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Non-convergence and instability in the asymptotic 
behaviour of curves evolving by curvature 

BEN ANDREWS 

We consider curvature-driven evolution equations for curves in the 
plane, and prove that the isoperimetric ratios of the evolving curves 
generically approach infinity if the speed of motion is proportional 
to curvature to a power less than 1/3. 

1. Introduction. 

Many authors have considered the motion of curves in the plane by speeds 
depending on curvature and normal direction: If 70 is a convex closed curve 
given by an embedding XQ : C —> M?, this motion is described by an equation 
of the form 

(1) J^&t) - -^(n(e,t))(^t)rn(e,t), 

^0)=a?o(0, 

for all £ in C and t G [0, T), where xt = #(., t) is a smooth embedding for each 
t G [0,T), n(£,£) is the outward unit normal vector to the curve jt — xt(C) 
at the point #(£, £), ft(£,£) is the curvature of 7* at #(£,£), and ip : S1 -» R 
is a smooth positive function. We write Afrt] for the area enclosed by the 
curve 7£. 

A well-known example of such an evolution equation is the curve- 
shortening flow, in which a = 1 and ip = I. Gage [14, 15] and Gage and 
Hamilton [18] proved that convex embedded curves become circular while 
contracting to points, and Grayson [19] extended this to arbitrary embed- 
ded closed curves. The case a = 1/3, ip = 1 is natural in affine geometry, 
and has been applied to image processing and related problems. It has 
been considered both in the convex case ([25], [3]), where solutions become 
elliptical in shape as they contract to points, and in the non-convex case 
[9], where closed embedded curves eventually become convex. Anisotropic 
evolutions (with ip non-constant) arise naturally in Finsler or Minkowski ge- 
ometry on the plane [16, 17], and in physical interface problems (see [6] and 
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[12]). These have also been considered for convex curves ([1.6, 17], [5], [13]) 
and more generally ([7, 8], [23], [27]). Equation (1) assumes that the speed 
is a homogeneous function of the curvature. Non-homogeneous speeds have 
also been considered - see for example [11] and sections 13 and 114 of [5]. 

The paper [5] investigated convex solutions of (1) with a not too small: 

Theorem (Theorem 111.11 [5]). There exists a unique, smooth solution 
x : C x [0,T) -» R2 of (1). The curves jt converge to p E M2 as t -> T. 
If a > ^ then there exists {£&} —> T such that the rescaled curves jtk — 

\lA? 1 (^fc — P) conver9e i71 C2+i,P to a limit S satisfying i/;Ka = c(x,n) 

for some c > 0. Here £ + 6 = s 
1  -, nl. J ^        max{a—1,0} 

The critical case a — \ with -0 = 1 is the flow by affine normal: 

Theorem ([3], [25]). If a — 1/3 and ip = 1, then the rescaled curves 7* 
converge in C00 to an ellipse centred at the origin. 

In this paper we consider the main cases not covered by the above results, 
namely flows of the form (1) with a < |, or a = ^ if ip is non-constant. The 
results of [2] imply that there exist solutions of the isotropic flows (those 
with -0 constant) which do not converge to circles, if a < |. In [4] it was 
conjectured that solutions for isotropic flows become circular for a > | but 
generically do not for smaller a. The results presented here confirm the 
non-convergence part of the claim; a full discussion of the isotropic case will 
be presented elsewhere. 

The curves 7* satisfy a modified equation: 7* = 5(C,r), where 

(2) |U(£, r) = -tpVn + Jl ^      x, 

and r = /Q (^f-r) 2 du (see Section 2). The following partial result is 

known: 

Theorem (Theorem 111.12 of [5]). Let a G (0, \], and suppose x : C x 
(0,T) —> R2 is a solution of Eq. (2), maximally extended in time. Then 
either the isoperimetric ratios of 7$ = Xt(C) approach infinity as t —> T; or 
T = 00 and there exists a subsequence £& -> 00 such that 7tfc converges in 
C00 to a strictly convex limit S which evolves under (2) only by changing 
parametrisation. 
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The condition that S evolve solely by reparametrisation is the following: 

(3) 0 - -^Kan + ^- x + VT 

for some V : S —> R, where T is the unit tangent vector to S, and x : E —> R2 

is the inclusion map. Such a curve will be called a stationary curve for (2). 
The result above can be improved slightly using the following: 

Theorem (Theorem 2 of [4]). If a > 0 and x : C x (0,oo) -> R2 is a 
solution of (2) such that jt*. = xtk(C) converges in Hausdorff distance to 
a strictly convex stationary curve E for a subsequence £& —> oo; then 7* 
converges to E m C00 as t -^ 00. 

In this paper we work in the space of symmetric convex curves (those 
invariant under the involution x h-> — cc of R2), and prove that all stationary 
curves are unstable: 

Theorem 1. Suppose 0 < a < 3, and ip : 51 —> R (non-constant if a = ^) 
is invariant under the involution z t-> —2 of Sl. Let E 6e any symmetric 
stationary curve for (2). Tften £/iere exz^^s a smooth, symmetric solution 
x : C x (—00, T) —>• R2 0/ equation (2) 5^c/i t/zat 7T = xr(C) converges in 
C00 to E as r approaches —00, and the Hausdorff distance from 7r to E zs 
at Zeast min{ea;r, C} /or some positive constants C and u. 

We will also deduce the following global instability result: 

Theorem 2. iet ^ 6e symmetric, and 0 < a < 1/3, with ip non-constant 
if a — |. T/ien /or fc > 0 and /3 G (0,1] t/iere is a generic subset Uk^ 
of the space ]Ck^ of symmetric convex open sets with Ck^ boundary in R2, 
such that if XQ(C) = dft for Q, G Uk^, and {xt} satisfies (1), then the 
isoperimetric ratios of the curves 7* = Xt(C) approach infinity as t —» T. 

The crucial step in the proof of Theorem 1 is to show that every sym- 
metric stationary curve is linearly unstable, by estimating eigenvalues of the 
linearised equation. The method of proof is similar to that used by Hersch 
[20], Yang and Yau [26] and Li and Yau [22] in estimating the first eigenvalue 
of a surface. 

The symmetry assumption cannot be removed — an explicit counterex- 
ample is given in Proposition 29. However, it is shown in Proposition 30 that 
the instability result of Theorem 1 still holds in cases where the stationary 
curve is an off-centre symmetric curve. 
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2. Notation and preliminary results. 

We begin by recalling some special features of the geometry of convex curves 
in the plane, the details of which can be found in [1]. 

Let 7 be a smooth convex closed curve in the plane. The support function 
of 7 is the function s : S1 -> M. defined by 

(4) s(e) = suv(y,eie) 

for each 9 G S1. The support function determines 7 according to the identity 
7 = ^(S1) where x : S1 -» M2 ~ C is given by 

x{6)=^s{e) + i-{e)y 

The map x is the inverse of the Gauss map n : 7 —> S1. The curvature of 7 
can also be recovered from 5: For each 9 E S1 the radius of curvature of 7 
at x(9) is given by t[s] = SQQ + 5, where subscripts denote derivatives. The 
curvature is then K, = r_1. The length L of 7 is equal to J^i td#, and the 
enclosed area A is ^ Jsl sxd9. 

The equation (1) can be rewritten as an evolution equation for the func- 
tion s: If #(£,*) is a family of embeddings evolving by equation (1), then 
x = x o n_1, and 

= -mM-a- 
Conversely, it was shown in [5] that any solution of the scalar equation (5) 
can be used to reconstruct a solution of (1). 

Solutions of equation (1) contract to points in finite time. The analysis of 
the limiting shapes of solutions as this final time is approached will be carried 
out by normalising the solution curves to keep their enclosed area constant. 
This requires a choice of centre about which to rescale. A convenient choice 
is to require 

(6) [ ipl/as-1/acos(9-9o)d9 = 0 
Js1 
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for all #o an(i at each time. Let 7$ be the curve obtained by rescaling 7* 
to have fixed enclosed area TT and translating to satisfy (6). The support 

function s of 7 satisfies 

s = W — s + ci cos 6/ + C2 sm 6/ 
V ^^ 

for some ci and C2 depending on t, where A = Afrt]- Differentiation gives: 

d _ 
a*"      -\/T^rH"a + 7r^ /  ^1"a^ + ClCOS^ + c2sm^ 

= (1) 

is1 

2w 
2    '    ^~OL + 4zl  ^l~OLd9)+ciQOse + C2sm6. 

where c* = 4^.   This equation is simplified by the introduction of a new 
time variable r according to the definition 

(7) 

so that 

(8) 

h UbJ 
l+q 

2 
cfot, 

A5 = _^r""a + — /  V'51~a ^ + 4 cos 0 + 4 sin 0, 
<9T 27r J^i 

where c^ = ^Cj. The constants c^ and c^ can be determined at each time 
by differentiating the identities (6): 

i 

dr Jsi \s) dr Jsi \ s ) 
sm6d6 = 0. 

Substitution of the above expression for j-s yields the following: 

(9) 

-2J 
= M- /51 (*)1+^ *"a cos ed9 - h Jsi ^l-a de Jsi (!) \ cos ed 

Jsi (!)1+" ^a sin ^ - IF /51 #1"a ^ /si (!)"sin fl d9_ 

where M is the matrix 

/**(*)* 
cos2 61 tW cos 0 sin 0 d0 

/5li(t)^cos^ine^   /5li(!)^m^ d0 
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Note that M is invertible: The Cauchy-Schwartz inequality gives 

JSl  8   \ S ) Jgl  S   V S J 

cos 9 sin 6 dO 

so the determinant of M is positive. 
The following result was proved in [2]: 

Proposition 3. If s : S1 x [0,T) -+ M satisfies (6); then j^Z < 0, where 

lexP {~^F /51 ^log?d<9} 1 a = 1. 

T/ie inequality is strict unless the equation 

(10) #-a - CS 

25 satisfied for some positive constant C'. 

For convenience we write Z — ZOL~x — -^ f IJJZ
1
~

CX
 d8. Note that (10) 

follows from (3) by taking the inner product with the normal n. 
In the remainder of the paper we will work entirely with the support 

function 5 and the evolution equation (8), suppressing the curves and their 
embeddings. In particular we will write A[s] and l[s] for the enclosed area 
and isoperimetric ratio of the curve with support function s. Explicitly, 
A[s} = ^ /5i st[s]d6 and 

(11) H.) - -(Ar-*)' 
27r fsl sx[s] d6' 

3. Linearisation about a stationary solution. 

Let a be a stationary solution of equation (8), scaled so that A[a} = TT. Then 
equation (10) holds, and integration against x gives the identity ij) = ax[a]aZ. 

Proposition 4. Let s£(0) be a family of functions with A[s£] = TT,  con- 
verging smoothly to a as £ —)> 0. Let S£(91T) satisfy equation (8) with initial 
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condition se(0) for eache > 0. Let 77(0, r) = ^5e(0,r)|e=o. Thenr] satisfies 
the linear equation 

-[cosO   sin^JM-1 y^cosOde 

where M is the matrix given by 

jsl iM CoS2 0 de      Jsl *-& cos e sin e de 

d_ 
de 

Proof. Differentiate the normalised equation (8) with respect to e. In differ- 
entiating the first term, note that 

^ (#-*)= -a^[o)-^«h[rj\ 

= -a(7t[a]at[(7]-(1+a)t[7?] 

by the identity (10). The integral in the second term satisfies 

f ipi1-" d9 = (1 - a) f il>x[(T]-at[TJ\de 
Js1 Js1 

= (l-a)Z [  ax[r]]de 
Js1 

= (l-a)Z [  t[(j}rjde. 

In differentiating the final term, note that when e = 0, 

14- — 
f ft\   a ra cos 6d0 = i1+1/a f t[a]a+1tH-a cos e 

^l+l/a   f   t^cosede 

= Zl+1/a f <jx[cos0]d6 

= 0, 

de 
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and similarly 

f (t)   " r-asmede = o. 

The identity (10) implies two further useful identities: 

f   (t\ " cos9dO = i1/a /  x[a] cos6de = 0, 

and the same with cos 9 replaced by sin 9. Therefore the only non-vanishing 
terms occur when these integrals are differentiated with respect to e. In that 
case, 

± f (i 
de Jsi \ s 

V^     f-acosede 

-af   (^]     at[*]-(1+ah[ri]cos9de 

= -(l + l-) J1+1/° f  it[(Tl1+ar[a]-ar?cos01 
V otj Jsi cr 

-aZ1+1/a f  r[ff]1+ar[(7]-(1+a)t[T/]cos0( 

= _ (i + 1) £i+i/« f  Mr, cos 9* 

-aZ1+Va f  t[ri\co8 0de 
Js1 

= _ (! + L) Ji+i/a f   M Off 
V aJ Jsi   cr 

and similarly with cos0 replaced by sin0. Further, 

±[   (t)'cOB9d0 = -^f  ±(t)\C0S9de 
de Jsi \s J a Jsi a \a) 

= -Lz1'" [   X^r,cos9d9, 
& Jsi   cr 

and similarly with cos0 replaced by sin^. D 
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The structure of this linearised equation is simply described in terms of 
the differential operator £ which acts on functions / G C00(/S'1) by 

(13) Cf = ^t [/]. 

This is a self-adjoint operator on the Hilbert space L^., the space of all 
functions / on Sl for which 

/IK '-fde <oo, 

with the inner product 

(14) (/l,/2>=   /    ^/1/2CW. 
Js1   v 

The functions a, cos#, and sin^ are eigenfunctions of £, with eigenvalues 
— 1, 0, and 0 respectively. 

Lemma 5. There are no other eigenfunctions of C with eigenvalue less than 
or equal to zero. 

Proof The Brunn-Minkowski inequality for convex sets in R2 states that 
the square root of the area functional is concave with respect to Minkowski 
addition: Precisely, if QQ and Cli are convex sets, and fit = {ty + (1 — t)x : 

y € ili,x G fio}> then 

with equality if and only if Oi = cfio + e for some c > 0 and some point 
e E M2, so that Oi and ^2 are scaled translates of each other. (See [24], 
Theorem 6.1.1.) 

Consider this inequality in the particular case where CIQ is the region en- 
closed by the curve E with support function a, and fti has support function 
cr + 5/, where / is any eigenfunction of £ and S is a small positive number. 
Let at be the support function of Qf Then 

<7i(0) = sup<y,e*) 
yecit 

=      sup     ((1 - t)x + ty, eie) 
xeCio,ye^i 

= (1 - t) sup (x, eie) + t sup (y, eie) 
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= (l-t)a(0) + t((T(O) + 6f(6)) 

= a + tSf(0). 

Therefore the area of f^ is given by 

A[nt] = l I  atx[cft]de 1 Js1 

= \ ! (a + tSf)t[a + tSf]d0 
2 Js1 

= A + tS f  fv[a]d9+h2d2 [  fx[f]d0. 
Js1 l      Js1 

A direct calculation gives 

pm!: 
t=0 

so the quantity in the bracket is nonpositive, and strictly negative unless 
a + 8f = ca + ei cos 9 + 62 sin #, in which case / is a linear combination of 
cr, cos# and sin#. 

This result may be expressed in terms of JC and L2: 

L (JsiAMO2 _,., .x    </^> 2 
Hf}d9-"J^'A      '   = (£/,/> - ^- < 0. 

51 2A ||cr||z 

If / is an eigenfunction of £ orthogonal to cr, cos 9 and sin 9, then Cf+Xf — 0 
and (/, cr) = 0, so the inequality becomes — A||/||2 < 0. □ 

The linearised equation (9) can be written in terms of the operator C: 

—rl = Z{aC + l)(r]-KE_i&Eoi1) 

where E\ is the eigenspace of C in L% with eigenvalue A, and TT is the 
orthogonal projection. 

Corollary 6. A stationary solution a 0/(8) is linearly unstable in the space 
of support functions of convex curves of area TT if A < -; where 

tp 6 C00(51), f x[a]ipde = 0, [ ^ipzdO = 0 
Js1 Js1 a 
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and z — (cos 6, sin 6). A symmetric stationary solution is linearly unstable 
in the space of support functions of symmetric convex curves of area TT if 
ASym < £, where 

^syrn — mf 
Ssifl-yPM 
Is^^de 

<pGC~m(S1),Jx[a}<pd9 = 0 

Here C^)
m(51) is the space of C00 functions on S1 invariant under the in- 

volution 0 i->> 6 + 7r. 

Proof. A is the first eigenvalue of C in the subspace orthogonal to a, cos(#) 
and sm(6), and ASym is the first eigenvalue in the space of symmetric func- 
tions orthogonal to cr. If r) is proportional to the corresponding eigenfunc- 
tion, then 

—r? = i[cr](l-aA)r/. 

This implies instability if 1 — aA > 0. □ 

4. Linear instability of stationary solutions. 

Theorem 7. Asym < 3 for any symmetric stationary solution a. Equality 
holds if and only if a is the support function of an ellipse centred at the 
origin. 

Proof The proof of this result is similar to that of the theorem of Hersch 
[20] of the fact that the constant curvature 2-sphere has the largest first 
eigenvalue for the Laplacian amongst all metrics on the 2-sphere with the 
same area. The idea is to use the eigenfunctions for the case a = 1, namely 
cpi = cos(20) and (p2 = sin(2#), as test functions in the integral quotient in 
Corollary 1. If these functions are admissible, then 

/ (w)£-p?d0 = 37r, 

and 

with equality if and only if a is constant. This would imply 
max; fsl ^p-ipi d9 > TT, and therefore ASym < 3. 
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The problem is that in general these test functions are not admissible, 
so some further work is required. Let us denote by S the convex curve 
with support function a. The key to finding admissible test functions is the 
following property of the operator £: 

Proposition 8. The spectrum of C is invariant under the change a -» or, 
where GT is the support function of the curve T o E; for any T G SX(2,]R). 
In particular, Asym and A are invariant under such transformations. 

Proof of proposition. The proof requires some properties of the action of 
the special affine and linear groups on convex sets, and the induced action 
on C00{S1). An element of the special affine group consists of a matrix 
A G S,L(2,E) together with an element e G M2, acting on M2 by taking 
x G M2 to Ax + e. This produces an action on the space of convex sets in 
R2, taking a set f2 to j4f2 + e = {Ax + e : x G 0} which is a convex set with 
the same area as f2. 

Let / G Croo(S'1). For sufficiently large C, g = f + C satisfies the 
condition t[g] = ggg 4- g > 0, and hence g is the support function of a 
convex body in E2, namely Q(g) = ftaeS1^ € M2 : (y,ei0) < g(9)}. Given 
(Aye) in the special affine group, define (A,e)f(9) = sn-pyeA^g^+e(y)e'ie} — 
C s\xpyeABlfQ\(y1e'ie}. This is independent of C for C sufficiently large, and 
defines an action of the special affine group on C00(S1). 

We now proceed to describe the generators of this action explicitly: The 
Lie algebra 5/(2) of SL{2) is the three-dimensional space of trace-free 2x2 
matrices, which is the product of a one-dimensional subspace generating 
the rotations, and an orthogonal two-dimensional subspace consisting of 
matrices of the form 

a     b 
b    —a 

X 

for any real a and b. Given a convex curve with support function 5, consider 
the change in s caused by applying a continuous family of SL{2) transfor- 
mations in the direction of a Lie algebra element X: 

Xs{e) = X(x(9),eie) 

= (Xx,eie) 

a b ' cos 8   — sin 0 S cos# 
b    -a sin 0     cos 0 .so. 

> sin0 

b] 'cos 20   -sin 26 s 
sii n! 20     cos 20 s 9 
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- R (cos 2(0 - 6o)s - sin 2(9 - 60)so) 

where 

R = v a2 + 62,    cos 29o = :,    and    sin 20Q = 

The induced change in the radius of curvature function x[s] is then: 

Xx[s] = x[Xs} 

= Rx [cos 2(0 - 0o)s - sin 2(0 - OQ)SO] 

= -R (3x[s} cos 2(0 - 0O) + x[s}e sin 2(0 - 0O)). 

More generally, if 5 is any function in Coc(S1), not necessarily a support 
function, the action is given by the same formulae as above. □ 

Lemma 9. Let X E si(2) act on C00(S1) as described above. Let f\ and 
fi be arbitrary functions in C00(S1)} and let s be a C00 positive support 
function for some convex curve in M2.  Then 

X [   /it[/2] d0 = O        and       X f   ^fl/1/2 M = 0. 
Js1 Js1   s 

Proof of Lemma.   Note that 

X + Rsm2(0 - Oo)--?;) s = Rcos2(0 - 0o)s 

and 

so that 

and 

(x + Rsm2(9 -Qo)-K7j) rM = SRcos2(0 - 0o)t[s], 

X + Rsm2(0 -0Q)J7T) SX[S] = -2i?cos2(^ - 0o)sx[s] 

X(sx[s}) = -2Rcos2(0 - 0o)sx[s} - Rsm2(0 - 0Q)(sx[s})e 

= - (Rsm2(0 - 0o)sx[s])9 . 
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Integrating gives X f sx[s]d9 = 0. The same holds replacing 5 by any other 
function /, and by the polarisation identity X f fix[f2]d9 = 0. Similarly, 

X + Rsm2(6 - 60)-^) fi = Rcos2(e - 0o)/; 

for i = 1, 2. Combining these with the change in s gives: 

■IHTH"-*'-*"'-"? X + Rsm.2(d - 60)— ) (ii) =-:cos2(0-0o)/i-i^cos2(0-0o)s = O, 

for each i, so 

= -2i2cos2(0-0o)(^/i/2Y 

As before, this implies 

X ('^/i/a) = - fi?sin2(0-^0)^/1/2 

and integrating over 51 gives X $ ^f-fif2d9 = 0. D 

Proof of Proposition 8, continued. By Lemma 9, the inner products (/1, /2) 
and {fi,Cf2) do not change under the deformation. Furthermore, the defor- 
mation leaves symmetric functions symmetric. This implies by the min-max 
characterisation that the spectrum of £, and in particular A and ASym, are 
invariant. □ 

The significance of Proposition 8 is that ASym can be estimated at any 
point of the orbit of the action of SL{2). The calculation given above there- 
fore proves the result provided there is some element T of SL(2) such that 
/51 x[sT\^Pid9 = 0 for i = 1,2. Since t[ipi] = —3^, it suffices to check that 
/51 STPi d9 = 0 for each i. 

Lemma 10.   There exists some T G 5X(2,R) such that fsicrT^id9 = 0, 
2 = 1,2. 
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Proof. Given a convex curve with support function <j, consider the function 
L on SL(2)/SO(2) given by L(T) = JslaTde, which is just the length 
of the image of the curve under T (this is well-defined since the length is 
invariant under rotations). The derivative of L in the direction of a Lie 
algebra element X is given by 

DxL= [  Xade 

= I   Rcos2(6-90)a-Rsm2(9-9o)aed9 

= 3R I    acos2(9-90)d9. 

So at a critical point of L, Jsl acpi d9 = 0 for each i. Also 

DxDxL = 3R2 [  cos 2{9 - 9o) (cos 2(9 - 9o)a - sin 2(9 - 9o)ae) d9 
Js1 

= IR
2
L + ^-R

2
 [  acos4:(9-9o)d9 

2 2       Jsi 

= -R2L - ]-R2 f  x[a} cos 4,(9 - 9Q) d9 
2 2      JSi 

>R2L 

= \X\2L 

since | cos 4(0 — #o)| ^ 1 and Jsl x[a] — Jsl a — L. Therefore L is uniformly 
convex on SL(2)/SO(2), hence proper, and so has a unique critical point. 

□ 

This completes the proof of Theorem 7. □ 

5. Non-converging solutions. 

In this section we use the linear instability result of Theorem 7 (and Corol- 
lary 6) to complete the proofs of Theorems 1 and 2. Although we prove 
results here only for the symmetric case, the same methods can easily be 
modified to include non-symmetric cases if linear instability is known. 

Denote by K,0 the set of support functions of symmetric bounded open 
convex sets of area TT in M2. /C0 is equipped with the (7° norm (equivalent 
to the Hausdorff distance). Let K1^ = C^ fl /C0 for any integer t, > 0 and 
P G (0,1].   For £ > 2 we also write K1^ = {/ G K1^ :   t[/] > 0}.   By 
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Theorem 112.8 of [5], every stationary solution of (8) with a < 1 is in /C+ 
for t > 0. 

For any r > 0 we denote by Gr : /C0 —> K+ the operator which takes 
so € KP to the function sT given by the solution of equation (8) at time r 
with initial condition SQ, where this exists. By Theorem 112.8 of [5], 0 is 
well-defined on {(SO,T) : 5o G /C0, 0 < r < T{s0)} where T(so) > 0 for 
every 5o G /C0. 

Proposition 11. O is a continuous map from an open set of K0 x (0, oo) 
tolC™. 

Proof Since the solutions of Eq. (8) are obtained by solving Eq. (5) and then 
rescaling, it will suffice to show that the evolution operator G* for Eq. (5) is 
continuous. 

Fix a curve T bounding an open convex region ft of area TT, and let Ci 
be such that C-f1 < inrad(f2) < circumrad(J7) < Ci. Let s be the support 
function of F. By Theorem 112.8 in [5] there exists a unique solution 0^5 
of Eq. (5) on a maximal time interval (0,T) which converges to 5 in JC0 as 
*-> 0. 

In the following we fix £ > 0, an integer k > 0, and t G (0,T). It 
will suffice to show that there exists S  >  0 such that 0^5 exists and 

ck < e whenever 5 G /C0 satisfies \s — s\co < S and It' — t\ < 8. 

Lemma 12. For any e1 > 0 there exists 5i > 0 such that if \tf — t\ < 5i, 

and \s — s\co < Si, then \Qt'S — ©t^l^o < e'. 

Proof The proof uses scaled copies of s as barriers.   The homogeneity of 
equation (5) implies that 0t(/xs) = /j,@t„-(!+<*) (s) for any /J, > 0. 

The solution ®t(s) is regular for positive times, and in particular for any 
ef > 0 there exists S^e') > 0 such that 

Gt(s) -e'< Qt{i+s4)(s) < ®t(i-5,)(s) < @t(s) + ^ 

For given sf > 0, choose 8i(ef) > 0 sufficiently small to ensure that 

max {l - (1 - Sx/t) (1 + Ci^r1-* , (1 + St/t) (1 - dSxy1'01 - l} 

< 84 
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and 5i < min < -^r, -^ >. Clearly |s — s\co < 5i implies 

s(l - Ci<5i) < s - Si < s < s + Si < s(l + CiSi) 

and so by the comparison principle and the homogeneity relation, 

(1 - Ci5i)Qt,(i_ClSl)-i-a(s) 

= et, (8(1 - CiSi)) 

<et>(s) 

< et, (8(i + CiSi)) = (i + CiSi)@t,{i+ClSl)-i-a(s). 

The restriction \t' — t\<Si then implies (since ©t(s) is decreasing in t) that 

(1 - Cl(5l)Gi(1+(51/t)(1_Cl(J1)-l-a(s) < 0t'(s) 

< (i + Ci<5i)et(1_5l/t)(1+C'1(51)-i-Q(s). 

Hence 

&t,(s) - et(s) < (i + ctfjet^t-isM+c^-i-cb) - ®t(s) 

< C,1^10t(i_t-i(51)(i+C15i)-1-«(s) 

+ (1 + Cl^l)  (0f(1_i-l(5l)(1+Cl5l)-1-a(5) - et(5)) 

< ci5i + g (®t(i-t-1*i)(i+Ci«0-1-a(s) - ®*(s)) 

1 ,     3 e' 
<2£+23 
= e' 

by the choice of Si. Similarly, 

et(s)-etl(s) 

< et(s) - (i - CiSi)@t{i+t-iSl){i_Cl6l)-i-a(s) 

< CiSiet(s) + (i - CiSi) (et(s) - et(1+t-i5l)(1_ClJl)-i-a(s)) 

< C?S + (@t(s) - ©t^+t-iiijfi-CiiiJ-i—C*)) 

1 /   1 / 
<2£+3e 

<e'. 

a 
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Lemma 13.   There exists 82 > 0 and a constant C2 such that if\tf — t\ < 62 

and \s — s\co < 62 then IQys — @T5|^2fc-i,i < C2. 

Proof. By Lemma 12 we can choose 82 to ensure that the isoperimetic ratios 
remain bounded: 

M< max<X \®t'S J ®ts <C. 

Then Corollary 112.6 of [5] gives the required bound. □ 

Lemma 14.   There exists 5% > 0 such that if si^S2 satisfy \si — S2\c^ < ^3 
and \si — S2|c2fc-i,i < C2, then \si — 52|^7fc-i,i < e. 

Proof. A standard interpolation inequality between Holder spaces (see for 
example Proposition 4.2 of [21]) gives 

1 1 ^ n 1 |l/2i l1/2 

\Sl - 52|cfc-i,i  < 03|5i - 52^0 |Sl " ^l^fc-i,! 

for some constant C3. Hence 151—521(7/0-1,1 < C3C2   So,   » ail<^ ^ suffices to 
2 

take ^3 = ^y. □ 

Taking 8 = min{(52,^i(53)}, we find by Lemma 13 that \Qtis — 
©t5|^2fc-i,i < C2, and by Lemma 12 that |@j/s — O^^l^o < (J3, so that 
by Lemma 14 |0t'S — ©t5|crfc-i,i < e: as required. 

Before proceeding to our first main result on the instability of station- 
ary solutions, we will establish some results on the differentiability of the 
evolution operators which will be useful later in the paper. 

Proposition 15. For any t > 0, I > 2, and /3 G (0,1); the map 0* is a 

C%c map from {s <E JC1/ : T(s) > t} to JC£/. 

Proof We begin by working with the unrescaled evolution operator 0^. 
Define JC^^R = {s G ICf : \s\ctj < M; r < 0t5 < R, Vt E [0,T]}. 

This is an open set in C£^(Sl), and we equip it with the C^ metric. We 

will show that @t is Ck for every k from K^MTrR m*j0 ^+ • ^n Proving ^his 
it is convenient to define spaces which encapsulate the natural regularity 
properties of solutions of parabolic equations: Let P^ = {f : S1 x [0, t] -»• 
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M :   \f\p£,p < oo}, where 

(15)    1/1^= Yl   SUP IW/I 
m+2j<€5ix[0,T] 

, v-    SUD   \d?dim,t2)-d?dim,t2)\ 
JZ^AMO,*)    (\02 - e1\ + \t2 - t1\v*)e 

This defines a Banach space, and the global Schauder estimates for linear 
parabolic equations are conveniently stated in terms of these norms: 

Proposition 16. Let £ > 2 and /3 G (0,1]. Suppose a, b, c and f are in 
Pe~2^ f with 0<A<a<A<oo.  Then any P^ solution u of 

du 
— = auee + OUQ + cu + / 

u(M)=uo(0) 

satisfies 
\u\ptj   < C(\UQ\C1,P  + |/|p£-2^) , 

where C — C(A, A,r, |a|p^-2^, |&|p£-2^, |c|p^-2^). 

See for example [21], Theorem 4.28 for the proof of this result. 

Lemma 17.  There exists a constant C such that \@s\p£,p < C for all s E 

Proof. Bounds above and below on r[6ts] follow from Theorems II1.1 and 
II1.2 of [5]. Bounds in P2^ follow from Theorem 14.18 of [21], and bounds 
in P-7'^ follow by differentiating Eq. (5) and applying Proposition 16.        □ 

We define candidates for the derivatives of all orders of ©: For k = 1 
and s E ^MTrR define DQ{s\ <p) to be the solution of the linear parabolic 
initial value problem 

d_ 
dt 

.£e(5;^)(MH^(0) 

(16) ^ (£€>(*; tp)) = a^[G5]-(1^r[JDe(5; <p)] 
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for any <p G C^. Then we define inductively Dk@ for k > 1 by 

(17)      j^fce(S; ¥>!,...,¥>*) = aVr[e(S)]-(1+Q)t[£>fce(5; ^i,..., ^)] 

+V ^(-ir-Me^)]"^^ H («+j) 

{/l,...,/n}€^fcinj=l 

Dke(s;<p1,...,<pk)(0,0)=0, 

where Z^^ is the set of partitions of {1,..., k} into n non-empty subsets, 

and cpj = ((pi1,...,<Pij) if/= (ii,...,ij). 

Lemma 18. Dk®(s].) : ®kCi^ —> P^5^ i5 a bounded linear map, with 

norm depending on r, R, a, V; and l5lc^- 

Proof. Existence follows from Theorem 5.13 of [21]. 
For k = 1, Proposition 16 applied to Eq. (16) implies \D@(s;(p)\p£^ < 

C\(p\ci,(3 for all <p e C^13, and hence \\D®{s) ,)\\B(CW,PW) ^ C- 
We proceed by induction: Suppose the Lemma holds for k = 1,..., j, so 

that  |L)2©(5;(y9i,... ,^i)|p^/3   <  C Jln^l l^nb^  for Vli'-iPi in C^J  
and 

z = 1,..., j. Then Equation (17) has the form 

^tf = a^[e(sT^h[f}+gJ 

where / = D^+1^e(s', (pi,... ,^j+i), and |p|p/-2>/5 < CJlnti l^nlc^ 
by the inductive hypothesis. Proposition 16 therefore implies \f\pt,/3 < 

CYlit\ \<Pn\cw and therefore ||^+1G(5; .)lb(®i+ic^>P^) < <?• ° 

Lemma 19. Q is a Lipschitz map from ^MTr R ^0 P    - 

Proof. Suppose u and v are in K^MTrR' ^e compute 

^ (e(«) - e(t;)) = -#[0(n)]-a+#[e(t;)]-a 

= ot[e(tt) - 0(u)], 



Non-convergence for evolving curves 429 

where a = aip f^ t[e@(u) + (1 - 6)e('y)]~(1+a)& satisfies \a\pi-2,(3 < C by 

Lemma 17.  Therefore Proposition 16 applies to show |G(^) - @(v)\pe,/3 < 
c\u — v\ct,(3. n 

Lemma 20. Suppose Q is a C^1 map from K^TrR to P£>P, and the fol- 
lowing estimates hold for some constant C: 

(18) U^GKu;.) - D'efr; .)IIB(®'C^,P^) ^ C\u " v\c^ 

for all u and v in K-MTrR an^ ^ = 0, • • •, j? and 

(19) ||i>*e(«; o-^e^; O-^^1^^; .,«-u)||B(0ic7^>P^) ^ C|«-«lc7^ 

for all u and v in KM^R and i = 0,... ,j - 1. Then G is a Cj+l>1 map 

from ]Cej^TrR to P^; estimate (18) holds with i = j + 1; and (19) holds 
with i — j. 

Proof. We begin by establishing (19) for i = j. Writing 

for some <pi,... ,ipj in C^, we have by Equation (17) 

= aiPx[G(v)}-(1+a\[F] 

+ "rA^t^®^ u - vMDje(u;.) - iye{v;.)] 
t[@v](2+a> 

+ a^VGiu;.)] Ueu}'^ - t^]-^ + (1 + ^f^'^) 

/n-1 

n=2{/lr..,/n}6Zi,n Vi=0 /    \t=l / 

x (r[e«]-(Q+n) - v[Gv]-(a+n) + {a + n)t[Gv}-^+n+1h[De(v; u - «)]) 

-VE     E     (-i)nn(a + iM@^"(a+n+1M^®(^;«-^)] 
n=2{/1,...,/n}e^,n i=0 
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- ^ E        E        (-!)" (if (" +«)) tfOt;]-^") 
n=2{/1,...,/n}ezj> \i=0 / 

^=1 1=1 

nr[i?l7'le(«;Wl)]-n^|7<le(t;;^)] 

-EII^17^^;^')]^1^1®^;^'^-^] • 
i=l iV* / 

By (18) and (19) and Lemma 18, the P^2^ norm of all terms but the first 
on the right-hand side is bounded by C\u — v\2ci^ Y\A=I W^CW- Proposition 
16 implies that the estimate (19) holds for i = j. 

The estimate (18) for i = j + 1 follows somewhat more straightforwardly: 
We have for G = Di+1®{u- Vl,..., w+1) - D^1®^ tpu..., (pj+1), 

f      1 1      \ 
\x[@u]1+a   t[ev]1+o'J 

^E E        (-l)Bn(« + n) 
n=2{/1)...)/n}e2i,n i=0 

x 
t[e«]a:+n x[Gv] a+n 

The terms other than the first on the right-hand side have P^2^ norm 
bounded by C\u — v\Ci,p Y[n=i l^nlc^* by the boundedness estimates in 
Lemma 18 and the Lipschitz estimates of Equation (18) for i = O,...,,?'. 
Proposition 16 implies the result. □ 

By induction on j, © is a smooth map from K-MTrR to ^'^ since 
Lemma 19 provides the result for j = 0, and Lemma 20 provides the iteration 
step. The result of Proposition 15 follows, since 0 is obtained from 0 by 
smooth rescaling and smooth reparametrisation of time. □ 

Theorem 1.   There exists a symmetric solution s : (—oo,T) x S1 -> R of 
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equation (6) which converges in C00 to a as r -^ — oo and such that the 
C0 distance of sT from a is no less than mm{G(ijj)1e

U}T} for some constant 
C{(JJ) > 0 and any cu G (0,1 — aASym). 

Proof. Let cp be the symmetric eigenfunction of £& corresponding to the 
eigenvalue Asym, and define for e > 0 sufficiently small and r > loge 

Taking u = 1 — aASym, we have 

— (5T5e - a - e6jr^) 

= (a>C + 1) (5r?£ — cr — e^7"^) 

a(l + a)7t[(7]\1+a/t[5rie-<7]x2 

+ (1 ~A
a)ST>€  ! (Sr,e - <T)r[^ - crJcW 

47r        Jsi 

sT,£a(l ~ a)   f AM^1+a A[5r,5 - ^]X 2 

Therefore 

de 

 aC - 1 ) (sT,e - (J ~ e^y)) <C\\ST,£-a-e^\\lHsl) + Ce2^. 

We write xr)£ = sup^i \sTte — a — eu)r(p\. The Gagliardo-Nirenberg interpo- 
lation inequalities give for any £ > 2 

\\sT>s -a- ewVII^(5i) < C{x + x1-2^^ -a- e^^H^^)) 

since Theorem 112.5 of [5] gives bounds on all higher derivatives of sTye. For 
our purposes it suffices to take £ > 4, say £ = 8. By the maximum principle, 

(20) ~xT,e < xrfi + CxzJ* + Ce2wT
) 
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and we have for each e that 

*, - <- - OPU,. = (y^^j -1) (' + -»■ 
Now ^[cr+^^V] = Tr+e^ /5i (pt[(j}d6 + \e2uj fsl (pt[(p]dO, and /51 (pt[a]d0 = 0, 
so we have 

(21) xlog£5£ < C^. 

It follows from (20) and (21) that 

Xr,e < Ce2uJT 

for log e < r < TQ where C and TQ are independent of e for e sufficiently 
small. It follows in particular that sTi£ is bounded away from a, independent 
of 6, and that the functions sT>e converge in C00 to a limit sT as e —> 
0, which is defined for all r E (—OO,TO], and satisfies (6). By estimate 
(21), the Hausdorff distance of sT from a approaches zero as r —¥ —oo. 
C00 convergence follows from the regularity bounds of Theorem 112.5 in [5], 
together with interpolation inequalities. The monotonicity of the entropy Z 
implies that the Hausdorff distance from sT to a is bounded away from zero 
for large times. □ 

Now we proceed to the proof of the global instability result (Theorem 
2). 

Define U = I s £ KP : sup0<T<T(s) /[©r5] = oo >.  We aim to show that 

U fl K^ is a generic set in K^ for every integer £ > 0 and /? € (0,1]. We 
define for any /Q > 0 and ZQ > 0 

J7Jo ZQ = J 5 G /C0 :      sup     J(eTs) > Jo    or inf     Z(0Ts) < ZQ I . 
[ 0<r<T(5) 0<T<T(5) J 

Then ng:1C/ijl/i = U: The intersection certainly contains U; conversely, if 
s is not in Z7, then J[0T5] remains bounded, and by Lemma 112.4 of [5], 
the radius of curvature remains bounded, so Z remains bounded below by 
a positive constant, and SQ is no^ in ^Si^i/i- ^e will prove Ui0iz0 is open 
and dense in /C^, by showing openness in /C0 and density in /C00. This 
implies U is generic in /C^. 

The openness of UjQiZo follows immediately from Proposition 2, which 
shows that both J[©Tso] and Z[©r5o] are continuous on {(SO,T) : 5o G 
/C0, 0 < r < r(5o)}. 
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It remains to show density in /C00. The first step is to show that a small 
perturbation of the initial conditions can be made to avoid a given stationary- 
solution: 

Proposition 21. Assume 0 < a < 1/3, with ip non-constant if a = 1/3. 
If a is a symmetric stationary solutionj and sT is a solution of Eq. (6) 
which converges to a as r —> oo, then in any neighbourhood of SQ in C00 

there exists SQ such that the solution sT of (6) with initial condition So has 
infT Z[sT\ < Z[a] — e, where e depends only on if), a, and T\o\- 

Proof. In the proof we will make use of the Hilbert spaces if* and H* which 
are the completions of (700(S'1) with respect to the inner products 

U,9)Hl=Hf,9)Ll-U,£9)Ll 

and 

These inner products define norms equivalent to the usual H1 and i?2 norms. 
The plan of the proof is as follows: First, we show that for sufficiently 

large times r, the solution of Eq. (6) given by {6T/ (®T(s) + fo;)}T/>o even- 
tually has Z < Z[a} — e, whenever 5 is sufficiently small and v is sufficiently 
close in angle in H^. to an eigenfuction of Co- with eigenfunction A satisfying 
1 — aX > 0. Then we show that for any given v £ H% we can find SQ arbi- 
trarily close to so such that GT5o = &T(S) + Sv, with S as small as desired, 
and v as close as desired to v in Hi. *cr- 

Proposition 22. Let a be a stationary solution of (6), and suppose cp sat- 
isfies Ca(p + Xip = 0; with 1 — aA > 0. Let s € /C0 be such that @ts —> a in 
C00 as t —y oo. Then there exist S > 0 and s > 0 depending only on A; a, 
ij) and I[cr], and a time to > 0 such that for any t > to and any u £ Gi(/C0) 
satisfying 

\\u-®ts\\L2a <S    and     (u-ets,(p)H2 > (1 - S)\\u - 9ts\\H2\\<p\\H2 

the following holds: If T is the maximal time of existence for Eq. (6) with 
initial condition u, then 

lim Z\0Tu\ < Z\a} — e. 
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Proof. For simplicity the argument will be given only in the symmetric case, 
so that cr, s,u, (p and t/j are invariant under the involution 9 —>» 8 + 7r on 51. 
The general case is similar but somewhat more involved. 

The assumptions of the Proposition imply in particular the following 
estimate, where we write St = @t^: 

(22) ||n-St|l
2    "    \\u-st\\l2    -

2^X+S      (i_5)2      • 

Thus the quotient on the left can be made less than i(A2 + -\) by choosing 
S > 0 sufficiently small (depending only on A). The key step of the proof is 
to show that this quotient remains controlled (in particular, strictly less than 
1/a2) as long as @Tu remains close to QT+tS' This will follow by estimating 
the evolution equation for the quantity 

||£(9Tn-et+Ts)li2 

^ ;     ||eTu-e4+r5||2 ' 

We first compute an evolution equation for QTu — Qt+rs: 

— (®TU - Qt+rS) 
CLT 

= -^t[@Tu}-a + i>z[Qt+Ts}-a+ eruz[eTu] - @t+Tsz[et+rs} 

= aipx~{1+a)t[eTu - et+Ts] + (eTM - et+Ts) i[eT«] 

+ 0t+Ts (i[eT«] - i[et+Ts]) 

= aZ[a]£[QTu — &t+Ts] + (©i-w — Qt+rs) Z[QTu] 

- a(l + a)#;(2+a)t[eTu - et+Ts](r* - x[a}) 

+ Qt+Ts (i[eTtt] - z[et+Ts]j 

where r* and t* are defined by r7 = f0 x[£@Tu + (1 - £)©t+,-s]-(1+a)d£ 

and tr(2+a) = /o1 (£t„ + (1 - OtM)"(2+a) ^- This implies the following 
evolution equation for Q: 

(23) 

2(/:2 (0Tn - ef+TS) - Q (GTu - et+Ts), £ (GTu - Qt+rs)) 

\\Qru - et+TSp 
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((c2 - Q) (0Tu - et+Ts), c (Sru - et+Ts)) 
||eT«-et+TS||2 

-L9 firm   i     rm      i\((£2-Q)(®TU-et+Ts),Qt+Ts) 

{(C2 - Q)(@Tu - et+Ts) ,#:(2+a)t[eru - et+Tg](t,-r[c7])) 
a(l + a)- 

|6Tu- ©t+rsl' 

We consider the three terms on the right separately. The first term is essen- 
tially negative: 

Lemma 23. For any f G C00(51) with (/, cr) = 0 we have 

\\f\\2(C2f,Cf)<\\Cf\\2(f,Cf). 

Proof of Lemma.   We can write / = ^ fnpi where {ifi} is an orthonormal 
basis for L^. with dpi + Xnpi = 0 and A^ > 0. Then 

||/||2(£2/,£/> - \\Cff(f,Cf) = -\ E(^ + \i)^ - Ai)2/2/2 < 0, 

and equality holds precisely when / is an eigenfunction of d. □ 

In our case, the function / = QTu — ©t+rS need not be orthogonal to a, 
but it is approximately so: We have 

U = (/, cr) = (©r^ - ©H-T-S, £[<?]) 

= (@ru - ©i+TS, C[a - 0t+rS]> 

+ (@TU - ©t+rS, >C[@t+r8]) 

= (©rU - ©t+r^, £[cr - 9t+Ts]) 

- - (0r^ - 0t+r5, £[@TU - ©t+T5]>, 

since (@T^, C[<dTu\) = (0t+rs,£[@t_|_T5]) = 27r. It follows that 

(24) \u\ < c (|Gt+TS - rb,||/|| + s1/2!!/!!2). 

Writing / = f^a + /i with (/_L, tr) = 0, we find 

||/||2<£2/,£/>-||Af||2</,£/> 
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!(ll/±ll2<£V±,£/±MIAfx||2</x,£/.L>) 
ll/xll2 

+ 27r/2    1 + m -L 
(f±,£f±) ll/xll 

+ 27r/a
2(||/±||2-||£/±||2) 

<27r/2||/||2. 

In the second term on the right in (23), we can estimate as follows: 

Z[@TU) - ZiOt+rS] ae Ji,{x[®Tu}l-a-t[<dt+Ts]l-<*) 

= (i-a)Jipi:a*[f}de 

where t"0 = J^ t[^eTu + (1 - OQt+rs]-"^. We also have 

{(& - Q) f, et+Ts}      (/, (£2 _ Q) (0t+TS _ ff)) + (1 _ Q)fa 

12 ll/ll2 

Combining these, we find 

(^[GTn] - z[et+rS]) ||eT.-9t+T.ip  

<c(n-Q3/2)(|et+rS-(7|C4 + 

Finally, the third term in (23) can be estimated as follows: 

((£2 - Q)(eTu - Bt+rs) ,#;(2+a)r[eT« - ei+TS](t* - v[a})) 

<CQ||/||2sup|t,-t[(7]| 

- C\t* - t[o-}\cl ((C2f,£f) - Q(Cf,f)) , 

and we note |t„ - t[a]\ci < C(\f\cz + \et+Ts -a\cs) < CdlfW1/2 + \&t+Ts - 
a | (73) by the Gagliardo-Nirenberg inequality and the bounds on all deriva- 
tives of a, @Tu and Qt+rS supplied by Theorem 112.5 in [5]. This gives 
(assuming that ||/|| and ||s — a\\ are bounded by some constant depending 
on a, tp and X[a]) 
(25) 

^Q < ^p «£2/,r/> - Qicf,/» + c (ll/n1/2 + |et+T5 - a\c3). 
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To make use of this we need to make better use of the non-positive leading 
term. We noted in the previous Lemma that this term is strictly negative 
unless / is an eigenfunction. The following result makes this more quanti- 
tative: 

Lemma 24. Suppose that there exist constants a < b such that there are 
no eigenvalues of C in the interval (a,b). If f La and ||£/||2 = #||/||2 with 
q e (a2,b2), then 

(C2f,Cf) - q(jCf, f) < -l-{b - a)(9 - a2)(l - g/62)2||/||2. 

Proof of Lemma. Choose an orthonormal basis {<£;};>o for L2 consisting of 
eigenfunctions of £, where (fo = a and A^ is nondecreasing in i. Fix N such 
that Xi < a for i < AT, and Xi > b for i > N + 1. Prom the proof of Lemma 
23,if/ = E,-/w> 

(26)     -||/||2(£2/, Cf) + ||£/||2(£/, /> = i Y, fifjQ* + W* - Ai)2 
2 

hj 

>       E      ffft^i-a)2- 
l<i<N 

N+l<j<oo 

The assumptions of the Lemma give us two useful inequalities: 

N oo N oo 

«2E/'+ E ^fn\\m2 = <i\\f\\2 = <iY,f?+<i E f' 
i=l i=N+l i=l i=iV+l 

so that 

N oo 

(27) (9-a2)E^<   E  (>3-M> 

and 

N oo 
2 

so that 

62 E /f<ii£/ii2 = <7ii/ii2 = sE/i2+« E // 
i=N+l i=l i=N+l 

N 
9     Y^^2 



438 Ben Andrews 

We apply (27) on the right-hand side of (26) after noting that Xj(Xj — a)2 > 
(b - aJA^Aj - a) > |(6 - o)(A? - a2) > i(6 - o)(A? - q), yielding 

-ll/ll2^2/, £/> + ||>C/||2(/:/, /) > l(b - a)(q - a2) (jh A   . 

Now (28) implies E^Ii /?>(!- 5/^2)ll/ll25 so that 

-||/||2<£2/, £/) + \\m2(£f, f)>\(b-a)(q- a2)(l - g/62)2||/||4. 

The Lemma follows after dividing through by ||/||2. □ 

To make use of this, we must show that there is a suitable gap between 
the eigenvalues of C 

Lemma 25. There exists a constant N depending only on X, T[cr], a and 
I/J  such that at most N  eigenfunctions of C have eigenvalues less than 

^A(A + l/a). 

Proof. The eigenfunction equation can be written as follows: 

The Sturm comparison theorem gives a bound on the number of zeroes of 
(p in terms of A;: If A- < t[cr]/cr < ^4+) then the distance between zeroes 
is bounded between n/y/l + XiA+ and 7r/y/T+A^4_, so the number of 
zeroes is no greater than 2^/1 + \iA+. However the number of zeroes of 
<Pi is precisely 2[i/2] (see for example Theorem 3.1 in Chapter 8 of [10]). 
Therefore the number of eigenfunctions with A; < c is no greater than 1 + 
2y/l + cA+, for any c> 0. □ 

Corollary 26. There exists 5i > 0 depending only on ip, a, A and T[G], 

and positive constants a and b with 

X^<a2<b2<lx(x + - 
2    \       a 

such that b> a + 5i, and there are no eigenvalues of £ in the interval (a,&). 
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Now we can complete the proof of Proposition 22: Let a and b be as in 
Corollary 26. We will prove that while QTu and 6t+r5 are close enough to 
cr, Q will never increase above (a2 + b2)/2. Indeed, q = ||£/_L||

2
/||/_L||

2
 lies 

within C{\et+Ts - (j\2c2 + ||/||2) of Q (by Eq. (23)), so we can find 8' > 0 
depending only on A, a, -0 and Xfcr] such that if Q = (a2 + b2)/2 and 
WQt+rS - <T\\ + 11/11 < 6' then (3a2 + 62)/4 < q < (a2 + 362)/4, and Lemma 
24 and Equation (23) imply that dQ/dr < 0, possibly after again reducing 

For any 5" > 0 we can choose t sufficiently large to ensure \®t-\-rS — 
0"|c4 < S" for every r > 0. By the estimate (22), we can ensure that 
Q(0) < (a2+62)/2 by decreasing 6 if necessary. The estimate just established 
shows that this remains true as long as \\®Tu — @t+Ts\\ < 5'. 

Given these estimates, we can show that \\QTu — @t+Ts\\ increases expo- 
nentially, and so eventually reaches 5': We compute 

4-ll/ll2 = 2</> -M®u}~a + M®s}~a + QuZ[Gu} - GsZ[Gs}) dr 

2 

>2aZ[a}{Cf,f) + 2Z{<T\ 

-C (ll/ll \\Cf\\\@t+Ts~a\c, + ||/|| ||£/||2) 

>2iH(a<£/x,/x) + ||/x||2) 

-c(*"Q1/2||/J.||
2 + fi||/J.||

3) 

>2iH(-^||£/±||2 + ||/±||2)-C(y + Oll/. 

> ^mm2 

after decreasing 8' and <5" if necessary. It follows that ||/|| increases until it 
reaches 5' for some r' > 0. Then we compute 

Z[QTlu] - Z[&\ 

= Z[et+Tls} - Z[a} + f i> {z{<dT,u}l~a - rfGi+^s]1-0) de 

> -^ZW (a||>C/i||2 + <£/x,/±)) -CS'\\f±\\2-C{6")2 

> ^iWCA - «Q)II/II2 - cs'Wff - c(5")2 

>l^Z[a}\(l-a\)(8'f-C(6")\ 

again after decreasing 8' if necessary.   Now choosing 8ff sufficiently small 



440 Ben Andrews 

(that is, t sufficiently large), we obtain 

Z[9r/u] - Z[a] > I^.Z[<T]\{1 - aX)(S')2. 

This completes the proof of Proposition 22. □ 

Remark. The assumption that u G ©i(/C0) was used only to guarantee 
that Ck estimates hold for u for each k, depending only on Xfcr], a and ip. 
The assumption is well suited to our intended applications, but can easily 
be weakened. 

The result of Proposition 22 will be combined with the following result 
on the density of the range of the solution operator of a linear parabolic 
equation: 

Lemma 27. Fix k > 2. Let &T : ff^S1) -> ^(S1) be the operator which 
takes M(.,0) to u{.,T), where u(6,t) is the solution of 

du 
— = auee + OUQ + cu 
at 

where a, b, and c are smooth on S1 x [0,T]; and CQ < a(8,t) < Co for 
some positive constant CQ.  Then QT has image which is dense in Hk. 

Proof We use the Hk inner product 

(f,g)Hk= [ DkfDkg + fgde. 

If the image of 0^ is not dense, then there is some / € ^(S1) such that 

f@Tudd = 0 L 
for every u E JH"

A;
(5

1
). NOW let (p : S1 x [0,T] be the unique solution of the 

backwards parabolic final-value problem 

— = -acpoe + (6 - 2ae)(pe + (be - c - aee)^ 

(p(e,T) = f(e) + (-i)kAkf(9), 

and let (t)t(0) be the unique solution of 

(-l)fcAfc& + & = ¥>(.,*) 
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for each t G [0,T]. Note that <p(.,£) G H~k for each t, and hence ^ G JJ^, 
with |(/>t|ijfc < C\f\Hk.   In particular, (j)T = f.   Furthermore for any u G 

— (^t, ®Tu)Hk = (aw^ + 6^ + cu, </?) 

+ u(-a(poo + (b- 2ae)ipe + {be-c- aee)^)d6 

= 0. 

Therefore 

0= /   fGTud6= /   0owd6l, 
is1 /s1 

for all n G iIfc(Srl), so that 0o vanishes, and <po vanishes. But then / must 
also vanish, because of the following statement on backwards uniqueness of 
solutions of a parabolic equations, which we apply to ip with time reversed: 

Lemma 28. If v : S1 x [0,T] satisfies 

dv . 
— = aveo + bve + cv 

and <p(0, T) = 0 /or aM <9; t/ien (^((9,0) = 0 for all 6. 

Proof. Suppose that v(T) = 0, but v(0) is not identically zero. Without loss 
of generality assume that T is the first time at which v vanishes. Consider 
the energy functional E(t) = J^i v2. This is smooth in t for t > 0. We have 

—£7(4) = /   2v(av00 + 6^ + cv) d6 
at Jsi 

< -2 /   av| d(9 + CoE(t) 

d2 r 
-^E(t)>4,      (av00 + bv0 + cv)2de 

-d f  v20de-C2 !  v2d0 
Js1 Js1 

for some constants Co, Ci, and C2 depending on a, 6, c and their derivatives. 
Thus on the interval (0,T) we have the inequality 

-jrlnE + A—lnE + B^Q 
dtz at 
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for some non-negative constants A and B. By the maximum principle this 
implies that for any t in [0,T), lnE(t) < /(£), where f(t) satisfies 

d2f      Adf      „     ^ 

/(0) = ln£?(0),    /(r) = lnE1, 

for any Ei > 0. Thus 

f(t) = (1 - t/T) log .Bo + (t/T) log E! + ist(t - T)       ifA = 0 

B(T-t- Te-At + fcT^n 
+ ^ T^F^ L     ***<>, 

where EQ = E(0). In either case we have 

/(*) = a(t)logE0 + (1 - a(t))logJ3i + Q(t) 

where a is a smooth positive function on (05T) with values between 0 and 
1, and Q is a smooth, bounded function of t. Therefore 

E(t)<E%{t)El-a{t)eQ®. 

Taking Ei -► 0 gives E(t) = 0 for all t € (0, T), a contradiction. □ 

This completes the proof of Lemma 27. □ 

Now we complete the proof of Proposition 21: For any /J, > 0 and k > 2, 
we will find SQ such that \SQ — solffk < fi such that the conclusion of the 
Proposition holds. 

By Proposition 22, we can find S > 0 and to > 0 such that the Proposition 
holds provided 

W&toSo - QtoSohi <$ 

and 
(Gt0so - Gt0so,^)#2 > (1 - S)\\@t0so - 0*o5o||tf2 |M|tf2, 

where (p is the eigenfunction of Ca with eigenvalue A < 3 < 1/a guaranteed 
by Theorem 7. 

Choose ti > 0 sufficiently small to ensure that [©to^o — so\Hk < 5/2. 

Then for every I and /?, O^SQ ^ ^to M,rR ^or some -^"J 
r an(l ^- By Propo- 

sition 15, ©to-ti is a C00 maP from a C^"5 neighbourhood of 0^50 into C1^. 
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Lemma 27 implies that DB hats iJ^-dense image for any fc, and hence we 
can find v such that 2)0<o_t1(0t15o;v) is as close as desired in Hk to ip. It 
follows that u = Qto-ti (0£i5o + ^i^) satisfies the requirements of Proposi- 
tion 22 for Si sufficiently small. We take SQ = Gt^o + Siv. Proposition 21 
is proved. D 

Now we will complete the proof of Theorem 2. It remains to show that 
for any initial SQ £ ^'^ we can choose s as close as desired to so in ^'^ 
with s e UIo,Zo' 

Fix SQ > 0, and suppose that SQ £ UiQiZo (otherwise we have nothing to 
prove). 

Then X[Gt5o] < lo for ^ * > 0, so Q^so converges in C00 to a stationary 
solution (Jo with l[(To] < IQ- By Proposition 21, we can choose si G K^ such 
that |si - so\cw < <W4 and limt_^T(si) Z[Qtsi] < limt_>T(S0) Z[etso] -s = 
Z[oro] - £. 

There are two possibilities: Either si E UI0JZO, or G^si converges in C00 

to a stationary solution ai with I[c7i] < IQ. In the first case we are done; in 
the second, we apply Proposition 21 again to find 52 with \s2 — si\Ci,p < SQ/S 

and limt_>T(S2) Z[QtS2} < Z[ao\ - 2e. 
Proceeding by induction, we either eventually have s^ E UIQJZO, or we 

have a sequence {s^} with \sk+i—Sk\ci>0 < ^o/2fc+2 and \imt_+T(sk) Z[QtSk} < 
Z[cro] — ke. But then for large k we have lim^^^) Z[@tSk\ < ZQ, and so 
Sk ^ UIQ^ZQ- Therefore {7j0,z0 fl K^ is dense and open in Kt'P for every £ 
and p. 

This completes the proof of Theorem 2. 

6. Counterexamples in the non-symmetric case. 

The condition of symmetry in the main result cannot be removed: Consider 
the case where the support function has the form a = 1 + e cos 30, with 
e <l. 

Proposition 29. // a = 1 + e cos 39, then A = 3 + ^e2 + 0(£3) as e -» 0. 

Proof. For £ = 0 the eigenfunctions are (p2j-i = cos(jf0) and <p2j = sin^'fl), 
with eigenvalues A2J-1 = \2j = j2 — 1 for j > 0. Note that for e small the 
eigenvalues change only by a small amount, and in particular do not become 
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too small: The eigenvalue Xj(e) is given by- 

sup Hife^^ y^-1. 
On the subspace generated by {(^ : k > j}, 

>- ^. 

and therefore \2j(£) > ^2^-1(6:) > j^ij2 — 1). 
Let 

and 

Then 

q n 01 10 
/1 = cos 29 + -e cos 9 — —e cos 50 —-s2 cos 40 — — e2 cos 80 
^ 2 14 3 35 

Q Q SI 18 
/2 = sin 20 - -e sin 0  sin 50 + — e2 sin 40 - — e2 sin 80. 

2 14 3 35 

(29) (^+(3 + ^e
2))/i = 0(£

3) 

for £ sufficiently small, i = 1,2. Write /; in terms of the eigenfunctions ^(s) 
of ££: 

k 

Then equation (29) gives: 

E^(3+T£2-Afc(£))2-C£6- 
A; ^ 

Therefore for each &, 

(30) <fe(3 + ^2-Afe)
2<^ 

If A; = 0,1,2 then Afc  = -1 or 0, so that (3 + ^e2 - A*)2  > 4 and 
r        12 

therefore o?fc  <  jCe6.   If k > 5 then Afc  >  £&( ^     - 1), and so 
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(3+^2-A,)2>C(j-4)2forsomeC. Again a^ < ^. ButE<ib = 

(fu fi) > C, so it follows that a?3 + a?4 > C - Ce* - e« Efc>5 (^V - 
(7 — Ce6. Therefore the cases fc = 3 and k = 4 of equation (30) in the two 
cases 2 = 1,2 imply (3 + ^e2 - A3) < CeQ and (3 + ^s2 - A4) < C^6.   □ 

Other kinds of asymmetry do not lead to large A. In particular, trans- 
lating a symmetric curve to place it off-centre yields a smaller value of A: 

Proposition 30. Let 7 be any smooth, strictly convex curve with support 
function s. Let Q be the region enclosed by 7, and define a function / : £2 —» 
M by taking /(£) to be the reciprocal of the first positive eigenvalue of the 
operator C^ =   f~l'^t.   Then f is a strictly convex function on 0,.  If s is 

symmetric, then f is symmetric and f > |; with equality if and only if 7 is 
an ellipse. 

Proof. Prom the Rayleigh quotient characterisation of A, 

f® = sup {  r   f~~$     ~2M ' * e COO(5 )'* ^ E-i ® ^o f ' 

since r[s — ^ • z] = r[s], and -B_i © EQ is independent of £ G fi. Here </? is the 
component of <p orthogonal in L2cz to E_i © EQ: 

(31) ^ = <p - i|li^i-|>i(s - e • z) - (M-1)^'^,^)^ 

where (<^i,</>2)f = /51 8_g.z^i<^2^) and ||.||f is the corresponding norm; 
2 = (21,22) = (cos 0, sin 0), and (M^)ij = (zi,Zj)^ for 1 < i,j < 2. Thus / 
is a supremum of functions, each of which will be shown to be convex. 

Take <p fixed in C00(S'1)\JB_i 0 EQ, and define /^ : ft ->• M by 

U(0 = -^-'-^- fpfay-pde 

Note that the denominator is independent of £: In expression (31), (<p, s — 

^ " ;2;)^ = Is1 s-lz (s — £ * ^pdO = J51 t[s]<pd0 is independent of £. Also 
||s —£-2;||| = /5i r[5](s — £-z) d^ = /51 sr[s] d6 is independent of C Therefore 
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¥>(£) = ^p — Cs + v - z where C =   riL* is independent of f, and v G / sr[5]d<9 
depends on £. Then 

/ (<PO)
2
 - <p2 dO = - f <pi[0\d6 

Js1 Js1 

— ~ /   (^ — ^5 + t; • ;z)t[<p — Cs + ^ • 2;] (i^ 

= - /   (^ - ^ + v ' *)*[¥ - Cs] de 

Js1 

= - /   x[(p-Cs + V' z]((p - Cs) d9 
Js1 

= - f  x[cp-Cs](<p-Cs)d0 
Js1 

which is independent of £. Note also that f^ is unchanged by adding mul- 
tiples of 5 and Zi, i = 1,2 to cp, since <p is unchanged by such an operation. 

The change in the numerator of f^ as ^ is varied can be computed as 
follows: 

(32) DiMJ = Dt Uv,vh -   p _ I zf 

- (Ms1)   {fP^Mv^ih 

The second term in the bracket is independent of £, as noted above.  The 
change in the inner product is given by 

Jsi s - f • z 

= /    7 7—yTZitfrifadO. Jsi [s - £ . z)2 

Substituting this in equation (32) gives 

(33) 
Dmi = L (s-f-z)^ de - 2 (M?)H L {s-tz)^ZkZid6{fPi Z£h 

- (Di (M^1)   J (<P,Zk)t(<p,zi)c. 

To calculate the second derivative, use the invariance of /^ under addition 
to ip of multiples of s and Zi to ensure that <p = if at the point £.   The 
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integrals (<p, Zj) are zero for each j, and only contribute to the final result 
when they are differentiated. In particular, the derivative of the last term 
in equation (33) is zero. This gives 

DiDjMl 

Z-z)3ZlZ^ 

-2 Wkisl Trrwr^b (TT^^^ 
s-^-z   S-£'Z^ \    *   )       s-^-z        ^   s-^-z        ^ 

This leads to the following expression for the Hessian of f^: 

2 
Hess/^ (77,77) 

(£, -Ceflt 

x  2 
77 • Zip 

71'E±  ' 0    \s-€'Z 
>o5 

where i2^ = ^rV t, EQ is the subspace orthogonal to ^0 with respect to the 
inner product ( , )^, and TT is the orthogonal projection. Thus f^ is convex 
for each ip. 

Therefore / is a supremum of convex functions, hence convex. The 
symmetry properties claimed in the proposition are immediate, as is the 
lower bound in the symmetric case, by Theorem 3. □ 
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