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Existence and uniform decay of solutions of a mixed problem based 
on the degenerate equation 

#iOM)2/tt + K2(x,t)yt - Axy = 0 

are studied. Under the assumptions that we have a nonlinear 
boundary damping (1 + a(t) \yt\p)yt and a boundary source term 
of type a(£)|2/|7t/5 we establish the global existence theorem pro- 
vided p > 7 and we obtain the uniform decay of strong and weak 
solutions considering p = 7 and the coefficient a(t) producing a 
damping effect. 

1. Introduction, 

Throughout, Q will be a bounded domain of Rn with C2 boundary F, F = 
TQ U Fi, with both FQ and Fi having positive measure. With this geometry, 
we shall consider here the following problem 

fK1(xJt)yu-\-K2(x,t)yt-Axy = 0 in  Q = Q x (0,oo) 

y = 0 on Ei = Fi x (0, oo) 

(1.1)    { 
^ + yt + a(t)(\yt\

f)yt-\y\^y) = 0 on Eo = rox(0,oo) 

^(x, 0) = y0(x)    and   ^(z, 0) = yl(x)       for x G fi 

1Research partially supported by a grant of CNPq-Brazil. 
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where 

(1.2) 0<7,p<     if   n>3     or    7,/9>0    if   n=l,2 
n — 2 

and v denotes the unit outward normal vector to the boundary. 
The main goal of this paper is to study the existence and uniform decay 

of solutions to (1.1), assuming that Ki(x^t) can vanish on Q. When a(t) 
acts as a damping mechanism and p > 7, we prove existence of strong and 
weak solutions to (1.1), when p = 7 the uniform decay of the energy 

(1.3) e(t) = l f K1{x,t)\yt(x,t)\2dx+ f \Vy(x,t)\2dx 

is obtained. 
This kind of problem is specially related to the study of transonic gas 

dynamics, see e.g., Lar'kin [8]. Nondegenerate evolution equations with 
nonlinear feedbaks acting on the boundary have received considerable at- 
tention and in this direction we refer the works of Lagnese and Leugering 
[7], Lasiecka and Tataru [10], Zuazua [13] and references therein. Concern- 
ing nonlinear damping and source terms acting on the domain we refer the 
work of Georgiev and Todorova [5]. The existence and boundary stabiliza- 
tion of solutions to degenerate evolution equations were early considered in 
Literature (see Cavalcanti et al. [1, 2]). The present problem deals with 
degenerate evolution equations and nonlinear boundary feedback combined 
with a nonlinear boundary source term. This was not previously considered 
in Literature and brings up new difficulties. 

The existence of solutions is obtained from the Faedo-Galerkin method 
(see Lions [11]) and the uniform stabilization is proved by using the per- 
turbed energy method (see Zuazua [13]). 

Our paper is organized as follows. In section 2 we give some notations 
and state our main result. In section 3 we obtain existence of strong solutions 
to problem (1.1) and in section 4 we obtain the uniform decay of the energy. 

2. Assumptions and Main Result. 

We define 

(2.1) V = {ueH1(n)]u = 0 on Ti}, 

(u^v) = / u{x)v(x)dx,   (i4,v)r   = /   u(x)v{x)dT) 
Jet JTo 
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|u|2= f \u(x)\2dx;   \u\l= f  KaOpdr, 

Mpr0 = ([  KaOIPrfr>)     >  IHIoo = ess sup||«(t)|Uoo(n). 
\Jro / *>o 

The variational formulation associated with problem (1.1) is given by 

(2.2) (KMyttfaw) + (K2(t)yt(t),w) + (Vy(t),Vw) + (yt(t),w)ro 

+ a(t)(\yt(t)\pyt(t),w)ro 

= a(t)(\y(t)Fy(t),w)ro,\/w€V. 

In order to obtain the existence of solutions we consider w = yt(t). 
Concerning strong solutions, an additional estimate is needed, that is, the 
one obtained by derivating the variational formulation (2.2) with respect to 
t. In view of the surface integrals, it is not suitable the use of a special basis, 
for instance, those formed by eigenfunctions. But the presence of the term 
|2/tt(0)| leads us to technical problems. To solve this question we assume 
that 

(H.l) Ki(x,0) >d>0 a.e in Q 

and we make the following compatibility hypotheses upon the initial data. 

(A.l) Assumptions on the Initial Data. 

Let us consider 
yVe^nff2^) 

verifying the compatibility condition 

(H.2) 2£ + yi +a(o) (|yi|V - lyOjV) = 0 on To. 

We observe that even in the linear case, it is not clear that hypothesis 
(H.l) and (H.2) imply the boundness of |y«(0)|. In fact, in order to notice it 
let us transform problem (1.1) into an equivalent one with null initial data. 
More precisely, defining 

(2.3) <KM) =y0(x) + ty1(x);     (x,t) £ ft x (0,oo) 

and 

(2.4) v(xyt)=y(xJt)-(f)(x,t) 
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we obtain the equivalent problem for v 

(2.5)  { 

where 

Kivu + K2Vt - Av = F in Q 

v — 0 on Si 

g + vt + a(t) (\vt + (f>t\
p (vt + fa) -\v + W {v + <f>)) = G on So 

t;(0) = vt(0) = 0 

(2.6) F = -K2<t)t + &<t>   and   G = -^ - fa. 
ov 

The new variational formulation associated with (2.5) is given by 

(2.7) (#!(*)««(*)» f) + {K2{t)vt(t),w) + (Vt;(t), Vu/) + («*(*), «;)ro 

+ a(t) (^(t) + ^(t)|p (t;t(«) + &(*)),fOiv, 

= a(0 (|t;(t) + mV (v(t) + <t>(t)), ™)ro 
+ (F(t),w) + (G(t),w)ro. 

Considering w = ^(0) in equation (2.7) from (H.l), (H.2), (2.6) and 
taking into account that v(0) = ^'(0) = 0 we conclude that there exists 
C > 0 such that 

(2.8) Mo)|2 < a 

Next, we are going to consider 

(A.2) Assumptions on the Coefficients. 

Let us assume that 

(H.3) KuK.2eW1'oo(0,oo\Loo(n))}. 

(H.4) K2 - i \Kltt\ >6>0 a.e.    in Q. 
z 

The hypothesis (H.4) was widely used in degenerate problems. We refer 
the reader to the works of the authors Lar'kin et al.  [8] and Cavalcanti et 
al. [2]. 
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(A.3) Assumptions on the Coefficient a. 

Let us consider 

(H.5) aeW1'00(0,00)0^(0,00),  a>0, 

verifying 

(H.6) -moa(t) < at(t) < -mia(t)    for all    t > 0 

for some mo, mi > 0. 
Now we are in position to state our main result. 

Theorem 2.1. Under the assumptions (A.l), (A.2), (A.3) and assuming 
that 7,^ satisfy the hypothesis (1.2) with p > 7, problem (1.1) /ms a unique 
strong solution y : ft —> R verifying 

(2.9) j/Gi:oo(0,oo;y)    and    y' G L^oo; F), 

(2.10) V^/eL^ooiL2^))    and   y" G L2(0,oo;L2(n)), 

i^iZ + ^y'-Ay^O    m    Q, 

y = 0    on    Si, 

^+y' + a(t)(|y'|py,-|yry)=0    on    EQ, 

y(0) = y0    and   ^(0) = y1    on    Q. 

Moreover, ifp = J and mi is large enough, there exists a positive con- 
stant So such that 

(2.11) E(t)<3exp(-UY    Vi>0    and   Ve€(0,eo]. 

Theorem 2.2. Assume that assumptions (H.l), (A.2) and (H.5) hold; con- 
sider a(0) = 0 and that (H.6) holds for all t G (to, +00). T/ien, given 
{^Ay1} € V x L2(f2), problem (1.1) possesses at least a solution in the 
class 

(2.12) y G C0([0,00); f) n CH[0,00); L2(f2)). 

Jn addition, we obtain the same uniform decay rates given in (2.11) for 
the weak solution and for allt>to> 
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3. Existence and Uniqueness of Solutions. 

In this section we are going to obtain existence and uniqueness of strong and 
weak solutions to problem (1.1) using the Faedo-Galerkin method. For this 
end we represent by {WJ};GN a basis in V fl JT2(fi) which is orthonormal in 
L2(fi)) by Vm the subspace of V generate by the first m vectors {wi, • • ■ , wn} 
and we define for each e > 0 

771 

(3.1) Ki}£ = Ki + e   and   vem(t) = ^2,9ejm{t)ujj, 

where vern{t) is the solution of the following Cauchy problem 

(3.2) 

{Ku{t)v'Ut),v}) + {K2{tym{t)tw) + {Vvem(t),Vw) + {v'em{t),w)TQ 

+ «(*) {Wemit) + ^(«)r «m{t) + ^(*)). w)^ 

= "(*) (IWO + 0(<)r («««(«) + 0(*)),uOro 
+ (F(t)>«;) + (G(<),«;)ro,    Vti; € Fm 

(3-3) Uem(0)=^m(0) = 0. 

The above approximate system is a normal one of differential equations 
which has solution in [Q, T£m[. The extension of these solutions to the whole 
interval [0,T] is a consequence of the first estimate which we are going to 
prove below. 

A Priori Estimates. 

The First Estimate. 
Replacing w by v'em(t) in (3.2) we obtain 

2**l\»/i vem\vl I   «   ^-^J \\vem\uJ   '   r \"/ Mp+2,ro       \   em^'Wo 

=2a(t) {\vem(t)+m1 (vem(t)+m, {v'em(t)+m))ro 
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7 + 2 

Existence and Uniform Decay of Solutions 457 

+ a(t) (\v'sm(t) + <P'(t)\p (v'em(t) + ^(t)) , <P'(t))ro 

- a(t) {\vem(t) + mP (vem(t) + <P(t)), ^(t))ro 

+ (F(t)Jm(t)) + {G(t),f/m(t))ro. 

Making use of Young's inequality ab < C(ri)ap + r)bq, where i + i = 1 
and r) is an arbitrary positive number, considering the assumptions (H.4) 
and (H.6), from (3.4) we infer 

(3.5) 

d_{l 
dt 1 2 \lKi,S)<m(t) + ^ |V^(i)l2 + ^ ll««m(t) + mwigro 7 + 2 

1/0+2 
+ (* - i?) HM+ (1 - n) \<m{t)\v + (1 - »?)«(*) \\<m{t) + ^(t)|ip+2>ro 

^ ^|i?(<)|2+^ |G(t)|'o+^m<m{t)+wciro 
+ Ci(»7)a(t) \\v£m{t) + ^(i)|lS2

2,ro + Cato, ||a||) |Iv1!!^ 

+ a(t) \\vem{t) + m\\y?2,r0 + CsdHI) H^lKro • 

Estimate for / := ^(t) ||<m(t) + 0'(t)||^2,ro • 

Since p + 2 > 7 + 2 then L'>+2(ro) M' LT+2(ro) and therefore we can 
write 

(3.6) |J| ^^aW+^a^Qll^W + ^WH^, 

where C4 is a positive constant independent of e and m. 
Combining (3.5) and (3.6), integrating the obtained result over [0, t] 

taking (3.3) into account, employing Gronwall's lemma and choosing 77 > 0 
sufficiently small we obtain the first estimate 

(3.7) y[K^(t)v'em{t)    + \Vvem{t)\2 + a{t) \\vem{t) + m\\^v0 

+ ft
Q\<m{s)\2ds + £\v'em(s)\2rodS 

JO 
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where Li > 0 is independent of e and m. 

The Second Estimate. 

Differentiating (3.2) and substituing w by Vem(t), we have 

(3.8) 

dt I 2 

+ (ir2(tKm(t))<m(i)) + |<m(t)|2o 

+ o'W fltUO + ^(*)r KmW + ^(0) .tC(*))r0 

+ (p+l)a(t)(K«m(*) + ^(*)r.^(t))r„ 
= «'(<) (\vm(t)+mr (v£m(t)+m),v'ut))ro 

+ (7 + !)«(*) (|f«n(t) + ^(Ol7 («im(0 +.^(*)) ,«L<*))r0 

+ (F'(t),<m(t)) + (G'(t),<rn(t))ro. 

Estimate for A := a'(t) (\v'em(t) + ^Wl" Km(0 + W)), ^m(t))To • 

Prom assumption (H.6) and using the inequality ab < -^-a2 + r)b2,r) > 0, 
we conclude 

(3.9) l/il^^llt^W + ^WH^, 

+ moVa(t)(\v'£m(t) + mP^"m(t))- 

Estimate for I2 := a'(t) (\vem(t) + ^(f)|7 (vm(t) + 4>(t)) ,<n(*))ro • 

Taking into account that ^J+T, + 2^f2 "*" 5 = •'•' using the generalized 
Holder inequality, the continuity of the trace operator 70 : H1^) —> L9(r), 
for 1 < q < rj^Ef, and the first estimate, it follows that 

(3.10) |/2| < C5 \\v£m{t) + ^(t)||^+2,ro \\vem{t) + ^(i)||27+2,r0 |«L(*)|r0 

<C7{T,rj)+r,\vn
m(t)?. 

Estimate for /3 = (7 + l)a(t) (1^(0 + m? Km(t) + <W)) ,<m(*))ro • 

Considering the same arguments used in (3.10) we obtain 

(3.11) IJsl <Cs(T,V)\Vv'£m(t)\2 + V\v,:m(t)\2 ■ 
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Making use of assumption (H.4), combining equations (3.8)-(3.10), in- 
tegrating over [0,t] the obtained result taking equation (2.7) into account, 
employing Gronwall's lemma and choosing 77 small enough we obtain the 
second estimate 

(3.12) 

i^M*k»(*)f+ivtuoi2+r K.WI
2
* 

+ jf Kn(»)\l0ds + ^a(t) (KM + fisW^Ks^ds < L2 

where L2 > 0 is independent of e and m. 

Analysis of the Nonlinear Terms. 

Prom the above estimates we deduce 

(3.13) {v£m}   is bounded in L2(0,T;fT1/2^)), ' 

(3.14) {<m} is bounded in L^CTjfr1/2^)), 

(3.15) {<m} is bounded in L2(0,T;L2(ro)). 

Prom (3.13)-(3.15), observing that the imersion H1/2^) <-> L2(To) is 
continuous and compact, and making use of Aubin-Lions theorem, we can 
extract a subsequence {ven} of {v£m} such that 

(3.16) veil->ve and v'^ -> v'e a.e. on Eo,r■= To x (0,T). 

Therefore, from (3.16) it follows that 

(3.17) Ive^Ve^-^ [ve^ve and   |^|^v1^ -> \v'e\
pv'e a.e. on Eo.r- 

On the other hand, from the first and second estimates we obtain 

(3.18) {M7%J   is bounded in L
2
(SO,T), 

(3.19) {1^1%,}   is bounded in L
2
(SO,T). 

Thus, combining (3.17)-(3.19), we deduce from Lions' lemma 

■l^pVeji-Hvel7^ weakly in L
2
(SO,T), 
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KNM -" \<\Pv'e weaklyin £
2
(SO,T). 

The above convergences are sufficient to pass to the limit in the nonlinear 
terms of (3.2) using standard arguments. Prom this and taking (2.4) into 
account we obatin 

(3.20) Kw" + K^ - Ay = 0 in 2^(0, oo; L2(0)). 

Moreover, from the generalized Green's formula we infer 

(3.21) ^ + W + a(*)(|lft|'lft-|!/Pl/) = 0 in LL(0,oo;L2(ro)). 

Uniqueness. 

Let yi and yi be strong solutions to problem (1.1). Defining z — y\ —yi, 
we deduce from (3.20) and (3.21) 

(3.22) (#!*"(*), w) + {KiTHfy.w) + (V2(t), Vw) + (z\t),w)^ 

+ a(*)(|»i|Vi-|l/2r^ti;)ro 

= «(*) (Iy2|7y2 - |yi|7yi,^)ro, 

for all w G V. 
Substituing ti; = z'ify in (3.22), we obtain from (H.4) 

2 
ro | jl-1 v^M^wf + | |Vz(t)|2} + 5 |^(t)|2 + [*'(*) 

<a(t)(|lft|7w-|»i|7»iy(*))r0 

<^(7)/ (lwl7 + liftl7)k(*)l|^(*)|rfr. 

Integrating the last inequality over (0,t), using analogous considerations 
made in the second estimate (see estimate for I2 term) and employing Gron- 
wall's lemma, we obtain ^(t)! = |V2;(i)| = 0. This concludes the proof of 
uniqueness for strong solutions. 

Existence of Weak Solutions. 

Let us consider 
{y(V}€FxL2(n). 

Since 

£(-A) = jt* € V n H2(fi); |^ = 0 on TQ j 
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is dense in V and JSQW 
n #2(^) is dense in L2(Q), there exist {y£} C 

I>(-A) and {yi} C ^(O) H H2(fi) such that 

(3.23) i/J ^ t/0 strongly in V, 

(3.24) vl-^V1  strongly in L2(fi), 

and, since a(0) = 0, the compatibility conditions given in (H.2) are verified, 
that is, for each fi G N, one has 

dv 
-^+yl = 0 on To. 

Then, repeating the same arguments used in the first estimate and in the 
uniqueness of strong solutions, we deduce that there exist {t/M} a sequence 
of strong solutions of problem (1.1) and also y : Q —> R such that 

(3.25) yM->y strongly in C0({0,T];V), 

(3.26) y^ -»■ y' strongly in C0([0,T]; L2(f))), 

and 

^iy" + K2y' - Ay = 0 in L2(0, T; V") / K1y" + K2y'-Ay = 0 
(    7) I  y(0) = y0; y/(o) = y1. 

Prom now on we are going to define a weak solution to problem (1.1), a 
function y which verifies (3.27). 

4. Uniform Decay. 

The derivative of the energy defined in (1.3) is given by 

(4.1) e'(t) = - (K2(t) - ^(t),y,2(t)) - W^f To 

-a(t) wmwzUo+aw (ly(*)r»(*),y'(*))r0 • 
Defining the modified energy by 

1 ...      M ,.XM7+2 
(4.2) ^(*) = e(t) + ^a(t)||»(t)||^fro 
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we obtain from the assumptions (H.4), (H.6), (4.1) and from (4.2) 

(4.3) E'(t) < -6 \y'(t)\2 - \y'(t)\2ro - a(t) Hy'^H^Fo 

- ^T2mia^ HvWIlSvo + 2aW (IwWryWVW)^ • 

Considering the Young's inequality ab < r)oP + C(r))bq with p = 7 + 2, 

q = ^ij and C(r]) = TI'T+I and supposing that 7 = p, we deduce 

(4.4) E'(t) < -6 \y'(t)\2 - \y'(t)\2ro - a(t)(l - 2,,) |^'(t)11^ 

Choosing r/ = 4-(7+i)j we have 2 [4~(7+1)]< | and consequently from 
(4.4) it follows 

(4.5) E'(t)<-S\y'(t)\2-\y'(t)\2ro 

where 

7 + 2 

For every e > 0 we define the perturbed modified energy 

(4.6) Ee(t) = E(t) + em, 

where 

(4.7) ^(t)= f Ku/ydx. 
Jn 

In what follows let A > 0 be a positive constant such that 

(4.8) M2< A|Vi;|; VveV. 

Proposition 4.1.  There exists Ci > 0 5^c/i fftat 

\Ee(t)-E(t)\<eCiE(t)9    \/t>0   and   Ve > 0. 
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Proof. Prom (4.7), (4.8) and using Schwarz inequality we infer 

\m\ < ll^ill^2A1/2e(t) < WmH2X^Eit) 

and from (4.6) we conclude the desired inequality with Ci = H^iHoo  A1/2. 
□ 

Proposition 4.2.  There exist C2 > 0 and ei > 0 such that 

E'£(t) < -eC2E(t);    Vt > 0    and   ee (0,£i]. 

Proof. Differentiating ?/>(£) with respect to t and replacing Kiy" by —K2y' + 
Ay in the obtained result, it follows that 

(4.9) </>'(*) = / K^ydx - f Kw'ydx + f Ayydx + f Ki\i/\2dx. 
Jn Jn Jn Jn 

Now, using the generalized Green formula and taking into account that 

^ = -y'-a(t)|y'|V + «(Olyry 

we deduce from (4.9) 

(4.10) V'W = f Kiy'ydx - f K^y'ydx - f \Vy\2dx + [ K^y'^dx 
JQ JQ JQ JQ 

- [ y'ydY-ait) f  \y'Fy'ydr + a(t) [  \y\^2dT. 
JTQ JTO JTO 

Adding and subtracting the terms /ro Kily'^dT and a(t)/ro lyp^dr from 
(4.10), we obtain the following inequality 

(4.11) 

</>'(*) < -E(t) + 2 / KM2dx + 2a(t) f  \yP+2dr 
Jn Jr0 

+ f K'^ydx - / Kiy'ydx - / y'ydT - a(t) [  ly'Py'ydT. 
Jn Jn JVQ JTQ 

Making use of the inequalities ab < ■ha2 + r)b2 and ab < 0(r])ap+ ribg
) where 

- + i = 1 and ry > 0 is arbitrary, and considering (4.8), we conclude from 
(4.11) 

(4.12) 

Mt) < - [1 - (8 + M E(t) + 2a(t) HyWH^ 
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+ Afifo) |y'(t)|2 + M2(r?) |y'(i)|Jo + M3(rj)a(t) Hy'^H^ro ' 

where 

^(^^^ly'Wl   and Mz{r]) = e1{'n) 

and Co > 0 is such that |y|r0 < ColVyl- 
Choosing 77 > 0 so that C2 = 1 - (8 + 7)77 > 0 from (4.12) we have 

(4.13)        V'(*) < -<hE{t) + 2a{t) ||y(«)|lSir0 

+ Mx |y'(t)|2 + M2 \y'{t)\2To + M3a(t) ||y'(t)|(^ . 

Taking the derivative in (4.6) with respect to t, combining (4.5) and 
(4.13), it follows that 

(4.14) E'e{t) <-{8- eMx) \y'{t)\2 - (1 - eM2) |y'(£)|2o 

-a{t){l-eMz)\\y\t)\\^2>Vo 

-{P-2e)a(t)\\y(tW1?2,Vo-sC2E{t). 

Defining 

£l=min{^iw^ 2M3J ' 

then, for all e £ (0,£i], we obtain from (4.14) the desired result and, conse- 
quently, the Proposition 4.2 is proved. □ 

Proof of the Uniform Decay. 

Let 

£o = min{l/2Ci,£i}, 

where Ci > 0 is given in Proposition 1, and let us consider e E (0,£o]- As 
we have e < l/2Ci, we conclude from Proposition 4.1 

(4.15) ij5(t) < E£(t) < ^Eit) < 2E{t)-    Vt > 0. 

Consequently —eC^Eit) < — ^C2E£(t) and it follows from Proposition 2 

E'M < ~C2Ee(t). 



Existence and Uniform Decay of Solutions 465 

Therefore 

!(*M«P(§0)£O. 
which implies in view of (4.15) that 

E(t)<3E(0)exp(--Uy 

This concludes the proof of Theorem 2.1. □ 
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