynomial. If we assume that P is entire with order less than 
n and the zeros of P are well distributed, then the same conclusion holds. 
Next we consider the case that (f)(z) = P(ez) where P(£) = Y^k=-ma^k 

and is non-constant. In this case </> is of order one. It is interesting to know 
that under this assumption on </>, h(C) fl dW2 has only one accumulation 
points in some cases and has exactly two accumulation points in other cases 
(Theorem 4.1). In case </> has infinite order, then the image set is even more 
complicated.   We are able to prove that if ^(z) = exp^(z)dz2

J for some 
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positive integer fc, where exp(k\z) is defined inductively by exp(0)(;2:) = 1 
and expW(z) = exp(expW-1)(^)), then h(C) fl aM2 = uf^^- such that Aj 
is countable and discrete for each 0 < j < k — 1, Aj consists of all isolated 
accumulation points of Aj-i for 1 < j < k, and Ak consists of only one 
point (Theorem 4.2). 

In order to prove these results, we have to study the regions where |0| 
grows very fast and the regions where \(f>\ decays or is bounded. In the 
regions where \(f>\ grows very fast, we refine the technique in [Hn, HTTW] 
which was introduced by Wolf and Minsky [Wf, M]. In order to study the 
regions where <j) is bounded, we need other tools. We will use the idea of 
the so-called maximal ^-radius of a holomorphic quadratic differential $, 
see §2 for definitions. Let $ be a holomorphic quadratic differential on D. It 
was proved by Anic, Markovic and Mateljevic [A-M-M] that the norm of $ 
with respect to the Poincare metric is uniformly bounded if and only if the 
maximal $-radius is uniformly bounded. On the other hand, it was proved 
in [Wn] that h is a quasi-conformal harmonic diffeomorphism from H2 onto 
itself if and only if the norm of its Hopf differential is uniformally bounded. 
Hence we can conclude that h is quasi-conformal if and only if the maximal 
^-radius is uniformly bounded where $ is the Hopf differential of h. In fact, 
it was proved in [A-M-M] that if h is quasi-regular harmonic map on H2 

then the maximal ^-radius is uniformly bounded. In this work, we will give 
a local version of these results. In Theorem 2.1, we will prove that if h is 
an orientation preserving harmonic diffeomorphism from D or C into H2, 
under certain conditions, h is quasi-conformal on the domains where the 
maximal <J>-radius is uniformly bounded, where $ is the Hopf differential 
of h. In particular, we give another proof of the result in [Wn] mentioned 
above. Roughly speaking, in the case of harmonic diffeomorphisms from 
C into H2, the domains where the $-radius is uniformly bounded are the 
domains where \(f>\ is uniformly bounded and decays rapidly at infinity. 

In the process of proving Theorem 2.1, we need a refined version of the 
result in [A-M-M] on the relation between the maximal ^-radius and the 
norm of the holomorphic quadratic differential $. In particular, we obtain a 
pointwise lower bound of the maximal $-radius (Proposition 2.1). It turns 
out that the result also has applications to the problem of finding quasi- 
conformal harmonic diffeomorphism on H2 with prescribed quasi-symmetric 
function on the unit circle S1 which is identified as cM2. Let BQD(]H[2) be 
the space of holomorphic quadratic differentials $ on H2 such that 

|||$||| = sup ||$||(z) < oo 
zee2 
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where ||$||(z) is the norm of $ at z with respect to the Poincare metric. 
In [Wn], a map 55 from BQD(]H[2) to the universal Teichmiiller space T by- 
sending $ to the class of quasi-symmetric homeomorphism containing the 
boundary value of ft, which is the quasi-conformal harmonic diffeomorphism 
on H2 with $ as the Hopf differential. The map is injective [L-T3, L-W2] 
and an open question is whether this map is surjective. This is in fact a 
conjecture of Schoen [S]. There are partial results for this problem as well as 
similar problems in higher dimensions [Ak, L-Tl, L-T2, L-T3, T-W2, T-W3, 
H-W, Y, S-T-W]. In our case, it is not hard to see that if one can prove 
that 55 is 'proper', namely, the inverse image of bounded set is bounded, 
then one can conclude that 25 is onto. Using the pointwise estimate of the 
maximal ^-radius and the main inequality of Reich and Strebel [R-SJ], we 
obtain sufficient conditions for certain subspaces of BQD(1H[2) on which 55 is 
proper. For compact Riemann surfaces or Riemann surfaces of finite type, 
this kind of phenomena was studied by Wolf [Wf| and Markovic-Mateljevic 
[M-M]. In [M-M], a generalized version of the inequality in [R-S] was used. 

We organize the paper as follows. In §1, we discuss some non-surjectivity 
results of harmonic maps from C into H2. In §2, we study the relation 
between maximal $-radius of the Hopf differential $ of a harmonic map 
and quasi-conformality. In §3 and §4, we study the structures of images of 
harmonic maps from C into H2. In §5, we use the result in §2 to study 
quasi-conformal harmonic diffeomorphisms on H2. In the appendix, we use 
Mathematica to produce figures of horizontal trajectories defined by different 
types of holomorphic quadratic differentials discussed in this work, so that 
one may get some feelings about the images of related harmonic maps. 

Finally, the authors would like to thank the referee for pointing out a 
gap in the proof of theorem 1.1, which has been corrected accordingly. 

1. Results on non-surjectivity of harmonic diffeomorphisms. 

In [HTTW], it was proved that a polynomial growth harmonic diffeomor- 
phism from C into H2 is not surjective. In [L-Wl], the result was generalized 
to higher dimensions for polynomial growth harmonic maps between a more 
general class of manifolds. Not very many results are known if the map 
grows faster than polynomial. In this section, we will give results on non- 
surjectivity of certain harmonic diffeomorphisms from C into H2 with fast 
growth rate. Note that the growth rate of a harmonic diffeomorphism from 
C into H2 can be expressed in terms of the growth rate of its Hopf differen- 
tial, see [T-Wl]. In particular, such a map is of polynomial growth if and 
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only if its Hopf differential is of the form Pdz2 with P to be a polynomial. 

Lemma 1.1. Let ft be a domain in C which contains every disk 

D(V^Ty, R(y)) with center V^ly and radius R(y) > 2\/2(l + e) log y for all 
y > 2/0 > 0; where yo > 0, e > 0 are constants. Suppose h is an orientation 
preserving harmonic diffeomorphism from Q into H2 with Hopf differential 
$ = dz2. Then the length of the image of the half line 5sz > yo, $lz = 0 
under h is bounded by a constant depending only on e and yo. 

Proof. Let exp(u;) = \\dh\\ be the norm of dh and let e be the energy density 
of h with respect to the Euclidean metric in the domain, then the pull-back 
metric under h is given by 

(1.1) ^(ds^) = (e + 2)dx2 + (e - 2)dy2 

= 2 (cosh(2w) + 1) dx2 + 2 (cosh(2^) - 1) dy2. 

As in [Wf, M] and p. 63 in [Hn] we can prove that there is yo > 0 such that 
if y > yo 

(1.2) 0 < w(y/=ly) < d exp ("f^) 

where Ci is an absolute constant. Hence the length £ of the image of {$sz > 
y0) 3fJ^ = 0} under h satisfies: 

poo 1 

=  /     [2(cosh(2w)-l)]*dy 

exp -T~K \dy <c3 f 
yo 

oo 

2V2 
POO 

<C4        y-l-edy 
Jyo 

where C3-C5 are constants depending only on e and yo> and we have used 
(1.1), (1.2) and the assumption that R{y) > 2y/2(l + e) logy if y > yo- The 
lemma then follows. □ 

The following lemma basically says that if Q(z) = ^z + o(l) as tilz —> 00, 
then the behavior of f exp(Q(z))dz is similar to that of f eyip(^z)dz. 
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Lemma 1.2. Let 2TT > A > 0 and let Q(z) be an analytic function on the 
half strip 

S = {z\ $lz > a > 0 and 6 - A < Ssz < 0 + A} 

where 0 is a constant. Suppose Q(z) = ^z + q(z) such that \q(z)\ < gffiz) 
where g(t) > 0 is a function defined on oo > t > a which satsifies 
limt-xx) g{t) = 0. Then for any \A > S > 0, there exists a > 0 depend- 
ing only on A, 5, a and the function g such that if ZQ = XQ + \f^\0 with 
XQ > ci and if 

JZQ 

then C maps Ss injectively into ^-plane, and C(^s) D ^25 D C{^4s)- Here 

Ss = {z € S\ 5Rz > XQ + 8, 6 - A + 8 < Qz < (9 + A - 8}, 

84$ is defined similarly and 

n2s = -2exp QzoJ + JCI ICI > 2exp Qfo + 25)J , 

±(0 - A + 28) < argC < \{0 + A - 28)\ . 

Proof. Since \ira.t^oo g{t) = 0, for any e > 0, there is a > a depending only 
on a and g such that if SRz > a, then 

exp (Q(z)) - exp (- j   < e exp ( -fftz (1.3) 

Let XQ > a and let f(z) = 2 (exp^) - exp(^o)) with 20 = #o + iO- Let 
zi = xi + V—lyii Z2 — X2 + \/—Ty2 in 5 such that xi, X2 are larger than 
XQ. Suppose xi > #2, then by (1.3) 

|C(^l)-C(^2)-/(^l) + /(^2)| 

= |*i - *2| 1^   (exp (Q(tzi + (1 - i)^)) - exp Q(tei + (1 - t)^) J J dt 

< 6 (|a?i - a:2| + 47r) exp ( -X2 j  /   exp ( -(xi - X2) J dt 

< eexp { -X2 

< Cieexp ( -xij 

(exPQ( (xi — X2) I — 1 I + 47rexp ^(zi-£2) j 
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where Ci is an absolute constant.  Obviously, the inequality is still true if 
xi = X2. Hence, we have 

(1.4)        ICOsx) - C(z2) - f(z1) + f(z2)\ < deexp Q max{^1,^2} 

provided Stei, Uz2 > XQ. 

On the other hand, for any 0 < Si < A and zi ^ Z2 G <S, with $tzi > Uz2 
and \$s(zi — Z2)\ < 2A — 25i, we have 

\f(z1)-f(z2)\ = 2exp^zl 

>Texp(-^i) 

l-exp( -(^-^i) 

where r > 0 depends only on A — Si and the lower bound of \zi — Z2\ where 
we have used the fact that |9?(zi — 22)| < 2A — 2Si < 47r — 2Si. Hence for 
any zi ^ Z2 E <S, 

(1.5) \f(zi) - f(z2)\ > rexp Q max^x,^}) 

where r > 0 depending only on the lower bound of \zi — 221. 
Let 0 < Si < A, for any a in Ss1 H {z\ $lz < (3} and z on the boundary 

of <Si£  fl {z| Jte < /? + ^5i} where ^ is a large number, we have 

|/(*)-/(a)|>TexpQ»*) 

by (1.4) with ^1=2; and Z2 = ^o? and (1.5), where r > 0 is a constant 
depending only on Si. Here we take zi = z and £2 = ZQ in (1.4). Choose e 
small enough depending only on A and £1 such that ^ > 1, we have 

|/(*)-/(a)|>|C(*)-/(*)|. 
Apply the Rouche Theorem to the functions £ — /(a), / — /(a) on SiSi fl 

{21 5Rz < /? + ^Ji} and then let j3 -+ 00 we conclude that for any a G 5^ 
there is one and only one z G SiSi such that C(^) = /(&)• 

On the other hand for such an a, we have 

ICW - C(a)| > \m - f(a)\ - \C(z) - C(o) - /(*) + /(a)| 

>l\m-m\ 
>m-M\ 
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provided e is chosen to be small enough (depending only on A and Si). 
Hence there is also exactly one z € Sis such that f(z) = C(a). Prom these 
the lemma follows by considering the image of /. □ 

In the next theorem we will study the surjectivity of those harmonic 
diffeomorphisms from C into H2 whose Hopf differentials are of finite order. 

Theorem 1.1. Let h be an orientation preserving harmonic diffeomorphism 
from C into H2 with Hopf differential $ = Pexp(Q)<iz2 such that 

(i) Q(z) = zn + ]C?=i ajzn~^ *5 a polynomial of degree n > 1; 

(ii) P is entire with order p < n; 

(hi) there exists ~ > 6 > 0 and RQ > 0 such that 

E D {z\ \z\ > RQ and - S < arg z < 6} = 0, 

where S is the set of all zeros of P. 

Then h is not surjective. In particular, if P is a polynomial then h is not 
surjective. 

Proof. By the Hadamard factorization theorem, P(z) = zTnea^A(z), where 
m is the order of zero of P at z = 0, a(z) is a polynomial of degree less 
than p < n, and A(z) is a canonical product of order less than or equal to 
p formed by the zeros of P. So we can absorb a(z) to the lower order terms 
of Q(z) and assume P(z) has the form zmA(z). 

Let Ci = zn, which will map —6 < sigz < S bijectively onto —nS < 
arg£i < nd. In the region 

fti = {ICil > #o} H {-n5 < arg Ci < nS}. 

$ = n^cf-^PiCi) exp(Ci)dCi2 

where P(Ci) = -P(^(Ci))exP(]Cj=iajCi n)- % (")> without loss of gener- 

ality we may assume that for |Ci| > RQ, |-P(CI)I ^ exP(lCi|e) for some e > 0 
which is small enough such that e < 1. By (iii) and lemma 2.6.18 in [B], 
we have for any rj > 0, log (-4(2?)| > -l^"^ on {z\ \z\ > RQ and - S < 
arg z < 6} for a possibly larger RQ and a smaller S.   Therefore, we have 

log|jP(Ci)|   = 0(|Ci|e) as Ci'-* o0 for some e < 1.   Prom this, we have 
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Vlog |P(Ci)| =. o(l) on Hi = Hi n {-n8 + 5i< argCi < n8 - 5i} for any 

<5i > 0; and hence |^-logP| = o(l) as Ci -> oo and Ci G ^i- We conclude 

that in 7?.i, 
^^expCQiCCi))^2 

where 

Qi(Ci) = Ci + Q2(Ci) 

with -n8 + 5i< argCi < n8 - 8\ and |Ci| > RQ. Here Q2(Ci) = o(|Ci|) and 
^•^(Ci) = o(l) as Ci -^ oo. 

Let C2 = Ci + Q2(Ci)- This will map {-TT < argCi < TT} n {|Ci| > R\} 
injectively onto its image for some ill > RQ. Moreover, there exists R2 > 0 
such that 72-2 = {—TT 4- 2<Ji < arg £2 < TT — 28i} D {IC2I > R2} is in the image 
of the map Ci ^ Ca- In 72.2, $ can be written in the form 

* = exp(C2)dC2
2 = exp(Q3(C2)R22 

where Q3(C2) = C2 + o(l) as IC2I -» 00. Let C(C2) = /C2 exp^K))*- By 
Lemma 1.2, we conclude that C(C2) will map a subdomain of 7^2 bijectively 
onto the region 

H = JCI ICI > R and ^TT - ^2 < argC < ^TT + ifcj 

for some i? > 0 and 52 > 0. On 7^, $ = dC2. The map C >-> C2 »-> Ci ^ ^ 
is injective when restricted on 7Z. Hence h(z(Q) is an orientation harmonic 
diffeomorphism from TZ into H2. By Lemma 1.1, we conclude that the length 
of the image of the half line 9^ > a0> 3?C — 0 under h is finite. Here ao is 
a large constant. By the definition of £, ^C —> 00 with 5RC = 0 implies that 
z —> 00. Hence /i cannot be surjective. □ 

Please see the appendix for figures showing the behaviour of the horizon- 
tal trajectories for some typical examples of holomorphic quadratic differen- 
tials discussed here (figures 1-6). If we refine the method of proof in Theorem 
1.1, we can generalize the result to some cases that the Hopf differentials 
grow very fast (see figure 7 in appendix). First we have the following: 

Lemma 1.3. Let RQ > 0 and 5 > 0 be constants and let h be an orientaion 
preserving harmonic diffeomorphism from fts = {\z\ > RQ, | argz| < TT — 5} 
into H2 with Hopf differential of the form 

$ = exp [gx + exp [^2 + h expfok + Q] • • • ]] dz2 
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where Q(z) = zn + X^?=i ajzn~^ ^s a polynomial in z and for each j = 
l,...,fc, |ft(^)| = 0(log|^|) as \z\ -> oo. Then there exists a path in 0,$ 
diverging to infinity such that its image under h has finite length. 

Proof We will prove by induction on k. For k = 1, $ = exp[^i + Q]dz2 and 
we can apply the same proof as in Theorem 1.1 to conclude the existence of 
such path. 

For k > 2, we consider the map £ = f(z) = Q(z) + gk{z) on a convex 
subdomain 1Z in £1$ defined by 

M TT TT 
s G fta| Sflz > .Ri, -777 -T- + e<arg2< 

2(n-l) to        2(n-l) 

where i?i > i?o and e > 0 will be chosen later. It is clear that for z = re*0 G 
TZ with r sufficiently large, 

«/'(*) = nr71"1 cos[(n « 1)6] + o(rn-1) > 0. 

Therefore, if we choose Ri sufficiently large, £ = f(z) maps IZ one-one onto 
its image f(Tt) as TZ is convex (Proposition 1.10 in [P]). Since 

it is clear that f(1Z) contains a subset of the form 

{| argCl < n7r/2(n - 1) - eu |C| > #2}. 

If we choose e < 2n(n-i) > ^en we can c^10086 accordingly an ei such that 
2fa~i) — €i ^ ^Z^- Hence, under this choice of Ri and e, /(7^) contains a 
half-plane {SRC > -R2} for some i?2 > 0. 

On f(lZ)) in particular on the half-plane {SRC > i^}, $ can be written 
as 

$ = exp [gi(C) + exp [^(C) + * • • + exp[0fc_i(C) + exp C] • • • ]] c^2, 

where ^(C) = ^(/"HO) " 2 (^ log/) (/^(logO) and gjiQ = ^(/"HO) 
forj = 2,...,fc-l. 

Now, for any small (Si > 0, let us consider the half strip 

S = {$lt>R2)\Cs(\<7r-51}. 
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The exponential map £ = exp £ maps S one-one onto the domain 

Qsx ={|£| >Ra, |arg£| <7r-51}, 

where i?3 = eR2. And on fi^, $ takes the form 

$ = exp [|i(0 + exp [§2(0 + ■•• + exp\jjjk-i(Z) + £]•-]] df, 

where 

Ii(0 = ^(/"'(logO) - 2 (^iog/) (/"'(logO) " 21og£ 

and 'gjiO = ^(/"HlogO) for j = 2,..., fc - 1. 
Since IflyOz)! = 0(log |z|) and C = /C-^) ~ zn as |2;| —>• oo, we see that 

\9j(r
1(logO)\ = 0(\og\og\Z\)    forj = l>...,fe-l. 

We also conclude from £(z) ~ zn~l ~ C(n"1)/n as |C| -> oo that 

-log/JCT'OogO) = 0(loglog|£|). 

All together we have, as |£| —> oo, 

m)\ = 6(iogm 

Therefore, induction hypothesis implies that there exists a divergent path 
£ = j(t^ in fls1 such that its image under the harmonic maps ho f'1 o log 
has finite length. That is, there exists a path f~1(log/y(t)) in tts such that 
its image under h has finite length. □ 

Theorem 1.2. Let h be a harmonic diffeomorphism from C into H2 with 
Hopf differential of the form 

* = Pi exp [P2 exp [• • • exp [Pk exp(Q)] • • • ]] dz2, 

where Q(z) = anz
n + • • • and Pj, j = !,...,& are polynomials and k > 1. 

TTien /i is no^ surjective. 

Proof By making a change of parameter of the form z —>- ro exp(\/--l^o)^ 
for some constants ro and flo, we may assume that Q = ^n + Z)j=i o,jZn~^. 
As Pj, j = 1,..., fc, are polynomials, there exists Ro > 0 such that there 
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is no zeros of any Pj in the set {|^| > RQ}. Then for any S > 0, one can 
define gj = logPj on the set fij = {\z\ > i?o, | arg2:| < TT — 8} and the Hopf 
differential $ can be written in the form required in Lemma 1.3. Therefore, 
there exists a path diverging to infinity in Qs such that its image under h 
has finite length. Hence, h is not surjective. □ 

Let us finish the dicussion of this section by giving a different type of 
condition for the nonsurjectivity. Recall that a complex number a in the 
extended complex plane is said to be an asymptotic value of an entire func- 
tion f(z) if there is a path z(t), 0 < t < 1 such that lim^-^i z(t) = oo 
and limf-^i f(z(t)) = a. If a is a finite number, then it is called a finite 
asymptotic value. 

Theorem 1.3. Let f be an entire function. Suppose there exist 5 > 0 and 
R > 0 such that 

(i) / has no finite asymptotic value in the domain 

11 = JCI ^ - S < argC < ^ + S, and \(\ > R\ ;      and 

(ii) f'(z) + 0 for all z in f'^K). 

Suppose h is an orientation harmonic diffeomorphism from C into H2 with 
Hopf differential (ff)2dz2, then h is not surjective. 

Proof. Let ft be a component of f~l(TV}. By (ii), / is a local diffeomorphism 
on fi. By (i), we can conclude that every path in TZ begins at Co can be 
lifted to a path in £2 which begins at a point ZQ with /(^o) = Co- Since 7£ 
is simply connected, / maps fi bijectively to H. Hence h o /~1(C) is a har- 
monic diffeomorphism from 7£ into H2 with Hopf differential dC?. Moreover, 
/~1(C) -» oo if C € 7?- and C -► oo• The result follows from Lemma 1.1.    □ 

2. Maximal $-radius and quasi-conformal harmonic maps. 

Let us recall the definition of maximal $-radius of a holomorphic quadratic 
differential $■ on a domain in C. Let Q, be a domain in C and let $ = </>cte2 be 
a holomorphic quadratic differential on Q,. Let z® E fi such that ^(^o) 7^ 0. 
Choose a branch of y/$ near ZQ, and let 
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Let B(R) = {w\ \w\ < R} be the maximal disk in the w-plane such that Z-1 

is a conformal difFeomorphism from B(R) into f2. Then i?zo,n = R is called 
the maximal ^-radius of $ at ZQ with respect to Q and VZOin = f~1(B(R)) 
is called the maximal $ cfofc around ZQ with respect to Q. We will drop the 
subscript Q if this will not cause any confusion. Moreover, by convention 
if 0(2;o) = 0 we define RZQ = 0. In [Hn], it was proved that if h is an 
orientation preserving harmonic difFeomorphism from a domain Q in C into 
H2 with Hopf differential $, and if zn is a sequence in Q, with RZn -> 00, then 
the modulus the complex dilatation of h at zn will tend to 1. Conversely, 
one would like to know whether h would be quasi-conformal on a set with 
bounded maximal ^-radius. In this section, we will prove that this is the 
case under certain assumptions. The result will be useful to study images 
of harmonic diffeomorphisms from C into H2. 

Let ft be a hyperbolic domain in C, i.e. its universal cover is conformal 
to the unit disk. Let p2\dz\2 be the hyperbolic metric on ft, i.e. the complete 
metric with constant Gaussian curvature —1. Then it is known that [Ah] 
for any z G fi 

p{z) - dfcdO)' 
where d(z,dft) is the Euclidean distance from z to dft.  If in addition, we 
have 

p{z) - l^T) 
for some positive constant C for all z G fi, then we say that ft is strongly 
hyperbolic. Please note that our definition is slightly different from that 
in [A-M-M]. It is shown in Theorem 5 of [A-M-M] that if ft is bounded 
hyperbolic and the diameters of the boundary components are uniformly 
bounded from below by a positive constant then ft is strongly hyperbolic. 
Moreover, being strongly hyperbolic is conformally invariant: 

Lemma 2.1. Let fti and ft2 be conformally equivalent domains. Suppose 
fti is strongly hyperbolic, so is ^2- 

Proof. Obviously O2 is hyperbolic. Let w = f{z) be a conformal difFeomor- 
phism from fti onto ^2- Let p2|^|2 be the hyperbolic metric on ^2 and 
let p\\dz\2 be the hyperbolic metric on fti. Let di(z) = dist(;z,<9fii) and 
d2{w) = dist(?i;,<9fi2)> where both distances are Euclidean distances. Then 
by well-known fact [V, p. 147], we have 
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Hence 

*(/(*)) = i/'wrViw 
>    c 

- rfiWI/'WI 

>'f*(/W) 
for some positive contant C, where we have used the fact that fix is strongly 
hyperbolic. Hence JI2 is strongly hyperbolic. □ 

Let fi be a strongly hyperbolic domain and let $ = (frdz2 be a holo- 
morphic quadratic differential on Q, with hyperbolic metric p2|dz|2. For 
z e 0, let ||$(^)|| = p~2(z)|0|(z) be the norm of $ at z and let |||$||| = 
suPzen 11*11 (z)' The following is proved in [A-M-M] (the equation (2) and 
the lemma 1.2) 

Theorem (Anic-Markovic-Mateljevic). With the above notations and 
with Ct being the unit disk 3, there exists an absolute constant C > 0 such 
that for any holomorphic quadratic differential $ on D we have 

(2.1) ||ft||(*) > C-'Rl 

for all z G P, and 

(2-2) |||*||| <Ci£ 

where ROQ = s\ipze^ Rz. 

They actually proved that (2.1) is true for any hyperbolic domain in C. 
We will obtain a pointwise estimate for strongly hyperbolic domain which 
implies (2.2). The estimate will be useful in applications. 

Proposition 2.1. Let fl be a hyperbolic domain and let $ = (f)dz2 be a holo- 
morphic quadratic differential defined on fi. Then there exists an absolute 
positive constant C such that for z G fi 

(2.3) i?,<C7||*||*(z). 

// in addition Cl is strongly hyperbolic then there is a positive constant C 
depending only on O such that for z G fi with §{z) ^ 0 

(2.4) *. > c> IfflCSji 
~   111*1115 
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We need the following lemmas. 

Lemma 2.2. Denote B(r) to be the set of complex numbers with modulus 
less than r. Let f : B(r) -± C be an analytic function, such that /(0) = 0 
and /'(0) =£ 0. Suppose \f(z)\ < M for all z, then 

(i) / is one-to-one on B(ri)j where ri =    '^ "; 

^f(B(n))DBC^mi). 

Proof Let us first assume that r = 1, and /'(0) = 1. Then 

oo 

anz n 

71=2 

By Cauchy theorem, we have \an\ < M, and 1 < M. Suppose zi ^ Z2 are 
in -B(g^), and r = max{|^i|, l^]}, then 

\f(zi)-f(z2)\ (zi-Z2) + Y2an(z?-z2) 

> \zi -Zl\ 

\Z\ -221 

n=2 
oo 

n=2 

2-r 
l-Mr- 

(1-r)2 

> |zi-«2|(l-8Mr) 

>0 

where we have used the facts that M > 1, and r < -^ < 5. Hence / is 
one-to-one on B(-^). Using the fact that the Koebe's constant is j [V, 
p. 149], we have / {B(^j)) contains B(^j). In general, if / is defined 

on B(r) with /(0) = 0 and with b = /'(0) # 0. Define /(C) = &$■ for 
C € D. Then /(0) = 0, and /'(0) = 1. Let Mi = ^, then Mi > |/(C)| for 

all £• Hence / is one-to-one on B(-^j^) and / (■B(g^-) J contains #(32^-). 

Therefore / is one-to-one on B(^) = BC'1/^1) = 5(ri), and /(S(ri)) 

contains B^) = B(^gg^). □ 

The following lemma is proved in [A-M-M, see Lemma 1.2]. 
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Lemma 2.3. Let f :B(r) ■-> C be analytic, and M > \f(z)\ for all z. 

Suppose /(0) ^ 0, then f(z) ^ 0 for all ze B(^^). 

Proof of Proposition 2.1. (2.3) was proved in the Lemma 2.3 of [A-M-M]. 
In order to prove (2.4), let ZQ € fi, with ^(ZQ) ^ 0. (p is analytic on B(zoi ro) 
where ro = ^d(zo,5Q), where d is the Euclidean distance. By Lemma 2.3, 
(f) is never zero on B(zo>r), where 

= ro\(f)(zo)\ 
r 2Mo 

and MQ = supB(ZOjro) \<j)\. Hence we can take a branch of square root of </> 

in B(zo,r). Let f(z) = f*o V^CO^CJ 
for z G ^(^o,^), then / is analytic, 

ffa) = 0 and \ff(zo)\ = \(/>(zo)\^ ^ 0. By Lemma 2.2, / is one-to-one on 

Bin) where n = ^ffi^1, where Mi = supB(z0)r) |/|. Moreover, /(S(ri)) 

contains the disk 5(7?) = ^(^l^l2). Now Mi </MQ
1
 implies that 

(2.5) Rzo>B = 

Mi 

r2|<K2o)|      ro\<j>(zo)\2 

32rM0
2 64M0

2 

This will imply the proposition because fi, is strongly hyperbolic. □ 

Prom the proof of the proposition, we have the following corollary which 
will be used in §3 and §4. 

Corollary 2.1. Suppose <j> is analytic on BZ0(R) such that a\(f)\(zo) > \<f)\(z) 
for some constant a > 0 for all z € BZQ(R).   Let $ = (frdz2.    Then the 

maximal $-radius of ZQ with respect to BZQ(R) is bounded below by   ' '  v   . 
64a ^ 

Proof This is a direct consequence of (2.5). □ 

Lemma 2.4. Let Q, be a simply connected domain in C and $ = (f)dz2 be 
a holomorphic quadratic differential on f2. Let ZQ E O such that (f>(zo) ^ 0 
and let R be the maximal $-radius of ZQ with maximal $-disk V. Suppose 
R < oo and suppose 

w = ip(z) =  /   v^C 
J ZQ 
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z G V.  Then for any 0 < 8 < R, there exists a point z 6 V with \ip(z)\ — 8 
such that the Q-radius of z is exactly R — 8. 

Proof. By the definitions of V and i?, ip 1 : D# -> V is a bijective conformal 
diffeomorphism, where 

Dfl = {w\ \w\ < R}. 

It is easy to see that if z G V with |/0(^)| = S then the ^-radius of z is 
at least R — 8. Suppose the lemma is not true, then Rz > R — 8 for any 
z G ip~l ({w\ \w\ = 8}). Because Rz is continuous, there is e > 0 such that 
Rz > R — 8 + e for all z with IV7^)! = 8. Hence /ip~1 can be extended to 
an analytic function from DR+C to £1 such that it is a local diffeomorphism. 
In particular, $ is not zero in ^^(B^+e)- By the definition of i?, there 
exist two sequences wn and wn such that for each n both wn and wn are in 
]DR+€/n, wn ^ wn but fil)~l(wn) = ip^fan). Without loss of generality, we 
may assume that wn —> a and wn —t 6, and 

lim ^  1(^n) = liiu -0  1(wn) = c. 
n—too 

Since ij)-1 is a local diffeomorphism, a ^ b. Note that a and 6 are in D^R. 

Let 7 be the straight line joining a and b and let F = '0~1(7)- Then F is 
a smooth simple closed curve in Q because '0~1 is one-to-one on OR. Let 0 
be the interior angle at c. Apply the Gauss-Bonnet Theorem for the metric 
(\<f>\ + r))\dz\2 on fi with rj > 0, we have 

I f   Alog(M+77)+ [Kri = 7r + e 

where fix is the interior of F, ^ is the geodesic curvature of F with respect 
to the metric (|0| +rj)\dz\2 and A is the Euclidean Laplacian. Here we have 
used the fact that fi is simply connected. Let ci,... ,Q be the zeros of ^ 
inside fix with multiplicities fei,...,fe^ with kj > 0. Let r > 0 be small 
enough so that 1 < j < £ the disks Dj of radius r and centers at Cj are 
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disjoint and are inside of fii. Then we have 

Z
J=I

JD
3 Z Jtoi\vUiDs Jr 

£ 

as r; —)» 0, where /^ is the geodesic curvature with respect to the metric 
|</>||d2:|2 and we have used the fact that log \<j>\ is harmonic. Since |<^||dz|2 is 
the pull-back metric under ,0~1 of the flat metric in the DR, we have n = 0 
on F. Let r —> 0, we conclude that 

£ 

TT + 9 = — V^ fcjTT. 

J=l 

Since 0 > 0 and fcj > 0 for all j, this is impossible. □ 

Theorem 2.1. Let ft be a strongly hyperbolic domain in C with hyperbolic 
metric e2v\dz\2 and fix C ft. Let h be an orientation preserving harmonic 
diffeomorphism from C into H2 and let w = log \dh\, where \dh\ is the norm 
of dh with respect to the Euclidean metric on ft and hyperbolic metric on 
H2. Let $ = <j>dz2 be the Hopf differential of h and let Rz be the maximal 
§-radius of z with respect to C. Suppose supz€Q Rz = R < 00 and w >v — C 
on ftx for some constant C and inf^c^ Rz > 0. Then h is quasi-conformal 
on fti. 

Proof. Suppose that h is not quasi-conformal on fti. Then there exists 
zn E fti such that (f)(zn)e~2w(Zn) ->• 1 as n -» 00. Since RZn < R, we 
may assume that limTl_>00 RZn = RQ. Suppose RQ > 0. Let VZn be the 
maximal $-disk with image ^RZn and let ^ — fz V^dz = ipn{z)- Let 

^n(C) — (w "~ 5^0sl<^l)(V,n1(C)) > 0 which is considered as a function on 
BRzn . Then wn > 0 and 

Acii;n = e2^-e-2^. 
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Then wn are locally uniformly bounded by proposition 1.5 in [T-Wl]. Pass- 
ing to a subsequence if necessary, wn converges uniformly on compact sub- 
sets of DR0. Since wn(0) —> 0, by mean value inequality, wn ->.0 uniformly 
on compact sets of D^0. By Lemma 2.4, for each n there exists Cn with 
|Cn| = ^Rzn such that the $-radius of z'n = V,n1(Cn) is ^Rzn- Moreover, 
we still have ^JJe"2™^) -> 1. Continue in this way and by a diagonal 
process, if h is not quasi-conformal on fi]., then we can find zn G C such 
that 

(2.6) lim \(t>(zn)\e-2wM = 1 
n—>oo 

and 

(2.7) lim R2n = 0. 
n->oo 

Since infzGC\Q1 Rz > 0, we may assume that zn £ fii for all n. By Proposi- 
tion 2.1, we have 

(2-8) RZn > Cs-iM^ 
111*111* 

>f [|<K*n)|e-2^]2, 
where the norm of $ is taken with respect to the metric e2v\dz\2 on ft. Here 
we have used (2.3), (2.4), the fact that the ^-radius with respect to Qi or ft 
is no greater than the ^-radius with respect to C, the assumption that Rz 

are uniformly bounded by R on ft and that w > v — C on fti. Let n —> oo 
in (2.8), we have a contradiction because of (2.6) and (2.7). This completes 
the proof of the theorem. □ 

Remark 2.1. In the theorem, we may replace C by the unit disk. More- 
over, suppose ft is a subset of C (respectively H2) and h is an orientation 
preserving harmonic diffeomorphism from C (respectively H2) into H2 such 
that |5/i|2|d2;|2 is complete in C (respectively H2), where the norm is taken 
with respect to the Euclidean metric in the domain. Then the assumption 
that w > v — C on fti in the theorem can be replaced by w > v — C on dfti 
by the comparison principle in [Wn]. 

By (2.3), which was proved in [A-M-M], and the above remark, we obtain 
a new proof of the following result in [Wn] as a corollary of Theorem 2.1. 
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Corollary 2.2. Let h be an orientation preserving harmonic diffeomor- 
phism on H2 with Hopf differential $ such that \dh\2\dz\2 is complete. Sup- 
pose |||$||| < oo, then h is quasi-conformal Here the norm of dh is taken 
with respect to the Euclidean metric in the domain and the norm of $ is 
taken with respect to the Poincare metric while |||$||| is taken with respect 
to the Poincare metric. 

3. Image of a harmonic diffeomorphism with Hopf 
differential Pexp((5)rfz2. 

Let h be an orientation preserving harmonic difFeomorphism from C into 
H2 with Hopf differential $ = (frdz2 = Pexp(Q)dz2 where P and Q are 
polynomials. By the result of §1, we know that h is not surjective. Assume 
that |<9/i|2|<iz|2 is complete on C. In [HTTW], it was proved that if Q is a 
constant, that is, if <f> is a polynomial of degree m, then the closure of the 
image of h in H2 is the convex hull of an ideal polygon with m + 2 vertices in 
H2. The result is generalized from C to surfaces with finite total curvature 
and in higher dimensions in [L-Wl, L-W2]. The assumption that .0 is a 
polynomial is equivalent to the fact that h is of polynomial growth. Let 
A be the intersection of the closure of the image of h with the geometric 
boundary of dM2. If Q is not constant, then A will no longer be a finite 
set. In this section, we will prove that in this case, A is a countable set 
with exactly n distinct accumulation points where n is the degree of Q. 
In fact, we will prove that the result is true for a larger class of harmonic 
diffeomor phisms. 

First we need a lemma. For a > 0, let 

Ca = {^1 $lz > a, —oo < Qz < oo}. 

Let h be an orientation preserving harmonic diffeomorphism from Ca into 
H2 with Hopf differential $ = exp(Q)dz2 with Q(z) = z + q(z) such that 
\Q(Z)\ 5: gffiz) for some nonnegative function g with limt->oog(t) = 0. 

Lemma 3.1. With the above notations and assumptions, we have the fol- 
lowing: 

(i) There exist distinct points pk G cffl2 with k = 0, ±1, ±2,... such that 
for any TT > 8 > 0 and for any sequence zn G Ca with (2k — l)7r + 5 < 
$szn < (2k + l)7r — 5 and zn —» oo; then h(zn) -> p^ as n -> oo. 
Moreover, the pk 's are monotone in S1. 
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(ii) For all 8 > 0 and e > 0; there is a > 0 such that for any integer k, if 
2k7r + 6 < Qz < 2(k + IJTT - 5, then d^L {h{z)^k) < e for all z G Ca 

with ?R,z > a, where 7^ is the geodesic joining p^ and Pk+i - 

(iii) There is b > 0 such that if zn £ Ca, $lzn > b and Qzn -> +00 
(respectively $szn —> —00), then liuin^oo h(zn) = p+ (respectively 
liirin^oo h(zn) = p_), where p+ = limk^^pk and p- = limk^-ooPk. 

Proof. For simplicity, we assume a = 0. To prove the existence of those 
Pk £ dW2 in (i), we apply Lemma 1.2 with 6 = 0 and A = 27r to conclude 
that for any TT > 5 > 0, there exists XQ > 0 such that if ZQ = XQ and 
C(z) — /Zo 

exP(^Q(0)^+exP(5a;o)J then C is injective on Si6, and CC^i^) D 
TZis D ((S5) where 5^ and Ks etc.   are defined as in Lemma 1.2 (with 

A = 27r and 0 = 0).   Then /i(^(C)) is an orientation preserving harmonic 
diffeomorphism from £(<Si£) into H2 with Hopf differential $ = <i£2.  Note 

4 

that the maximal ^-radius of any point £ = u + yf^lv in T^i^ is at least 

tfc — C\ for some constant Ci depending only on 8. As in [HTTW, p. 109], we 
can prove that the image under h of any horizontal half line £(£) = £+V^-Tuo 
in T^i^ with t being larger than some constant is asymptotically a geodesic 

near infinity and tends to a point in SHI2 as t —>> 00. By the proof of Lemma 
1.1, we can conclude that the image of any vertical line u =constant in Tii^ 

under h has uniformly bounded length.  Hence if Cn £ ^-IAJ Cn —^ 00 then 
2 

/i(z(Cn)) -> po for some po £ ^EI2- Since C(^) C 7^i5 and 2:n —)> 00 implies 

that CC^n) -* 00 for ^n € 5^, we have 

lim fe(^n) =po. 
n->oo 

Similarly, one can prove that for any integer fc there exists p^ G dH2 such 
that for any 5 > 0 and zn with (2fe - l)7r + 5 < 9fzn < (2fc + l)7r - J such 
that zn -> 00, then 

lim /i(2n) =pifc. 
n—^oo 

To prove the remaining of (i) and (ii), we use Lemma 1.2 again to con- 
clude that for all 5 > 0 small enough, there exist aj > 0, bj > 0, j = 1, 2 
such that for any integer fc, there is a analytic function £ = C (z) which 
maps 

Si = <z\ Uz > ai, (2k - l)ir + ^6<Qz< (2k + 3)7r - ^j 
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and 
£2 = {z\ dlz > 02, 2kTr - S < %z < 2(fc + l)7r + <5} 

injectively into C-plane. Moreover, ((Si) D Ki, ((S2) C K2, for j = 1, 2. 
Here 

fti = {Cl ICI > 61, \^k - !)*■ + <5 < axgC < ^(2fc + 3)7r - s\ , 

K2 = JCI ICI > 62, ^ (2^ - !*) < argC < \ (2{k + l)7r + ^) } • 

Moreover, the Hopf differential $ of h in the £ coordinates is of the form 
dC2- We will write /i(C) instead of /i(z(C)) if no confusion will arise. Let us 
consider the case when k is even. The case that k is odd is similar. By the 
previous result, we know that if Cn € Tli with 3?Cn -> °° along a half line 
SC=constant, then /i(Cn) -^ Pfc, and if 5ftCn -> —oo, then /fc(Cn) -> Pfc+i- 

In order to prove that p^ ^ Pfc+i and that pk is monotone, we notice that 
the length of the curve ^(^(C)) is infinite where £ = u + ^/^lvi with vi to be 
a constant and -oo < u < oo. Moreover, by [Wf, M] or [HTTW, p. 109], the 
geodesic curvature of this curve is bounded by e provided vi is large. From 
this, it is easy to see that pk ^ Pk+i- Since h is an orientation preserving 
diffeomorphism, we conclude that p^ ^ pj if k ^ j, and pk is monotone on 
S1. In particular, p+ = lim^ooPfc and p- = lim^-)._ooPA; exist. 

To prove (ii), we observe that for any C > 0 there is VQ > 0 independent 
of k such that the ^-radius of £ G TZi is larger than C for all £ with Q£ > VQ. 

By the argument in [HTTW, p. 102], we conclude that for any e > 0, there 
is vo > 0 independent of k such that if $£ > VQ, then deKMO^Tfe) ^ e> 
where jk is the geodesic joining p^ and Pfc+i- Prom the proof of Lemma 1.2, 
we see that given VQ, there exists a > 0 independent of k such that if z e S2 
and $lz > a, then $sC(z) > vo- Prom this we can conclude that (ii) is true. 

In order to prove (iii), let S > 0 as above but small and let b = 0,2 which is 
in the definition of £2. Suppose zn G Ca with $lzn > b. Let kn be such that 
2kn7r < $szn < 2(kn + l)n. Then limn^oo kn = 00. For each n, let £ = £(*») 
as above then £n = C(zn) can be defined and (n G 7^2- By Lemma 1.1, for all 
C G IZ2 with S£ > 0 and 5ftC = $ft£n, d^p (/i(Cn), MO) ^ ^2 for some constant 
C2 independent of n. From (ii), we conclude that d^p (h((n)^kn) < C3 for 
some constant C3 independent of n. From this, the result follows. □ 

Theorem 3.1. Let h be an orientation preserving harmonic diffeomorphism 
from C into H2 with Hopf differential $ = (pdz2 = P exp(Q)dz2 such that 
\dh\2\dz\2 is complete on C and such that 
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(i) Q(z) = zn + $^=1 CLJZ
71
'! is a polynomial of degree n > 1; 

(ii) P ^E 0 is an entire function with order p < n; and 

(in) there exists ^ > S > 0 and RQ > 0 swc/i that 

2k7r 
E fl < z\ \z\> Ro and sxgz — 

n 
< s+'}-' 

/or all 0 < fc < n — 1, where £ is £/ie set o/ a/Z ^eros o/ P. 

T/ien i/ie closure of the image of h is the convex hull of a countable set A of 
dH2 with exactly n accumulation points. 

Proof. We claim that for any e > 0 with ne < j, there exists a constant 
Ci > 0 such that the maximal ^-radius Rz of z satisfies 

(3.1) Rz < Ci 

for all z G Wfc, 0 < fc < n — 1, where Wfc is the wedge 

(2k + l)7r 
Wi ■{i argz — 

n 
< I;-6}- 

for 0 < fc < n — 1. To prove the claim, note that there exists r > 0 such 
that for z € Wfc, 3i(2:n) < -r^l71. By the assumptions (i) and (ii), for any 
z £ Wfc, let 7 be the half ray ^(t) = t exp(\/^Iargz) for £ > \z\, then 

71*1 

<  f   exp ( --r<n + C2(l +1"-1 + f5) J dt, for any p < p < n, 

where C2 and C3 axe constants independent of z.  Hence the maximal $- 
radius of z € Wjt is uniformly bounded. This proves the claim (3.1). 

Next, for each 0 < k < n — 1, and for 5 > 4e > 0, let 

^e = {*| 2k7r 
argz 

n 
< ^+e} 

Define V^,4C similarly.   By assumption (iii), we can take a branch of logP 
in {z G I4,4e| M > i?o}-   As in the proof of Theorem 1.1, there exist 
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positive constants R2 > Ri > Ro, ^2 > Ti, ei > 0 and a conformal map 
(k(z) which is of polynomial growth as a function of z and which will map 

S[ ' = {z £ Vfe,4c| kl > Ri} injectively onto its image. For simplicity, we 
write £ = Cfc- Moreover, if 

S^ = {ze Vk,e\ \z\ > R2} 

Kx = {C| |argC| < | + 2ei and |C| > Ti} 

and 
^2 = {CI |argC|<| + 6iand|C|>T2} 

then C(5ifc)) ^ Til 3 CO^*0) => ^2- Also, in fti the Hopf differential of h 
is of the form $ = exp(C + Qi(C))^C2 where Qi(C) -> 0 as £ -» 00. Choose 
a > 6 > T2. As in the proof of (3.1), we have 

(3.2) RZ<C2 

for some constant C2 for all z E 5^ fl C~1({^C ^ a})- Moreover, on 
5{£ = 6^ |exp(C + Qi(C))l ^ C3 for some positive constant C3. Hence if 
w = log |ac/i| and if e2*\dC\2 is the hyperbolic metric on C(<S(fc)) n {5ftC > «}, 
then iD > v - C4 for some constant C4 because e~2w^\ exp(C + Qi(C))| < 1 
and v < C on Sft^; = b for some positive constant C. Let F^ = C~1({^ = a}) 
and 7^ = ^({^C = b}). Note that for fixed c > T2, arg(C~1(c+ V^*)) -» 
(2fc ± ^)7r/n as t -> ±00. Let f2 be the component containing the origin of 
C\u£~Qrfc, and let fii be the component containing the origin of C\UJj~Q7fc. 
By (3.1) and (3.2) if we choose e > 0 in (3.2) and then choose e > 0 in (3.1) 
small enough then we have Rz < Ci + C2 for all z G fi, and if e2v\dz\2 is the 
hyperbolic metric on Ct then w = log \dzh\ > v — C for some constant C for 
all z € dfti. Here we have used the fact that the hyperbolic metric on O is 
dominated by the hyperbolic metric on its subdomain. 

Next we want to show that infz€C\Q1 Rz > 0. In fact, if z £ C \ fii, 
then there is k such that $l(k(z) > b. Apply Corollary 2.1 on the disk with 
center Ofc and radius 1, we can conclude that on 9?^ > b the maximal $- 
radius is bounded below by a positive constant independent of Ot, because 

$ = exp(a + o(l))dCfc
2. 

Since Q is strongly hyperbolic and |d/i|2|d2:|2 is complete in C, h is quasi- 
conformal on fix by Theorem 2.1 and Remark 2.1. 

On the other hand, by Lemma 3.1, if we choose a and b large enough, 
then for each fc, there exist jr. ' G cffl2, j G Z, which are monotone in S1 
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such that the intersection of the closure of the image under h of the set 
{C 6 ^2, ^C > b} with dH2 is equal to 

k=0 k=0 

where p^.' = \imj->±00p\ \ Moreover, if ^n G 7^2 with JR^n > b and Qzn ~> 

+oo (respectively 5szn -* —oo) then /i(Cn) -> P+    (respectively h(Cn) -¥ 

P-)- 
Since h is at most linear growth in 72.2 with respect to £, /z is of polynomial 

growth on V^o provided e > 0 is small enough. It is easy to see that h is 
at most of linear growth on Wfc. By the definition of fli, we see that h is of 
polynomial growth on fii. Namely, there exist positive constants ^ and C 
such that 

(3.3) dw(h(z)Jo)<C(dc(z,0) + iy 

for all z e Qi, where o is a fixed point in H2 and 0 is the origin of C. We claim 
that the image of h is the convex hull of A together with at most finitely 
many points qj G dW2. By theorem 4.8 in [C-T] and theorem 5 in [Wn], it 

is sufficient to show that h(C) fl dU2 is {pf^ j G Z} U {p^\p^} together 
with at most finitely many points Qj. Suppose gi,..., qm are distinct points 
in 

(ft(Qn<9H2)\A 

There exist disjoint neighborhoods Ui,..., Um of gi,..., gm respectively in 
H . We may choose Uj, 1 < j < m small enough so that h"'1(Uj) C fii. 
For if this is not true, then there exists qj and a sequence of neighborhoods 
Ujin such that HnLi ^i,n — {^j} and such that hrl(Ujin) is not contained 
in fix for each n. By choosing a subsequence, we may assume that there is 
zn G Uj^n such that 5ftCA;(;2:n) ^ & under the map Ot described above. Since 

^(^n) ~^ ^i by construction, we conclude that qj must be p\ or p^L for some 
k and Z. This is a contradiction. Hence we may choose Uj such that h~1{Uj) 
is contained in £2i. Moreover, we may assume that Uj is bounded by a 
geodesic line in H2. Let fj{z) = ^(ix^),!!2 \ C/j), then fj subharmonic 
because d^p (•, M2\Uj) is convex by [B-O]. Note that fj is smooth in h~1{Uj)^ 
fj(z) = 0 for z G C \ h~l(Uj) and there exists a constant C3 
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for all z and for all 1 < j < m by (3.3). Since /i~1(C/7), 1 < j < m, are 
disjoint and nonempty, m is bounded from above by a constant depending 
only on £ by Theorem 3.4 in [L-Wl]. This proves the claim. 

Observe that each qj must lie between py and p_ for some k. Here 

we use the convention that py —p_. Since if 7A;(t) = C_1(^ + A/~T*)> ^en 

limt->±oo h>(nk(t)) — Pk^ we conclude that /i(f2i) is bounded by h^k) and 

the geodesies joining consecutive points of p\, qj and pi , with qj between 

p\ and p_ , and they are oriented positively. Since h is quasi-conformal 
on Qi, for each k if Cn G T^i with 3?Cn ^ & and Q^n -> +°o (respectively 

Szn -> -oo) then /i(Cn) -^ P+ (respectively h{£n) -> p_ ). Again, using 
the fact that /i is quasi-conformal on W^ we conclude that for z 6 Wfc, and 
if -JZ —> oo then /i(2:) will converge to a point % in IP. But <& must be equal 
to P+' and pi    ' at the same time. Hence the closure of the image of h is 

the convex hull of the set A consisting of p^ ', q^ which is countable and has 
exactly n accumulation points. □ 

It is clear that the theorem is true for any polynomial Q without requiring 
the leading coefficient to be 1 as long as the zeros of the entire function P 
are distributed in the corresponding sections. For instance, we conclude 
immediately from the theorem the following. 

Corollary 3.1. Let h be an orientation preserving harmonic diffeomor- 
phism from C into H2 with Hopf differential $ = P exp(Q)dz2 where P 
and Q are polynomials with degQ = n. Suppose |dfo|2|(iz|2 is complete in 
C. Then the image of h is the convex hull of a countable set A of 5M2 with 
exactly n accumulation points. 

Figures 1, 5, and 6 show the horizontal trajectories structures of holomor- 
phic quadratic differentials which are included in the corollary 3.1. Figure 
1 also shows the image of the harmonic map corresponding to ezdz2 which 
is the basis of all the discussion in this paper. 

4. Images of harmonic diffeomorphisms with Hopf 
differentials f(ez)dz2. 

In this section, we will study the images of certain harmonic diffeomorphisms 
from C into H2 with Hopf differentials of the form f(ez)dz2. As before for 
a > 0, let Ca = {z = x + V-Ty \ x > a}. 
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Lemma 4.1. Let h : CQ —> H2 be an orientation preserving harmonic dif- 
feomorphic injection with Hopf differential $ = dz2. Suppose that for some 
XQ > 0, limy^+00 h(xQ + yf-Ly) = pi and lim^-oo h{xQ + V^ly) = P2 for 
some pi, P2 in dW2. Then pi = p2 = p, and for all XQ > 0 

lim  h(z) =p. 
\z\—><X) 
Rz>xQ 

Proof By proposition 1.5 in [T-Wl], see also [Wn], the energy density of 
h in the half-plane 0 < $t:z < oo is bounded. Since for some XQ > 0, 
lim^+oo h(xo + V^y) = pi and limy-^-oo h(xo + V—ly) = P2, where 
Pi? P2 ^ 5H2, we conclude that for all xi > XQ > 0, 

lim     h(z) = pi 
Qf2->+oo / 

XQ<31Z<XI 

and 
lim     h(z) 

XQ<3iz<xi 

P2. 

Identify H2 = H2 U <9e2_with the unit disk. We claim that for any XQ > 0, 
the closure of ^(C^o) in H2 is Q, where £2 is the domain bounded by the curve 
h(xQ + V^-Ty)} —oo < y < oo and one of the arc on S1 with end points pi 
and p2- Obviously, ^(C^Q) is contained in such an Q because h is injective. 
Suppose that the claim is not true, then there is q on the boundary of h(CX0) 
such that q £ H2 and there is a geodesic arc 7 in h(CXQ) C H2 from a point 
qi in ^(Cco) to q with ^(l) = q, where £ is the length of 7 and is finite. 
Without loss of generality, we may assume that 7([0,^)) C ^(C^o). Let 
f3 = /i~1(7). Then (3 is a path in CXQ such that /5(t) —> 00 as t -> £ because 
q is on the boundary of h(Cx0)- Moreover, dl(3(t) -> +00. Otherwise, we 
would have /?(£) -> pi or p2- However, the pull-back metric under h is given 
by (e + 2)dx2 + (e — 2)dy2

} where e is the energy density of /i, and e > 2. 
We then have 

=rho2+«-^): 

> V^(lima;(^)-a;(0) 

eft 

= 00 
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which is a contradiction. Hence h(CX0) = fi. Suppose pi ^P2, then ^(C^o) 
contains a nontrivial arc on S1. However, for XQ > 0, h is of at most linear 
growth. By theorem 3.4 in [L-Wl], we conclude that h(CXo) fl DM2 consists 
of only finitely many points. Hence we must have pi = p2 = p. Since h is a 
diffeomorphism, we must have 

lim  h(z)=p. 
\z\—KX> 
9?z>a;0 

□ 

Lemma 4.2. Let 0 < /? < TT and /ei /i : e'^^Co -> H2 6e an orientation 
preserving harmonic diffeomorphic injection with Hopf differential $ = dz2. 
Suppose that for some XQ > 0, 

lim h (e^^ixo + V^ly)) = Pi        and 
l->oo      \ / 

lim   h (e^Pixo + V^ly)) = P2 

y->oo 

li: 

/or some pi, p2 ^ 5EI2.   T/ien pi ^ p2 and for all XQ > 0, h(ey/C-iPCXo) fl 
OT2 = {pi,p2}. 

Proof. As in the proof of Lemma 4.1, we conclude that for any XQ > 0, 

lim h (e^Pixo + V^ly)) = Pi, 

and 
lim  h (e^Pixo + V^yj) = P2- 

y-t—oo      \ / 

Let XQ > 0. Since 0 < ft < TT, by Lemma 1.1, suppose zn E ev^PCXQ, 
if 3?^n -> —oo, then liirin-^oo h(zn) = pi] and if $lzn ~> oo, then 
limn-xx) h(zn) — p2> If zn —> oo and for all n, XQ < ^tzn < xi for some xi, 

then ^(^n) are uniformly bounded. Hence h(e"/-tPCX0) fl ^ooHI2 = {pi,P2}- 
To prove that pi ^ p2. Note that \/^ln G e^"1^ for any positive 

integer n. Moreover, it is easy to see that zn = e^-1^^/^!!! = —nsin| + 

\/—In cos | and 5n = n + \/—In cos | are in ev^PCXo if n is large. Let 
Ln be the horizontal line joining zn and ^n. By the arguments in section 
3 of [HTTW], we conclude that h(Ln) is of uniformly bounded distance 
from the geodesic passing through h(zn) and h(zn). Since h(zn) —> p\ and 
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h(zn) -¥ p2> if Pi = P2 = P then h(Ln) -> p as n —» oo. On the other hand, 
h(y/^In cos |) are uniformly bounded. This is a contradiction. Therefore, 
Pl¥:P2' □ 

Theorem 4.1. Le^ m, n 6e nonnegative intergers and let P(t) be a noncon- 
stant rational function of the form 

n 

p(t) = J2 *ktk, 
k——m 

with a_m / 0 7^ an.    Suppose h is an orientation preserving harmonic 
diffeomorphism from C into H2 with Hopf differential given by 

* = P{ez)dz2 

such that \dh\2\dz\2 is a complete metric. Then A = /i(C) DcM2 zs countable 
which has exactly one accumulation point if m or n = 0, and ao > 0; and 
has two accumulation points otherwise. Moreover h(C) is the convex hull of 
A. 

Remark. Figures 1 and 2 in the appendix show horizontal trajectories 
structures for the case that m or n = 0, and ao > 0. In fact, in both 
figures, m — 0, and ao = 0 and 1 respectively. The other case are showed 
by the Figures 3 and 4. In Figure 3, m = 0 but ao = —1. The image of 
the corresponding harmonic map has 2 accumulations both are limits from 
one side. In Figure 4, both m and n are not zero and the image of the 
corresponding harmonic map has 2 accumulations both are limits from two 
sides. 

Proof Suppose that m > 0 and n > 0. By the proof of Lemma 3.1, we 
can conclude that there exist p^, k E Z such that h({z\ $lz > 0} fl SHI2 is 
equal to {pk}kez and the p^ are monotone on S1. Moreover, if p^ -± p± as 
k -> ±oo, then lim^_>+00} SRZ>O h(z) = p+ and limc?z-?>-00> SR^Q h(z) = p_. 

Similarly, there exist #&, k G Z such that h({z\ Rz < 0} fl SH2 is equal 
to {qk}keZ and the qk are monotone on S1, and if qk —> q± as k —» ±oo, 
then lim3z_>+00> gk8<o M*) = ^+ and ^m^-^-oo, &z<o Hz) = q-- Hence 
94. = P4. and g_. = p-. Since /i is a diffeomorphism, p+ ^ p- and ^4. = 
{Pki qk}kez U {p+,p_}, which has two accumulation points. 

Next, let us consider the case that m or n = 0. Without loss of generality, 
we may assume that m = 0.   As before, there exist pk, k € Z such that 
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h({z\ $lz > 0} n dlf is equal to {pk}keZ and the pk are monotone on S1. 
Let £>+ and p_ defined as above. 

Suppose ao = 0. Then we can conclude as in the proof of Theorem 3.1 
that p+ = p- = p and A = {pk}kez U {p} which has only one accumulation 
point. 

Suppose m = 0 and ao ^ 0, let ao = pV^3 with 0 < /? < TT, p > 0. 
There exists S > 0 such that if |t| < 5, we can take a branch of the square 
root of P(t) and 

where #(£) is analytic and 

(4.i) m\ < ci 
for some constant Ci for \t\ < S. Let g(t) be such that g* = g on |i| < 5 and 
p(0) = 0. Let XQ < 0 be small enough so that \ez\ < S on Jte < XQ. Define 

c(z) = /" ^/wde 
«/a;o 

= pe^^^l^ - XQ) + fZ etg(et)dZ 
JxQ 

= pe^^ + 5(e2) + Co 

for all z with ?Rz < XQ, where Co is a constant. Here the integration is along 
the straight line from XQ to z. Then £ is analytic. By (4.1), if we choose XQ 

small enough, then £ is injective. Since |3(e*)| < ^[e^l for some constant 
C2, if we choose XQ small enough, then the analytic map z —> Ci = — (C — Co) 
will map {9te < XQ} injectively onto its image 71. Moreover 

e^^iCil ^1 > P^o + 1} C 11 C e^^Cil S^i > pxo - 1}. 

The Hopf differential of h in the Ci plane is given by dC^. As before, we have 

lim   h(xQ + yf-i-y) = P±. 
y—^±oo 

Hence if (3 — 0, we have p.}. = p- = p by Lemma 4.1 and A is countable with 
only one accumulation point. If (3 > 0, we have p+ 7^ p_ by Lemma 4.2 and 
*4 is countable with exactly two accumulation points. The last statement of 
the theorem follows from Theorem 4.8 in [C-T] and Theorem 5 in [Wn].  □ 

As an application, we use Theorem 4.1 to study harmonic diffeomorphic 
injection from a flat cylinder to a hyperbolic cylinder. Let N be a hyperbolic 
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cylinder and let C* = C\{0}. Let $(C*, N) be the set of all Hopf differentials 
of orientation preserving harmonic diffeomorphic injections h from C* to N 
such that |d/i|2|d2:|2 is complete on C*. LetV(N) be the set of holomorphic 
quadratic differentials on C* defined by 

V(N) = {^-dz>\ P(z) =   J2akz
k 

k=—m 

for some 0 < 772, n £ Z, and P ^ CLQ >, 

V^N) = l^-dz2 €V(N)\ P(z) =   JT akz
k 

k=—m 

with m or n = 0, and ao > 0 > 

3JidV2(N) = V(N)\V1(N). 

Corollsiry 4.1. With the above notations we have $(C*, N)nV(N) is either 
a subset ofVi(N) or a subset ofV2{N). Moreover, if$(C*,N)nV(N) ^ 0, 
then it is a subset ofVi(N) if and only if N has a cusp. 

Proof. Let z~2P(z)dz2 G $(C*,N) be the Hopf differential of an orientation 
preserving harmonic diffeomorphic injections h from C* into N. Lifting 
h to the universal coverings, we have an orientation preserving harmonic 
diffeomorphic injection, denoted by h again, from C into H2, with Hopf 
differential given by 

P(ez)dz2 

and an element p of the Mobius group which generates TV^N) such that 

h(z + 2m) = p(h(z)). 

Note that |<9/j,|2|Gte|2 is complete on C. Let A = h(C) fl dooM2. Since h is 
equivariant, A is invariant under p. This implies that the set of fixed points 
of p is exactly the set of accumulation points of A. The corollary then follows 
easily from Theorem 4.1. □ 

Remark 4.1. It was proved in [Wn, W-A, T-Wl] that given a holomorphic 
quadratic differential $ on C or on H2 there exists an orientation preserving 
harmonic diffeomorphic injection from C or H2 to H2 whose Hopf differential 
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is the given $. Corollary 4.1 shows that the prescribed Hopf differential 
problem is not alway solvable from C* into N where N is a hyperbolic 
cylinder. 

Our next result is to consider the image of a harmonic map with Hopf 
differential of infinite order. 

Theorem 4.2. Let h be an orientation preserving harmonic diffeomorphic 
injection from C into H2 such that \dh\2\dz\2 is complete. Suppose that the 
Hopf differential of h is given by 

$ = exp(k\z)dz2, 

for some positive integer k, where exp(k'(z) is defined inductively by 
exp(0)(z) = 1 and expW(z) = exp(exp^-1)(z)). Let A = h(CJ D dH2. 
Then A = Uj=QAj such that 

• Aj is countable and discrete for each 0 < j < k — 1; 

• Aj consists of all isolated accumulation points of Aj-i for 1 < j < k; 

• Ak consists of only one point. 

Please see Figure 7 in the appendix for the horizontal trajectories struc- 
ture of eeZ dz2 and the corresponding image of the harmonic map. 

Proof. We may assume that k > 2 because k = 1 is a special case of Theorem 
3.1. First of all, we want to find out the domains such that $ can be 
written in the form of Lemma 3.1. Given any aGM, 1 < I < k — 1 and 
(711,712,... ,rn) € Z*, we define the open subsets <5(nir..)nf) inductively by 

<S(ni) = {z e C | Uz > a, \Qz - 2ni7r| < TT} 

and 

^ni.-.m) = {z€ £&!,...&!-!) I MCi-i > exp(/"1)(a)) \QCi-i - 2nZ7r| < TT}, 

where ^-i = exp^-1^^). Then (i = e^-1 = exp^z) maps <S(ni)_>nj) one- 
one onto the open set 

fi, = C \ ({Ci € R|Ci < 0} U {Ctl |0| < exp«(a)}) , 
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and in terms of £/ 

exp ̂ (O) (4-2) $ = ^rr. ^  dcf. 
nfcoCW^o)2 

In particular, for I = k — 1, 

(4.3) $ =   . ^.r0—^-i 

= exp I Cfe-i - 2 £ logW) Cfc-i ] dCLi 

on 

nfc_i = C \ ({Cfc-i 6 R|Cfc-i < 0} U {Cfc-i| ICfc-il < exp^"1)^)}) . 

A further transformation 

k-l 

r? = a-i-2^iog^a-i 

will put the Hopf differential into the form of Lemma 3.1 and we can conclude 
on the boundary behaviour of the harmonic map h. However, to ensure 
that there are no other ideal boundary point, we need to show that h is 
quasiconformal in certain domain. 

In order to do so, given any /? :» 1, we define Ep = {Ofc-i 6 
£lk-i I 5fr?(Cfc-i) > ft} and claim that for any a G E, there are simply- 
connected domains VQ C VQ C {z e C\3lz > a — 1} such that 

C \ Vo = {Uz < a - 1} U I       (J      f^...^) 
y(ni...,nfc_i) 

and 

C\Vo = {Stz<a}ul      (J      T^...,^) 1 , 
\(ni...,nfc_i) / 

where T(ni..<>nfc_1) (respectively Tfa^n^j) is the component of the preimage 

of Ep+i (respectively Ep), under the map exp^-1)^) corresponding to the 
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branch of log given by (ni,... ,nfc_i). Moreover, there are constants Co, 
MQ, 5 with CQ and S > 0 such that 

(4.4) supRz < Co,     inf Rz > S,    and    m{(w - v)(z) > MQ, 
V0 C\Vb dVo 

where Rz is the maximal $-radius at z, w = log\dh\ and e2v\dz\2 is the 
Poincare metric on VQ. If the claim is true, then the last inequality of (4.4) 
implies that w > v — MQ for all z G VQ, and hence, by Theorem 2.1, one can 
conclude that h is quasiconformal on VQ. 

To prove the claim, we note that for z G T(ni )...?Tlfc_1) the image of z 

under exp^-1) is in Ep. By Corollary 2.1 as in the proof of Theorem 3.1, we 
conclude that Rz > S > 0 for some 5 > 0 independent of (ni,..., n^-i). On 
the other hand, since e^k\z) —>► e^~1)(0) if $lz -¥ — oo, we also have Rz > 8 
by Corollary 2.1 if #tz < a and by choosing a possible smaller 5. The second 
inequality of (4.4) is proved. 

Let z G <9Vo, then either Rz = a or the image of z under exp^-1) is on the 
boundary of Ep. In the first case, e2w^ > le^-1)^)! > C for some constant 
C > 0 independent of z. Hence it is easy to see that w(z) — v{z) > MQ for 
some constant MQ because VQ is strongly hyperbolic. In the second case, we 
can proceed as in the proof of Theorem 3.1 and obtain the third inequality 
in (4.4). 

To prove the first inequality in (4.4), we let 

T4-i = fyb-i \ Ep. C Vh-\ = fi>k-i \ Ep+i- 

Then it is easy to see that V^-i C Vfc-i are simply-connected domains in 
flk-i and there is Ck-i such that 

(4.5) supi^Cfc.i. 
Vfc-i 

In fact, for all z G V^-i, there is a divergent path 7 in Vk-i such that 

£*(7) < Ck-1' 

Now, for / = k — 2, we consider subsets in Qk-2 containing the preimage 
of Vk-i and Vk-i under the exponential map (k-i = exp(^_2). It is clear 
from the property of the exponential map that 

I4-2 = exp-1^) u [(v^uv^ n fifc_2] 

vk.2 = exp-^^-i) u [(v^uv^j n ftfc_2] 
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are simply-connected domains in Q.k-2 such that 

Vfct2 C Vk-2 C Ffc-2, 

where, for / = 1,..., k — 1, 

V+, = {ze 5(ni »,_,) | KO-i < expC"1)^), QfO-i > 0} 

Vj:1 = {* e 5(B1 „,_,) I m-i < expC"1)^), QfO-i < 0}- 

We note that, for I = 1,..., k — 1, 

^(m,.:.,^.!) = ^-i u VJI-L u [unf€z (<5(nir..,nz_1,n/) n 5(nij...)ni_1))]. 

We want to show that there exists C'k_2 > 0 such that for all z G Vfc_2, there 

is a divergent path 7 in Vjb-2 w^h £$(7) < Cfc-2-  T*1*8 w^ immediately 
implies that 

sup Rz < Ck-2 
Vfc-2 

for some Ck-2 > 0. To prove this, we note that for all ro > exp^-2^^), 

/        mdtk-2\ <c f rdB   (fc.2) 
Jr=ro>O<0<7r yr=ro,0<^<7r |Cfc-2|| l0g Cife-21 * * * I l0gV        ; Cfc-2| 

< 
log ro •• • log(A; 2)ro 

-> 0 as ro -> +00. 

Then for all point Cfc-2 € Vr
/.

:^2, it can be connected to a point on the vertical 

line {SRCA;-2 = exp^-2)^)} by a circular arc with uniformly bounded $- 
length. By using Cfc-i = exp(Cfc-2) to map a point on dfifc-i, we can find 
a divergent path in Vk-i with $-length bounded by Ck-i- Lifting this path 
to Vk-2 and together with the circular arc, we find a path starting from any 
point in V£_2 a divergent path in Vk-2- The same is obviously true for other 

z 6 Vk-2 since they belong to exp~1(Vr/c_i). This proves our assertion that 

sup Rz < Ck-2 
Vk-2 

for some Ck-2 > 0. 
Continue in this way, for alU < k - 1 we can define V/, Vi and V^, such 

that 

Vo = exp-^Fi)    and VQ = exp-^Vi) U {z \ a - 1< Viz < a}. 
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Moreover, we can prove inductively that 

sup Rz < Ci 
Vi 

for some constant Cj. Finally, it is easy to see that Rz < C for some contant 
C if a - 1 < $lz < a because such a point can be joined by a line with 
bounded |^|-length to a point in exp~1(Vi). This completes the proof of the 
first inequality in (4.4). 

Now we can study the structure of the boundary points of /i(C). Firstly, 
for any (ni,... ,nfc-i) G Z*5-1, using Lemma 3.1, we can argue as before 
to conclude that there exists monotone sequence P(ni,...,nfc_i);jo' ^0 ^ ^ anc* 

P(nil...fnfc-i);+i P(nif...,nfc-i);- in 51H[2 such thati for Z3 sufficiently large, 

(4.6)       M^m....^.!) n {z\ 3tn(z) > p}) n dm2 

— {P(ni,...,nfc_1)yoJioeZ U {P(ni,...,nfc_i);+>P(ni,...,nfc_1);-) 

• li™    P(ni,..,nfc-i);jo =P(n1,...,nfc_i)i±- 

Moreover, if zn € 5(ni,...,nfc_i) n {^1 Mvi*) ^ 0} ancl zn -> oo then 

hi* \ -A /^i.-.«fc-i);+'   if 97?(^) "^ ^ 
[P(ni>...>nfc-i);->     lf ^VM -> ~0 — OO. 

In fact, we conclude by (4.3) that the energy density of h is bounded on the 
set z £ 5(nir..)nfc_1) such that a < $lr)(z) < b and |9?T7(z)| ^ & ^OT any a> ^ 
and R provided R is large enough. Hence we still have h(zn) -» P(nil...,nfc_i);± 
if $sri(zn) -> ±oo, zn e ^(m,...,^.!) and a < ^r]{zn) < b. 

Secondly, for any ni,...,nfc_2 € Z^"2 and for any ji € Z, the map 
Cfc-i = exp(Cfc-2) will map 

(^ 6 <S(ni,...,nfc_2)| »Cfc.2W > exp(fc-1)(a), |9C*-2W - (2ji + l)7r| < TT} 

one-one onto 

flib-i = C \ ({Cfc-i € R|a-i > 0} U {C*-i| |a-il < exp(fc-1)(a)}) . 

The corresponding curves given by Jfy = /3 in <S(ni,...,nfc_2,ji) and 
<5(ni,...,nfc_2,ji-i) S^ve us ^wo branches of curve 7+ and 7_ satisfying 3f?rj = /? 

on fifc-i fl {SCfc-i > 0} and ^A;-i n {QCfc-i < 0} respectively. Joining the 
two branches of curve by a compact curve 7 in VLk-i•> for instance a circular 
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arc with sufficiently large radius centered at the origin, gives a subset U 
with dU = 7+ U7_ U7 on which h is quasi-conformal. By (4.6), h will maps 
dU to a curve in H2 such that if Q77 -> 00 the image under h will tends to 
the point £>(ni,...,7ifc_2,ji+i);-> and if QT? —>• —00 the image under h will tends 
to the point P(niv..?nfc_2j1);+-  As in the proof of Theorem 3.1, we see that 
P(ni>...>nfc-aJi+l);- = P(nll...>nfc-2 ji);+ which will be denoted by P(nll...lnfc-2)yi • 
It is then not hard to see that 

/l(5(nir..|nfc-1))n3H    ={P(nil...>nJb_i)yo}io€ZU{p(ni|...>nfc_1);+Jp(ni|...|nfc_1);.}l 

and 

is countable and discrete. Now for each (ni,... ,n&_2) € Z^-1) the set 

lJP(ni,...lTifc_2);ii}iiGZ 

is monotone in ji and we denote P(ni>...,nJb.2);± = limii^±ooP(nif...,nfc«a)-lji- 
Since the Hopf differential on 5(nij...jnfc_1) is of the same form (4.3), by the 
proof of Lemma 3.1, for each (ni,... ,nfc_i), there is a point ^(ni,...,nfc_i) ^ 
^ni,...,^.!) and two consecutive points in {P(nil...1nfc_i;jo)}ioez such that 

(4-7) ^nll...lnfc-1)) = /3 

(4-8) ^(^.....n^))!^^ 

and that the distance from /i (^(ni}...)nfc_1)) to the geodesic joining these two 
consecutive points is bounded by Ci for some constant Ci > 0 which is 
independent of (ni,... ,nfc_i). Prom (4.7) and (4.8) we have 

(4.9) ^Um^ h (*(ni>...,nfc_2lji)) = ^(nx,...^.,))^. 

Using (4.2) and (4.9), we can argue as before to conclude that 

P(ni,...,nfc_3,J2+l);- = P(ni,...,njb_3,i2);+ 

which will be denoted by P(ni,...,nfc_3);i25 and 

^(^(m,...,^.,)) n dU2 =AoU {p(ni,...fnfc_3,njb_2);+iP(nif...>nfc_s,nfc_2);-} • 

Let 

A  = {P(n1,...,nfc_2);ii}(n1,...,nfc_2)€Zfc-2, j^Z- 
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Then Ai is countable and each point in Ai is an isolated accumulation point 
of AQ. The accumulation points of Ai are P(nij...,nfc_3);j2, (^i, • • • ^k-s) ^ 
Z(fc~2) and J2 G Z. Continue in this way, we can find Aj C dH2, 0 < j < k 
such that each Aj is countable and discrete for 0 < j < k — 1 and ^4j consists 
of all isolated accumulation points of Aj-i for 1 < j < k. Moreover, 

Finally, We want to prove that Ak consists of only one point.   Prom the 
proof, we can see that Ak consists of at most two points p and q satisfying 

and 

lim h(V-ly) = p 
y—¥oo 

lim   h(v--ly) = q. 
y->-oo 

Since 
exp^"1)^) = exp(fc~1)(0) + tg(t) 

on |t| < 1, where g(t) is analytic, one can proceed as in the proof of Theorem 
4.1 to show that p = q and 

h({z\ Mz < 0} n dm2 = {p}. 

Hence Ak is a singleton and this completes the proof of the theorem.       □ 

Remark 4.2. The Theorem 4.1 is also true for the Hopf differential 

k-l 

exp^-^ie'dz2) = expW(;z) JJ [exp^(z) 
3=1 

"dz2. 

In fact, the proof is much easier and can be done by induction since the 
form of the Hopf differential is not change under the map £ = ez. 

Remark 4.3. The Theorem 4.1 is not necessary true in general. In fact, it 
becomes very complicated for the general form as in Theorem 1.2. Even for 
$ = P(z) exp(k\z)dz2, the Theorem 4.1 need modification. For instance, if 
P(z) = V^-TJ then the same argument as in the proof of Theorem 4.1 and 
using Lemma 4.2 instead of Lemma 4.1 on the region {z < a}, we see that 
the set Ak consists of two points whether than one. So the best to hope for 
is that Ak has at most two points for the general form in Theorem 1.2. 
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5. Harmonic diffeomorphisms on hyperbolic plane. 

The result in §2, in particular Proposition 2.1, can be applied to study a 
conjecture of Schoen, which says that any quasi-symmetric homeomorphism 
on S1 can be extended to a unique quasi-conformal harmonic diffeomorphism 
on H2. The existence part of the conjecture is still open, but there are 
many partial results, see [Ak, L-Tl, L-T2, L-T3, T-W2, S-T-W, H-W, Y]. 
Schoen's conjecture can be reformulated as follows. Let BQD(IHI2) be the 
space of holomorphic quadratic differentials $ on H2 such that 

|||*||| = sup ||*||(*)<00 

where ||*||(z) is the norm of $ at z with respect to the Poincare metric. In 
[Wn], the third author proved that for any $ G BQD(E[2), there is a unique 
quasi-conformal harmonic diffeomorphism u on H2 with * as Hopf differ- 
ential. This defines a map 05 from BQD(IHI2) to the universal Teichmxiller 
space T by sending * to the class of quasi-symmetric homeomorphism con- 
taining the boundary value of u. The existence part of the conjecture of 
Schoen is equivalent to the surjectivity of the map OS. Let F be a subset of 
BQD(IHI2), we say that 05 is proper on T if for any $n € .Fwith |||<&n||| —* 00i 
we have of7-(Q5($n),0)) —> oo, where dq- is the Teichimiller metric on T. It 
is not hard to see that 05 is surjective if 05 is proper on BQD(H2). It is 
also not hard to see that if 05 is proper on the set of * € BQD(EI2) with 
Jjgp II^IM^e2 < oo or even on the set $ = (jxiz2 with (p to be a polyno- 
mial, then 05 is proper on BQD(E[2). Here, we identify H2 with P with the 
Poincare metric. For the sake of completeness, we give a proof of this fact 
below. Denote 

jr=|$GBQD(H2)|    f   \\$\\dv& < ooj . 

Note that * = (j)dz2, then /^a H^UdT^p = /D \<l>\dxdy. 

Proposition 5.1. Let 

Q = {$ e T\   $ = (frdz2, <f> is a polynomial}. 

Then 

(i) IftBis proper on Q, then 05 is proper on T. 

(ii) If 05 is proper on T', then 05 is proper on BQD(H2). 
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(iii) 7/23 is proper on BQD(1H[2); then 05 is surjective. 

In particular, if 05 is proper on Q, then 05 is surjective. 

Proof, (i) First we prove that if 05 is proper on Qy then 05 is proper on T. 
Let $n e T such that |||$n||| -* o0- Suppose that there is a constant C\ 
such that (i7-(05($ri),0) < C\ for all n. Since 05 is continuous, there exist 
<yn > 0 such that if |||*n - *||| < Sn, then dr(05(*),0) < Ci + 1. Hence it 
is sufficient to prove that Q is dense in T. Let $ = fydz?1 G ^r, then 

/ \4>\dxdy= \    ||*||dV]HP < oo. 
JB JEI

2 

Apply the mean value inequality on the disk D^r with center at z and radius 
r = ^(1 — |z|), we can conclude that ||$||(z) -> 0 uniformly as \z\ -> 1. For 
0 < i? < 1, let §R{Z) = $(ite). For any e > 0, we can find 1 > 5 > 0 such 
that if 1 - <J < |3| < 1 then ||$||(*) < \t. Then for 1 - ±<5 < \z\ < 1 and for 
R large enough, so that R\z\ > 1 — 6 

ll**(*)ll = ([-"ff'a 11^(^)11 ^ 5€- 
On the other hand, for \z\ < 1 — ^5) (J)R{Z) -> ^(2) uniformly, as i? -> 1. 
Hence we can find R large enough, so that 

||<M*)--*(z)||<c 

for all z G D. Hence |||$#—$|||flQD < 6- But ^^ is analytic on |z| < -^ which 
is large than 1. So it can be approximated uniformly on D by polynomials. 
This completes the proof of (i) 

(ii) We will prove that if 05 is proper on J7, then 05 is proper on BQD(1HI2). 
Let $ G F and let 05($) = [/] where / is a quasi-symmetric homeomorphism 
of S1 fixing 1, i, —i. Let dr([/]jO) = Ci. Then there exist diffeomorphisms 
of S1 gk fixing 1, i, —i such that g^ -> f in Ca norm for some 1 > a > 0 and 
such that df([gk]j 0) < C2 which depends only on Ci. Moreover, Ci -> 00 if 
and only if C2 —» 00. These follow from theorem 2 and remark (1) in [D-E]. 
By theorem 6.4 in [L-T3], see also [T-W2], for each k there exists a unique 
Vk G BQD(e2) such that 05(^A;) = [gk] with ^k G ^r. By the assumption, 
we have |||\Pfc||| < C3 for all A;, where C3 depends only on Ci. Note that Skk 
is the Hopf differential of quasi-conformal harmonic diffeomorphism on H2 

with boundary value g^- Hence ^(z) —> $(z) for all z G D and so 

limsup|||^|||>|||$|||. 
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Prom this, it is easy to see that 03 is proper on BQD(]HI2). 
(iii) We will prove that if 95 is proper on BQD(EI2), then 55 is surjec- 

tive. Let [/] be a class of quasi-symmetric homeomorphism on S1 such that 
[/] is in the closure of Q5(BQD(EI2)). Then there exists fn quasi-symmetric 
homeomorphisms on S1 fixing 1, i, — i such that fn —> / uniformly, and 
[fn] = 95($ri). Since [/n] are uniformly bounded on T, $n are uniformly 
bounded in BQD(IHI2). By theorem 13 in [Wn], the quasi-conformal har- 
monic diffeomorphisms un with Hopf differentials $n has complex dilata- 
tion /in satisfying |/in| < ^ < 1 for some constant /x independent of n. 
Passing to a subsequence if necessary, un converges uniformly on D to a 
quasi-conformal harmonic diffeomorphism on H2 with boundary value /. 
Hence [/] is in 55(BQD(M2)). Combine with the theorem 4.1 in [T-W2], we 
conclude that 05 is surjective. □ 

Proposition 5.2. Let §n   E   BQD(H2)   satisfying /^ ||$n||   <   00  and 
IH^nlH —> oo. Suppose for all k > 0; 

lim   /c/Jl^nll^IHP   = o 

f/n = {^Ee2|||$n||(^)<fc|||$n|||t}. 

T/iendr(25($n),0) -> oo. 

Proof. Identify H2 with the unit disk D equipped with the Poincare metric. 
Let $n = (j)ndz2. Let ^n)o be the supremum of the modulus of the complex 
dilatation of ?B($n), then 

dr(S($n),0)4logI±i^>. 
^ 1 - Mn,0 

Since 

/ \(j)n\dxdy = I    \\$n\\dvn < oo, 

we can apply the main inequality in [R-S] and conclude that 

(5.1) —^—   /    Pnll^EP   <   /    7-^—MnWdv^ 

where /in is the complex dilatation of the quasi-conformal harmonic diffeo- 
morphism with Hopf differential $n.   Let 1 > 8 > 0 and k > 1 be fixed 
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numbers. Define 

I?„ = {ze]HI2|||*„||(*)>fc|l*n|||QI,}» 

Un = {zeW2\\\$n\\(z)<k\\$n\\l}QD}. 

We have 

(5'2)     L rrW1*-"^ " (L+0 ^W1*""*-' 
By Proposition 2.1, for any z E Dny the maximal $n-radius RniZ satisfies 
Rn,z > Cik for some absolute constant Ci > 0. By the result on page 63 
of [Hn], we have \fjLn\ > r)(k) for some constant r)(k) such that r}{k) —» 1 as 
k -> oo. Hence we have 

(5'3)     L T^11*"11"* - T^m L ^iv* ■ 
For any 0 < 5 < 1, there exists no such that if n > no then 

/     pnllefojHp  <8 /     ||^„||dVH2. 

Combine this with (5.1)-(5.3), we have for n > no, 

—  /    ||*n||^ep < 7—-TTT /    ||*«||rfve2 +6 /    ||*n||dt^2. 
1 + Mn,0 JlBP 1 + ^(*) JDn JXP 

Hence 

1 + Mn,0 1 + ^(«) 

Let k —> 00, and then let <5 -> 0, we have 

limsup < -. 
n^-oo     1 + fJ>n,0        2 

Since 0 < /in}o < 1 for all n, we have limn^oo ^n)o = 1. Prom this, it is easy 
to see that dr(23(3>n),0) -> 00. D 

Corollary 5.1. Let T be as in Proposition 5.1. Let $n = (j)ndz2 G J7. 
Suppose |||$n||| = 1. Let An = fm \\9n\\dv^ = /D|0n|rfa;dy. Suppose 
limn-^oo <l>n/An = ij) such that /D |^|da:dy = 1, tfien ©(tn^n) -> 00 for any 
tn —> 00. /n particular ?8 is proper on any finite dimensional subspace of T. 



558 T.K.K. Au, L.-F. Tarn & T.Y.H. Wan 

Proof. For any 1 > 8 > 0, we can find 1 > ro > 0, such that 

/     \%l)\dxdy = 1 — 5, 
./Bro 

where Dro = {\z\ < ro}. We have 

(5.4) f    M>l-25, 
ro 

provided n is large enough. For any k > 0, let en = ktn 4, where tn -> oo. 
Let 

Un = {z e H2| IMnllW < fcHMnlll'} = {* € H2| ||*n||(^) < en}. 

Note that if $n = cfrndz2, then for ^ G C/n fl Dro 

\4>n\{z) < Ci(l - ro)-2||<M(2) < ^(1 - ro)"2 

for some absolute constant Ci. Hence by (5.4), 

(5.5) /    H^nll^iHP < / \4>n\dxdy+ /        \4n\dxdy 
'r0 -ID)\Dro 

(1-ro)2 ^ 773132 +2M„. 

Since |||$n||| = 1, by applying the mean value inequality to |^n|(^) at a 
point zn with ||$n||(2;n) > ^, we conclude that i4n > C2 for some abolute 
constant C2 > 0. By the definition of en, we have en —> 0 as n -* 00. Hence 
(5.5) implies that we have 

/c/n IMMMVHP        .. /^nll*n|Mt^2 
limsup  r

n   ——— = hmsup —-—  

<28. 

Since 5 is arbitrary, tn$n satisfies the conditions in the Proposition 5.2. 
Hence the first part of corollary is proved. 

To prove the second part of the corollary, let % be a finite dimensional 
subspace of T with basis \I>i,..., \I>fc. If $n G % is such that |||$n||l -> oo? 
then $n = tn$n such that |||$n||| = 1 and $n = Y!j=i an,j^j with ^=1 a

2^ 
being uniformly bounded. From this, it is easy to see that the second part 
of the corollary follows. □ 
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Let $ = (t)dz2 e T. Define 

li     ~ |4 
l^loo = inf sup \^z)\       "^      = inf sup|^a(C)|, 

2 _ where 4>a dC  — * and C = r^* 

I*ILI = / \<i>\dxdy= \    \\§\\dvHi. 

Note that 

/ \(j)\dxdy= /  \4>a\dxdy 
JB JB 

if 0 and 4>a are related as above. 

Corollary 5.2. Let Ti  =  {$  G  BQ£>|  |||$|||   =   1, |$|oo   <  oo}.    Let 

§n € Fi, and tn —> oo be a sequence such that l^nlool^nl^? = o{tn), then 
d7-(95(£n$n),0) —> oo. /?2 particular, if |$n|cx)|^n|^? ^ C for some constant 
C independent of n, then d7-(93(£n3>n),0) -> oo, for any tn —>• oo. 

Proof. For each n, by the definition, by a linear fractional transformation of D 
if necessary, we may assume that $n = (frndz2, with (sup2ep l^nK^)) l^nl^f = 

i 

o(t^). Let Mn = supz€p |0n|(^) and Jn = I^IL
1
- We claim that 

(5.6) I* < dMn 

for all n and for some absolute constant Ci. Fix n, take ro such that 

/       \4>n\dxdy = -/n, 
./B(ro) ^ 

where D(ro) = {z\ \z\ < ro}. Since |||$n||| = 1? we have 

C2 
(5.7) -Jn = /       I^Mxdy < C2 /    (1 - r)"2 < - 

where C2 is an absolute constant. On the other hand 

T^n = / \(t>n\dxdy < Mn • 27r(l - ro). 
^ yD\D(ro) 
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Hence 

2 "- 1-ro 
27rMriC2 < 

IT 

Prom this (5.6) follows. 
Now for any k > 0, let 

Un = {z s m2\ IMnlKz) < fc|||<n$n|||3/4} 

= {zeM2|pn||(2)<fcen|pn|||3/4} 

where en = tn 4. Let Sn = (    fc€!L2 )   . By (5.6) and the fact that en —> 0, 

we have Sn —> 0 as n —)• oo. As in the proof of Corollary 5.1, /n > Ca 
for some absolute constant C3. Hence Snl"1 -> 0 as n —> 00. If n is large 
enough so that SnI~1 < 1, then we take rn such that 1 — rn = SI~l. Denote 
^n) = {z\ \z\ < rn}. Then 

(5.8) / \<t>n\dxdy<27rMn(l-rl) 
J(B\Bn)nUn 

< 47r(MnI-
2)8nIn. 

On the other hand, as in the proof of (5.7), we have 

\<f>n\dxdy < C4ken(l — rn)""1 
/ 

B(rn)nC/n 

= C4kenS~1In 

for some constant C4 independent of n. Hence 

\(l)n\dxdy < C5 {MnI~2Sn + kenS'1} In I 
JUr fUn 

= 2C5{kenMnI-
2}hn 

for some constant C5 independent of n. Hence if n is large enough, 

JB\(f)n\dxdy 

By the assumption, the right side of the above inequality tends to zero as 
n -* 0 and the corollary follows. □ 
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Example 1. Let $n = (l)ndz2 = cnn2zndz2, where cn is chosen so that 
|||$n||| = 1- Direct computations show that C"1 < Cn < C for some 
positive constant C independent of n. Then supz6p |^n|(^) = cnn

2, and 

ffrlMdxdy = 2^j_2n • Hence the l^nlool^nl^ ^ C7 for some constant Cf 

independent of n. Hence by Corollary 5.2, for any subsequence n*. and for 
any tk —» oo we have dr(5S(tfc*nfc)j 0) -> oo. 

Example 2. Consider (2? — l)nGfo2. Then direct computation shows 

sup(l - \z\)2\z - l\n = cnn-22n 

where C"1 < cn < C for some constant C > 0 independent of n. Let $n = 
c'nn

22-n(z-l)ndz2 = (j)n(z)dz2, where c^ is chosen so that |||$n||| = 1. Note 
that C"1 < (!„ < C for some C > 0 independent of n. Let a = -21+8=1^+1^ 
note that — 1 < a < 0. 

(5.9) 

*■       aZ\     _ ^'    2o-n    0„^     1^       linn       ^014/1       ^2\-2 
Sup 1^(^)1:   ;■ = cX2- sup |c^ - ir 11 - a^ra - o 
z€D (1 - azJ^ O<0<27r 

/      7 -    n  V cnn    sup   sm   - 
O<0<27r 2 

(l-a)2 + 4asin2- 
2 

2\-2 (1 - a") 

= c^n2 sup tn [(1 - a)2 + 4at2]2 (1 - a2)"2. 
0<t<l 

Let f(t) = tn [(I - a)2 + 4at2]2, then /(0) = 0.  Suppose f(t), 0 < t < 1 
attains its maximum at ip € (0,1), then f'(to) = 0, and 

ntZ'1 [(1 - o)2 + 4atl]2 +1% ■ 2 [(1 - a)2 + 4otg] • Sato = 0. 

Hence tp = — 3sr^T4) = ^ ^ *^e choice of a, which is impossible. Hence, for 
0 < t < 1, f(t) attains its maximum at t = 1. By (5.9), we have 

|$n|oo < 4n2 [(1 - a)2 + 4a]2 (1 - a2)"2 

= c;n2(l + a)2(l~a)-2. 

Since a < 0, 1 — a > 1. Also 

,     n + 8 - 4x/n + 4      -8 + 4Vn + 4 
1 + a = 1  

n n 
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Hence 

(5.10) l^nloc < Cm 

for some constant Ci independent of n. On the other hand 

f \z-l\ndxdy= [   f  \r2 + l'-2rcos9\2rdrd0 
JB J2n JO 

= |r2 + l + 2rcos0|trdrd0 
J-n JO 

> C32
nn-I 

> CAXI* 

for some constants C2-C4 independent of n. By Corollary 5.2, we also have 
25(£&<I>nfc) -» 00 for all subsequence n^ and for all tk —> 00. 

In the last section of [Wn], it was proved that 05 is continuous, and in 
section 4 of [T-W2], it was proved that the image of 25 is open and 55 is a 
diffeomorphism from BQD(H2) into T. Prom the proof of the proposition 14 
in [Wn], 05 is in fact uniformly continuous on bounded subsets of BQD(1HI2). 
On the other hand, we have the following: 

Proposition 5.3. Let R > 0 and let 

B(R) = {$ G BQD(H2)| |||$||| < R}. 

Let T(R) = 55 (B(R)). Then OS-1 is uniformly continuous on T{R). 

Proof. For any complex measurable function /i on D such that ||//||oo < 1> 
denote F*1 to be the unique quasi-conformal map on D with boundary value 
/^ which fixes 1, i, —i. Suppose /^ can be extended to a quasi-conformal 
harmonic diffeomorphism, then the harmonic map will be denoted by F^ 
and its complex dilatation is denoted by /L By theorem 13 in [Wn], there 
exists 0 < k < 1 such that if [/] e T{R) then ||/x||oo < &> where // is the 
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complex dilatation of an extremal quasi-confomal map with boundary value 

in [/]. 

T*(R) = {MI M is measurable, ||/i||oo < fc and [/**] G r(i?)}. 

Note that if fi G T*(R), then /** can be extended to a quasi-conformal 
harmonic diffeomorphism with Hopf differential in B(R). We claim that for 
any e > 0, there is 8 > 0 such that if ^, u in T*(i?) and \\fjb - i/||oo < * 
then 11/1 - z>||oo < c. If the claim is true, then by the definition of dr and 
by the method as in the proof of proposition 14 in [Wn], one can conclude 
that S-1 is uniformly continuous on T(R). 

First we prove the following, given e > 0, there is S > 0 such that if 
[JL and i/ are in T*(R), then |/i(0) - i>(0)| < e. Suppose not, then there is 
€ > 0 and two sequences /zn, un in T*(i?) such that \\fin - VnWoo -* 0, but 
|/}n(0) - f/n(0)| > 6. Since ||/in||oo < h and HPnlU < ^i for some 0 < 
fci < 1 by [Wn], passing to subsequences if necessary, F/Xn and F"* converge 
uniformly on D to normalized quasi-conformal harmonic diffeomorphisms 
Hi and H2 respectively. Since H^n - ^n||oo -> 0 and /in, un are in T*(R), 
Hi and H2 must have the same boundary value and so Hi = H2 by [L-T3]. 
It then follows that |/in(0) - i>n(0)| -> 0, which is a contradiction. 

Now, for any e > 0, let 6 > 0 be as above. Let /i, u be in T*(R) such 
that ||/z - i/||oo < 5. Let a G D and ^(z) = (z - a)/(I - as). Define /ii and 
ui by 

and 

^(^)) = |'WV|^(JB)L 

Then Z^1 = W o /» o c^"1, and /^ = h" o f" o (f)'1 where ^ and fr" are 
the linear fractional transformations which map D onto itself and are chosen 
so that f^1 and f"1 fix 1, i, -i respectively. Obviously f^1 and /^ have 
quasi-conformal representatives F^1 and F^1. In fact, 

F^1 ^h^oF^o (f)'1 

and 
F"1 =htAoFi'o<l>-1. 

Moreover, the Hopf differentials of F^1 and F^1 are in £(#). Hence /xi, ui 
are in T*(i?) becasue ||/xi||oo = HMIU < fc and ||z>i||oo = IHloo < k. 
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We also have 

and 

Note that 

Therefore 

2 

2 

||MI-^IIOO = HM-HIOO <5. 

|/i(a)-Ka)| = |/ii(0)-i/i(0)|<6. 

Since a is any point in D, the claim follows. D 

Appendix: Trajectories and Image Accumulation. 

In this appendix, seven figures of horizontal trajectories of holomorphic 
quadratic differentials are shown. These pictures of trajectories are pro- 
duced by programming in Mathematica. Some trajectories may be broken 
due to slow convergence of the algorithm. In fact it should be smoothly 
defined for all time. Nevertheless, the qualitative behavior of the trajec- 
tory patterns is shown clearly. In some figures, the correponding harmonic 
map produces an image which has a good accumulation structure on the 
boundary. This structure is also shown on the unit disk. 
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Finitely Many Accumulations. 

Figure 1. $ = ezdz2. 
(See Theorem 3.1 and Corollary 3.1.) 

This example is the basis of all others. The trajectories have a 2m peri- 
odicity. The image of the corresponding harmonic map has an accumulation 
point at —1. 



566 T.K.K. Au, L.-F. Tarn & T.Y.H. Wan 

Figure 2. $ = (ez + l)dz2. 
(See Theorem 4.1.) 
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Figure 3. $ = (ez - l)dz2. 
(See Theorem 4.1.) 

Prom this and the previous one, a lower order term may significantly 
change the behavior of the harmonic map. This one has two accumulation 
points at ±1 while the previous one has only one. 
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Figure 4. $ = sinh2 zdz2. 
(See Theorem 4.1) 

This is another example that the fundamental region is different while 
there are also two accumulation points. 
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Figure 5. $ = (z2 - l)ez2dz2. 
(See Theorem 3.1 and Corollary 3.1.) 

The image of this example should have 2 accumulation points. 

Figure 6. $ = ez3+z2dz2. 
(See Theorem 3.1 and Corollary 3.1.) 

The image of this example should have 3 accumulation points. 
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Accumulation of accumulating points. 

Figure 7. $ = eeZ dz2. 
(See Theorem 4.2) 

Finally, this is an example about accumulation of accumulations. The 
image has infinitely many accumulation points marked by dots outside the 
unit circle, which in turns accumulate at —1. 
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