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The volume and lengths on a three sphere 
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We show that the volume of any Riemannian metric on a three 
sphere is bounded below by the length of the shortest closed curve 
that links its antipodal image. In particular, the volume is bounded 
below by the minimum of the length of the shortest closed geodesic 
and the minimal distance between antipodal points. 

1. Introduction. 

In this paper we consider the volume, Vol (#), of a Riemannian metric g on 
the three sphere. We let L(g) represent the length of the shortest nontrivial 
closed geodesic in (S3,g). By an "antipodal map", A, on an n-sphere we 
will mean an order 2, fixed point free diffeomorphism. We will let D(g) A) = 
infa.G(5'3 d(x, Ax), and D(g) = s\ipAD(g,A). The main result of this paper 
is: 

Theorem 1.1. For any Riemannian metric on S*3 we have: 

Vo\(g)13>C1mxa{L(9),2D(9)} 

where Ci is a universal constant (which can be taken to be O^QQ)' 

This theorem is an example of a "universal" inequality. This is a term 
introduced by Berger to describe inequalities on a Riemannian manifold 
(M, g) (usually between minimizing objects in some topological class) which 
hold for all metrics g on M. With the glaring exception of Gromov's work 
[Gr] (which we discuss below) most such inequalities are known in 2 dimen- 
sions only. Many of these inequalities involve the systole, sys(g), which is 
the length of the shortest closed noncontractible curve in M. Estimates of 
the form A(g)2 > c(M)sys(g), Where A(g) represents the area, have been 
proved for all surfaces M. The first of these was proved by Loewner (un- 
published) where he finds the sharp value of c(T2) (sharp for the flat regular 
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hexagonal torus). The sharp values of c(RP2) and c(K2) for the projective 
plane (the round one is best) and Klein bottle (the best one is singular and 
not flat!) were proven by Pu [Pu] and Bavard [Ba] respectively. For sur- 
faces of genus 7, nonsharp constants 0(7) (which unfortunately went to 0 
as 7 grew) were first proved independently by Accola [Ac] and Blatter [Bl]. 
Gromov greatly improve these constants in [Gr] so that they grow correctly 
with 7. However, the best constants are still unknown. Finding them is 
likely to be an extremely hard problem. 

None of the above says anything about S2 since it is simply connected. 
However there are two inequalities of this type on S2. The first, due to 
Berger [Be] says that there is a universal constant C2 such that for any 
antipodal map A : 52 —> S2: 

(1.1) Vol(S2,g)12>C2D(g,A). 

The sharp constant is not known, but is conjectured to be that of the round 
sphere. The other result (see [Cr2]) is that 

(1.2) Vol(S2,g^>c3L(g). 

Also in this case the sharp constant is not known. It is conjectured to be 
that for the singular metric one gets by gluing two flat equilateral triangles 
along their boundaries. 

We now turn to higher dimensions. The most important results in the 
area are in Gromov's paper "Filling Riemannian Manifolds" [Gr]. Gromov 
shows that for essential manifolds (which includes Tn, RPn, and all compact 
K(ir,l) spaces) we have V(g)n > c(n)sys(g). However, this says nothing 
directly about 5n (or any compact simply connected manifold). For example 
the natural generalizations of 1.1 and 1.2 above for 52 are open questions 
for 5n, n > 3. Note that for any Riemannian manifold (M,g) of injectiv- 
ity radius inj(M) and any r < ^inj(M) the metric spheres S(x,r) with 
their induced Riemannian metrics g satisfy D^^A) > 2r, so an estimate 
Yo\(g)n > c(Sn)D(gJA) which was sharp for the round spheres would give 
sharp estimates for the volume of small metric spheres. See [Crl] for non- 
sharp estimates for the volume of such metric spheres. 

In the other direction, Ivanov (see [II] or [12]) has given examples of a 
sequence of metrics on S3 that Gromov-Housdorff converge to the standard 
metric but whose volumes go to zero. 

Although Theorem 1.1 does not yield either 1.1 or 1.2 for S3 it does show 
that for any given metric one or the other inequality must hold. 
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For A : 53 -> 53 an antipodal map we let L(g, A) be the infimum of the 
lengths of curves, 7 such that 7 links Aft). Here we will say 7 links r if 
either 7 intersects r or the linking number of 7 and r is nonzero. We consider 
two cases. If there is no closed curve 7 that links -4(7) of length less than 
2D(g) A) then L(#, A) = 2D(g, A) and the minimum length 7 is the union of 
two minimizing geodesies between x and A(x) for some x. Otherwise there 
is such a closed curve 7. In this case we can apply curve shortening to 7 to 
get a continuous family jt each of which is shorter than 7 and hence does 
not intersect A(jt)' Thus we see that jt links with A^t) and hence has 
length bounded below by L(^,^4). By looking at limits of such 7^ we find 
nontrivial closed geodesies of length less than the length of 7. Since this is 
true for all such 7 we find that there is a closed geodesic of length L(g) A). 
Thus the invariants L(g) and D(g, A) are thus related to L(g, A) via: 

L(g,A)>wm{L(g),2D(g,A)}r 

Theorem 1.1 thus will follow from: 

Theorem 1.2. For any Riemannian metric on 53 and any antipodal map 
A, we have: 

Volig^ZCiHAtg) 

where Ci is a universal constant [which can be taken to &e 3^). 

The fundamental result in the proof of Gromov's isosystolic inequal- 
ity is his filling radius theorem: Fillrad(fl') < cnVol(^)n7 which holds for 
all Riemannian n-manifolds (here C3 < 265). We define the filling radius, 
Fillrad(<7), in the next section. We also make fundamental use of it since 
Theorem 1.2 will thus follow from: 

Theorem 1.3. For any Riemannian metric on S3 and any antipodal map 
A, we have: 

Fmmd(g)>C4L(g,A) 

Where C4 is a universal constant (which can be taken to be ^). 

The proof of this theorem is a generalization of an argument that works 
on S2 to yield: 

Theorem 1.4. For any Riemannian metric on S2 and any antipodal map 
A we have: 

Fmrad(g)>lD(g,A). 
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This theorem along with the Filling radius theorem recovers Berger's 
estimate equation 1.1 (although with a worse constant). We present the 
argument in section 3. 

The author would like to thank Herman Gluck for helpful conversations. 

2. Notation/Preliminaries. 

The main purpose of this section is to set up notation and remind the reader 
about the Filling radius (for details see [Gr]): 

In [Gr] Gromov introduced the notion of the filling radius (we use integer 
coefficients) Fillrad (M) of a closed n-dimensional manifold M with a metric 
d (not necessarily Riemannian). We will only consider the case where M 
is homeomorphic to S2 or 53 and the metric is Riemannian. There is a 
natural isometric embedding (in the metric space sense!) i : M —>• L00{M) 
defined by i(x)(') = dM^r)- The filling radius is the infimum of r such 
that i(M) bounds in the tubular neighborhood Tr(i(M)) in the sense that 
i*(Hn(M]Z)) vanishes in Hn(Tr(i(M))\Z). We will represent a filling as 
continuous map a : E —> Tr(i(M)) from an n + 1-dimensional simplicial 
complex S such that cr^s : dT, -> i(M) represents a generator in H^M] Z). 

We note that for any fixed e > 0 by taking Barycentric subdivisions as 
needed we may assume that the cr-image of any simplex has diameter less 
than ein L00{M). 

We note that there can be no continuous map /:£■—> i(M) which 
agrees with a on 9E since a las represents a generator of the top homology 
(so is not a boundary). Our proof of Theorem 1.4 will be by contradiction. 
We assume that Fillrad (g) is small, take a filling a : E -» L00(M) as above, 
and show that a : <9£ —)> i(M) extends to a continuous / : E —> i(M) 
giving the desired contradiction. Our proof of Theorem 1.3 uses a similar 
contradiction. 

We use the notation £;(£) to denote the i-skeleton of a simplicial complex 
E. For each i = 0,1,2,...,n+l We will let {A*} denote the set of i simplices 
in the n + l dimensional simplicial complex E. For each z-simplex A*, we 

let Gj be the connected graph (i.e., 1-complex) Gj = UlS^A^1)^ is a 

face of A£+1}. By taking Barycentric subdivisions if needed we can assume 
that any two simplices intersect in a single (possibly empty) common face. 
Then we see that H^G1,) is generated by the boundaries of the 2-simplices 
that are faces of the n + l simplices in the above union, since Van Kampen's 
theorem implies that the two complex U{S2(A]J+1)|AJ is a face of A]*4"1} is 
simply connected. 
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3. Proof of Theorem 1.4. 

Proof of Theorem I A. Let e > 0 and choose a filling a : S -» L00(S2
1g) 

of (S2,g) in the Fillrad(5) + e tubular neighborhood of 52 C L00^2,^) 
(we will confuse S2 with i(S2) since i is an isometric embedding). By taking 
subdivisions we can assume that diam ((j(A|)) < e for each A| € S. We will 
prove the theorem as suggested in the previous section by showing that if 
Fillrad (g) <    '%' ^ then we can find a continuous map / : E -» S2 extending 

the map a]^. We choose e so small that 2Fillrad (g) + 3e < —%—^ 

Step 1: The 0 and 1 Skeletons. 
We define / on the 0-skeleton, So(E), 0f S by mapping each 0 simplex 

v to a point f(v) on ^iS2) closest to cr(v), hence 

^L-(52)(/(^)^(^)) < Fillrad (g) + e. 

In particular, / takes O-simplices in the boundary to the same point as cr 
does. We note that if two vertices vi and V2 are the endpoints of an edge 
then 

ds*(f(vi)J(v2)) = dLoo(52)(/(vi),/(t;2)) 

< ciLoo(5a)(/(i;i),(7(vi)) +dLoo(52)((7(vi),cr(v2)) 

+ dLoo{S2)(a(v2),f(v2)) 

<2Fillrad(g) + 3e< D^A\ 
Li 

We define / to map each nonboundary Aj G ^(S) to a minimizing geodesic 
between the / image of the endpoints, hence the length L(Aj) satisfies 

I/(Aj) < ^ • For Aj on the boundary, we let /|Ai = (j|Ai and hence 

Diam(/(AJ))<€. 

Step 2: The 2 skeleton. 
We now extend / to ^(S). We note that /(<9A?) n A o /(G?) = 0, for 

otherwise there would be a point x G /(G2) such that A{x) G /(G2) but 
this cannot happen since step 1 guarantees that the diameter of G2

A is less 
than D(g,A). 

We can thus extend / to S2 (S) in such a way that we have 

/:Af^S2-Ao/(G2). 

Note that for boundary simplices, A2, this will hold when we take /|A2 = 

cr|A2 by the triangle inequality. 
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Step 3: The 3 skeleton. 
Now for every A| in S the previous step guarantees that 

f-.dAl^S'-AofiS.iAl)). 

Hence, since /l^a misses a point, we can extend / to A|. 
This completes the proof. 

4. Proof of Theorem 1.3. 

Throughout this section S3 will be endowed with a fixed Riemannian metric 
g and an antipodal map A : S3 -> S3. 

We will proceed analogously to the proof of Theorem 1.4. However, in 
this case we will get our contradiction by finding a singular chain in S3 

whose boundary is a restricted to c?E. We will do this one skeleton at a 
time, associating to each simplex A^ a singular simplicial chain c^ whose 
boundary dc? corresponds to the already defined chain associated to dA? 
(i.e. if dA? = Sfc(-l)a^)Aj"1 then dc?- = E^-l)^'^^"1). We do this 
while associating simplices A;- of dT, to the chain consisting only of a applied 
to £4. 

Let e > 0 and choose a filling a of (S3^) in the Fillrad((/) + e tubular 
neighborhood of 53 C //^(S3,^). By taking subdivisions we can assume 
that diam(F(Af)) < e for each Af e E. We will prove the theorem by 

showing that if Fillrad (g) <    Y2 ' then we find a chain as above extending 

■0"|$E- We choose e so small that 2Fillrad (g) + 3e < ^ K During the rest 
of the argument we will associate boundary simplices to themselves without 
explicitly mentioning this special case. The arguments for these simplices 
will always follow from the other arguments along with the fact that the 
diameters are bounded by e. 

Stepl: The 0 and 1 Skeletons. 
We define the 0-chains and 1-chains, c^ and c], associated to the 0- 

skeleton, Sb(E), and the 1-skeleton, ^(E) of E just as before; i.e., by map- 
ping each 0 simplex to a closest point on S'3, and mapping each edge in the 
one skeleton to a minimizing geodesic between the e'ndpoints. Hence the 
length of the image of a 1 simplex is less than 2Fillrad (g) + 3e < g K We 
can assume (by small moves) that 0-chains of distinct vertices of E are dis- 
tinct and that the geodesic segments only intersect each other at endpoints. 
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Step 2: The 2 skeleton. 
Now consider a two simplex A| of E. Let G? be the embedded geodesic 

graph in S3 which is the union of the geodesic segments that correspond to 
the edges of G|. We know that the support of dcj (i.e., a geodesic triangle) 
does not intersect A^GJ)) since in fact Gj does not intersect J4(((5|)), for 
if so there would be an x e G2- such that A(x) is also in G2. But this can't 

happen because the diameter of G2
A is < 5-5^ < L{g}A), 

We claim that dc^ represents zero in H\{S3 — A{G\)). Alexander duality 
along with the fact that iJi(G^) is generated by {9c^|A| and A| lie in a 
common 4-simplex} says that we need only show that C(dc? ^4(9c|)) = 0 
for each such c|. So assume that C{dc2, A(dc\)) 7^ 0. Since A| and A^ lie in 
a common 4-simplex they share at least one vertex and hence we let 7 be the 
closed simplicial curve (of combinatorial length 6) which is just 3A^ followed 
by dAj^. We let 7 be the corresponding closed piecewise geodesic curve in G| 

of length < 6 g ' = L(g,A) (which of course does not intersect ^(7)).By 
the definition of L(p, ^4) we see that £(7, ^(7)) is zero as are £(<9c|, A{dc2)) 
and C{dcl,A{dcl)). On the other hand 

0 = £(7,^(7)) = C{d^A{d^)) + C{dclA{dcl)) 

+ C{dc),A{dcl)) + C{dclA{dc2)) 

and hence C^c^AtdcD) = -£(<94,,4(dc|)). But since A2 = id and A 
preserves orientation (since it is fixed point free) we have 

Cidcl^idcD) = C(A(dc%A2(dcl)) = CiAidfyM) 

and the claim follows. 
Thus we can define a 2-chain c2 whose boundary is dc2 and whose support 

is contained in S3 - A(G2). 

Step 3: the 3 and 4 skeleta. 
Let A3 be a 3-simplex in E. For each 2-face A| the support of c| lies in 

S3 - A(G2
k) CS3- J4(G?) (since G? C G2

k). Thus we have_already defined 
the cycle dc3 in such a way that its support is in S3 — A(G3) and since by 
Alexander duality H2(S3 — A(G3)) = 0 we can find a chain c3 with boundary 
dc3 whose support also lies in 53 — A(G3). Thus we can extend to the 3 
skeleton. 

Now for A^ a 4-simplex of S we have now defined the cycle dcf in such 
a way that its support is in S3 — A(Gf). Since the support of dcf misses a 
point of S3 there is a cf whose boundary is dcf. D 
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