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Heat kernels and Green’s functions on limit spaces

YUu DING

In this paper, we study the behavior of the Laplacian on a se-
quence of manifolds {M*} with a lower bound in Ricci curvature
that converges to a metric-measure space M,,. We prove that the
heat kernels and Green’s functions on M will converge to some
integral kernels on M, which can be interpreted, in different cases,
as the heat kernel and Green’s function on M,,. We also study the
Laplacian on noncollapsed metric cones; these provide a unified
treatment of the asymptotic behavior of heat kernels and Green'’s
functions on noncompact manifolds with nonnegative Ricci curva-
ture and Euclidean volume growth. In particular, we get a unified
proof of the asymptotic formulae of Colding-Minicozzi, Li and Li-
Tam-Wang.

0. Introduction.

Assume M™ is an n dimensional Riemannian manifold with a lower bound
in Ricci curvature,

(0.1) Rican > —(n — 1A,

where A > 0. By the Bishop-Gromov inequality, we have a uniform volume
doubling condition,

(0-2) Vol(Bzr(p)) < 2% Vol(Br(p)),

here we can take kK = n if A = 0; if A > 0, we require that R is bounded from
above, say, R < D for some D > 0. Moreover, there is a uniform Poincare
inequality
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where fp g is the average of f on Bg(p); see [Bu], [Ch3], [HaKo] and the
references therein.

We assume, throughout this paper, {M} is a sequence of complete
Riemannian manifolds with (0.1) that converges in the pointed measured

(0.3) ldf[?)7,
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Gromov-Hausdorff sense, to a metric space My; we write M dox My,
dgp is the Gromov-Hausdorff distance. In particular, (0.2) holds on M.
One can show that (0.3) and the segment inequality, which is stronger than
(0.3), hold on My, as well; note on M, the role of |du| in (0.3) is played
by gg, the minimal generalized upper gradient, see [Ch3], [ChCo4].

In Cheeger’s paper [Ch3], a significant portion of analysis on smooth
manifolds was extended to metric-measure spaces satisfying (0.2), (0.3). In
[Ch3], [ChCo4] Cheeger and Colding defined a self-adjoint Laplacian oper-
ator A on M. By convention A is positive. They proved that the eigen-
values and eigenfunctions of the Laplacian A; over M converge to those
on My, thereby establishing Fukaya’s conjecture [Fu]. So if we consider
RIC, the completion under measured Gromov-Hausdorff convergence of the
set of smooth manifolds with (0.1), it is natural to expect that quantities
associated to A should behave continuously.

In this paper, we will study this phenomenon in detail. Our main goal is
to prove, in various cases, that the heat kernel H; and Green’s function G;
on M converge uniformly to the heat kernel H,, and Green’s function G
on M,,. We will make precise the definition of these convergences in Section
1. For results concerning heat kernels, a lower bound in Ricci curvature (0.1)
is enough; for Green’s functions, we require that Ricyp > 0; compare with
(1.16), (1.18), (1.19).

Moreover, in the noncompact case, we also study the asymptotics of the
heat kernel and Green’s function on a manifold M™ with Ricp > 0 and a
Euclidean volume growth condition:

(0.4) Vol(Bg(p)) > voR™

According to [ChCol], any tangent cone at infinity of a manifold M™ with
Ricpm > 0 and (0.4) is a metric cone C(X). So viewed from a sufficiently
large scale, M™ appears to be close to some C(X). Combined with the
appropriate convergence theorems mentioned above, at a sufficiently large
scale the heat kernel and Green’s function on M™ are close to those on C(X).

On the other hand, we show that the classical analysis on cones, [Chl],
[Ch2], [ChTal], can be generalized to C(X). In particular, we have explicit
expression of heat kernels and Green’s functions on C(X); see (6.21), (4.23).
In this way we get a unified treatment for the asymptotic formulae of these
integral kernels on M™. In particular, we get new proofs of the Colding-
Minicozzi asymptotic formula for Green’s functions, [CoMil] (compare with
[LiTW]), the asymptotic formulae for heat kernels of Li [Lil] and Li-Tam-
Wang [LiTW].
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The organization of this paper is as follows:

Section 1 reviews some background material that we need in the sequel.

In Section 2, in the compact case we prove, H;(-,-,t) = Hu(:,+,t) uni-
formly (assuming (0.1)), and G; — G uniformly, off the diagonal (assuming
Ricpm > 0). It’s well known that there is an eigenfunction expansion for
heat kernels, so our results follows easily from the work of Cheeger-Colding
[ChCo4], [Ch3], by estimating the remainders of the eigenvalue expansions.
We remark, previously in [KK1], [KK2] it was proved that a subsequence of
H; converges to some kernel on the compact metric space M.

By the Dirichlet’s principle and the transplantation theorem of Cheeger
[Ch3], we show in Section 3 that the uniform limit of solutions for Poisson
equations is a solution for a Poisson equation, see also [Ch3], [ChCo4]. In
particular, if {M]'} are noncompact, Ricpp > 0, satisfy (0.4) uniformly,
then G; — G uniformly off the diagonal (Theorem 3.21).

We treat the heat kernels on noncompact spaces in Section 5. We as-
sume (0.1). First, some subsequence of the Dirichlet heat kernels Hgr; on
Bgr(pi) € M will converge to some function Hpo on Br(Poo) C Meo.
However, at present it is not clear if Hr; will converge. On the other hand
by a generalized maximum principle, any two Hg o (from two different sub-
sequences) can not be too different from each other, see (5.46). Letting
R — 0o, we prove that H;(-,-,t) = Heo(:,+,t) in L.

In Theorem 5.59, when the noncollapsed limit M., is a manifold, we
prove H, is the heat kernel over M, i.e. the integral kernel of the semi-
group e *A. For general M., the picture is not yet clear; however, it is
true when M, = C(X) is a noncollapsed tangent cone that is the limit of a
sequence of manifolds with nonnegative Ricci curvature, see Theorem 6.1.

In Section 4 and Section 6 we study the Laplacian on C(X). We prove
that in this case, one can still separate variables. We use these to study the
structure of G, and Ho, on C(X), and the asymptotic behavior of Green’s
function and heat kernel on a manifold M™ with Ricpm > 0 and (0.4).

In Section 7 we study the asymptotic behavior of the eigenvalues A; oo
on a compact metric space Mo, which is the limit of a sequence of manifolds
{M}} with (0.1). We will prove in the noncollapsed case, the Weyl asymp-
totic formula is true on My.; see Theorem 7.3. In the collapsed case, we
get some link between the behavior of eigenvalues and dimpsing (M), the
Minkowski dimension of M.

All of the estimates in this paper are uniform, i.e. the constants are
valid for the whole family of manifolds we are considering (for example all
compact manifolds M™ with Ricpysn > —(n — 1)A and Diam M™ < D).
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1. Background and notation.

Suppose (M}, Vol;) dexy (Moo, foo) in the measured Gromov-Hausdorff
sense, i.e. the sequence {M*} converges in the Gromov-Hausdorff sense to
My, and for any z; — Zoo, (z; € M]*) and R > 0, we have Vol;(Bgr(z;)) =
Loo(BR(Zoo)); here po is Borel regular. In fact, for any sequences of mani-
folds with Ricci curvature bounded from below, after possible renormaliza-
tion of the measures when {M*} is collapsing, one can alway find a subse-
quence converges in the measured Gromov-Hausdorff sense, see [ChCo2]. In
the following we usually let Vol denote the (renormalized if {M]*} is collaps-
ing) measure on M, i = 1,2, ...,00; on My, sometimes we also write p, for
Vol,. We refer to [Ch3], [ChCo2], [Gr] for general background on measured
Gromov-Hausdorff convergence.

Definition 1.1. Suppose K; C M} dﬂ Ko C Mg in the measured
Gromov-Hausdorff sense. f; is a function on M}, ¢ =1,2,... ; fs is a con-
tinuous function on M,,. Assume ®; : K, — K; are ¢;-Gromov-Hausdorff
approximations, €; — 0. If f; o ®; converge to fo uniformly, we say that

fi = feo uniformly over K; dog K.

For simplicity, in the above context, we also say that f; = fo, uniformly
on K; when we write f;(z) = foo(z), we mean that f; —» fo uniformly and
fi(zi) = foo(To), where z; = Zoo, z; € M.

In many applications, the family {f;} is actually equicontinuous. We
remark, the Arzela-Ascoli theorem can be generalized to the case where
the functions live on different spaces: when M dox M, for any bounded,
equicontinuous sequence {f;} (f; is a function on M*), there is a subsequence
that converges uniformly to some continuous function fo, on M. The proof

is straightforward.
We also introduce the notion of LP convergence (1 < p < ).

Definition 1.2. We say f; = fo in LP, if for all € > 0, one can write
fi = ¢i + m; such that ¢; = ¢ uniformly and limsup;_,o ||7i]lzr < e
Isollze < €.
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The following is a generalization of the Rellich-Kondrakov theorem:

Lemma 1.3 (Rellich). Assume By(p;) C M} doy Bi(p) C My in the
measured Gromov-Hausdorff sense. u; is a function on M, i = 1,2,....
Assume

(1.4) / (p.)(“i)z +IVui < N.

Then there is a subsequence of {u;} that convergesvin L? over any compact
subset of the open balls B;.

The proof depends only on a weak Poincare inequality (use a bigger ball
on the right of (0.3)) and (0.2). One can divide the ball Bg(p) (R < 1) into
small subsets and approximate f by functions that are constant over each
of these small subsets, then one easily finds a convergent subsequence by
standard diagonal arguments. Compare [Ch3], especially [CoMi3|.

We use subscript 7 and write f;, Hr, p;, etc. to denote functions, points,
etc on M. To simplify notation, when we write an equation with some
function or other objects with no subscription (for example, f), it should be
understood that the equation is valid for some suitable convergent sequence
of functions or other objects (for example, {f;}; f; is defined on M}, i =
1,2,...), according to the context.

In [Ch3], Cheeger defined a Sobolev space Hj 2 on metric-measure spaces
(Z, p) satisfying (0.2), (0.3), and proved that Lipschitz functions are dense in

o

Hjy 5. Denote by H2(2) the closure in Hj 2 of Lipschitz functions supported
in an open set 2. Recall in [Ch3], one has a natural finite dimensional
cotangent bundle 7% Z. We use du to denote the differential of u, see Section
4 of [Ch3]. One can put a norm | - | on T*Z by assigning |df| = gf = Lip f
for f Lipschitz. Here as in [Ch3],

(1.5) Lip f(z) = lir;ljrp %ﬂ—l

Note we use Lipf to denote the Lipschitz constant of f. Clearly, on smooth
manifold | - | agrees with the standard norm |du| = |Vu|. It was proved in
[Ch3] that | - | is equivalent to a uniformly convex norm, in particular, an
inner product.

If we have the stronger assumption Z = My with M} icﬁ‘ My, in
[ChCo4] Cheeger and Colding proved that M, is peo-rectifiable, and, as a
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corollary, the norm | - | actually comes from an inner product (:,-). So Hj2
is made into a Hilbert space:

(1.6) (V) iy = /Mw w + / o),

and for Lipschitz functions f, one has

17) Vs = I8+ [ [Tip s P
Now by the standard theory of Dirichlet forms, one gets a positive self-
adjoint Laplacian A on M, see [Ch3], [ChCo4] for the details of this theory.
Recall one form of the transplantation theorem of Cheeger (for a proof,
see Lemma 10.7 of [Ch3]):

Lemma 1.8. Assume M dox My. foo s a Lipschitz function on
BR(Zoo) C Moo, Ti = Too. Then there is a sequence of Lipschitz functions
{fi} that converges uniformly to foo, here f; is defined on Br(z;) C M.
Moreover, one can require that

(1.9) limsup Lip f; < Lip feo,
100
(1.10) limsup || Lip fil| 2 < || Lip fool|2-
1—00

By [J], [HaKo], on length spaces satisfying (0.2), a weak Poincare in-
equality implies a uniform Poincare-Sobolev inequality (i.e, put LX? norm
on the left side of (0.3) for some x > 1). In particular, we have a Dirichlet-

Sobolev inequality for v € H 1,2(Br(p)). So we have

Lemma 1.11 (Moser iteration). If for all ¢ with compact support in

By (p),
(1.12) /VuV¢=/cu¢+f¢,

then for ¢ > C(k), we have,

(113)  [lullze(Bimy < C@)(L+ DN (lull 2(Baey) + 1 29(Bato))-
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For proof, see chapter 4 of [Lin|. Note here we need to renormalize the
measure.
Recall, on smooth manifolds we have

Lemma 1.14 (Gradient estimate). If Au —cu = f, ||ulzz < oo on
Bor(p) and f is a C? function with Lipschitz constant Lipf, c is a con-
stant, then on Bgr(p) we have a gradient estimate:

(1.15) [Vul < Ol ull 2, Lip ) (1 + 1) V0.

The proof follows a standard argument of Cheng-Yau, see [CY1], [LiY1],
compare also with [Lin|, [Li2], [SY]. Then use the Moser iteration to replace
l[ull oo with [|u||z2.

Finally recall the Li-Yau estimates [LiY2], [SY]: If M" satisfies (0.1),
then its heat kernel H satisfies

(1.16) H(z,y,t) < C(n)Vol(B 4(x)) /2 Vol(B, ;(y))~/2e~ 4 @)/5teCht,

If t < T, by volume comparison (1.16) simplifies to
(1.17)
H(z,y,t) < C(n,A,T) Vol(B\/Z(a:))"1e"d2(”’y)/‘r’tec’\tt_c(")eo("”\’T)d(”"y).

If we assume Ricpn > 0, then

C‘l(n) _d? C(n) _d2
1.18 —— e PENB < (g oy t) < ——t e~ (a0)/5t
(L18) B (@) SH@v.0 s 555 @)

Assume M™ is noncompact, write G for the minimal positive Green’s
function on M™. If n > 3, M™ satisfies (0.4) and Ricpym > 0, then G exists
([LiY?2], [LiT1], [LiT2], [SY]) and satisfies

(1.19) C™(v0)d(z,y)*™ < G(z,y) < C(vo)d(z,y)* ™.
For proofs of the above estimates, see [LiY2], [SY].

2. The compact case.

In this section, we assume M, is compact. First we study the heat kernel
H.
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It’s well known that if Ricprp > —(n — 1)A, there is a lower bound for
the kth eigenvalue A ; of the Laplacian A; over M

(2.1) i 2 C(n, A, D)k,

here Diam M < D. The proof uses only (0.2) and (0.3); see [Gr] and
Theorem 4.8 of [Ch3]. Hence over M we have

(2.2) Hi(z,y,t) = ) e ¢;:(x)$;:(y),
i=0

here ¢;; is the eigenfunction of the jth eigenvalue Aj;. By the Cheeger-
Colding spectral convergence theorem [ChCod4|, for each j, Aj; — Ajco,
‘and ¢;; = @j o uniformly when i — oo, here \j and ¢; . are the j-th
eigenvalue and (renormalized) eigenfunction of A on M. So (2.1) is also
true for Aj . Moreover,

(2.3) ¢l < Ci(n, A, D)L+ Xj)™|1hsill 12,

(2.4) Vjillzee < Coln, A, D)(1 + Xji) S Il oo

These are implied by (the proof of) the Moser iteration and the gradient
estimate, see [LiY1]. By [ChCo4], (2.3), (2.4) can pass to M (on M (2.4)
becomes an estimate for Lipg; o). So it makes sense to write

(2.5) Hoo(z,y,t) = ) €' 00(2) 00 ()-

=0

By (2.1), Hy is the heat kernel over M.
Apply (2.3), (2.4) to 52, e~ i, (z)¢;,i(y), the tail of (2.2), one easily
get

Theorem 2.6. Assume M} dox My, Ricyp > —(n —=1)A. Whent >
0 fized, H; converges to the heat kernel Ho, over My, uniformly. Huo is
continuous in t,x,y; when t fized, it is Lipschitz in z,y.

Corollary 2.7. For Hy, on My, the Li-Yau estimate (1.18) is true if
Ricpp > 0; if Ricpyp 2 —(n — 1)A then (1.16) is true.
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Next we study the Green’s functions. Assume RicMZ» > 0. Recall,

(2'8) G‘i(x’y) = /Ooo hi(m’y’ t)dta

here h;(z,y,t) = Hi(z,y,t) — ¢o,i(z)do,i(y) = Hi(z,y,t) — 1. Note, since the
sequence {M*} might collapse, we have to renormalize the measures and
eigenvalues such that Vol(M*) = 1 and {¢;;}; is orthonormal, e.g. Ag; =0,
$0;=1. So

€ o 0o
(2.9) Gi(=z,y) = /0 hi(z,y, t)dt + ) e~/ ] e 294, 4 () ;i (y)dt.

j=1

_——

When z is fixed, by (2.3),

(2.10)
00 o0 o~ €N c
Z e—eA,-,,-/z/ e Nt (z)d; i(y)dt SZ S Ci(1+ Xj0)™2.
=k H pe =k 0

This goes to 0 uniformly in ¢ as k — oo, by (2.1). On the other hand,
clearly (1.18) holds after renormalization; when Ric > 0, R < 1/8 we have
the (rescaled) volume bound

(2.11)  C(n, D)R" < Vol(Bg(z)) < VRC(n) Vol(B sz(z)) < C'(n)R.

So when d(z,y) > ¢ > 0, by (1.18),

€ ) € € n 2
(2.12) /|h,—(x,y,t)|dtge+/ |H,~(a;,y,t)|dtge+c/ tFe-Sdt.
0 0 0

So in particular, by choosing € small, we get a function Goo(z,y) on My,
such that G; -+ G in L* on compact subsets, off the diagonal.

Finally, we want to check G is the Green’s function over My,. We now
establish an L' bound for G(z,y) over the ball Bg(z). Note
(2.13)

1 [e*)
[ oicemiays [ [y [ [T ey, 0l
Br(z) Br(z) J0 Br(z) J1
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Since ||¢(y)||2 = 1, by (2.1), (2.3), (2.11) and the Schwartz inequality,

ey [ [Ty
Bgr(z) J1
<Y [ Mg [ e wldedy
j=17Br(2) 3
<Cm) Y e N1+ 2y VE / e~Ntdt < C'(n)VR.
j=1 3

Now we focus on the first term on the right hand side of (2.13). Since
H — h =1, and we have (2.11), it’s enough to estimate the integral of H.
Put R < 1/8, by (1.18), (2.11) we have

1
(2.15) /0 /Bn(x) H(z,y,t)dtdy
1 d(z,y)2
< / /B . C(n) Vol (B 4(2))e™ 5= dtdy
< ( / /B  Clmyver(s Ji(@)e dtdy) +C'(nVE.
Next,

2.16) / R g € My / Jyt e A
VOI (Byz(@)) f‘/— A(r)rn—1ldr

here A(r)r™! is the surface area element of B;(z). Since Ricyp > 0, A(r)
is non-increasing. The right hand side of (2.16) can be bounded by

[R/f L Ve Vi
(2.17) / / e’ /f’tA(r)rn—ldr/ / A(r)yr™tdr | dt
0

Vi

R[R/\f +1 ,
< Ci(n)R +/ e~ /5((s +1)" — s")dt < C'(n)R.

So combine (2.14), (2.15) and (2.11) we get

(2.18) /B Gl < C'(n)VE.
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Since G; — G« uniformly off the diagonal, use the Cheeger-Colding theorem
on the convergence of eigenfunctions [ChCo4| and (2.3), (2.4), we get, for
all z,

B100() = Jim ¢3:(a) = im [ Gula,u)\istis(w)iy
(2.19) M;
= [ Gunlos WXy ensml0)il

So G is the Green’s function over M. Moreover, by (2.10), (2.12) and
Lemma 1.14, G is Lipschitz continuous off the diagonal. It is harmonic off
the diagonal by Lemma 3.17. So we have proved

Theorem 2.20. Assume M dex M, Ricpp 2 0. Then the Green’s func-
tion Goo on My exists. On any compact subsets K off the diagonal, G is
Lipschitz and harmonic, G; = Goo uniformly on K.

3. The Green’s functions on noncompact spaces.
Recall how on a manifold, one solves the the Poisson equation,

(3.1) Aup = f, urlopyp) = h,

for Lipschitz functions f,h on the closed ball Bg(p). By the Dirichlet’s
principle, ug is the unique minimizer of the functional

(3.2) I(u) = /B ol = 1)

(o]
within the space £ = h + H1,2(Bgr(p)), note A is positive by convention.
Assume M ‘w—’f M, in the measured Gromov-Hausdorff sense, Ric Mp =

—(n = 1)A. Recall, by [Ch3], [ChCo4], A is linear on M. So the above
variational method is valid also on M.

Lemma 3.3 (Lower semicontinuity of energy). Suppose u;, f; are C?
functions over M, Au; = fi, Ui = Uco, fi = foo uniformly over the
sequence of converging balls Bor(pi) — Bar(Pso), and there is a uniform
gradient estimate for u; and f;:

(3.4) |Vuil, [V fi] < L.
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Then we have

(3.5) I(ueo) < liminf I'(w;).
1—00

Proof. As in [ChCol], we can get an integral bound for the Hessian of f; on
* the ball B;(p;): recall the Bochner formula

1
(3.6) SA(V fil?) = [Hessy,|*+ < VAS;, Vi > +Ric(V i, V).

Multiply by a cut-off function ¢ with suppp C B C Bi(g), 4B, = 1,
IVé| < c(n,r), |Ap| < c(n,r); see Theorem 6.33 of [ChCol]. Since f; is
harmonic,

3.7) %¢A(|v fil?) = [Hess,|? + $Ric(V fi, V).
Integrate by parts,

Liorag — 2 (T F T
6o [ 9APAG / sy + /| ORiC(V, V).

By assumption, there is a definite lower bound for the last term in (3.8).
Note |Ag| is uniformly bounded by construction, we have a uniform upper
bound for |, B, ¢|Hessy,|?. So by Lemma 1.3 we can assume some subse-
quence of |V f;| converges to a function I' on Bg(peo) C Moo in L2. Assume,
T € Ry C My for some k (all tangent cone at z is RF), there is some
subset A(z) C My such that and I' is continuous on A(z), z € A(z) is a
density point of A(z). By Luzin’s theorem and the results in [ChCo2], these
properties hold for almost all z € M. For such z, we prove

(3.9) ILip foo ()| < T(z).

Clearly, (3.9) implies our lemma.
To prove (3.9), it’s enough to prove, for all ¥ > 0, if | = d(z,y) is
sufficiently small, then

(3.10) |foo(z) — foo(y)| < d(y,z)(T'(z) + 63).

By the gradient estimate of f; (so of f), if (3.10) is not true for some o,
then for all y € Byy/1(¥0), '

(3.11) |foo(z) = foo ()| > d(y, 2)(T(2) + 5%).
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Pick x;,y0,; € M, ; = T, Yo,; — Yo, d(i,y0:) = [. Then for ¢ big enough,
for all y; € Byy/1.(yo,:) and all minimal geodesic y; connecting z; and y;,

(3.12) / V£ > d(z:, 5)(T(z) + 49).
;

First of all, since |V f;| is uniformly bounded by L, a simple computation
shows along every -; we must have

(3.13) IVfil > T'(z) + 29,

on a subset of v; which has 1-Hausdorff measure at least 2¢l/(L — I'(z)).
Put

(3.14) T; = {v € Ty, |v =+'(0) for some minimal geodesic -y
from z; to y; € By r(v0,:)}-

We must have
(3.15) H"Y(T) > C(n, L,%)H"" (8B, (0)),

where H"1 is the (n — 1)-Hausdorff measure over the unit sphere 8B;(0)
in the tangent space T,,. Combine this with (3.13), when M, is noncol-
lapsed, if | is small enough, by the proof of the Bishop-Gromov inequality,
for sufficiently big 1,

Vol ({z; € By(z:)||Vfi(z)| > T(z) + 2¢})

(3.16) Vol (By(z;))

> C(z,n, L,v) > 0.

Now |V f;| converge to I' in L2, so (3.16) is also true if we substitute |V f;]

in (3.16) by I, z; by z. We get a contradiction to the choice of z.
The proof is the same when M, is collapsed. We just use the segment
inequality ([ChCol], [ChCo4]) to get (3.16) from (3.11), (3.12) and (3.13).
O

Lemma 3.17. Let uxo, foo be as in the previous lemma. Then

(3.18) Ao = foo-
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Proof. Assume this is not true over a ball By (p*) CC B;(0). By solving the
Dirichlet problem on Bj(p*) we can find ve with the same boundary value
as Ueo Over OB, but with smaller energy, say

(3.19) I(veo) = / ldveo|2 — footeo < / ldttoo? — footion — 2.
Bi(p*) Bi(p*)

By obvious density properties, we can change v slightly so that v, agrees

with us on a neighborhood of 8By (p*). By Lemma 3.3, for 4 big enough,

(3.20) I(veo) < I(u;) — 0.

So by (the proof of) Lemma 1.8 (see Section 10 of [Ch3]), for i big enough
we can find a function v; with the same boundary value on dB; as u; but
with smaller energy I. That contradicts the fact that Au; = f;. O

The solution of (3.1) is unique on M,, because the maximum principle
holds, see Section 7 of [Ch3].

We now study the Green’s functions. Assume (M],p;, Vol;) dey
(Moo, P, pioo) in the pointed measured Gromov-Hausdorff sense ([Gr],
[ChCo2]), where Ricyp > 0, M is complete, noncompact, n > 3.

Theorem 3.21. Assume, M also satisfies Vol(Br(p;)) > voR™. Then on
M, there is a Green’s function Geo, G; = G uniformly on any compact
subsets of M x M that does not intersects with the diagonal.

Proof. Since n > 3, the Euclidean volume growth condition (0.4) implies
that the minimal positive Green’s function G; exists on M (A is positive).
Moreover, G; satisfies the Li-Yau estimate (1.19). So by the Cheng-Yau
gradient estimate and the Arzela-Ascoli theorem, for any fixed z, for some
subsequence (still denoted by G;), we have

(3.22) Gi(z,y) = Goo(T,9),

uniformly over any compact set in M \ {z}. Clearly, G satisfies (1.19). We
will show G, is in fact well defined, and G; — G as stated in the above
theorem.

Assume f is any Lipschitz function supported in Bg(Peo) C Moo,
Lipfs < L. By Lemma 1.8 and approximation, there is a sequence of C?
functions {f;} with f; = fw uniformly, Lipf; < 2L, suppf; C Bag(p;) C
MP,i=1,2,...,00.
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Recall on each manifold M* with maximal volume growth condition, the
function,

(3.23) ui(z) = /M Gila ) fiwi

solves the Poisson equation
(3.24) Au; = f, Jim ui(z) = 0.

Now by the Li-Yau estimate (1.19) and the Euclidean volume growth
condition (0.4), G; is locally integrable, so u; is uniformly bounded. The
gradient estimate Lemma 1.14 shows that u; are uniformly Lipschitz:

(3.25) Lipu; < C(L, K, n).

So we can find a subsequence of {u;} that converges to some Lipschitz func-
tion ue, on My,. Note that by the Li-Yau estimate, (1.19),

(3.26) lui(z)| < C'(L, K,n)d(z,p;)*™, (i=1,2,...,00).

So by Lemma, 3.17, Auy = foo on M. Using the fact Laplacian is
linear, by (3.26) and the maximum principle (Section 7 of [Ch3]), it is clear
that u, is well defined and u; — U, uniformly.

Notice, by (1.19),

(3.27) Uoo(T) =/M Goo(Z,Y) foo(y)dy.

Since we can choose arbitrary K, f., clearly G, is also well defined,
Gi — G uniformly, off the diagonal. By (3.27) and Lemma 3.17, G can
be interpreted as the minimal positive Green’s function on M. O

4. Separation of variables on tangent cones.

Assume M is complete noncompact, Ricpr > 0 and satisfies (0.4) uni-

formly, M dex M. Recall that by [ChCol], [ChCo2], every tangent cone
of M is a metric cone. We denote such a cone by C(X) = Ry X, X, here
(X, dz?) is a compact length space with Diam X < m, [ChCol]. The metric
on C(X) is

(4.1) dp? = dr? + rldax?.
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Here we write r for the distance from the pole ps = (0, X).

The measure g, on C(X) is just the n-Hausdorff measure, [ChCo2].
Since we can rescale C(X), pieo induced a natural measure px on X that
obviously satisfies a doubling condition (0.2) (with some different ). More-
over, X satisfies the rectifiability properties as stated in Section 5 of [ChCo4].

Also recall from [Ch3], for f,g € Hj 2,

(4.2) d(fg)=f-dg+g-df.

Moreover, from [ChCo4] and [Ch3], if f is a function depending only on 7
and g is a function independent of r, then by the polar identity, one gets

(df,dg) = 0.

Lemma 4.3 (Weak Poincare inequality). For Bg C X, 3R < %, fe
Hy2(X), ,

(9 [t [l
Bp(z) Bsr(a)
Proof. Define, for z € X,
(4.5) Box((1,z),a,b) = {(¢,¥) € C(X)||t — 1| < a,dx(z,y) < b}.
Put
(4.6)  Boxi = Box((1,z), R, R), Boxz = Box((1,z),3R,3R) C C(X)

So Box; C B2gr((1,z)) C Boxs. We extend f to be a Hygo function in-
dependent of r on C(X). Assume fp, is the average of f on the ball
Bsr((1,2)) C C(X),

(4.7)
|f — forl* = C(n)R~1/ If — for]* < C(n)R_I/ |f = fBan|?
BR(:B) Box; Box1
<COR™ [ |f = fpul? < Clm)rR df P
Bar((1,2)) Bar((1,z))
< C(n)TR |df|? = 7x R® / |df 2.
Box2 3R ()

The first and last identity come from the Fubini theorem. Note f; g is also
the average of f over Box;, and we used the Poincare inequality on C(X)
in the middle inequality. O
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We remark, a weak Poincare inequality is already enough for many pur-
poses. Since X is a length space, by [HaKo| one has (0.3) on X. As in
[Ch3], [ChCo4], we define a positive operator Ax on X. Note by (0.2), (0.3)
the compact embedding lemma 1.3 is true on X. So by the standard elliptic
theory, on X we have a basis {¢;}32, for L?(X) and a sequence p; — 00
such that Ax¢; = p;¢;, compare [Ch3], [ChCo4]. Moreover, one can do
Moser iteration on X, so ¢; is Holder continuous; see [Lin], [GT]. These
have applications in Section 6.

Next we show, even the cross section X may not be a manifold, there
is still a separation of variables formula for A on C(X). See [Chl] for the

classical case.
Recall that (-,-) is the inner product on T* M, as in [Ch3], [ChCo4].

Lemma 4.8.

(4.9) A(fg) = fAg + gAf — 2(df,dg).

Proof. Since d(fg) = f -dg + g - df, for any Lipschitz (or Hy2) function ¢
with compact support, we have (recall A is positive)

(4.10) / (df,9-do + ¢ - dg) - / g8Af =0,

Exchange the role of f and g, we get

@y [dre)ae - [ o9+ 987 - 2007,5)) =0,

Similarly, by d(f o g) = f'(g9)dg, we get
(4.12) Afog=—f"(9)ldgl* + f'(9)Ag.
Lemma 4.13. On C(X), r?>~" is harmonic away from the pole.
Proof. By the results in Section 4 of [ChCol], 2~" is the uniform limit of a

sequence of harmonic functions G. So by the proof of Lemma 3.17, r2" is
harmonic. O

By the maximum principle on X (Section 7 in [Ch3]), we have
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Lemma 4.14. If X is compact, and Axf =0, then f is a constant.

Theorem 4.15. Assume u lies in the ring generated by functions of the
form u = fg where f depends only on r and g depends only on x. Then on

C(X)\ {Peo},

? ~-10 1
vonoldy Sax

(416) Au = —5;2— - Ta’r

Proof. Compare [ChTal]. By (4.12) and Lemma 4.13, on the cone C(X) we
have

n—1

(4.17) Af(r)=—f"(r) - f'

T

Next we apply Lemma 4.8, recall (df,dg) = 0. We pick a test function ¢ of
the form ¢ = a(r)b(z). By scaling we see, Ag(R, z) = R™2Ag(1, ). Assume
a is supported over the interval [e, £],

_ p 1-n -2
(4.18) /C o ldora9) = /a (t /X +=2(dg, a(t)db)d)dt,

here in the second integral we view g and b as functions on the cross section
X =(1,X). So we compute

(4.19) /C (X)(dg,d¢) = /a ’ (t—"—l /X a(t)b(x)Anga,') dt = / ¢r2Axg.

Since we can choose arbitrary a,b, and Ag(R,z) = R™2Ag(1,z), we get
(4.20) Ag(R,z) = R 2Axg.
This suffices to complete the proof. O

Using transformation Dpg : (r,z) — (Rr,z), we deduce from the exis-
tence and uniqueness of G, that

(4'21) Goo(DRx; DRy) = R2_nGoo (:I:, y)'

S0 Goo(Poos ) = d(Peo, )2 "g(z) for some Lipschitz function g. By (4.16)
and Lemmas 4.8, 4.14, g = C is a constant.
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Corollary 4.22.

(4.23) Goo(Poos @) = (n = 2) " px (X) 71 d> ™ (poo, )

Proof. We know G oo (Poo, ) = Cd? ™" (peo, ). We construct a test function
¢ = ¢(r) such that ¢ is a smooth function of 7, ¢ = 1 for r small and ¢ = 0
for r > 1. So

(4.24)

1 "
1= /G(poo,y)Agb(y) =/0 (—¢” - ’-}-—lqb') Cr¥ ™ g (X)dr

1
= —C;J,X(X)/O (n—2)¢'dr = (n — 2)Cux(X).

Corollary 4.25. Assume Au= f on Br(pso) \ {Po}, f € L™, and
: n—2 __
(4:26) lim (@) d(z, e)"? = 0.

Then Au = f on Br(poo)-

Proof. By the De Giorgi-Nash-Moser theorem, v is bounded and Holder
continuous. In our case, Goo(Poo,z) = Cd(Peo, )% ™, so the proof goes
exactly like the R™ case (where the maximum principle is used). For details
see [Lin]. a

Relation (4.23) implies the Colding-Minicozzi asymptotic formula,
[CoMil], compare [LiTW]. In fact, we rescale the manifold M™ to get a
sequence of manifolds that converges to C(X), a tangent cone at infinity,
see [ChCo2]. By Theorem 3.21, the new (rescaled) Green's functions con-
verge to the Green’s function on C(X).

Theorem 4.27 (Colding-Minicozzi). On a noncompact manifold M™
with Ricpym > 0 and (0.4) we have

(428) lim d(z,p)" 2G(p,z) = (n— 2)"}(n lim R~ Vol(Br(p)))~'.
d(z,p)—oco R—o0

Note the tangent cones may not be unique; in collapsing case, a tangent
cone might not be a metric cone, [ChCo2], [Per].
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5. Heat kernels on noncompact spaces.

We assume in this section, all the manifolds M™ are noncompact, satisfying
(0.1). On M™, write H(z,y,t) for the heat kernel; we denote by Hg(z,y,t)
the Dirichlet heat kernel on the metric ball Bg(p), put Hgr = 0 outside

Br(p)-
One technical issue is, the boundary 8Bgr(p) = d~!(R) may not be

smooth, here d = d(p, -). However, we can approximate d by a Morse func-
tion de, see [Hir], and (assuming) R is not a critical value, etc. So in the
sequel we always assume the boundary are smooth.

Lemma 5.1. Assume Ricym > —(n — 1)A. Then there is a function
€(t, A, R) with limg_,o €(t,A,R) =0 fort > 0, and

(5.2) [ H@w0d < AR)
M—Bpg(z)

Proof. By the Bishop-Gromov inequality, it’s easy to see

(5.3) Vol(B, 4(z)) < Ci(n, A, t)e®2mADIA=W Vo (B _£(y)).

Put sA(r) = (1/v/A) sinh vAr. We now use the Li-Yau estimate (1.16):
(5.4)

H(z,y,t)dy
M—Bg(x)

SC,(TL, A, t) Vol—l (B\/Z(w))e—d(z,y)2/5t602(n,A,t)d(a:,y)
M—Bpg(z)

o Vi
—C'(n, A1) / e~7/546C0 4(r) s (r)dr / A(r)s2Y(r)dr
R 0

i * —r2/5t ,Cor ;n—1 Ve n—1 —
<C e e~ s (r)dr s (r)dr = €(t, A, R).
R A 0 A

Here A(r)s}~!(r) is the surface area element of 0Bg(z). We used the fact
A(r) is non-increasing (Bishop-Gromov inequality) and assumed, without
lose of generality, R > /t. O

Lemma 5.5. Let (M™,p) be a noncompact complete manifold. Then

(56) Rh—l)%o HR(ID, B t) = H(x) ) t)'
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The convergence is uniform, and uniformly in L', on any finite interval
te[0,T].

- Proof. Assume R > max{T,2d(z,p)}. Put
(5.7) M(R) = sup{H (z,y,t)|ly € 0Br(z),0 <t < T},
by (1.17) and volume comparison we have

(5.8) M(R) < A C(n, A, T)t=CrMe=R?*/5teCa(mATIR 1ol (BR(p)) 7Y,
<t

so imp_,00 M (R) Vol(Bg(p)) = 0. By the maximum principle,

(5.9) H(z,y,t) — M(R) < Hg(z,y,t) < H(z,9,t).

Combining this with Lemma 5.1, we have

(5.10) |Hg(z,-,t) — H(z,-,t)||z: <e(n,A,T,R),

and limg_, €(n, A, T, R) = 0. a

Assume )\ is the j-th Dirichlet eigenvalue of the Laplacian on Bg(p), ¢;
is the corresponding eigenfunction, ||¢;||L2(Bg(p) = 1-

Lemma 5.11. There erists a constant C(n, A, R) such that

(5.12) C(n, A, R)™\R™2k% < )\, < C(n, A, R)R2k2.

Proof. Since R fixed, we have Vol(B,(z)) > Cop(n, A, R)r" Vol(Bg(p)), for
r < 2R and B,(z) with nonempty intersection with Bg(p). Then since
Hpr < H, we can follow the heat kernel argument as in page 178 of [SY] to
get the lower bound of Ag.

The upper bound follows from an argument of Cheng, see page 105 of

[SY]. i

Lemma 5.13. For any N > 0, there is a function (N, A, R,d) such that
for any fized R, lims_,g (N, A, R,6) =0, and for k such that Ay < N,

(5.14) / [6k]? < (N, A, R, 6).
A(p,R—-J,R)

Here A(p, R — 6, R) is the annulus {z|R — ¢ < d(p,z) < R}.
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Proof. By (1.16) and the Bishop-Gromov inequality, when ¢ = 1,

/ o <o [ H(z,,1)dz
A(P;R_JxR) A(PrR—‘;’R)

C(n,A,R)
<eN/ 2" dr < e(N, A, R, 6).
=~ Ja(p,r-4,r) Vol(Br(p)) ( )

(5.15)

O

As before, assume M} doxy My, in the pointed measured Gromov-
Hausdorff sense, M; is noncompact, satisfies (0.1). Write A;; for the j-th
Dirichlet eigenvalue over Bg(p;) C M]*. ¢; is the corresponding eigenvalue:

(5.16) Adji = Njidiis / b5iPri = Ojk-

Br(pi)
Lemma 5.17. For fized j,k > 0, assume (for a subsequence of the
etgenvalues), Aji — Ajoo, Mi = Akoo- Then there is a subsequence (denoted
also by ¢ji, dr:) that converges uniformly on compact subsets of Br, and
also in L%(BR), to two locally Lipschitz functions ¢;co, dr,0o- Moreover,

(5.18)  Adjo0 = AjcoBices Ao = MocoBhoos / B3 00t 0 = ik
Br(p)

Proof. The results is clear in view of Lemma 5.11, Lemma 1.14 and Lemma
3.17. The L2 convergence and the orthonormal property for the limit func-
tions are implied by locally uniform convergence and Lemma 5.13. O

By Lemma 5.11, we can assume, after passing to a subsequence, that
every eigenvalue and eigenfunction converge:

(5.19) Bm Xjs = Xjoo, M )i = @jco-
Write
oo
(5.20) Hpoo = Z et 00 (%) bs00 (¥)-
j=1

For all fixed ¢, z, by Lemma 5.11 and Lemma 1.11, Lemma 1.14,
(521) HR,i(za"t) — HR,w(m"at)‘
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The convergence is in L?, and is locally uniform. Note we don’t know if Hg o
(and @} 00, Aj,co) is well defined. For the moment (before Lemma 5.40), we
fix, by a diagonal argument, one sequence Ry — 0o, and one subsequence
{M} of {M]'} such that for each k, Hp, ; = HR,,co- For simplicity, we just
write { M} for this subsequence of manifolds. So by the results on smooth
manifolds, for R; < Ry,

(5.22)

C ,A e—dz(a:,y)/SteCAt
0< HRj,oo(w, Y,t) < HRk,OO(m’yvt) < 1/2(n ) 1/2 ’
Volos (B, () Volos™ (B, (y))

Thus we can also assume that the nondecreasing sequence Hg; o, converges
pointwise to some function H,,. We will prove that Hy, is well defined.

By (5.9) and the locally uniform convergence of Hgr; to Hpoo (5.21),
the Li-Yau estimate (1.16) is also true for Hoo:

C(n, A)e=@(@)/5tCAt
Voll%(B.3(x)) VolL2(B 4(v))

Note we need to renormalize the measures whenever {M} is collapsing.
Clearly, when Ricpp > 0, we also have a lower bound of Hy as in (1.18).

(5.23) 0 < Hoo(z,y,1) <

Corollary 5.24.

(5.25) / Hoo(z,2,8)Hoo(2,y,t — 8)dz = Hoo(z, y, t).
Moo

Proof. By (5.21), (5.25) is true for Hpo.  Write Hy(z,z,8) =
Hp (T, 2, 8) + €R(2), similarly Heo(2,y,t — 8) = Hroo(2,y,t — 8) + €%(2),
here Hr oo = 0 outside Br(poo), 6}3,6?2 > 0 are two functions. In view of
Lemmas 5.1, 5.5, (5.21) and (5.23),

(5-26) lim sup(|lek(2) |2 + llek(2)llz1) =0,
R—o00
ler(2)llze + llek(2) Iz < C(t, 5, Moo).
Now (5.25) is clear. a

Corollary 5.27.

(5.28) / Hoo (2,9, t)dy = 1.
Moo
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Proof. By (5.21), Lemmas 5.1 and 5.5. O

Lemma 5.29. For any Lipschitz function f with compact support,

(530) ‘/M HR,oo(wvy) t)f(y)dy - f(:l?) ..<_ e(t: ”f”L°°,Lipf)

Here for any F,L > 0, lim;—o€(t, F,L) = 0. The conclusion is also true
for Heo.

Proof. By an argument similar to those given in Lemma 5.1 and Lemma 5.5.
Note on smooth manifolds, when ¢ — 0, the integral of Hg is smaller than,
but almost equal to 1, and tends to concentrate on smaller and smaller balls
centered at z. In view of (5.21) and the Li-Yau estimate (5.23), we easily
get (5.30). O

[}
Let the Sobolev space H1,2(Br(pwo)) be defined as in [Ch3], i.e., the Hy o
closure of the set of Lipschitz functions supported in the interior of Bg(poo),

o
Lemma 5.31. The space H12(Br(Po)) is contained in ®, the L2 linear
span of functions ¢j«. In particular, any Lipschitz function with support
in Br—s lies in ®.

Proof. If not, by approximation, we have a Lipschitz function fo, with com-
pact support and an € > 0 such that

[o <]

2
(5.32) Z( /B " )foo¢j,oo> < (1= 3¢)[| foollZ2-

j=1

Using Lemma 1.8, we can transplant f,, back to a Lipschitz function, f;, on
M, with compact support which is close to fo in L*, such that the energy
of f; is close to that of fos. Write

N oo
(5.33) fi= Z ajidji+ Bni, Rni= Z ajiPjii-
j=1 Jj=N+1

Notice,

(5.34) Jm a;; = /M _ foo®j,c0-
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So by the min-max principle and Lemma 5.11, lim; . ||V fi]lz2 = 00, we
get a contradiction to the construction of f;, Lemma 1.8. O

o
Remark, it is not clear if we have ¢j,0 € Hi 2.
Now for Lipschitz functions f; with compact support in Bg(p;) C M}
(t=1,2,...,00), fi = foo uniformly, we have

(5.35) fi= aitin  aji= / fidji-

S0 aj; = aj,00. Clearly,

(5.36) /B " )HR,i (@,y,0) fi(w)dy = Y _ e %a;;6;4(x).
R\Pi

=1

We say h(z,t) is a locally strong solution, if h continuous, Lipschitz in
x, %’t‘ exists, continuous on M x R*, and when t fixed, —Ah = %’t‘, ie.

(5.37) |05+ [ (dahiden) =0,

for all Lipschitz functions ¥ with compact support.
By Lemma 5.11, Lemma 1.11 and 1.14,

(5.38) Jim > e, (z)dyg;(y)] = 0.
j=k .

So Hpg,; is a locally strong solution of the heat equation. Similarly the
function,

(5.39) hi(e,t) = /B Hri(oy, ) fiw)dy (i =1,2,...,00),
R

is also a locally strong solution. Note for the case 7 = co we used also Lemma
5.17.

For locally strong solutions on My, there is also a weak maximum prin-
ciple:

Lemma 5.40. Assume h is a locally strong solution on Bag x [0,T + 1],
then if

(5.41) hlBpxfo} <0, hloBgpxpo,r < 0.
Then h < 0 on Bg % [0,T].
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Proof. Define
Oh
(5.42) m(s) = sup{h(z, s)|z € Bg, -a—t(a:, s) < 0}.

Since h, %(m, s) are continuous functions, it’s easy to show that m is non-
increasing and m(0) = 0 implies m(s) < 0 for all s > 0. Now by the weak
maximum principle for Poisson equations (see [GT], [Ch3] or (5.37)), we
have, when s fixed,

(5.43) -~ sup{h(z,s)|z € Br} =m(s) <0.

O

Now we can address the uniqueness of H,,. Recall that (M;,p;) —
(M, ps). Assume for R > 0, we got two limits H ‘8?),00’ H ﬁ%m through
different subsequences of manifolds.

Theorem 5.44. For z,y € Br(pwo), t < T, there is an €(R) > 0 such that

5.46 HY ) < HO O + (R
(5.46) 4R (T ¥, t) < Hip o (7,7,1) + €(R).

Proof. We can assume R > T? > t? and R > 4. Assume (5.46) is not true,
then there is a point a € Br(peo) and 0 < r < 1 such that

(5.47) H{) (@,y,t) > Heg o (@,9,t) + €(R),

for y € By.(a). We then construct a test function f > 0 such that, f
Lipschitz, supported in B,(a),

(5.48) 2/B , )f > Vol(B:(a)) sup f.

r(a

Clearly, for R < oo, the functions,

(549)  Filzs) = /B iR )W, (5 =1,2),
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are locally strong solutions of the heat equation, and (by the construction
of f),
€(R)

(5.50) Fi(w,t) > Fa(z,t)+e¢ / £ 2 Fyfa,t) + 2

By (a

Vol(B,(a)) o f

For a point z near Bsg(pso ), say d(z,p) = 2R, d(a,z) > R,

C(n)  _Rejss cr
—_— ¢ e""sup f, (k=1,2).
Vol(B (7)) s fr (k=1.2)

By a standard argument of the Bishop-Gromov inequality,

(5.51)  Fy(z,s) < Vol(Br(a))

Vol(B:(a)) _» _g2/55 'R
5.52 Fi(z,8) < C1(n) =———+5s" 2e /53¢ sup f, (k=1,2).
( ) k( ) 1( )VOI(Bl(p)) B.(a) ( )
Next we consider the case that s is small. Since f is fixed, by (5.30), Fi, = f
uniformly on Bygr(p) when s — 0.

In view of the weak maximum principle on Bagr(ps) X [0,7] (Lemma
5.40), clearly we should choose €(R) such that that for 0 < s < T,

Ciln) 2 —re/sacr _ (R)

(5:53) VollB1 (7)) 1

by the maximum principle we got a contradiction to (5.50). a

Theorem 5.54. H., is well defined. For fizedt > 0, x; = oo, we have
Hi(zi,,t) = Hoo(Too, -, t) in L'. When Hy is continuous, this convergence
is also uniform.

Proof. By the previous theorem and the construction of Hy, (compare (5.9)),
we see Ho, is independent of the choice of subsequences, so well defined.

We already know, by (5.9), (5.21), (5.23), that locally H; — H in L.
The proof of global L! convergence is similar with Lemma 5.1, Lemma, 5.5,
using (1.18), (5.23).

Recall (see [SY] Chapter 4), there is a Harnack inequality
(5.55) . ,

H(ont) < o) (2) e (S8 0 ) - 1)
t1 4ty — t1)

for 0 < t1 < t9. If Hy, is continuous, then locally H is uniformly continuous
(especially, with respect to t), clearly by (5.55) the convergence H; — Hoo
must be uniform, compare with (5.23). O
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We now want to interpret the meaning of H,. Recall from [ChCo4] and
[Ch3], A is a positive self-adjoint operator. So —A generates a semigroup

e B,
Assume f; is supported in Bg(p;) C Br(p;). Use the notation in (5.35),
define

(5.56) Wri(t)fi(z) =Y aj: cos(y/Ajt)dji-
j=1

By the finite speed of propagation (see [Ta]), when ¢ is fixed and R > K +t,
Wr(t)f is independent of R. We write W;(t)f for Wg;(t)f with R big.
For i < o0,

e B fi(z) = (z : = ooe'sz/‘“ (s) f;(z)ds
(5.57) fi(z) /M w05y / Wi(s) fi()ds,

oo

see [CGT], [Ta). Define
(5.58) Wh,oo(t) foo(Z) = D _ 00 cos(,/_xj,wt)¢j,oo.
j=1 .

We notice that Wg; (i = 1,2,...,00) does not increase L? norm, and we
should use Lemma 1.8 and approximation to construct C? functions f; on
M that converges to foo. Clearly, Wr;ifi & WReofoo in L?. We remark
that generally, we don’t know if Wg o is well defined.

Theorem 5.59. If the limit My is a smooth manifold, and the limit mea-
sure is the canonical measure on My, then Hoo is the heat kernel on M.

Proof. In the noncollapsing case, by Colding’s theorem [Co], the limit mea-
sure is the canonical measure on My,; when My, = R¥ for some k, the limit
measure is also a multiple of the standard Lebesgue measure on RF, see
[ChCo2]. In these cases, the Laplacian we defined on M, is the same one
from the original smooth structure of My,.

Pick any C§° function f supported in Bpg, So

680) [ (G0 = i) [ i = ()t

Since (AF)f € C§°, we have for all k, lim;—00()j,00)¥@j,c0 = 0. By Lemma
5.11, we have for all %, limj_,e j"aj,oo = 0. So Wg(t)f is a classical
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solution of the wave equation, when R is big enough, Wg o (t)f = W (t) f
is independent of R. Since M is a smooth manifold,

(5.61) e f(z) = —S4yy(5)f (z)ds.

1 oo
—_— e
vV 4rt [-oo
In view of (5.57), combined with the fact W, does not increase L? norm
and H;(z,y,t) converges uniformly to Hs(z,y,t), we have

(562) fe) = [ Hole,.010)dy.
That concludes the proof. |
6. Laplacian on metric cones.

In this section, we assume M} doy C(X) where C(X) is a metric cone;
Ricyp > 0, M7 is complete noncompact and satisfies (0.4) uniformly, n > 3.
Write pe for the pole of C(X), define r(z) = d(z, pso)-

Theorem 6.1. If Mo, = C(X), then Hy, is the integral kernel of the semi-
group e~t4,

Proof. In view of (5.23), (5.25) and the Young’s inequality, one can define a
semigroup E(t) on L?(My) by

(6.2) E@)f(z) = /M Hoo(2,9,£)f (v)dy.

We want to compare E(t) with e 4. First, by Theorem 3.21, (1.18) and
(5.23), one easily get

o0
(63) Goole,9) = [ Hoala 3, 0)dt
0
Pick any L? function f with compact support. Write

(6.4) F(z) = /M Coolz,y)f (0)dy.
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We compute

E(t)rtv ~F _ /M ) (Mgﬂ) /M ) /0 " Hoo(y, 2, 5)f()dsdzdy

(6.5) - —}/m/oooHoo(:z;,z,s)f(z)dsdz
= ——i- /Ot Adm Hoo(z, 2,8) f(2)dzds.

So by (0.4), (5.23), (5.30) and the Young’s inequality we have

(6.6) %1_% W - —f.

in L? and L*.

Now we use the assumption that My, = C(X) is a noncollapsed cone.
Recall the results in Section 4, we can construction a function ¢ = ¢(r) such
that ¢ is a smooth function of r, where 7(z) = d(poo, =) is the distance from
the pole, and
(6.7)  ¢(r)=1ifr<R, ¢(r)=0ifr > R+2, V¢ < Co\/9.

So on My, = C(X) we have Ap = —¢" — (n — 1)¢’/r. This function can
serve as a cut off function.
We prove, if F, f = AF € L? have compact support, then

(6.8) F= /C ) OlE ) F )

In fact, assume {fi} is a sequence of Lipschitz functions, fr — f in L?, and
all fi together with f, F' are supported in the ball Bx(pe). So the function

(6.9) Fp= /C ) G0

satisfies AFy = fr by the discussion in Section 3. Consider the equation
A(Fy—F) = fx— f, ie.

(6.10) /C BCLSTLERE /C = D=0

for any u € I(-ifl,z. We set u = ¢(Fy, — F), so du = d¢(Fy, — F) + ¢(dFy, — dF).
By the Schwartz inequality,
(6.11)

Ved(Fr, — F)||22 = Coll(F — F)|ar,r+2)ll 22|V 8d(Fx — F)la(r,r+2)ll12

— 1(f& = DBl z2ll(Fr = Flpgllz2 <0,
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here A(R, R + 2) is the annulus {z|R < r(z) < R + 2}. Note we have a
definite bound for ||Fi|py |2 by (1.19) and the Young’s inequality. Note
also by (1.19) we get, for R > K,
(6.12)
I(Fx = F)la,renllze = | Felagrizllee < Cln,lIf|2)(R* R
= C(n, | fl) B < C(n, |1 fle),

since n > 3. So first, we get that ||d(F — F)||z2 < oo by letting R — oo.
Then by letting ¥ — oo, we have ||d(Fr — F)||2 — 0, since we can choose
R in (6.11) such that ||v/@d(Fx — F)|a(r,r+2) |22 small.

Now by the (2, 2)-Poincare inequality, (0.4), (1.19) and Young’s inequal-
ity, F, — F in L? on compact sets. Also notice, on any compact sets, the
right hand side of (6.9) converges to the right hand side of (6.8) in L?, by
the Young inequality (however, in view of (1.19), these convergences might
not be globally L?). That’s enough to imply (6.8).

‘Next we compute, for f = AF, F, f € L?,
(6.13)
JAGF) = fllzs < IFAGlIze + (6 = Dfllza + 2] < d, dF > ||z

< CM)|F|ar,r+2)ll2 + I flar,r+2)ll2 + ColldF | ar,re2)llL2-

Similar to (6.11), one shows ||dF||;2 < co. So if R — oo, we have ¢F — F
and A(¢F) — f = AF in L?. Moreover, by (6.8),

(6.14) $F(z) = /C ) Cl@DAGP )y

So the computation (6.5) is valid for the functions ¢F and A(¢F):

oy PS8 _

(6.15) lim

in L?2. We already know E(t) in (6.2) is a semigroup, its infinitesimal gen-
erator is a closed operator (see [Ta]). So by the above computations, this
infinitesimal generator must be the self-adjoint operator —A on C(X). O

By the discussion in the beginning of Section 4, we have an eigenfunction
expansion of Laplacian on the unit cross section X. We denote by ¢; (j =
0,1,2,...) the renormalized eigenfunctions with eigenvalues p; > 0, note
o = Vol(X)~%/2. p; — oo when j — oco.

Put d = Diam X. Using an argument of Gromov (see [Gr], and Theorem
4.8 of [Ch3]), we have a more precise estimate of y;:

(6.16) pi > C(r,k)"d 2%,
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On the other hand, on each ball B,(z) of radius r = d/2(j + 2) on X, we
define a Lipschitz function 1 supported in B, (z) using MacShane’s lemma
([Ch3], [ChCo3)):

(6.17) Yi(zk) =1, Yr(8B;(zx)) =0, Lipy =1,
so we can follow the argument of Cheng (see p.105 of [SY]), and get
(6.18) pj < C(r)j2d 2.

Now we can use Moser iteration, |¢;| is bounded by a definite power of
7
(6.19) ;] < C(d, &, )7V

Moreover, ¢; is Holder continuous, see [GT], [Lin).
Write v; = \/p; + @2, here m =n — 1, a = (1 — m)/2. We write z,y in
polar coordinates, z = (r1,21),y = (r2, Z2)-

Theorem 6.20.

(oo}

(621)  Hoo=(rira)* Y ( 21t) e~Critr)/aty, (”’"2) ¢i(z1) ® d;(z2).

=0

Here 1,; are the modified Bessel functions:

(6.22) L(x)= (3 ) Zm( )%.

In our case A is a self-adjoint operator on the whole cone C(X), namely,
including the pole ps,. By Corollary 4.25, the separation of variable formula
(4.16) works for u = f(r)g(z) on the whole C(X) if u and Awu are bounded
on C(X) \ {pwo}- So the heat kernel on My, has the expression as on the
right hand side of (6.21); the proof goes exactly like the classical case, see
[Chl], [Ch2] page 592, [ChTal] and [Ta] chapter 8, we omit the details. By
Theorem 6.1, we have (6.21).

By Stirling’s formula, (6.16) and (6.18), we see the series (6. 21) con-
verges uniformly, when ¢ is bounded away from 0 and 71,72 stay bounded.
In particular, Ho, is continuous, so by Theorem 5.54 we have H; — Hy,
uniformly.
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If one of the two points z and y, say, y, is the pole p, then there is only
one term in (6.21). Note yp = —a=(m —-1)/2, m=n—1,

E ey 2

(6.23) ' Hoo(poo,w,t)=<ﬁ> e N /2)(V01(X))'1.

As a corollary, we get a new proof of Li’s asymptotic formula for heat
kernels [Lil]:

Corollary 6.24 (Li). Assume M™ is a complete noncompact manifold sat-
isfying (0.4), Ricpn > 0. Then

(6.25) lim Vol(B,/;(p) H(p, y,1) = (4m) ™/ wp.

wp, @8 the volume of the unit ball in R™.

Proof. Notice,
(6.26) tl_l_glo Vol(B\/E(p))t_n/2 =vg = n"* Vol(X).

So we need to show,

(6.27) lim ¢"2 Vol(X)H (p,y,t) = (47) " *nw,,.
t—o0

Assume t; — oo, M = (M",p, ti"ldac2) dox C(X) for some metric cone
C(X); see [ChCol]. The heat kernel H;(p, z,t) on M} is
(6.28) H;(p,y,1) = t"*H(p,y,1).
Here we identify p,x € M with p,x € M, however, dyr(p,z) =
ti—l/sz(p, z), dyp is the distance on M. In particular, dup(p,z) — 0
as ¢ — oo. Since M} doy C(X), by Theorem 5.54 and (6.23) we have
(6.29)
: n/2 — : .
Jim 2 Vol(X)H(p,y, ) = Vol(X) lim Hi(p,,1)
—n/2 27Tn/2
I'(n/2)
We just need to recall nw, = 27r™%('(n/2))~! (see [Ta] Chapter 3).
Finally in view of the almost rigidity theorem [ChCol], we see the above

results holds for all sequences t; — 0o. This suffices to complete the proof.
O

= Vol(X) Heo (Poo, Poo, 1) = (4)

Similarly, we get the asymptotic formula for heat kernels in [LiTW]:
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Corollary 6.30 (Li-Tam-Wang). Assume M™ is a complete noncompact
manifold satisfying (0.4), Ricpn > 0. Then for p € M™, and any R,T > 0,
(6.31)

lim VOI(BR‘ld(p,z) (p))H(p, T, Td(pa x)ZR——2) =

d(p,x)—00

Wn

(4nT)n/2eR? /AT

Proof. We use the same argument as in Corollary 6.24. For z; with
d(p,z;) — oo, we study the heat kernels on the sequence M =
(Mn,p,de(p,:Bi)_2d$2). g

We can similarly get a local asymptotic formula for Hy,.

7. Eigenvalues on compact limit spaces.

We assume M dox Moo, with Ricprp > —(n — 1)A, My compact. A point
T € My is said to be regular, z € Ry, if all tangent cones at = equal to RF;
see [ChCo2].

Lemma 7.1. Ifz € R, C M, then

(7.2) lim Hoo (2,2, t)t3 = (4m)" 7.

Proof. Use a similar argument as the one in Corollary 6.24. |

Theorem 7.3. Assume M} dox My, Ricpp 2 —(n = 1)A, and for some
vg > 0, Vol(M}*) > vo. Then ‘

(7.4) lim 7200 = 411'1"(% F1)% oo (Moo) 5.
j—oo

Proof. In this case we don’t need to renormalize the volume on M]* (see
[ChCo2]). Note for some D we have Diam M < D, i =1,2,...,00, by the
Bishop-Gromov inequality and (1.16), we get

(7.5) t? Hoo(z,2,t) < C(n, A, D, v).
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Moreover, almost every point of M, is in R,,. Now by Corollary 7.1, for z €
R, t7 Hoo(z, z,t) — (47)™2 when t — 0. By the dominated convergence
theorem,

(7.6) lim ¢2 / Heo(z,z,t)de = (47) 7% proo (Moo ).
t—0 Moo

Finally, by applying the Karamata Tauberian theorem (see [Ta] Chapter 8),

we have

(7.7) Jim AEN (V) = oo Moo)T(5 +1)7 (4m) %,

where N ()) is the number of eigenvalues smaller than A. Clearly this implies
the Weyl asymptotic formula (7.4). a

When the limit space M, is collapsed, at present our results are less
satisfactory. Recall the notion of Minkowski dimensions; see [Ma]. Assume
Z is a metric space. For d > 0, let N(Z,¢) € Z be the minimal integer such
that Z can be covered by N(Z,¢) many balls of radius €. Put

(7.8) vz (%) = lim inf eN(Z,¢),
e—

(7.9) v} (Z) = limsup e?N(Z, ).
e—0

Here v3 (M) can be co. The upper (lower) Minkowski dimension is defined
by

(7.10)  dimpink(Z) (dimpsink(2)) = inf{dlv] (Z) = 0 (v (Z) = 0)}.

Lemma 7.11. There ezist E1(n), E2(n) > 0 such that for any d > 0,

(7.12) limsupt%/ Heo(z, 7, t)dz < Byv} (M),
PN Mo

and if, in addition, Ricyp > 0, then

(7.13) E1v; (M) < liminft%/ Hy(z,z,t)dz.
t—0 Moo
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Proof. Let Ul<i<N(Mu,vi) B vi(zj) be a covering of My, by a minimal set
of balls of radius v/t. We add up the integrals of H,, on these ball an use
Corollary 2.7 to get the estimates (7.12), (7.13). O

Lemma 7.14. If v} (Mu) < ¢ < 0o, then there exist C such that

alv

(7.15) Ajoo > Cjd.

Proof. We can follow an argument of Gromov (see [Gr] or Theorem 4.8 in
[Ch3]). Here we use the assumption v} (M) < ¢ < oo to estimate the
number of balls that is needed to cover M. O

Lemma 7.16. If v; (M) > ¢ > 0, then there ezist C depending on n,c,
such that

(7.17) oo < Cd.
If k is the mazimal integer such that Ry, C My is not empty, then

(7.18) Mo < C(Moo) (5)%.

Proof. For r > 0, M contains j = C(n,c)r~¢ many disjoint balls of radius
r for ¢ big enough. The result follows by a well known argument of Cheng
[Cheng]; see page 105 of [SY].

If k£ is the maximal integer such that Ry, C M, is not empty, then the k-
Hausdorff measure of M is positive (see [ChCo3] or [Ch3]). So v (X) > 0.
By (7.17) we get (7.18). O

If one can also prove for any d > k,

o]
: 4 —)\',oot — 11 4 =
(7.19) th_r)%tz E_Oe 9 —%1_1)1(1)t2 /Moo Hyo(z,z,t)dz = 0,

then by Lemma 7.11, dp(Mw), the Minkowski dimension of M, is no more
than k. Combine with the results in [ChCo3] and [Ch3], dy (M) = k.
However, at present we don’t know how to get (7.19). One related question

is,
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Question. Is there an €(n) > 0, such that for any M™ with Ricyn > 0,
any eigenfunction ¢ of A and any set E with Vol(E) < e Vol(M), we have

1
(7.20) / > = / % ?
Mn__E 2 n
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