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We study quasi-symmetry properties of Lp norms of positive and 
negative parts of eigenfunctions of Laplacians. 

The behavior of L9 norms of eigenfunctions of the Laplacian on Rie- 
mannian manifolds has been a subject of active investigations. The rate of 
growth of L00 norms was studied in [Hor, D-G, Vol, Iv, Gr]; in [Ber, Don] 
for negatively curved manifolds (see also [I-S, R-S, SSE, ABST]); and by 
Colin de Verdiere ([CV]) and others for manifolds with integrable geodesic 
flows (see [Bol, Bo2, T, T-Zl, T-Z2, Va, Zyg]). Seeger and Sogge ([S-S, So]) 
gave an improved upper bound for the rate of growth of U* norms of eigen- 
functions. 

There are many other interesting questions about the statistical behavior 
of eigenfunctions on manifolds (cf. [J-N-T]). In particular, in view of the 
predictions of the random wave conjectures of quantum chaos ([Be], [HR], 
[ABST]) it seems natural to investigate the relationship between positive 
and negative parts of real eigenfunctions on Riemannian manifolds. In the 
paper [Nad] the second author studied quasi-symmetry relation between 
positive and negative parts of the distribution function of an eigenfunction 
of the Laplacian on a Riemannian manifold. He considered the volume of 
a domain on which an eigenfunction has constant sign, as well as the size 
of positive and negative extrema of eigenfunctions. Here we want to study 
quasi-symmetry properties of D* norms of positive and negative parts of 
eigenfunctions. 

Let M be a smooth compact manifold, tp a nonconstant real eigenfunc- 
tion of the Laplacian. We define (/?+ and <p_ by 

/^ ^+ = V ' x{W > 0}) 
¥>-   =   ¥>• X({<£ < 0}) 
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Theorem 1. For any p > 1 there exists C > 0, depending only onp and the 
manifold M, such that for any nonconstant eigenfunction cp of the Laplacian, 

1/C <  IIV+IILP/II^.IILP  <  C 

For p = 1 the ratio in Theorem 1 is equal to 1 since f (p = 0, while for 
p = oo the Theorem was proven in [Nad]. The exact value of C for p = oo 
was considered in [Kr]. 

We remark that by symmetry it suffices to prove that there exists C > 0 
such that 

(2) HP-IILP   <  CWV+WLP. 

Another inequality in Theorem 1 can then be proved by a similar argument. 
We first assume that the n-dimensional manifold M is divided into n- 

dimensional cells UfeiQi (which we shall call cells) with disjoint interiors 
such that the closure Q of each cell Q intersects at most Ci other cells (we 
can take Ci ~ 3n), which we shall call the neighbors of Q. The size of 
the cells(which will depend on the eigenvalue corresponding to cp) will be 
specified later. We have 

(3) / k±ip = E / I^IP 

Given a positive constant D we say that a cell Q is D-good if 

f \ip-\p  <  D f \tp+\*. 
JQ JQ 

Otherwise, we shall call a cell D-bad. We shall prove the following 

Claim 2. Given D2 > 1, there exists Di > 0 such that every Di-bad cell 
Qi has a neighbor Q2 such that 

(4) f   \tp\P  >  D2 f   \<p\P. 
JQ2 JQi 

We remark that D2 is assumed to be strictly greater than one. 
Before proving the Claim, we shall prove the following 

Proposition 3. If we choose D2 > Ci, the Claim 2 implies Theorem 1. 
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Proof. We define an oriented graph G whose vertices will be cells in our 
partition of M. All directed edges Qi -> Q2 of G originate at bad cells 
Qi. For each bad cell Qi we choose exactly one of its neighbors Q2 such 
that (4) holds for Qi and Q2 (the existence of at least one such neighbor is 
guaranteed by Claim 2), and make Qi -> Q2 a (directed) edge of G. 

We remark that the graph G cannot have directed loops Qi -> Q2 -> 
• • • —> Qn —> Qi (otherwise we would have 

f    \cp\P   <   -L    f 
JQI D2   JQi 

\V\P 

which is impossible since D2 > 1). We next prove that G cannot have 
any undirected loops. Let 7 be such a loop. There will be at least two 
edge orientation changes along 7, say at Qi and QJ: QI —> Q2 —t ... —> 
Qi-i —> Qi ^— Qi+i ^- • • • ^— Qj -> Qj+i -> — One of these changes will 
correspond to two directed edges originating at a bad cell (say Qj). But 
by the definition of G exactly one directed edge originates at any bad cell. 
The contradiction implies that the graph G is actually a forest (i.e. its path 
components are contractble). 

By the definition of the graph G no arrow can originate at a good cell, 
so two different good cells always belong to different connected components 
of G. Moreover, every path in G must terminate (since G is finite), so every 
connected component of G (which is a tree) contains a unique good cell (since 
an edge originates at every bad cell by the definition of G). We remark that 
a connected component of G may consist of a single good cell. 

Given a good cell Q, we define its basin B(Q) to be the union of all 
cells which lie in its connected component. Every bad cell Qf belongs to 
the unique basin (since there is only one edge originating at Qf). Denote 
by Ti,r2,... ,Tfc the trees that are connected components of G, and by 
{QuQ2, • • • ,Qk} the corresponding good cells. The basin Bj = B(Qj) is 
given by 

Bj   =  ^QeTjQ- 

Since G is the union of its connected components Tj, and since the equality 
(3) holds, in order to prove (2) it suffices to show that there exists C > 0 
such that for every 1 < j < k, 

A7ZJQ r^t   JQ QeBj JQ QeBj JQ 

We shall prove that there exists a constant C2 (depending on Ci and 
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D2) such that for every basin Bj = B(Qj) the following inequality holds: 

(6) £ [ \cp\p < c2 f Mp. 

Since Qj itself is a Di-good cell, the inequality (5) will follow from the 
inequalities (6) and 

withC = C2(£>i + l). 
We proceed to prove (6). To do that, we define the distance d(Q,Qj) 

from a bad cell Q which belongs to the basin of Qj to Qj to be the length of 
the (directed) path from Q to Qj (such path is unique since the connected 
component of Qj is a tree); the distance from Qj to itself is defined to be 
zero. We define the sphere S(Qj,r) to be the set of all cells Q G Tj whose 
distance to Qj is equal to r. Let Ij be defined by 

¥>r (7) Jiir   :=  Ir   :=       Y.        I 

Then 

£     [ W = J0 + J1 + ... 

Let us denote by Aj the integral 

L Qj 

To estimate /r, we first remark that since each cell has at most Ci neighbors, 
the number of cells in S(Qj,r) is at most C[. Also, by the definition of the 
graph G, for any cell Q G S{Qj,r) we have 

JQ V2 

Accordingly, 
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If we choose D2 so that C1/D2 < 1, the inequality (6) will hold with 

1 
C2  = 

1 - (Ci/L>2) 

This finishes the proof of the (5), and hence Proposition 3 is proved.        □ 

Lemma 4. Proposition 3 remains true even if we don't assume that the 
interiors of the n-dimensional cells Qi are disjoint (but we still assume that 
each cell Qi intersects at most C\ other cells). 

Proof of Lemma 4.   We need to estimate 

W /Ml^+lPfrombelow' 

(ii) JM l^-P from above. 

We first note that JM \(p-\p is clearly less than 

(8) 
iJQi 

We define the oriented graph G, the trees Tj and the basins Bj as in the 
proof of Proposition 3. As before, the sum (8) is dominated by 

where the sum is taken over all good cubes Qj. 
We shall next show that 

ci-/ \<p+\p>itf b+r- 

Clearly, this would give a lower bound for (i). By the assumption of the 
Lemma, each good cell intersects at most Ci other cells. It follows that each 
point in {x G \JjQj\(p(x) > 0} contributes at most Ci times to the sum (9), 
proving the last inequality. Since we have already given an upper bound for 
the integral in (ii), Lemma 4 is now proved. □ 
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We next turn to the proof of Claim 2. We first prove a lemma about an 
elliptic differential operator L defined on a ball B2 of radius two centered at 
the origin in Rn by 

We assume that a^&ijC are smooth functions, that 

\-lm\2 ^^Mi < m\\2 

for some A > 0, and that c(x) < 0. 

Lemma 5. Let u(x) be the solution of the equation Lu — Q such that 7i(0) = 
0; and let 1 < p < 00. Then there exist a monotonically increasing function 
p(t) defined for t > 0, p(0) = 0 depending on p, ellipticity constant A; C2 

norms of aij,bi,c such that if 

MlLp(Bi)    <   *||^"||Lp(5i) 

for some t>Q, then 

(H) IHlLp(Bi)   <   p{t)\\u\\Lp{B2) 

Here Bi denotes a ball of radius one centered at the origin. 

Remark 6. One can probably strengthen the conclusion of Lemma 5, re- 
placing the C2 norm (on which the final constant depends) by L00 norm, 
but C2 norm is sufficient for our purposes. 

Proof of Lemma 5. Assume for contradiction that there exists t > 0 and a 
sequence Uk,k = l,2,... such that Luk = 0 in B2, Uk(0) = 0 and 

(12) 

as k —» 00. 

INIlLp(Ba)        = !» 

IKIUpCB!)        > t, 

ll"fcHMBi)     _^ 0 

\u ■k llMBi) 
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Let G(x,y) denote the Green's function of L defined in B2-e,£ > 0. Let 
0 < 5 < e/2 and y G B2-5. Then dG(x)y)/dn < C(e) for x G B2-e- Hence 
for every S > 0 

(13) IMIWBa-a)   ^   CWII«lllp(Ba) 

Let Uk ^ u weakly in B2. Then ix is a weak and hence also a strong 

solution of Lu = 0 in £2, ^(0) = 0. We shall prove that 

Claim 7. u^O. 

Assuming the Claim, we can prove Lemma 5. Indeed, conditions (12) 
imply that for all k > 1 

u fclUpCBO + IKIlMBi) >*>o. 

Since the ratio of the two terms above goes to zero by (12), we conclude 
that 

IKIIMBO-^O 

as k —>» 00. Hence u < 0 in Bi. Since ^(0) = 0 it follows from the strong 
maximum principle ([G-T]) that u = 0 in J3i, and by unique continuation 
ix •= 0 in I?2. But we have shown before that u ^ 0. Contradiction finishes 
the proof of the Lemma. 

Proof of Claim 7. The conditions (12) imply that the norms ||'^/C||LP(B2) 

are uniformly bounded above by 1. Since C1-norms of Uk in B2-25 are 
uniformly bounded, we can choose a subsequence of Uk so that Uk —> u 

strongly in B2-25 along that subsequence Also, (12) imply that 

IMM*)>*/2>0 

for k large enough. This result, together with strong convergence in B2-25, 
imply that u ^ 0, proving the Claim and completing the proof of Lemma 5. 

□ 

We next extend Lemma 5 as follows: 

Lemma 8.   The conclusions of Lemma 5 hold if we assume that \c(x)\ < K 
where K is an absolute constant. 
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Proof. We first note that we can modify the proof of Lemma 5 to prove the 
same statement for the cylinders 

Qj = Bjx[-jJ],        .7 = 1,2 

instead of the balls Bj. 
Next, let v be a solution of Lv = 0 where L is given by (10) with 

\c(x)\ < K. Define a new operator Li in Rn+1 by 

a2 

OX
n+l 

We also define a new function u in Rn+1 by 

u(xi,...,xn,xn+i) z=ze^Xn+1 v{x1,...,xn). 

It follows that (Li — K)u = 0, and since |c(^)| < K, the assumptions 
of Lemma 5 are satisfied, so we can apply it to the function u. Assume 
now that Vk is a sequence of eigenfunctions satisfying (12). We note that 
sgni^i,... ,xn+i) = sgn^(xi,... )Xn). Denote by Bi,B2 the balls of radius 
1 and 2 in R71 centered at the origin, and by Qj, j = 1, 2 the cylinders defined 
above. It follows that 

HlMOi) = IHlMSi) {Sl^^dz) 
1/p 

and that similar equalities hold for u^ and u  .   The Lemma now follows 
from the generalization of Lemma 5 described in the beginning of the proof. 

□ 

Proof of Theorem 1. Given an eigenfunction ip with a large enough eigen- 
value A, we want to divide M into n-dimensional cells Qi of diameter 
< ci/y/X and inradius > cil\f\ such that each Qi lies inside a coordi- 
nate chart on M; hi(Qi) = Bi is a ball in Rn (where hi is the corresponding 
coordinate function) for all i, cp vanishes in every cell, and each Qi intersects 
at most Ci other cells for some Ci > 0. 

If we do that, then let y = hi{x),il){y) :— ^(h^1^)) for x G Qi. By 
previous remarks, I/J vanishes in Vi. M is compact, so we can assume that 
the Jacobian of h is uniformly bounded. Also, since diam(Q;) < ci/vA, the 
change of variables z = VXy transforms ip(y) into a function g(z) for which 
the assumptions of Lemma 8 hold. Theorem 1 then follows by Lemma 4. 
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It remains to be shown that we can divide M into UQi as indicated 
above. It is well known (see, for example, [Bru]) there exists C2 > 0 such 
that that any nonconstant eigenfunction of the Laplacian on M changes its 
sign in a ball or radius C2/\/A on M. Also, we can realize M as a (finite) 
simplicial complex C whose simplexes are supported in coordinate charts on 
M. Let h : Uj —> Vj C Rn be such a coordinate neighborhood. 

Consider the cubic lattice with the side t/VX in Vj, and "pull it back" to 
M via ft,-1. Denote the resulting n-dimensional cells in M by Pij. We also 
cover Vj by balls centered at the vertices of the corresponding cubic lattice. 
Denote by Qij the pullbacks of those balls into M by h-i. By choosing A 
large enough, we can ensure that each Vj is covered by a subset of UkQkj of 
UiQij and that each Qkj intersects at most Ci other Qfcj-s where Ci > 3n 

depends on the simplicial complex C only. It then follows from the fact that 
Jacobian of h is uniformly bounded that one can choose t > 0 so that the 
partition M = UijQij will have the required properties. This finishes the 
proof of Theorem 1. □ 

Conclusion. Many questions about the relationship between positive and 
negative parts of an eigenfunction remain unanswered. One of the interesting 
questions, in the authors' opinion, is whether ||<p+||p/||<p_||p —> 1 as A —> oo 
for 1 < p < oo on a given manifold? 

We remark that for p = oo zonal spherical harmonics provide an ex- 
ample of a sequence of eigenfunctions with ||<p+|loo/I|^-||oo > C > 1. In- 
deed, consider the highest weight spherical harmonic which is proportional 
to Pm(cos0), where Pm is the m-th Legendre polynomial, (/> is the latitude 
on 52, and m is even (for odd ra, the ratio is equal to 1). Then H^+Hoo = 1 
and H^-lloo = ^(m) where ^(m) is the absolute value of the first minimum 
of Prn(a;), since the size of the r-th relative maximum of [P^aj)] decreases 
with r for m fixed as x decreases from 1 to 0 (cf. [Szl]). Also, it is known 
that for a fixed r, the size of the r-th maximum Urijri) of |Pm(a;)| decreases 
as a function of m as m —> oo (the maximum of Pm is equal to 1). This con- 
jecture of Todd that was proved by Cooper ([Co]) for large m and by Szego 
([Sz2]) for arbitrary ra. Accordingly, the ratio ||<p+||oo/|l^-lloo increases as 
the weight ra —> oo. The fact that the ratios are uniformly bounded above 
was proved in [Ar] (it also follows from [Nad]); the limit of the ratio as 
ra —> oo is given in [Kr]. 

Acknowledgements. The authors would like to thank the anonymous 
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