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Heat kernels and Green's functions on limit spaces 

Yu DING 

In this paper, we study the behavior of the Laplacian on a se- 
quence of manifolds {Mf} with a lower bound in Ricci curvature 
that converges to a metric-measure space M^. We prove that the 
heat kernels and Green's functions on Mf will converge to some 
integral kernels on M^ which can be interpreted, in different cases, 
as the heat kernel and Green's function on M^. We also study the 
Laplacian on noncollapsed metric cones; these provide a unified 
treatment of the asymptotic behavior of heat kernels and Green's 
functions on noncompact manifolds with nonnegative Ricci curva- 
ture and EucUdean volume growth. In particular, we get a unified 
proof of the asymptotic formulae of Colding-Minicozzi, Li and Li- 
Tam-Wang. 

0. Introduction. 

Assume Mn is an n dimensional Riemannian manifold with a lower bound 
in Ricci curvature, 

(0.1) RicM- > -(n-l)A, 

where A > 0. By the Bishop-Gromov inequality, we have a uniform volume 
doubling condition, 

(0.2) VoltB2*(p)) < 2- Vol(B«(p)), 

here we can take K = n if A = 0; if A > 0, we require that R is bounded from 
above, say, R < D for some D > 0. Moreover, there is a uniform Poincare 
inequality 

where /p}jR is the average of / on BR(p)] see [Bu], [Ch3], [HaKo] and the 
references therein. 

We assume, throughout this paper, {M/1} is a sequence of complete 
Riemannian manifolds with (0.1) that converges in the pointed measured 
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Gromov-Hausdorff sense, to a metric space Moo; we write Mf -^4 MQO, 

dcH is the Gromov-Hausdorff distance. In particular, (0.2) holds on MQQ. 

One can show that (0.3) and the segment inequality, which is stronger than 
(0.3), hold on MQO as well; note on MQO, the role of \du\ in (0.3) is played 
by gf, the minimal generalized upper gradient, see [Ch3], [ChCo4]. 

In Cheeger's paper [Ch3], a significant portion of analysis on smooth 
manifolds was extended to metric-measure spaces satisfying (0.2), (0.3). In 
[Ch3], [ChCo4] Cheeger and Colding defined a self-adjoint Laplacian oper- 
ator A on Moo- By convention A is positive. They proved that the eigen- 
values and eigenfunctions of the Laplacian A^ over M/1 converge to those 
on MQO, thereby establishing Fukaya's conjecture [Fu]. So if we consider 
TIZC, the completion under measured Gromov-Hausdorff convergence of the 
set of smooth manifolds with (0.1), it is natural to expect that quantities 
associated to A should behave continuously. 

In this paper, we will study this phenomenon in detail. Our main goal is 
to prove, in various cases, that the heat kernel Hi and Green's function Gi 
on M™ converge uniformly to the heat kernel HQQ and Green's function G^ 
on MQO. We will make precise the definition of these convergences in Section 
1. For results concerning heat kernels, a lower bound in Ricci curvature (0.1) 
is enough; for Green's functions, we require that RICMT

1
 > 0; compare with 

(1.16), (1.18), (1.19). 
Moreover, in the noncompact case, we also study the asymptotics of the 

heat kernel and Green's function on a manifold Mn with RicMn ^ 0 and a 
Euclidean volume growth condition: 

(0.4) Vol(£fl(p)) > VQR
71
. 

According to [ChCol], any tangent cone at infinity of a manifold Mn with 
RicM™ > 0 and (0.4) is a metric cone C(X). So viewed from a sufficiently 
large scale, Mn appears to be close to some C(X). Combined with the 
appropriate convergence theorems mentioned above, at a sufficiently large 
scale the heat kernel and Green's function on Mn are close to those on C(X). 

On the other hand, we show that the classical analysis on cones, [Chi], 
[Ch2], [ChTal], can be generalized to C(X). In particular, we have explicit 
expression of heat kernels and Green's functions on C(X)\ see (6.21), (4.23). 
In this way we get a unified treatment for the asymptotic formulae of these 
integral kernels on Mn. In particular, we get new proofs of the Colding- 
Minicozzi asymptotic formula for Green's functions, [CoMil] (compare with 
[LiTW]), the asymptotic formulae for heat kernels of Li [Lil] and Li-Tam- 
Wang [LiTW]. 
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The organization of this paper is as follows: 

Section 1 reviews some background material that we need in the sequel. 

In Section 2, in the compact case we prove, £!$(•, -,*) —> -ffoo(*j *>*) uni- 
formly (assuming (0.1)), and G* —* Goo uniformly, off the diagonal (assuming 
RicMn > 0). It's well known that there is an eigenfunction expansion for 
heat kernels, so our results follows easily from the work of Cheeger-Colding 
[ChCo4], [Ch3], by estimating the remainders of the eigenvalue expansions. 
We remark, previously in [KK1], [KK2] it was proved that a subsequence of 
Hi converges to some kernel on the compact metric space MQQ. 

By the Dirichlet's principle and the transplantation theorem of Cheeger 
[Ch3], we show in Section 3 that the uniform limit of solutions for Poisson 
equations is a solution for a Poisson equation, see also [Ch3], [ChCo4]. In 
particular, if {M-1} are noncompact, RicMf > 0, satisfy (0.4) uniformly, 
then Gi -» GQO uniformly off the diagonal (Theorem 3.21). 

We treat the heat kernels on noncompact spaces in Section 5. We as- 
sume (0.1). First, some subsequence of the Dirichlet heat kernels HRJ on 

BFliPi) C M/1 will converge to some function flr^)00 on BR{POO) C M^. 
However, at present it is not clear if HRJ will converge. On the other hand 
by a generalized maximum principle, any two Hjii00 (from two different sub- 
sequences) can not be too different from each other, see (5.46). Letting 

R -> oo, we prove that Hi(-, •,*)—> -HooO* ■>*) i*1 j^1- 

In Theorem 5.59, when the noncollapsed limit MQQ is a manifold, we 
prove HQO is the heat kernel over MQO, i.e. the integral kernel of the semi- 
group e~tA. For general MQO, the picture is not yet clear; however, it is 
true when M^ = C(X) is a noncollapsed tangent cone that is the limit of a 
sequence of manifolds with nonnegative Ricci curvature, see Theorem 6.1. 

In Section 4 and Section 6 we study the Laplacian on C(X). We prove 
that in this case, one can still separate variables. We use these to study the 
structure of Goo and J?oo on G(X), and the asymptotic behavior of Green's 
function and heat kernel on a manifold Mn with RicMn > 0 and (0.4). 

In Section 7 we study the asymptotic behavior of the eigenvalues Aj)00 

on a compact metric space MQO which is the limit of a sequence of manifolds 
{M/1} with (0.1). We will prove in the noncollapsed case, the Weyl asymp- 
totic formula is true on MQO; see Theorem 7.3. In the collapsed case, we 
get some link between the behavior of eigenvalues and dimMinfc(^oo), the 
Minkowski dimension of Moo- 

All of the estimates in this paper are uniform, i.e. the constants are 
valid for the whole family of manifolds we are considering (for example all 
compact manifolds Mn with RicM" > — (TI — 1)A and DiamM71 < D). 
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1. Background and notation. 

Suppose (M/VVolj) -^4 (Moc/ioo) in the measured Gromov-Hausdorff 
sense, i.e. the sequence {M^} converges in the Gromov-Hausdorff sense to 
MQO, and for any Xi —>• XQO, (xi G M™) and R > 0, we have Volj(£#(#;)) -» 
HooiBnixoo)); here /ioo is Borel regular. In fact, for any sequences of mani- 
folds with Ricci curvature bounded from below, after possible renormaliza- 
tion of the measures when {M/1} is collapsing, one can alway find a subse- 
quence converges in the measured Gromov-Hausdorff sense, see [ChCo2]. In 
the following we usually let Vol denote the (renormalized if {Mf} is collaps- 
ing) measure on M/1, i = l,2,...,oo;on M^ sometimes we also write /^oo for 
Voloo. We refer to [Ch3], [ChCo2], [Gr] for general background on measured 
Gromov-Hausdorff convergence. 

Definition 1.1. Suppose Ki C M" -^4 KM C M^ in the measured 
Gromov-Hausdorff sense, fi is a function on Mf, i = 1,2,... ; /oo is a con- 
tinuous function on MQO. Assume $; : K^ -> Ki are e*-Gromov-Hausdorff 
approximations, e* —> 0. If fi o $; converge to /oo uniformly, we say that 

fi -* /oo uniformly over Ki -^4 KOQ. 

For simplicity, in the above context, we also say that fi -» /^ uniformly 
on K; when we write fi(x) —¥ foo(x), we mean that fi —> /oo uniformly and 
fi(xi) -> fooixoo), where Xi -4 XQO, Xi € Mi. 

In many applications, the family {fi} is actually equicontinuous. We 
remark, the Arzela-Ascoli theorem can be generalized to the case where 

the functions live on different spaces: when M/1 -^4 MQO, for any bounded, 
equicontinuous sequence {fi}(fi is a function on M/1), there is a subsequence 
that converges uniformly to some continuous function /oo on Mo©. The proof 
is straightforward. 

We also introduce the notion of LP convergence (1 < p < oo). 

Definition 1.2. We say fi —> /oo in 1^, if for all e > 0, one can write 
fiz=<f>i + Vi such that fa :■—»► <^oo uniformly and limsup^oo 11*7*||LP ^ e> 
II^OOIIZP < €. 
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The following is a generalization of the Rellich-Kondrakov theorem: 

Lemma 1.3 (Rellich). Assume J3i(pi) C Mf ^4 J3i(p) C M^ in the 
measured Gromov-Hausdorff sense. Ui is a function on M™, i — 1,2,.... 
Assume 

(1.4) /        (^)2 + |V^|2<iV. / (Ui) 

Then there is a subsequence of {ui} that converges in L2 over any compact 
subset of the open balls Bi. 

The proof depends only on a weak Poincare inequality (use a bigger ball 
on the right of (0.3)) and (0.2). One can divide the ball BR(p) (R < 1) into 
small subsets and approximate / by functions that are constant over each 
of these small subsets, then one easily finds a convergent subsequence by 
standard diagonal arguments. Compare [Ch3], especially [CoMi3]. 

We use subscript i and write /*, HR^^PI^ etc. to denote functions, points, 
etc on Mf. To simplify notation, when we write an equation with some 
function or other objects with no subscription (for example, /), it should be 
understood that the equation is valid for some suitable convergent sequence 
of functions or other objects (for example, {/;}; /; is defined on MJ1, i = 
1,2,...), according to the context. 

In [Ch3], Cheeger defined a Sobolev space Hip on metric-measure spaces 
(Z, ji) satisfying (0.2), (0.3), and proved that Lipschitz functions are dense in 

o 

Hip. Denote by Hip{Vt) the closure in Hip of Lipschitz functions supported 
in an open set f2. Recall in [Ch3], one has a natural finite dimensional 
cotangent bundle T*Z. We use du to denote the differential of it, see Section 
4 of [Ch3]. One can put a norm | • | on T*Z by assigning \df\ = gf = Lip/ 
for / Lipschitz. Here as in [Ch3], 

(i.5) Lip/(l) = limsup!MziM. 
y-±x "(?/,£) 

Note we use Lip/ to denote the Lipschitz constant of /. Clearly, on smooth 
manifold | • | agrees with the standard norm \du\ = \Vu\. It was proved in 
[Ch3] that | • | is equivalent to a uniformly convex norm, in particular, an 
inner product. 

If we have the stronger assumption Z = M^ with Mf -^ MQO, in 
[ChCo4] Cheeger and Colding proved that M^ is /ioo-rectifiable, and, as a 
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corollary, the norm | • | actually comes from an inner product (•, •). So Hip 
is made into a Hilbert space: 

(1.6) K^)^i,2 = /     uv+ I     {du,dv), 

and for Lipschitz functions /, one has 

(1.7)'" ll/lliria = ll/llia+/     I LiP/I2- 
JMoo 

Now by the standard theory of Dirichlet forms, one gets a positive self- 
adjoint Laplacian A on MQO, see [Ch3], [ChCo4] for the details of this theory. 

Recall one form of the transplantation theorem of Cheeger (for a proof, 
see Lemma 10.7 of [Ch3]): 

Lemma 1.8. Assume Mf1 -^4 M^. foo is a Lipschitz function on 
BR{XOO) C MQO, xi —¥ XOQ. Then there is a sequence of Lipschitz functions 
{/i} that converges uniformly to foo, here fi is defined on Bnfai) C M™. 
Moreover, one can require that 

(1.9) limsupLip/i < Lip foo, 
i->oo 

(1.10) limsup||Lip/i||L2 < || Lipfooh2' 

By [J], [HaKo], on length spaces satisfying (0.2), a weak Poincare in- 
equality implies a uniform Poincare-Sobolev inequality (i.e, put LXP norm 
on the left side of (0.3) for some X > 1). In particular, we have a Dirichlet- 

o 
Sobolev inequality for u G HI^{BR{P)). SO we have 

Lemma 1.11 (Moser iteration). // for all (f) with compact support in 

Bfo), 

(1.12) j VuV(t>= I cu4> + f<j>, 

then for q > C(K), we have, 

(1.13) |M|LCO(BICP)) < C(n)9)(l + \c\)N{T>K){\\u\\L2(B2(p)) + ||/|U«(B2(p))). 
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For proof, see chapter 4 of [Lin]. Note here we need to renormalize the 
measure. 

Recall, on smooth manifolds we have 

Lemma 1.14 (Gradient estimate). // Au — cu = f, \\u\\i2 < oo on 
B2R(P) and f is a C2 function with Lipschitz constant Lip/; c is a con- 
stant, then on BR(P) we have a gradient estimate: 

(1.15) |Vu| < Cdl/IUcc, |M|L2,Lip/)(l + |C|)^). 

The proof follows a standard argument of Cheng-Yau, see [CY1], [LiYl], 
compare also with [Lin], [Li2], [SY]. Then use the Moser iteration to replace 
|M|L°O with \\u\\L2. 

Finally recall the Li-Yau estimates [LiY2], [SY]: If Mn satisfies (0.1), 
then its heat kernel H satisfies 

(1.16)   H{x,y,t) < C(n) Vol(JB^(a:))-1/2 Vol^^))"1/^-^^)/5^^. 

If t < T, by volume comparison (1.16) simplifies to 
(1.17) 
H{x, y, t) < C(n, A,T) \0\{^B^t{x))-1e-d^x'y'llhteCKtt-c^ec^k'T^x^. 

If we assume KICM
n > 0, then 

(I 18) C~1(n)      e-dHx,y)/3t < H( t)<  ^H    -dHx,y)/5t 

Assume Mn is noncompact, write G for the minimal positive Green's 
function on Mn. If n > 3, Mn satisfies (0.4) and RICM™ > 0, then G exists 
([LiY2], [LiTl], [LiT2], [SY]) and satisfies 

(1.19) C-^oMz,y)2-n < G(x,y) < C{v0)d{x,y)2-n. 

For proofs of the above estimates, see [LiY2], [SY]. 

2. The compact case. 

In this section, we assume MQQ is compact. First we study the heat kernel 
H. 
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It's well known that if RicMr* > — (n — 1)A, there is a lower bound for 
the kth eigenvalue Xkj of the Laplacian A* over M/1: 

(2.1) Aib.^Cfn, A, £>)*;«, 

here DiamMf < D. The proof uses only (0.2) and (0.3); see [Gr] and 
Theorem 4.8 of [Ch3]. Hence over M-1 we have 

oo 

(2.2) Hi{x,y,t) = Yle~Xjtitfa,i(x)<l>J,i(y)> 

here fyj is the eigenfunction of the jth eigenvalue Xjj. By the Cheeger- 
Colding spectral convergence theorem [ChCo4], for each j, Xjj -> Ajj00, 
and (frjj —>- ^jj00 uniformly when i —> oo, here Ajj00 and (/>j)00 are the j-th 
eigenvalue and (renormalized) eigenfunction of A on M^. So (2.1) is also 
true for Aj,^- Moreover, 

(2.3) ||fe||Loo<C1(n,A,D)(l + Ai,i)
C(n)||fe||L2, 

(2.4) HV^HLOO < Co(n,A,i?)(l +A^)C(n)||fe||Loo. 

These are implied by (the proof of) the Moser iteration and the gradient 
estimate, see [LiYl]. By [GhCo4], (2.3), (2.4) can pass to M^ (on M^ (2.4) 
becomes an estimate for Lip(/>j)00). So it makes sense to write 

oo 

(2.5) HoofayJ) = ^e-A^Vj,oo(^)^,oo(2/). 
j=o 

By (2.1), iloo is the heat kernel over MOQ. 

Apply (2.3), (2.4) to Y%Lk e"Ai'iVi,i(^)0i,z(y)) the tail of (2.2), one easily 
get 

Theorem 2.6. Assume Mf ^ Moo, RicMf > -(n - 1)A. When t > 
0 fixed, Hi converges to the heat kernel HQQ over M^ uniformly. HQO is 
continuous in t,xyy; when t fixed, it is Lipschitz in x^y. 

Corollary 2.7. For ifoo on Moo, the Li-Yau estimate (1.18) is true if 
RicMr* > 0; ifRicMv- > — (n - 1)A then (1.16) 25 true. 
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Next we study the Green's functions. Assume RICMP > 0. Recall, 

POO 

(2.8) Gi{x,y)= /     hi{x,y,t)dt, 
Jo 

here h^x.y.t) = Hi{x,y,t) -(f>oti(x)(l>Qti(y) = Hi{x,y,t) - 1. Note, since the 
sequence {Mf} might collapse, we have to renormalize the measures and 
eigenvalues such that Vol(Mf) = 1 and {0j,Oj is orthonormal, e.g. AQ,; = 0, 
0o,i = 1. So 

re oo poo 

(2.9) Gi{x,y)=      hi&y^dt + Te-^/2        e-^^ix^^dt. 

When x is fixed, by (2.3), 
(2.10) 

poo (Xi     —eA • • 

•■il2 jt  e-^'ViiW^fe)*        ^e E e_£A' <EVlc'i(1+A^C3- 
L00        j=/c 

This goes to 0 uniformly in i as fc -* oo, by (2.1). On the other hand, 
clearly (1.18) holds after renormalization; when Ric > 0, R < 1/8 we have 
the (rescaled) volume bound 

(2.11) C(n, D)Rn < Vo\(BR{x)) < VRC(n) Vol(5^(x)) < C'(n)R. 

So when d(x,y) > S > 0, by (1.18), 

(2.12) / \hi(x,y,t)\dt<e+ [* \Hi(x,y,t)\dt <e + C ^ f^e'^dt. 
Jo Jo Jo 

So in particular, by choosing e small, we get a function Goo(%,y) on Moo, 
such that Gi —> Goo in L00 on compact subsets, off the diagonal. 

Finally, we want to check G^ is the Green's function over MOQ. We now 
establish an L1 bound for G(x,y) over the ball Bii(x). Note 
(2.13) 

/ \G(x}y)\dy< [ f  \h(x1y,t)\dtdy+ f H \h(x,y,t)\dtdy. 
JBR(X) JBR(X)JO JBR(X)JI 
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Since ||^(J/)||L2 = 1, by (2.1), (2.3), (2.11) and the Schwartz inequality, 

(2.14) f f" \h(x,y,t)\dtdy 
JBR{x) Jl 

00      n roo 

< J2 /        e-WfaW /    e-^%(y)\dtdy 

00 poo 

< C(n) J2 e-^/2(l + Xjf^VR /    e'^dt < C'(n)y/R. 
3=1 J2 

Now we focus on the first term on the right hand side of (2.13). Since 
H — h = 1, and we have (2.11), it's enough to estimate the integral of H. 
Put R < 1/8, by (1.18), (2.11) we have 

(2.15)        /   /        H(x,y,t)dtdy 
Jo JBR{X) 

< f   f       C(n)Vor1(JB^(x^e-^F-dtdy 
Jo   JBR(X) 

<([    f       C{n)Vor1{Brt{x))e-^1dtdy)+C'(n)^/R. 
\Jo   JBR(X) V / 

Next, 

(,16)   r'™???!***. f J?'-*1**^* 
Jo VoliB^ix)) J0        jfA[T)rn-Hr 

here yl(r)rn_1 is the surface area element oidBr(x). Since RICMP > 0, A(r) 
is non-increasing. The right hand side of (2.16) can be bounded by 

rR /l*M)+i  r(s+i)Vt      2/ .  fVi \ 
(2.17) [    J2 e-T luA{r)rn-xdrl \     A{r)rn-Xdr   dt 

R [R/Vi}+i 
< Ci(n)R + V    e-52/5((s + l)n - sn)dt < C'(n)R. 

J0 s=l 

So combine (2.14), (2.15) and (2.11) we get 

(2.18) /       \G(x,y)\dy<C'(n)VR. 
JBR(x) 
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Since G* —> G^ uniformly off the diagonal, use the Cheeger-Colding theorem 
on the convergence of eigenfunctions [ChCo4] and (2.3), (2.4), we get, for 
all x, 

<l>j,oo(x) = lim ^(x) = lim  /    Gi{x,y)Xjii^jii(y)dy 
l->00 2->00 JMi 

= /     Goo(x,y)Xjioo(j)jloo(y)dy. 
JMoo 

(2.19) JMt 

So Goo is the Green's function over MQO. Moreover, by (2.10), (2.12) and 
Lemma 1.14, GOQ is Lipschitz continuous off the diagonal. It is harmonic off 
the diagonal by Lemma 3.17. So we have proved 

Theorem 2.20. Assume M-1 -^? MQO; RICMJ
1
 > 0. Then the Green's func- 

tion Goo on MQO exists. On any compact subsets K off the diagonal, Goo is 
Lipschitz and harmonic, Gi -> Goo uniformly on K. 

3. The Green's functions on noncompact spaces. 

Recall how on a manifold, one solves the the Poisson equation, 

(3-1) Atxfl = /, uR\dBR{p) = h, 

for Lipschitz functions /, h on the closed ball BR(P). By the Dirichlet's 
principle, UR is the unique minimizer of the functional 

(3-2) I(u)=f       (\du\2-fu). 
JBR(p) 

o 

within the space £ = h + HI^{BR{P))^ note A is positive by convention. 

Assume M/1 -^ Moo in the measured Gromov-Hausdorff sense, RicMr* > 
-(n - 1)A. Recall, by [Ch3], [ChCo4], A is linear on Moo- So the above 
variational method is valid also on MQO. 

Lemma 3.3 (Lower semicontinuity of energy). Suppose Ui, fi are C2 

functions over M-1, Aui = fi, Ui -» UQO, fi -> foo uniformly over the 

sequence of converging balls B2R{pi) -» B2R(POO), and there is a uniform 
gradient estimate for Ui and fi: 

(3.4) \Vui\,\Vfi\<L. 
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Then we have 

(3.5) /(uoo) <limmfJ(iti). 

Proof. As in [ChCol], we can get an integral bound for the Hessian of fi on 
the ball Bi(pi): recall the Bochner formula 

(3.6) ^AdV/fl2) = |Hess/i|
2+ < VAf^Vft > +Ric(V/i, V/O- 

Multiply by a cut-off function (j) with supp(/) C Br C Bi(qi), (t>\Brj2 = 1> 
|V(/>| < c(n,r), |A^| < c(n,r); see Theorem 6.33 of [ChCol]. Since fo is 
harmonic, 

(3.7) ^A(|V/i|
2) = ^|Hess/<|

2 + </»Ric(V/i,V/i). 

Integrate by parts, 

(3-8)        /   |(|V/i|2)A^= /  0|Hess/i|
2+ /"  tfRictV/i.V/i). 

By assumption, there is a definite lower bound for the last term in (3.8). 
Note |A0| is uniformly bounded by construction, we have a uniform upper 
bound for /s 0|Hess/J2. So by Lemma 1.3 we can assume some subse- 
quence of |V/i| converges to a function T on BR^P^) C M^ in L2. Assume, 
x e Ilk C Moo for some k (all tangent cone at x is R*), there is some 
subset A(x) C Moo such that and F is continuous on A(x), x E A(x) is a 
density point of A(x). By Luzin's theorem and the results in [ChCo2], these 
properties hold for almost all x E Moo- For such #, we prove 

(3.9) |Lip /oo(z)| < T(x). 

Clearly, (3.9) implies our lemma. 
To prove (3.9), it's enough to prove, for all ip > 0, if I = d{x,y) is 

sufficiently small, then 

(3.10) l/ooO*) - /ooG/)! < d{y,x){T{x) + 6^). 

By the gradient estimate of fi (so of /oo), if (3.10) is not true for some yo? 
then for all y E Bty/L(yo), 

(3.11) ^(x) - /oofo)! > d{y,z)(r(x) + W). 
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Pick Xi.yo^ e M-1, Xi -> x, yo,i ->• 2/0, rf(^*,1/0,1) = J. Then for z big enough, 
for all yi G Biij>/L(yo,i) and all minimal geodesic 7$ connecting #; and y^, 

(3.12) / |V/i|>d(rri7yi)(r(^) + 4^. 

First of all, since |V/i| is uniformly bounded by L, a simple computation 
shows along every 7$ we must have 

(3.13) |V/f-|>r(aO.+ 2Vs 

on a subset of 7^ which has 1-Hausdorff measure at least 2ipl/(L — r(x)). 
Put 

(3.14) Ti = {v E TXi\v = 7/(0) for some minimal geodesic 7 

from ^ to j/i € ^/^(yci)}. 

We must have 

(3.15) fT-1^) > C^L,^)^-1^!^)), 

where Hn~l is the (n - l)-Hausdorff measure over the unit sphere <9J3i(0) 
in the tangent space TXi. Combine this with (3.13), when M^ is noncol- 
lapsed, if / is small enough, by the proof of the Bishop-Gromov inequality, 
for sufficiently big i, 

(3.16) —— Vol {Biixi)) > C(x, n, L, V) > 0. 

Now |V/i| converge to T in L2, so (3.16) is also true if we substitute |V/i| 
in (3.16) by P, Xi by x. We get a contradiction to the choice of x. 

The proof is the same when M^ is collapsed. We just use the segment 
inequality ([ChCol], [ChCo4]) to get (3.16) from (3.11), (3.12) and (3.13). 

□ 

Lemma 3,17. Let UOQ, /QQ be as in the previous lemma.  Then 

(3.18) Au00 = f00. 



488 Yu Ding 

Proof. Assume this is not true over a ball B\(p*) CC Bi(0). By solving the 
Dirichlet problem on B\(p*) we can find ^oo with the same boundary value 
as UOQ over dB\, but with smaller energy, say 

(3.19)      /(Voo) =   / M^l2 - /oo^oo <   / l^ool2 - /0 
JBXIP*) JBxip*) iBxfr*) JBx(p*) ' 

By obvious density properties, we can change VOQ slightly so that ^oo agrees 
with ^oo on a neighborhood of dB\(p*). By Lemma 3.3, for i big enough, 

(3.20) J(voo) </(tx,-) - *- 

So by (the proof of) Lemma 1.8 (see Section 10 of [Ch3]), for i big enough 
we can find a function Vi with the same boundary value on dBi as Ui but 
with smaller energy /. That contradicts the fact that Aui = fa. D 

The solution of (3.1) is unique on M^ because the maximum principle 
holds, see Section 7 of [Ch3]. 

We now study the Green's functions. Assume (Mf,^, Vol;) -^? 
(MocPj/ioo) in the pointed measured Gromov-Hausdorff sense ([Gr], 
[ChCo2]), where RicMr* > 0, M/1 is complete, noncompact, n > 3. 

Theorem 3.21. Assume, M? also satisfies Vol(Bji(pi)) > v^R71. Then on 

MQO there is a Green's function Goo, Gi —> Goo uniformly on any compact 
subsets of M x M that does not intersects with the diagonal. 

Proof. Since n > 3, the Euclidean volume growth condition (0.4) implies 
that the minimal positive Green's function Gi exists on M/1 (A is positive). 
Moreover, Gi satisfies the Li-Yau estimate (1.19). So by the Cheng-Yau 
gradient estimate and the Arzela-Ascoli theorem, for any fixed #, for some 
subsequence (still denoted by Gi), we have 

(3.22) Gifay)-> Goofay), 

uniformly over any compact set in M\{x}. Clearly, Goo satisfies (1.19). We 
will show Goo is in fact well defined, and Gi —> Goo as stated in the above 
theorem. 

Assume foo is any Lipschitz function supported in BK(POO) C MQO, 

Lip/oo ^ L. By Lemma 1.8 and approximation, there is a sequence of G2 

functions {/;} with fc -> foo uniformly, Lip/; < 2L, supp/; C B2K(Pi) C 
Mf, i = l,2,...,oo. 
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Recall on each manifold M™ with maximal volume growth condition, the 
function, 

(3.23) ui(x)= [    Gi(x,y)fi(y)dy, 

solves the Poisson equation 

(3.24) kui = fa,   lim Ui(x) = 0. 

Now by the Li-Yau estimate (1.19) and the Euclidean volume growth 
condition (0.4), Gi is locally integrable, so Ui is uniformly bounded. The 
gradient estimate Lemma 1.14 shows that ui are uniformly Lipschitz: 

(3.25) lA^ai<C{L,K,n). 

So we can find a subsequence of {ui} that converges to some Lipschitz func- 
tion UQQ on MOQ. Note that by the Li-Yau estimate, (1.19), 

(3.26) \ui(x)\<C\L,K,n)d{x,pi)2-n,   (i = 1,2,... ,oo). 

So by Lemma 3.17, A^oo = f^ on MQQ. Using the fact Laplacian is 
linear, by (3.26) and the maximum principle (Section 7 of [Ch3]), it is clear 
that i^oo is well defined and ui —> UQQ uniformly. 

Notice, by (1.19), 

(3.27) u00(x)= Goo(x,y)foo(y)dy. 
JMoo 

Since we can choose arbitrary K, /oo, clearly G^ is also well defined, 
Gi —> GQO uniformly, off the diagonal. By (3.27) and Lemma 3.17, Goo can 
be interpreted as the minimal positive Green's function on Moo- □ 

4. Separation of variables on tangent cones. 

Assume M™ is complete noncompact, Kicj^r1 ^ 0 and satisfies (0.4) uni- 

formly, Mf ^4 Moo. Recall that by [ChCol], [ChCo2], every tangent cone 
of MQO is a metric cone. We denote such a cone by C(X) = R-j. xr X, here 
(X, dx2) is a compact length space with DiamX < TT, [ChCol]. The metric 
onCpQis 

(4.1) dp2 = dr2 + r2dx2. 
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Here we write r for the distance from the pole PQQ = (0, X). 
The measure Hoo on C(X) is just the n-Hausdorff measure, [ChCo2]. 

Since we can rescale C(X), ^oo induced a natural measure fix on X that 
obviously satisfies a doubling condition (0.2) (with some different K). More- 
over, X satisfies the rectifiability properties as stated in Section 5 of [ChCo4]. 

Also recall from [Ch3], for f.gGHi^, 

(4.2) d(fg) = f-dg + g-df. 

Moreover, from [ChCo4] and [Ch3], if / is a function depending only on r 
and g is a function independent of r, then by the polar identity, one gets 
(d/)d5) = 0. 

Lemma 4.3 (Weak Poincare inequality). For BR C X, ZR < \, f G 

(4-4) /        \f-fx,R\2<rxR2 f        \df\2. 
JBR(x) JBZR(X) 

Proof. Define, for x G X, 

(4.5) Box((l,a;),a,&) = {(t,y) G C{X)\\t - 1| < a, <**(*,y) < 6}. 

Put 

(4.6) Boxi = Box((l,a;),R,R), B0X2 = Box((l,x),3JR,3JR) C C(X) 

So Boxi C ^^((l,^)) C B0X2.   We extend / to be a Hi^ function in- 
dependent of r on C(X).   Assume /eaii is the average of / on the ball 
B2R{{l,x))cC(X), 
(4.7) 

/       1/ - L,R? = CWiT1 /      1/ - fx,R\2 < C{n)R-1 f      \f- /Haul2 

JBR(x) JBOXI JBOXI 

< C^R-1 f |/ - /Ban]2 < C(n)rR f \df\ 
JB2R((l,x)) JB2R((l,x)) 

<C{n)rR(      \df\2 = rxR2[        \df\2. 
JBoxi JBRR(X) 

The first and last identity come from the Pubini theorem. Note fXiR is also 
the average of / over Boxi, and we used the Poincare inequality on C(X) 
in the middle inequality. □ 
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We remark, a weak Poincare inequality is already enough for many pur- 
poses. Since X is a length space, by [HaKo] one has (0.3) on X. As in 
[Ch3], [ChCo4], we define a positive operator A^ on X. Note by (0.2), (0.3) 
the compact embedding lemma 1.3 is true on X. So by the standard elliptic 
theory, on X we have a basis {^j^o for L2{X) and a sequence /ij —> oo 
such that Ax</>j = /Xj^j? compare [Ch3], [ChCo4]. Moreover, one can do 
Moser iteration on X, so fa is Holder continuous; see [Lin], [GT]. These 
have applications in Section 6. 

Next we show, even the cross section X may not be a manifold, there 
is still a separation of variables formula for A on C(X). See [Chi] for the 
classical case. 

Recall that (•, •) is the inner product on r*M00 as in [Ch3], [ChCo4]. 

Lemma 4.8. 

(4.9) A(/0). = /As + 5A/ - 2(df, dg). 

Proof. Since d(fg) = / • dg + g • d/, for any Lipschitz (or i/1,2) function 0 
with compact support, we have (recall A is positive) 

(4.10) J(df, g-d<t> + <i>-dg)- JgcjtAf = 0. 

Exchange the role of / and g, we get 

(4.11) f(d{f9),d<t>) - f cf>(fAg + gAf - 2{df,dg)) = 0. 

□ 
Similarly, by d(f o g) = f'(g)dg, we get 

(4-12) Afog = -f"(g)\dg\2 + f'(g)Ag. 

Lemma 4.13.  On C(X)7 r
2~n is harmonic away from the pole. 

Proof. By the results in Section 4 of [ChCol], r2""n is the uniform limit of a 
sequence of harmonic functions Q. So by the proof of Lemma 3.17, r2_n is 
harmonic. □ 

By the maximum principle on X (Section 7 in [Ch3]), we have 
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Lemma 4.14. If X is compact, and Axf = 0, then f is a constant 

Theorem 4.15. Assume u lies in the ring generated by functions of the 
form u =. fg where f depends only on r and g depends only on x. Then on 
C(X)\{p00}, 

d2u     n-ldu      1 . 
(4.16 A« = --T — + ^Axu. 

Orz r    or     rz 

Proof. Compare [ChTal]. By (4.12) and Lemma 4.13, on the cone C(X) we 
have 

77  —  1 
(4.17) A/(r) = -/»(r) - /'^-. 

Next we apply Lemma 4.8, recall (rf/, dg) = 0. We pick a test function (j) of 
the form </> = a(r)b(x). By scaling we see, Ag(R, x) = R~2Ag(l, x). Assume 
a is supported over the interval [a,/3], 

(4.18) f      (dg,d(f))= f (t1-71 [ r2(dg,a(t)db)dx)dt, 
Jc(X) Joe JX 

here in the second integral we view g and b as functions on the cross section 

X = (1,-X"). So we compute 

(4.19)   f      {dg,d(j))= [   (V71"1 f a(t)b{x)Axgdx)dt= [ fr^Axg. 
JCIX) Ja    \ JX J J 

[dg,d<l>)= j 
IC(X) 

Since we can choose arbitrary a, 6, and Ag(R1x) = R~2Ag(l,x), we get 

(4.20) Ag{R,x) = R-2Axg. 

This suffices to complete the proof. □ 

Using transformation DR : (r,x) f-> (Rr,x), we deduce from the exis- 
tence and uniqueness of Goo that 

(4.21) GooiDRX.Dny) = tf^Goofoy). 

So Goo(poo,x) = d(p00,x)2~ng(x) for some Lipschitz function g. By (4.16) 
and Lemmas 4.8, 4.14, g = C is a constant. 
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Corollary 4.22. 

(4.23) G00(p00,x) = (n-2)-lnx(X)-1d2-n(p00,x). 

Proof. We know G00(p001x) — Cd2~n{p001x). We construct a test function 
4> = (j>{r) such that 0 is a smooth function of r, (j) = 1 for r small and 0 = 0 
for r > 1. So 
(4.24) 

1 = /G(Poo,v)A#y) = jf1 (-<!>" -^i) Cr2-Vlnx(X)dr 

= -Cpx{X) [ (n- 2)<f>,dr = (n - 2)C/xx(X). 

□ 
Corollary 4.25. Assume Au = f on B^poo) \ {poo}, f € L00, and 

(4.26) lim luWldfapoo)"-2 = 0. 
x—tp 

Then Au = f on B^poo). 

Proof. By the De Giorgi-Nash-Moser theorem, u is bounded and Holder 
continuous. In our case, GooCPooz) = Cd(p00)x)2~~n, so the proof goes 
exactly like the Rn case (where the maximum principle is used). For details 
see [Lin]. □ 

Relation (4.23) implies the Colding-Minicozzi asymptotic formula, 
[CoMil], compare [LiTW]. In fact, we rescale the manifold Mn to get a 
sequence of manifolds that converges to C(X), a tangent cone at infinity, 
see [ChCo2]. By Theorem 3.21, the new (rescaled) Green's functions con- 
verge to the Green's function on C(X). 

Theorem 4.27 (Colding-Minicozzi). On a noncompact manifold Mn 

with RicMn > 0 and (0.4) we have 

(4.28)       lim     d(x,p)n-2G(p,x) = (n- 2)-1(n lim iT71 Vol^^)))"1. 
d(x,p)-^oo R-too 

Note the tangent cones may not be unique; in collapsing case, a tangent 
cone might not be a metric cone, [ChCo2], [Per]. 
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5. Heat kernels on noncompact spaces. 

We assume in this section, all the manifolds Mn are noncompact, satisfying 
(0.1). On Mn, write H{x^y)t) for the heat kernel; we denote by Hji(x,y,t) 
the Dirichlet heat kernel on the metric ball BR(P), put HR = 0 outside 
BR(P). 

One technical issue is, the boundary dBR(p) = drl{R) may not be 
smooth, here d = d(p, •). However, we can approximate d by a Morse func- 
tion de, see [Hir], and (assuming) R is not a critical value, etc. So in the 
sequel we always assume the boundary are smooth. 

Lemma 5.1. Assume RicMn ^ —(ft — 1)A. Then there is a function 
e(t, A, R) with IrniR.+oo e(£, A, R) = 0 for t>0, and 

(5.2) f H[x,y,t)dy<t{t^R). 
JM-BR(x) 

Proof. By the Bishop-Gromov inequality, it's easy to see 

(5.3) Vol(S^(x)) < dCn.A,^"'^^)Vol(B^(i/)). 

Put s\{r) = (l/\/A)sinh\/Ar. We now use the Li-Yau estimate (1.16): 
(5.4) 

H(x,y,t)dy / 

<C'(n, A, t) f Vori(B   ^e-dix^yst^inAjWw) 
JM-BR(X) 

poo r\fl 
=C'(n,A,t) /    e-r /^MCr^-V)*-/ /     ilCr)^"1^)* 

poo py/i 
<C' /    e-r /5*eCar^"1(r)dr/ /     s^^dr = e(t, A,it!). 

Here ^4(r)5^~1(r) is the surface area element of dBR(x). We used the fact 
A{r) is non-increasing (Bishop-Gromov inequality) and assumed, without 
lose of generality, R > \/i. □ 

Lemma 5.5. Let (Mn,p) te a noncompact complete manifold. Then 

(5.6) lim HR(xr,t) = H{x,;t). 
R^oo 
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The convergence is uniform, and uniformly in Ll, on any finite interval 
te[0,T\. 

Proof. Assume R > max{T, 2d(x,p)}. Put 

(5.7) M(R) = sup{ff(x,y,t)|v G dBR(x),Q <t<T}, 

by (1.17) and volume comparison we have 

(5.8) M{R)<   sup C(n,A,T)t-Cl(n)e-i?2/5tec2(n,A,T)HVol(Bi?(p))-ij 

0<i<T 

so lim^-^oo M{R) Vol(Bji(p)) = 0. By the maximum principle, 

(5.9) H(x,y, t) - M(R) < HR(x,y, t) < H{x,y, t). 

Combining this with Lemma 5.1, we have 

(5.10) \\HR{x^t)-H{xrMLi <e(n,A,r,it!), 

and lim^^oo e(n, A, T, R) = 0. □ 

Assume \j is the j-th Dirichlet eigenvalue of the Laplacian on BR{p)^ (f)j 
is the corresponding eigenfunction, ||0j||i,2(Bfl(p) = 1- 

Lemma 5.11.   There exists a constant C(n, A, 12) such that 

(5.12) C(n, A,R^R^kn <\k< C(n, A,R)R-2k2. 

Proof. Since fl fixed, we have Vol(Br(a:)) > Co(n, A,R)rnVol(BR(p))y for 
r < 2R and Br(x) with nonempty intersection with BR(p). Then since 
## < iJ, we can follow the heat kernel argument as in page 178 of [SY] to 
get the lower bound of A^. 

The upper bound follows from an argument of Cheng, see page 105 of 
[SY]. □ 

Lemma 5.13. For any N > 0, there is a function e(iV, A, J?, 6) such that 
for any fixed R, limj.+o e(iV, A, i2,8) = 0; and for k such that Xk < N, 

(5.14) f |^|2<6(Ar,A,iZ,5). 
JA(p,R-8,R) 

Here A(p, R — 5, R) is the annulus {z\R — 5 < d(p, z) < R}. 
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Proof. By (1.16) and the Bishop-Gromov inequality, when t = 1, 

/ \(t>k? <eXk f H(x,x,l)dx 
JA(p,R-8,R) JAfaR-Sfi) 

(5.15) 
<eN 

JA(P,R-8,R) Vol(BR(p)) 

D 

As before, assume MJ1 -^ M^ in the pointed measured Gromov- 
Hausdorff sense, Mi is noncompact, satisfies (0.1). Write Xj^ for the j-th 
Dirichlet eigenvalue over B]i(pi) C M?. fyj is the corresponding eigenvalue: 

(5.16) A^i = Xjjfau    / <l>j,i<i>k,i = fyfc- 

Lemma 5.17. .For /ixed j, fc > 0, assume (for a subsequence of the 
eigenvalues), A^; -> Aj)0o, A^^ -» A^^oo- r/ien ifeene i5 a subsequence (denoted 
also by (frj^^kt) that converges uniformly on compact subsets of BR, and 
also in L2

(BR), to two locally Lipschitz functions <^j,oo)^fc,oo- Moreover, 

(5.18)       A(/>j)00 = Aj)00(/>j)0o,   A(f)k,oo = Afc,oo</>A;,oo>     / 0j,oo^A;,oo = ^fc- 

Proof The results is clear in view of Lemma 5.11, Lemma 1.14 and Lemma 
3.17. The L2 convergence and the orthonormal property for the limit func- 
tions are implied by locally uniform convergence and Lemma 5.13. □ 

By Lemma 5.11, we can assume, after passing to a subsequence, that 
every eigenvalue and eigenfunction converge: 

(5.19) lim A^i = Aj)00,   lim fa = </>j)00. 
i—>oo i—too 

Write 
oo 

(5.20) HR,00 = J2e~Xj'°°t<t>3,o°(x)<i>j,°o(y)- 
3=1 

For all fixed t, x, by Lemma 5.11 and Lemma 1.11, Lemma 1.14, 

(5.21) HR>i(x,;t)^HR}00(x,;t). 
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The convergence is in L2, and is locally uniform. Note we don't know if HR^ 

(and 0j,oo, ^oo) is well defined. For the moment (before Lemma 5.40), we 
fix, by a diagonal argument, one sequence Rk —> oo, and one subsequence 
{M™ } of {M™} such that for each fc, i?i?fc)i —> ##fc,oo- For simplicity, we just 
write {MJ1} for this subsequence of manifolds. So by the results on smooth 
manifolds, for Rj < Rk, 
(5.22) 

C(n h\e-d2(x,y)/steCte 

Thus we can also assume that the nondecreasing sequence HRh00 converges 
pointwise to some function HOQ. We will prove that Hoo is well defined. 

By (5.9) and the locally uniform convergence of HRJ to HRI00 (5.21), 
the Li-Yau estimate (1.16) is also true for iJoo: 

(5.23) 0 < H„{xMt) <       ^pA)e ^ . 
Vo4/2(^(x))Voli/2(^(2/)) 

Note we need to renormalize the measures whenever {M™} is collapsing. 
Clearly, when Ric^r1 ^ 0? we also have a lower bound of HOQ as in (1.18). 

Corollary 5.24. 

(5.25) /      H00(x,z,s)H00(z,y,t- s)dz = H^x.y.t). 
JMoo 

Proof. By (5.21), (5.25) is true for HR^. Write H^x.z.s) = 
HRi00(x,z,s) + e1

R(z)y similarly H^z.y.t - s) = HRi00(z,y,t - s) + e2
R(z), 

here HRJ00 = 0 outside BR(P00)J CR^R > 0 are two functions. In view of 
Lemmas 5.1, 5.5, (5.21) and (5.23), 

(5.26) limsup(||e3i(*)||Li + II^WIILO = 0, 
R->oo 

ll4WIUoc + ||6^)||Loo<C'(i,5,M00). 

Now (5.25) is clear. □ 

Corollary 5.27. 

(5.28) f     H00(x,y,t)dy = l. 
JMoo 
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Proof. By (5.21), Lemmas 5.1 and 5.5. □ 

Lemma 5.29. For any Lipschitz function f with compact support, 

(5.30) 1/    HRt00(x,y,t)f(y)dy-f(x) 
\JMCO 

<6(t,||/||Loo>Lip/). 

Here for any JP, L > 0; limt->o ^(*) -^ L) = 0.   The conclusion is also true 
for Hoc. 

Proof. By an argument similar to those given in Lemma 5.1 and Lemma 5.5. 
Note on smooth manifolds, when t —> 0, the integral of HR is smaller than, 
but almost equal to 1, and tends to concentrate on smaller and smaller balls 
centered at x. In view of (5.21) and the Li-Yau estimate (5.23), we easily 
get (5.30). □ 

6 
Let the Sobolev space i?i,2(SR(Poo)) be defined as in [Ch3], i.e., the Hi^ 

closure of the set of Lipschitz functions supported in the interior of .BR(POO)> 

0 

Lemma 5.31. The space HI^BR^QQ)) is contained in $; the L2-linear 
span of functions (ftj^oo • In particular, any Lipschitz function with support 
in BRS lies in $. 

Proof. If not, by approximation, we have a Lipschitz function /QQ with com- 
pact support and an e > 0 such that 

(5.32) E(/ /oofc.co)   <(l-3€)||/00||ia. 

Using Lemma 1.8, we can transplant f^ back to a Lipschitz function, /i, on 
M/1, with compact support which is close to f^ in L00, such that the energy 
of fi is close to that of fo^. Write 

N oo 

(5.33) fj = yj ajj^jj + RNJI RN,i =    /,   aj,i<l>j,i' 
j=i j=N+l 

Notice, 

(5.34) lim CLJJ = /     /oo0j,oo. 
^O0 JMoo 
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So by the min-max principle and Lemma 5.11, lim^oo ||V/»||jr,2 = oo, we 
get a contradiction to the construction of /$, Lemma 1.8. D 

o 
Remark, it is not clear if we have <j)ji00 G Hip- 
Now for Lipschitz functions fc with compact support in B]i(pi) C M™ 

(i = 1,2,..., oo), fi —¥ /oo uniformly, we have 

oo , 

(5.35) fi = y]ajii<f>j,i,      aj,i= Mj,*- 

So a^i —^ aj)00. Clearly, 

, oo 

(5.36) / HR^y^f^dy^Y^e-^'aj^iix). 
JBR(pi) j==1 

We say /i(x, t) is a locally strong solution, if h continuous, Lipschitz in 
#, H exists, continuous on M x R+, and when t fixed, — A/i = |£, i.e. 

(5.37) f ^+ [(dxh,dxip) = 0, 
Jn    at     Ja 

for all Lipschitz functions -0 with compact support. 
By Lemma 5.11, Lemma 1.11 and 1.14, 

(5.38) lim J] |e-A'V;(zKMi/)l = 0. 
fc->oo *—' 

j=k 

So HRJ is a locally strong solution of the heat equation.   Similarly the 
function, 

(5.39) hi(x,t)= f   HRti{x,y,t)Si{y)dy     (i = 1,2,... ,00), 
JBR 

is also a locally strong solution. Note for the case i = 00 we used also Lemma 
5.17. 

For locally strong solutions on MQO, there is also a weak maximum prin- 
ciple: 

Lemma 5.40. Assume h is a locally strong solution on B2R x [0, T + 1], 

(5.41) ^IBHXIO} < 0, h\dBRX[0}T] < 0. 

Tfcenfc < 0 on BR x [0,r]. 
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Proof. Define 

(5.42) m{s) = sup{/i(a?,5)|a: G BR)—(x,s) < 0}. 

Since /i, ^(x^s) are continuous functions, it's easy to show that m is non- 
increasing and m(0) = 0 implies 771(5) < 0 for all 5 > 0. Now by the weak 
maximum principle for Poisson equations (see [GT], [Ch3] or (5.37)), we 
have, when s fixed, 

(5.43) swp{h(x, s)\x e BR} = 771(5) < 0. 

□ 

Now we can address the uniqueness of HQQ.    Recall that (M^,^) -> 

(M^JPOQ). Assume for R > 0, we got two limits H^ , -^4^,00 though 
different subsequences of manifolds. 

Theorem 5.44. For x,y G BR^QO), t < T, there is an e(R) > 0 such that 

(5.45) lim e(R) = 0, 
R-±oo 

(5-46) tfSo>> v> *) < ^Soo^- y> *) + ^W- 

Proo/. We can assume R > T2 > t2 and i2 > 4. Assume (5.46) is not true, 
then there is a point a € B^p^) and 0 < r < 1 such that 

(5-47) ffSoofai/.*) > H^ix^t) + 6(i2), 

for y £ i?2r(a)- We then construct a test function / > 0 such that, / 
Lipschitz, supported in Br(a), 

(5.48) 2 /       / > Vol(Sr(o)) sup /. 
JBr(a) Br{a) 

Clearly, for R < 00, the functions, 

(5.49) Fk{z,s) = [      Hfl   (z,y,s)f(y)dy, (k = 1,2), 
JBr(a) 
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are locally strong solutions of the heat equation, and (by the construction 
of/), 

(5.50) Fi(x,t) > F2(x,t) + e [      f> F^x,t) + ^ Vol(Br(a)) sup /. 
JBr{a) * Brio) 

For a point z near df^jRGPoo), say d{z,p) = 2i?, d(a, z) > R, 

(5.51) Fk(z, s) < Yo\{Br{a))—^^e-R2^eCR sup /, (fc =■ 1,2). 

By a standard argument of the Bishop-Gromov inequality, 

(5.52) J^*,,) < Cx^^M.-f e-IVV* sup /, (fc = 1,2). 

Next we consider the case that s is small. Since / is fixed, by (5.30), i** —► / 
uniformly on B^nip) when s —> 0. 

In view of the weak maximum principle on BiRijpoo) X [0,^1 (Lemma 
5.40), clearly we should choose e(i?) such that that for 0 < s < T, 

by the maximum principle we got a contradiction to (5.50). □ 

Theorem 5.54. HQO is well defined. For fixed t > 0, Xi —> x^j we have 
Hi(xi, •,£)—» HOQ^XQQ, ',t) in L1. When UQO is continuous, this convergence 
is also uniform. 

Proof. By the previous theorem and the construction of iloo (compare (5.9)), 
we see iToo is independent of the choice of subsequences, so well defined. 

We already know, by (5.9), (5.21), (5.23), that locally Hi -> ifoo in L1. 
The proof of global L1 convergence is similar with Lemma 5.1, Lemma 5.5, 
using (1.18), (5.23). 

Recall (see [SY] Chapter 4), there is a Harnack inequality 
(5.55) 

Hifayuh) < HfamM) (ly^P (|^0 + C(n'A)(*2^■*i)) , 

for 0 < ti < t2' If Hoo is continuous, then locally i/oo is uniformly continuous 
(especially, with respect to £), clearly by (5.55) the convergence Hi —> H^ 
must be uniform, compare with (5.23). D 
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We now want to interpret the meaning of HOQ. Recall from [ChCo4] and 
[Ch3], A is a positive self-adjoint operator. So —A generates a semigroup 
e-tA. 

Assume fi is supported in BxiPi) C Bjifa). Use the notation in (5.35), 
define 

oo 

(5.56) WRti(t)fi(x) = ^2 ajti cos(^~i)^)i. 
i=i 

By the finite speed of propagation (see [Ta]), when t is fixed and R > K + t, 
WRj(t)f is independent of R. We write Wi(t)f for WRti(t)f with R big. 
For i < oo, 

(5.57) e-^fiix) = f    HifayrffiMdy = H e^^W^f^ds, 
JM? J-oo 

see [CGT], [Ta]. Define 

oo 
(5.58) WR^ootyfoofr) = ^2 ahOO C08(y/\ji00t)<l>ji00. 

We notice that WRJ (i = 1,2, ...,oo) does not increase L2 norm, and we 
should use Lemma 1.8 and approximation to construct C2 functions fi on 
M? that converges to /QQ. Clearly, W^ifi -> WH^/OO in L2. We remark 
that generally, we don't know if WRI00 is well defined. 

Theorem 5.59. If the limit MQQ is a smooth manifold, and the limit mea- 
sure is the canonical measure on MQO, then HQQ is the heat kernel on MQQ. 

Proof In the noncollapsing case, by Colding's theorem [Co], the limit mea- 
sure is the canonical measure on MQO; when M^ = Rfc for some fc, the limit 
measure is also a multiple of the standard Lebesgue measure on R*, see 
[ChCo2]. In these cases, the Laplacian we defined on MQQ is the same one 
from the original smooth structure of MQO. 

Pick any CQ
0
 function / supported in J9R, SO 

(5.60) /    (A*)/^foo = (Aif0o)* f    f^oo = (Xi,oo)kaitoo. 
JMoo JMOO 

Since (Ak)f G CQ
0
, we have for all fc, limj_^00(A:/)CX))

A;aj)oo = 0. By Lemma 
5.11, we have for all fc, \imj^00j

kaji00 = 0.   So WRi00(t)f is a classical 
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solution of the wave equation, when R is big enough, W#)00(£)/ = Woo(£)/ 
is independent of R. Since M^ is a smooth manifold, 

(5.61) e-tAf(x) = -±= /     e-s2/4tW00(s)f(x)ds. 

In view of (5.57), combined with the fact WQQ does not increase L2 norm 
and Hi(x,y,t) converges uniformly to H^x.y.t), we have 

(5.62) e-tAf(x)= f    H00(xryyt)f(y)dy, 
JMoo 

That concludes the proof. □ 

6. Laplacian on metric cones. 

In this section, we assume Mf -^ C(X) where C(X) is a metric cone; 
RicMr1 > 0, MJ1 is complete noncompact and satisfies (0.4) uniformly, n > 3. 

Write poo for the pole of C(-X"), define r(x) = d(:r,poo)- 

Theorem 6.1. //Moo = Cf(^); ^en ^oo is the integral kernel of the semi- 
group e~tA. 

Proof. In view of (5.23), (5.25) and the Young's inequality, one can define a 
semigroup E(t) on I^Afoo) by 

(6.2) E(t)f(x)= [     H00{x,y,t)f{y)dy. 
■/Moo 

We want to compare E(t) with e~iA.  First, by Theorem 3.21, (1.18) and 
(5.23), one easily get 

noo 

(6.3) G00(x,y)= /    Hoofayrfdt. 
Jo 

Pick any L2 function / with compact support. Write 

(6.4) F(xy= [    G00{x,y)f{y)dy. 
JMno 
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We compute 

1 JMoo \       t       / JMoo JO 

(6.5) -7/      /    H00(x,z,s)f(z)dsdz 
t JMoo Jo 

= -7/    /      H00(x,z,s)f(z)dzds. 
t Jo JMoo 

So by (0.4), (5.23), (5.30) and the Young's inequality we have 

(6.6) limmF-F 

in L2 and L1. 
Now we use the assumption that M^ = C(X) is a noncollapsed cone. 

Recall the results in Section 4, we can construction a function 0 = <f)(r) such 
that </> is a smooth function of r, where r(:r) = d(poo > ^) is the distance from 
the pole, and 

(6.7) 0(r) = 1 if r < 12, 0(r) = 0 if r > R + 2, V0 < Coy^- 

So on MQO = C(X) we have A0 = — </>" — (n — Vjfi/r.  This function can 
serve as a cut off function. 

We prove, if F, / = AF G L2 have compact support, then 

(6.8) F= [      G00(x,y)f(y)dy. 
JC(X) 

In fact, assume {fk} is a sequence of Lipschitz functions, /& —> / in L2, and 
all /fc together with /, F are supported in the ball BK(POO)> SO the function 

(6.9) Fk= f      G00(x,y)fk(y)dy, 
Jc{x) 

satisfies AF^ = fk by the discussion in Section 3.   Consider the equation 
A(Ffe -F) = fk- f, i.e. 

(6.10) f     (dFk - dF, du) - f     (fk- f)u = 0, 
JC(X) JC(X) 

for any u G ^1,2• We set « = (i>{Fk -F),sodu = d(f>(Fk -F) + <f>{dFk - dF). 
By the Schwartz inequality, 
(6.11) 
HV^Ffc - F)\\l, - CoUFk - F)\A{RtR+2)\\L2\\y^d(Fk - F)|A(^+2)||L2 

-Mfk-f)\BK\\L>m-F)\BK\\»<0, 
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here A(R,R + 2) is the annulus {x\R < r(x) < R + 2}.   Note we have a 
definite bound for II^IBKIIL

2
 by (1.19) and the Young's inequality.   Note 

also by (1.19) we get, for R > if, 
(6.12) 

m - F)\A{R,R+2)\\I> = IMAWH.*)!!* < C(n, \\f\\I>)(I&-2nir-1)1'9 

= C(n,||/||Ll)i?(3-")/2<C(n,||/||L1)) 

since n > 3. So first, we get that \\d(Fk — F)\\L2 < oo by letting R -> oo. 
Then by letting k -> oo, we have \\d(Fk — F)\\L2 -> 0, since we can choose 
R in (6.11) such that \\y^d(Fk - F)\A(RtR+2)\\L* sma11- 

Now by the (2,2)-Poincare inequality, (0.4), (1.19) and Young's inequal- 
ity, Fk —y F in L2 on compact sets. Also notice, on any compact sets, the 
right hand side of (6.9) converges to the right hand side of (6.8) in L2, by 
the Young inequality (however, in view of (1.19), these convergences might 
not be globally L2). That's enough to imply (6.8). 

Next we compute, for / = AF, F,feL2, 
(6.13) 

IIA(^F) - /||i2 < ||FA</>||i2 + ||(0 - 1)/||L2 + 2|| < #,dF > ||L2 

< C{n)\\F\A(RtR+2)\\Li + ||/U(/i,fl+2)||£3 + Co\\dF\A{RtR+2)\\L*. 

Similar to (6.11), one shows ||<iF||£,2 < oo. So if R —> oo, we have <f)F —> F 
and A(0F) -» / = AF in L2. Moreover, by (6.8), 

(6.14) <t>F{x)= [      G00(x,y)A(^)(y)dy. 
JC(X) 

So the computation (6.5) is valid for the functions <))F and A(^)F): 

(6.i5) ll?omiziL=_Am 

in L2. We already know E(t) in (6.2) is a semigroup, its infinitesimal gen- 
erator is a closed operator (see [Ta]). So by the above computations, this 
infinitesimal generator must be the self-adjoint operator —A on C(X).    □ 

By the discussion in the beginning of Section 4, we have an eigenfunction 
expansion of Laplacian on the unit cross section X. We denote by <f)j (j = 
0,1,2,...) the renormalized eigenfunctions with eigenvalues [AJ > 0, note 
0o = Vol(X)"1/2. fij -» oo when j -> oo. 

Put d = DiamX. Using an argument of Gromov (see [Gr], and Theorem 
4.8 of [Ch3]), we have a more precise estimate of fj,j: 

(6.16) iij>C(T,K)-1d-2j«. 
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On the other hand, on each ball Br(xk) of radius r = d/2(j + 2) on X, we 
define a Lipschitz function ^ supported in Br(xk) using MacShane's lemma 
([Ch3], [ChCo3]): 

(6.17) il>k(xk) = r, ^k(dBr(xk)) = 0, Lip^fc = 1, 

so we can follow the argument of Cheng (see p. 105 of [SY]), and get 

(6.18) ^ < C(K)j2d-2. 

Now we can use Moser iteration, \<f)j\ is bounded by a definite power of 

r- 
(6.19) I^I^C^^r)^^). 

Moreover, <f>j is Holder continuous, see [GT], [Lin]. 
Write i/j = >/^ +a2, here m = n — 1, a = (1 — ra)/2. We write x, y in 

polar coordinates, re = (ri,xi),y = (r2,X2). 

Theorem 6.20. 

00 / 1 \ 
(6.21)      ^ = (nrar ^ ( - ) e-W^2)^ (^) ^(xx) ® ^(x2). 

/Tere 7^. are ^/ie modified Bessel functions: 

In our case A is a self-adjoint operator on the whole cone C(X), namely, 
including the pole POQ. By Corollary 4.25, the separation of variable formula 
(4.16) works for u = f(r)g(x) on the whole C(X) if u and Au are bounded 
on C(X)\ {poo}- So the heat kernel on M^ has the expression as on the 
right hand side of (6.21); the proof goes exactly like the classical case, see 
[Chi], [Ch2] page 592, [ChTal] and [Ta] chapter 8, we omit the details. By 
Theorem 6.1, we have (6.21). 

By Stirling's formula, (6.16) and (6.18), we see the series (6.21) con- 
verges uniformly, when t is bounded away from 0 and ri,r2 stay bounded. 
In particular, HQO is continuous, so by Theorem 5.54 we have Hi —► T/QO 

uniformly. 
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If one of the two points x and y, say, y, is the pole Poo, then there is only- 
one term in (6.21). Note VQ = -a = (m - l)/2, m = n - 1, 

(i    \ § 97rn/2 

is) e"   /4<iW2)(Vol(x)rl- 
As a corollary, we get a new proof of Li's asymptotic formula for heat 

kernels [Lil]: 

Corollary 6.24 (Li). Assume Mn is a complete noncompact manifold sat- 
isfying (0.4), RicMn >: 0.  Then 

(6.25) hm Vol(B^(p))i?(p, y, t) = (47r)-n/2a;n. 

a;n i5 the volume of the unit ball in Rn. 

Proof. Notice, 

(6.26) lim VolCB^jfr))*-"/2 = VQ = n"1 Vol(X). 

So we need to show, 

(6.27) lim t71/2 Vol(X)H(p, y, t) = (47r)-n/2na;n. 
t-+oo 

Assume U -> oo, Mf = (M",^,^1^2) -^ C(X) for some metric cone 
C(X); see [ChCol]. The heat kernel Hi(p,x,t) on M? is 

(6.28) Hi(p,y,l) = tn'2H(p,y,t). 

Here we identify p,^   G   M-1 with p,x   G   M,   however,   dMr>(p,x)   = 

*r     ^M(P)2;)) ^M?1 is the distance on M".   In particular, dufip,x) —>• 0 

as t -* oo. Since Mf ^4 C(X), by Theorem 5.54 and (6.23) we have 
(6.29) 

lim t71'2 Vo\(X)H(p, y, t) = Vol(X) lim Hi(p, x, 1) 
t->oo i->oo 

27rn/2 
= VolWfTooCpoo.Poo, 1) = (*x)-»/*——. 

r(n/2) 

We just need to recall nu>n = 2nn/2(r(n/2))-1 (see [Ta] Chapter 3). 
Finally in view of the almost rigidity theorem [ChCol], we see the above 

results holds for all sequences U —> oo. This suffices to complete the proof. 
□ 

Similarly, we get the asymptotic formula for heat kernels in [LiTW]: 
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Corollary 6.30 (Li-Tam-Wang). Assume Mn is a complete noncompact 
manifold satisfying (0.4), RicA/« > 0. Then forp G Mn, and any R,T > 0, 
(6.31) 

Proof. We use the same argument as in Corollary 6.24. For Xi with 
d(p,Xi) —> oo, we study the heat kernels on the sequence M™ = 
(Mn,p,R2d(p1Xi)-2dx2). D 

We can similarly get a local asymptotic formula for HOQ. 

7. Eigenvalues on compact limit spaces. 

We assume M/1 -^4 MQO, with RicMr1 > — (n - 1)A, M^ compact. A point 
x G MQO is said to be regular, x G 72*, if all tangent cones at x equal to Rfc; 
see [ChCo2]. 

Lemma 7.1. If x eTln C Moo, then 

(7.2) Imffoofoz,*)*^ = (47r)"?. 

Proof. Use a similar argument as the one in Corollary 6.24. □ 

Theorem 7.3. Assume M-1 -^ Moo, RicMf > — (n - 1)A, and for some 
VQ > 0, Vol(Mf) > VQ. Then 

(7.4) lim j-nX^ = 47rr( J 4- ^^^(M^)"! 

Proof In this case we don't need to renormalize the volume on M/1 (see 
[ChCo2]). Note for some D we have DiamA/f < D, i = 1,2,..., oo, by the 
Bishop-Gromov inequality and (1.16), we get 

(7.5) tfHoofaXtt) < CfaAtDiVo). 
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Moreover, almost every point of Moo is in 1Zn. Now by Corollary 7.1, for x E 
T^n, t^H^x^x^t) -> (47r)~n/2 when £ —> 0. By the dominated convergence 
theorem, 

(7.6) limt* Hoo(x,x,t)dx = (4:'ir)~~%iJL00(M00). 

Finally, by applying the Karamata Tauberian theorem (see [Ta] Chapter 8), 
we have 

(7.7) lim A"?N(X) = ^(M^vfe + l)-1(47r)-f, 
A-»oo Z 

where ^(A) is the number of eigenvalues smaller than A. Clearly this implies 
the Weyl asymptotic formula (7.4). □ 

When the limit space MQO is collapsed, at present our results are less 
satisfactory. Recall the notion of Minkowski dimensions; see [Ma]. Assume 
Z is a metric space. For d > 0, let N(Z, e) £ Z be the minimal integer such 
that Z can be covered by N(Z, e) many balls of radius e. Put 

(7.8) v7(Z) = liminf edN{Z,e), 
e-»0 

(7.9) v+{Z) = limsupediV(Z,e). 
€-►0 

Here vd (MQO) can be oo. The upper (lower) Minkowski dimension is defined 
by 

(7.10)       dimMin^) (dimMin,(Z)) = mf{d|t;+(Z) = 0 {y^(Z) = 0)}. 

Lemma 7.11.  There exist Ei(n),E2(n) > 0 such that for any d > 0, 

(7.12) limsup^ /     H00(x,x1t)dx<E2v£(M00), 
t-H) JMoo 

and if, in addition, RicMr* > 0, then 

(7.13) Eiv^iMoo) < liminf ta' /     H^x.x^dx. 
t-^0 JMoo 
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Proof. Let ui<j<iv(M00,v^)jB\/i(a;i) be a covering 0f Moo by a minimal set 
of balls of radius y/i. We add up the integrals of Hoo on these ball an use 
Corollary 2.7 to get the estimates (7.12), (7.13). □ 

Lemma 7.14. Ifv^M^) < c < oo, then there exist C such that 

(7.15) Xi%oo>cfi. 

Proof. We can follow an argument of Gromov (see [Gr] or Theorem 4.8 in 
[Ch3]). Here we use the assumption v^" (MQO) < c < oo to estimate the 
number of balls that is needed to cover M00. □ 

Lemma 7.16. If v^M^) > c > 0, then there exist C depending on n,c, 
such that 

(7.17) X^oo^Cjl 

If k is the maximal integer such that 71^ C M^ is not empty, then 

(7.18) Aifoo<C(M00)(i)i. 

Proof For r > 0, Mf contains j — C{n, c)r~d many disjoint balls of radius 
r for i big enough. The result follows by a well known argument of Cheng 
[Cheng]; see page 105 of [SY]. 

If k is the maximal integer such that 71^ C M^ is not empty, then the fc- 
Hausdorff measure of M^ is positive (see [ChCoS] or [Ch3]). So v^(X) > 0. 
By (7.17) we get (7.18). □ 

If one can also prove for any d > k, 

oo „ 

(7.19) lim^y)c~A^00* = limt5 /     Hoofaxrfdx = 0, 

then by Lemma 7.11, ^M(-Moo), the Minkowski dimension of Moo is no more 
than k. Combine with the results in [ChCoS] and [Ch3], dAf(-Moo) = k. 
However, at present we don't know how to get (7.19). One related question 
is, 
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Question.    Is there an e(n) > 0, such that for any Mn with RicM" > 0, 
any eigenfunction </> of A and any set E with Vol(E) < e Vol(M), we have 

(7.20) / ?>U    ?! 
JMn-E L JMn 
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