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1. Introduction.

This is in the sequel of our previous work [LW] on the study of the approxi-
mated harmonic maps in high dimensions. The main purpose of the present
article is to understand the bubbling phenomena as well as the energy quan-
tization beyond the natural conformal dimension two for the Dirichelet in-
tegral. This will be important toward our understandings of the defect
measures and the energy concentration sets introduced and studied already
for approximated harmonic maps in [LW]. We shall examine here the static
situation, that is, the studies of harmonic spheres. In our forthcoming work
[LW2], we will study the rectifiablity of defect measures in the parabolic case
as well as the quasi-harmonic sphere bubblings and the so-called generalized
varifold flow.

As bi-products of our study are improvements of the “energy identity”
as well as the “no necks formations” thorems for approximated harmonic
maps from Riemannian surfaces. In all previous works one needs to assume
the tension fields to be bounded in L?, that is not a conformally invariant
condition. We find an essential optimal condition on tension fields, which is
also scaling(up) invariant, and which is always satisfied whenever the tension
fields are bounded in LP, for any p > 1.

To describe the main results more precisely, we let M be a m dimensional
compact Riemannian manifold (with possibly non-empty boundary oM),
N C R* be a compact Riemannian manifold without boundary. For € > 0,
let uc € C?(M, R) be a critical point of the generalized Ginzburg-Landau
functional

I(u) = /M <%|Du|2 + Ei21~“(u)> dz,
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where F' € C*®(RF, R) satisfies:

F(p) = d*(p,N), ifd(p,N) <5,
= 462, if d(p, N) > 26.

Here d denotes the Euclidean distance in R* and d(-, N) = inf{d(-,p) : p €
N}. Note that § > 0 is chosen to be so small that d?(p, N) is smooth for
p € Nos = {p :d(p,N) < 26}. It is easy to check that u. satisfies:

(1.1) Aue + 6i2 fue) = 0.

Here f(uc) = —(DF)(u.). We assume henceforth that if N = S¥~1, then
F(p) = $(1 — |p[*)? so that f(p) = p(1 — |p|?) and (1.1) becomes

1
(1.1) Aue+ —uc(1— Juc?) = 0.
For € > 0, let u¢ be solutions to (1.1) with

(1.2) sup Ie(ue) < +oo.
>0

Our interest is to study the limit behavior of u.’s, as € tends to 0.

It is well-known, via Chen-Struwe [CS] and Chen-Lin [CL]), that one can
always find a subsequence of u., still denoted by ue, such that ue — u weakly
in H'(M,RF) and v € H'(M, N) is a weakly harmonic map. Moreover, u
is smooth away from a closed subset ¥ C M with locally finite (m — 2)
dimensional Hausdorff measure. Very recently, we showed in [LW] that if N
doesn’t support harmonic 52 (i.e., nontrivial harmonic maps from S?) then
ue — u strongly in H'(M, RF). In particular, u is a stationary harmonic
map whose singular set has Hausdorff dimension at most m — 4 (see, Lin
L))-

The aim of this paper is to extend the blow-up techniques developed in
[L] and [LW] to the case that N does support harmonic S?. We obtain the
bubbling result in the two dimension case, m = 2. For m > 3, we prove
a quantization result for the density function of the defect measure on the
concentration set associated with the process of convergence, provided that
N = S%=1. These ideas for the generalized Ginzburg-Landau functionals,
which are motivated by an earlier work of Helein [H] and some recent works
by [LR] and [LR1] in higher dimensions, can also be used to extend the
known results on the energy identity and the bubble tree convergence for
approximated harmonic maps from surfaces with bounded L? tension field
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to the case that the tension field of the approximated harmonic maps from
surfaces with bounded LP tension field for any p > 1, provided that N =
Sk—1,

Now, let us state our main results.

Theorem A. Assume that m = 2. For e > 0, let ue C H'(M, R¥) be
solutions to (1.1) and satisfy (1.2) (for OM # 0, ue = g for some fized
g € CY(OM, N)). Then for any €, — 0 there ezist a subsequence of ue,,
denoted as itself, and a harmonic map ug € C°(M,N) and a finite number
of harmonic 82’s, {w;}}_,, along with points {a?}._; C M, and {\}}._; C
R4 such that

l

(1.3) Jim I, (ue,) = E(uo) + Zl E(ws)-
1=
!
(1.4) egglo Ue, — UQ — zw:‘ =0.
=1 liLe(M)

Here E(ug) = [3; 2|Duol?, B(ws) = [g» 3| Dwif?, and wp (z) = wi(Zet)
w(00). '

Throughout this paper, it is assumed that all sequential convergences
is taken after passing to possible subsequences if not mentioned explicitly.
(1.3) is called as energy identity and (1.4) is called as bubble tree convergence.
It will be clear from the proof in the below that (1.3) implies

I
Jim |, —uo — > Wl an =0

=1

However, since H'(R?) ¢ L*®(R?), the convergence (1.4) asserting that
there is no neck formation during the process of convergence is one of the
most difficult issues in the study of bubbling phenomena for approximated
harmonic maps with bounded L? tension field in the two dimension case.
For previous works on two dimensional harmonic map bubblings, see [J],
[P, [Q], [DT], [QT], [W], [LW1].

For m > 3, assume that M = C R™ is a bounded domain , Note that
if u,, satisfies (1.1) and (1.2), then, for €, — 0, there exists a nonnegative
Radon measure v on {2 such that

1 1 1
ee, (Ue, ) (z)dz = (—2-|Du€n|2 + 6—2F(u€n)> (z)dz — 5]Du|2(ac) dz + v,
n
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as convergence of Radon measures. Moreover, we showed in [LW] that there
exists a closed subset ¥ C 2, with locally finite (m — 2) dimensional Haus-
dorff measure, such that

(i) ¥ =spt(v)Using(u), here spt(v) denotes the support of v and sing(u)
denotes the singular set of u;

(ii) there exists a H™ 2 measurable function 0 < €2 < © < co such that

v(z) = O(z)H™2LY, for H™ 2 ae. z€ 3.

(iil) If ue, does not converge to u strongly in H1($, R¥), then H™ %(Z) > 0
and there exists at least one harmonic $? in N.

Claim (iii) suggests that if N does support harmonic S?, then the strong
convergence may fail. Hence, in order to understand the blowing up behav-
iors of the convergence, it is important to understand the nontrivial defect
measure v and describe its density function ®. We employ the ideas intro-
duced in the recent works [LR] and [LR1] to show the following:

Theorem B. If, in addition, N = S*71. Then, for H™ % g.e. ¢ € %,
there exist 1 <l < co and harmonic S?’s, {d)j}é?:l, such that

le
(1.5) O(z) = ) E(4).
=1

One shall view (1.5) as a higher dimensional version of energy identity
for weakly convergent sequences of critical points of the Ginzburg-Landau
functionals. We also believe that theorem B remains to be true for any
Riemannian manifold N.

When m = 3, for any fixed ¢ > 0, suitable scalings of a solution u. to
(1.1) yield either a harmonic map u : R? — N:

(1.6) Au+ A(u)(Du, Du) = 0,

with bounded normalized energy:

(1.7) sup R71 |Du|?(z)dz < oo
R>0 Bgr

or a map v : R3 — RF which solves:

(1.8) Av + f(v) =0,
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with
1
(1.9) sup R"l/ (—2—|Du|2 + F(v)) (z)dz < co.
Br

R>0

In order to understand these maps, we look at its tangent maps at the
infinity. This has been done by Lin-Riviere [LR] for maps satisfying (1.6)
and (1.7). Here we carry out the analysis for (1.8) and (1.9).

First, recall a tangent map for v : R — RF satisfying (1.8) and (1.9)
is a map ¢ : R®> — RF obtained as a weak limit of vg,(z) = v(R,z) in
Hl C(R3 Rk) for some R, — +o0o. Let To, denote the set consisting of all
poss1b1e tangent maps of v at infinity. Then we can prove
Theorem C. Let v : R®> — RF be a solution to (1.8) and (1.9). Then for
any ¢ € T

(a) ¢(z) = gb(l%[) for £ # 0, and ¢|g2 is a harmonic map into N. More-

over, there exist R, — oo and a nonnegative Radon measure v on R3
such that

1
i = %IDanIQ + BAF(vn)do — £|DJ* do +v
as convergence of Radon measures.

(b) v is a cone-measure, i.e. vy = v for any A > 0. Here vy(A) =
A"1w(AA) for any Borel set A C R®. Moreover, there exist 1 <1 < oo,
{P;}Yioy € 8%, and {0;},_; C Ry such that

Spt(l/) = U‘ljzlopja

where OP; denotes the ray emitting from the origin to P;. For 1 <
J<li
vLOP; = 6; H'LOP;.

(c) The following balancing condition holds:

l
/S2 z|Dg|*(z)dH?(z) + Y 0;P; = 0.

=1

(d) If, in addition, N = SF~1. Then, for1 <3 <1, thereexist1 < p; < o0
and harmonic S2’s, {¢q}’, such that

pj
0; =Y E(¢g)-
g=1
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Note that if ¢ : S — 52 is a harmonic map, then one has

E(¢) = 4n|deg(4)],

where deg(¢) denotes the topological degree of ¢. Hence, as a consequence
of (d) in theorem C, we have the quantization result for a entire solution in
of (1.8)-(1.9) in R3.

Corollary D. Letv: R? — S? be a solution to (1.8) and (1.9). Then

(1.10) Jim R / <|D 4+ 41— |v|2)2> (2) dz = drk,

for some nonnegative integer k.

One shall compare Corollary D with the two dimensional quantization
effect result by Brezis-Merle-Riviere [BMR]. The similar result for three
dimensional entire solutions to (1.6) and (1.7) was obtained by [LR], [LR1].
The basic idea is the estimate for the gradient in L?! and L** (both are the
Lorentz spaces). As an application of such analysis , we obtain the bubbling
result for sequences of maps into the sphere with bounded LP tension field,
for any p > 1. This extends previous known results, where the tension field
is assumed to be bounded in L2.

Theorem E. For m = 2 and M without boundary. Assume that u, C
HY(M,S*1) converges to u weakly in H'(M,S*1). For any p > 1, if the
tension field:

(1.11) hn = Au, + IDun|2un,

is bounded in LP(M). Then there exist a finite many harmonic 527,
{w]} AR {an}L L C M, {N }L 1 C R4 such that

L
(1.12) lim |ju, —u— Zw | oo (ar) = 0.

n—oo

In partzcular (1.12) holds, with L>°(M) replaced by H*(M). Here wi(-) =
wj(-}?“ — wj(0).

Here we would like to remark that the condition on the tension fields A,
can be further weakened to a local scaling invariant one (see Proposition 6.2
in the last section for the precise statement of these conditions).
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2. Basic Estimates.
This section is devoted to establishing a priori estimates needed in later

sections. We assume that M = Q C R™ is a bounded smooth domain.
Denote Br(z) C R™ as the ball centered at z with radius R > 0.

Lemma 2.1. Assume that ue : @ — RF solves (1.1). Then we have

(2.1)
2—m ec(u. —r2m ec(ue)(z
R R L I CRICEE
Ou,

2 R
= / ly —z|>~™ ‘ dy + 2/ tl”m/ F(ge) dz
Br()\Br(x) Oly — | r Bi(w) €

foranyz € Q and 0 < r < R < d(z,00Q).

One can find the proof in [CS] or [CL].

Lemma 2.2. There exist g > 0 and Cy > 0 such that if Ue : Bop — RF
solves (1.1) and (2R)>™™ B, €e(ue) dz < €2, then

(2.2) R? sup e.(ue)(z) < C’ORQ_m/ ee(ue) dz.
Bar

z€B3g
3L

Moreover, fore << 1,

2 1 2 R_2 —-Cok
(2.3) R® sup —|f(uc)|(z) < Co | g+ —e ¢ ).
z€BR € €

Proof. One can refer to [CS] for the proof of (2.2). One can also find the
proof of (2.3) in the last section of [CL]. However, we would like to outline
a proof of (2.3) in the case that that N = S*~1. Note that the maximum
principle implies |ue|(z) < 1. By scaling argument, it suffices to prove (2.3)
for R =1. Let & = 1 — |uc|?. Then it follows from (1.1') that

(2.4) —EAD, 428, < 4ezee(ue) < 06362, in By,
0<®. <1, on 0B;.
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Here we used (2.2), which implies that ec(ue) < Ce2 in B;. Let we(z) =
we(]z|) : B1 — R be a solution to

(2.5) —EAwe + 2w, =0, in Bj,
we =1, on 8Bj.

Then one can check that for e < 1 f.(z) = eze(lel’~1) g 5 super-solution to
(2.5). Hence the maximum principle implies that

1
we(m) < ez—e(lwlz—l), TE Bla

and
D (z) < 06362 + e%(lzlz_l), T € Bi.

This yields (2.3).

Lemma 2.3. For m = 2. Let uc : By(0) — R* solve (1.1). Then, for any

0<R<2,
2
1 F F
+ —/ (Ze) S/ IDTue|2+2/ (Ze).
R Br € O0Bgr 8B €

(2.6) /B .

Here Dy denotes the tangential derivative on OBR.

Ou,
or

Proof. Multiplying (1.1) by = - Du. and integrating it over Bp, integrations
by parts yield (2.6).

3. Proof of Theorem A.

In this section m = 2. The idea is based on that developed by Lin-Wang
[LW1]. The first step is to show the convexity of tangential energy of u.
on S1; the second step is to use the Pohozaev inequality of Lemma 2.3 to
control the radial energy of u. by its tangential energy. To make the proof
clear and self-contained, we first recall the process for the first bubble.

For ¢, — 0, we assume that u., does not converge to u strongly in
H(M, R¥). Then there exist {:cj}JL=1 C M and {mj}f’zl € R, such that

L
1
en(tc,)(@) dz = 5| Duf’ ()dz + Zlmj%-
]:
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Here d,; denotes the Dirac mass at z;. For simplicity, we assume L = 1.
Consider the maximum concentration function:

t) = max €e, (Ue, )(T) dz.
Qe.(t) B:(z)CBs(z) J By(z) (tex) ()
Then there are z,, — 1 and A\, — 0 such that

2

_ g _
Qe (3 = 2 = /B o el @

Define vy (z) = U, (Tn + Anz) : O — RF, here Q, = A\;1(Bs(z1) \ {z1})-
Then 1
Av, + g_zf(”n) =0, in Oy,
n

and
2

€,
ez, (vn) < 2,
/Bl(z) 2

for any z € Qy, with equality for z = 0. Therefore Lemma 2.2 implies that

vp — wy # constant in C1 N H'(R?) locally. Moreover, we claim that
- €n
(3.3) €n = . — 0.

Otherwise, for a subsequence, either §'i- — ¢ > 0 and w; satisfies

Awy + ¢ f(w1) =0,

5 =
It follows from [BMR] or [LW] that w; is constant, which is impossible. Or
&€, — 00, which implies that w; is a harmonic function in R? with positive
and finite energy and hence constant. This is impossible again. It follows
that w; : R2 — N is a nontrivial harmonic map with finite energy. Hence
the removable result of [SU] implies that w; can then be lifted to a harmonic
52 to N. One can repeat the same process to find all possible harmonic 52’s,
{wj}é.:l. Moreover, | < C(M,N) < oo, since the energy of harmonic 5%’s
has a uniform positive low-bound. It is clear that

2
€5 1 9 1
- </R2 §|Dw1| +c—2F(w1)<oo.

l
(34) lim I, (ue,) > B(u) + ) B(w).
7j=1

To prove (3.4) is an equality. We use the induction procedure illustrated
in [DT] and assume that there is only one harmonic S? obtained as above.
Then theorem follows from the following Lemma.
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Lemma 3.1. Assume thatl = 1. Then we have

: ' I . dz =0,
(3.5) R—>}Llol<l>l,6—>05nlglo Ba\ane"(uen)(m) v=0

3.6 lim lim osc w (z)=0.
( ) R—+400,6—0 €n,—0 ©E€Bs\BRra, Gn( )

Proof. For simplicity, we assume that z,, = 1 = 0 € R2. To make it clear,
we further assume that N = S*~1. Since [ = 1, it follows from the argument
of [DT] that

2
(3.7) lim ee (ue, )(z) dz < %0 YR\, <1 < 6.

E:,—,;—-)O Bzr\Br

Therefore Lemma 2.2 implies that for n sufficiently large

1
(3.8) sup 72 max <|Du€n|2 + =1~ |uen|2)) < Cé.
r€[RAn,8]  Bigr\Bsr €n

Let (r,0) be the polar coordinate in RZ2. Define v, : %, =
[|log ], |log RAn|] x St — R* by v, (r,0) = uc, (e",6). Then we have

—2r
(3.9) Av, + 6—62—(1 — oal?)vn = 0, in S,

n
Here Av,, = %’2& + 66—29”2”‘. Moreover, (3.8) gives, for n > 1,

6—27'

(3.10) sup <|Dvn|2 +—(1- |vn|2)) (r,0) < Ce?.
(r0)ESn €n

By adapting the calculation of [LW1], we now claim that, for n >> 1,

d2

(3.11) -3

/ |vn,9|22/ lom ol?, Vr € [|log 5], |log RAn].
s S1
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In fact, by direct calculations and integrations by parts, we have

d2
W [Sl lvnﬂ[z = 2/51 |vn,0r|2 + 2/31 Un,0Un,0rr
= 2/ |’Un797.|2 - 2/ Un,06Un,rr
St S1
= 2/ |vn,0r|2 + 2/ I'Un,00|2
St S1

+2/ e e —2(1 |vn| )UnVn g6

_2/ V5 0|2 +2/ Vs, 00/

/ e e 2 ((1 = |vnl*)vn)ovne

—2/ [ 0r +2/ o 062

+4/ e _2|vnvn9| ——2/ —2r _2(1— |vn| )|'un9|2
1

> 2/ Ivnggl —C’eo/ |’Ung|2
2/ |'Un,"9| .
st

Here we have used the Poincaré inequality on S*:

/ o 06? > / o o2
S1 St

Let 0(6, R™') denote the quantities such that limg_;e06-00(d, R™1) = 0.
Since ue, — v in C}(M \ Bs) and Ue, (Ap') = w1 in CI(BR) for any R > 0,
we can choose ¢ sufficiently small and R sufficiently large such that

o = / | Don|? = 0(5, B~1)
{l1og 6]} x5?
(3.12) by, = / |Dv,|> = 0(6, R7Y).
{|log RAn|}xS?

Denote Ty = |logd| and T, = |log RA,|. Applying the maximum principle
to (3.11), we have

(3.13) /S ol (r,) < Ane” + Bue™, Vi € [T, T3],
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where

T, T To+2T, 2To+T,

e’ b, —e'la, e 0Teing, — est0Ting
(3.14) An = o2Tn _ g2T0 Bn = e2Tn _ g2T0
Now we can easily see
. 2 _ -1
(3.15) nli)n;.o . [vngl” =0(6, R™7),
and
Tn 1

(3.16) lim (| |vmgl®)2z =0(5,R7Y).

n—roo TO S1 ’

Therefore Lemma 2.3 to conclude that

/ lavnlz < / v 9] +2/ ‘2’"————(1 — [va*)?
> n,
o S S €2

2 T,
g/ |vn,gl2+eisup(e_2 M)Q/ e2r
T €2

n n To
_92,€n
< [ lonol + RS
3n )

It tends to zero as n — 00, § — 0, and R — oco. Putting these two estimates
together, we obtain (3.5). Moreover, (3.16) and Lemma 2.3 imply

)
Tn a,vn Tn 1
/ ([ 152 </ (/ [omg?)}
To To St
Tn _ 212
+/ 6_5(/ (- PP,
To aBe_r €n

Tn 9 1 9 1_Iu€ l2 Tn
< [ lmoPrt +en sup eri=himl [Ty,
T, J31 r€[To0,Tn] €n To

— 0,

asn — 00, § — 0, and R — oo. In particular, we have

(3.17) lim / |Dv,| = 0(6, R7Y).

n—o0 E

Note that the L' norm of gradient of v, essentially controls the oscillation
of v,. Hence we conclude that the oscillation over the neck region goes to
zero. Note that the inequality (2.6)also implies

/ 2 Fue,)(@)de
B,

5\ RAn En
goes to zero as m — 00, § — 0, and R — oco. Hence (3.5) is proven.
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4. Proof of Theorem C.

Note claim (4) of theorem C is a consequence of theorem B, we will prove
the first three statements of theorem C.

It follows from the definition of T, that for any ¢ € T, there exist R, —
oo such that ug, (z) = u(Rp,z) — ¢ weakly in Hll (R3, R¥). Moreover, it
follows from (1.9) that for any R >0,

e1(u)(z)dz = A1 < o0,

BRrr,

1
R—1/B ep-1(ur,)(z) dz < . RE.
we assert that there exists a nonnegative Radon measure v on R? such that
1
ep;1(ur,) dr — §|D¢|2(93)d93 +v,

as convergence of Radon measures. Moreover, (2.1) and (1.9) imply
8 oo
(4.1) lim p LR 42 / p2 / F(u)=0.
R—0o0 JR3\Bg dp R B,

By the lower semi-continuity, we then have, for any r < R < oo,

1,0 ) _1,0u
[ oot [ 1|——8Rn i
Bgr\Br P n—% JBr\Br 14

= lim —1| |2 =0.
"+ J Brr, \Brr,

This implies that ¢(z) = ¢(]—§[) for z # 0. It also follows that

/ N | r@)=o

I3

this implies that ¢ : R® — N is a harmonic map. Furthermore, we claim
that u = |D¢|%(z) dz + v is a cone-measure, i.e., for any A > 0, p) = p.
Suppose that we have achieved this. Then we see that v is also a cone
measure, since 3|D¢|?(z) dz is a cone measure. In particular, & =spt(v) is
a 1-dimensional cone in R3 with locally finite H' measure so that there exist
1<1< oo {P},_, C S? and {6;},_, such that
p—
2 = Uj=10PJ
and
vLOP; = ;H' LOP;,
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for 1 < j <. To prove that u is a cone measure, it suffices to show
(4.2) du(r,0) = drda(8),Y(r,0) € Ry x 5%

Here o is a Radon measure on S2. In fact, if (4.2) is true then for any Borel
set AC R3 and X > 0,

pa(A) = Ap(Ad) = A1 A du(r,6)

=1 A ) drda() = /A drda(0) = p(A).

Note that (4.2) is equivalent to that u is invariant under radial directional
translations, namely

(4.3) du(r + a,8) = du(r,8),¥r,a > 0,0 € S2.

Let 9. € C*®(R4, R) be a family of mollifies and n € C*(52). For a > 0,
denote u, = ug, and

E(un,n,a,€) = /000 /52 ep-1(un)(r + a,0)n(0)¢e(r)(r + a)?drds.

Note that

ep-1(un)(r +a,0)(r + a)%drdf — du(r + a,6),

so that

lim E(un,n,a,e)z/ n(0)du(r + a, ).
52

n—00,e—0

Therefore, we need to show

d
% |a=OE(un, mn,a, 6) — 0)
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as n — oo and € — 0 in the sense of distribution. In fact,
(4.4)

d
%la:OE(un, m,a, 6)

= - T a)l|u 2 2 U T a T T
=2 [ [ (@)l + REF () + 0, 0)0(0)e(r)dod

+o0 0
+ / /2((T + a) Un,rUn,rr + Un,oUn Or
0 S

= (r + @)’ Ry f (un)un, ) (r + a,0)n(0)he (r)dfdr

~+o0
=2 [ [ (4 Dluns P+ + FEF ()7 + 0, O)n(O) ()b
0 S2
400
+ / . [2(7 + @)% (UnUn,rr + UnrUin,69) + Un,oUn,0]1(0) e (r)dOdr
0 2
d +o00
=2 [ [+ 0 P+ REF ()] + 0, 0)0(0)e(r) o
e 2 0)$(8)be(r)dodr
+ 2/0 /52 (T + @) Un pUn pr (T + a, 2

“+o00
_ / / it 6630 (6) e () O
0 52
Here we have used that
Un,09 + ('r + a)2un,rr + R?zf(un) =0.

Integrating (4.4) with respect to a € (0, R — p) and taking € into zero, we
have

49 [ can )R O@~ [ crsun)loOn(e)a8
= 2[52 R2|un,r|2(R’ 0)77(9)619 -2 /52 p2|’u,n’,.|2(p, 0)77(0)(19

R
'2 2 U T T
+2 [ /S PR (un)(r, 6)n(6) 6

R
— / / Un,rUn 070 (6)dOdr.
p /82

Passing n into infinity and using (2.1), we obtain

/ n(0)du(R, 6) = / 0(6)ds(p, ).
S2 52



356 FangHua Lin and ChangYou Wang

This gives (4.3). To show (c), we observe that the same argument as in
Lemma 2.3 implies that, for any X € C§°(R3, R?),

(4.6) /};3 ep-t (up)divX — un,kun,lek =0.

Hence, by choosing X (z) = z; for 1 < j < 3 and letting n into infinity, we
have l
1
/ §x|D¢|2(a;)dH2(x) +Y 0;P;=0.
S2 -
J=1
This yields (c).

5. Proof of Theorem B.

In this section, As in [LR] and [LR1] we use the estimate on suitable Lorentz
spaces norm of Du, to give a proof of the energy identity of theorem B. We
assume that M = Q C R™ is a bounded smooth domain.

First note that (2.1) implies that

(5.1) R>™u(Bg(z)) > r* ™u(B,(z)), Yz € Q,0 < r < R < d(z,09).
Here p = 1|Du|?(z) dz + v is the limiting of e, (ue, )(z)dz. Hence

0™ *(p,z) = lim R*~" 1(Br(z))

exists for all x € Q and is upper semi-continuous. Moreover, it follows from
the definition of ¥ that

(5.2) z € ¥ if and only if €2 < @™ 2(u, ) < oo.

In fact, the rectifiablity theorem of Preiss [P] and Lin [L] yields that ¥ is
(m — 2)-rectifiable. Note that @™ 2(u,z) = lim,or2>™™ fB,(z) |Dul? = 0
for H™2 a.e. © € X. Therefore, for H™ 2 a.e. z € %, €3 < O™ 2(y,z) =
lim, 0 72"™v(B(z)) = ©™ 2(u, ) < co. This verifies the condition of the
rectifiablity theorem of [P1] and [L]. Based on this, we know that there
exists a H™ 2-measurable function €2 < © < oo such that

v(z)=0O(z)H™ LY, for H™" ?ae.x€X.

Since © is H™ 2-measurable, it is approximately continuous for H™~2 a.e.
x € X. This, combines with the (m — 2)-rectifiablity of 3, implies that for
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H™ 2% ae 3 € 8, & has a (m — 2)-dimensional tangent plane T, ¥, © is
approximately continuous at zg, and @™ %(u,z9) = 0. We may assume
that 29 = 0 and T,y = {(0,0,y) : y € R™2}. Let r, — 0 and v,(z) =
Ue, (Tn7) : B — R*. Then

Avy, + 20, (1 = |vga)?) =0, in BY.

Here €, = %g Now we follow the blow-up scheme of [LW] to conclude that
there exist a tangent measure u. of x at 0 such that

ee, (vn)(2)dz — pia
and

vp — constant,

weakly in H'(R™) locally. Moreover, spt(us) = {(0,0)} x R®~2 ¢ R™, and
pe = ©(0)H™2L({(0,0)} x R™?).

Furthermore, applying (2.1) with various centers on TpX, we can assume
that

(5.3) lim /
n—roo Ql J=3

Here Q1 = B? x Bin_2 C R? x R™2,

Now we want to show that ©(0) is a finite sum of energies of nontrivial
harmonic maps from S? into N.

Let us first recall how the first bubble is obtained from the blow-up
analysis from [LW]. Let X = (z1,22) € R2and Y = (y3,--- ,ym) € R™ 2.
Define f, : B]* 2 — R by

2

Ovn +&.2F(vp) = 0.

dy;

2

aif‘ +E2F(vy) | (X,Y)dX,

o= [ 125

J=3

Y
and g, : B2 = R by
an(Y) = /B e, (va) (X, V)aX.
1

Then the Fubini’s theorem and (5.3) imply

i Ulgsopsy = O
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Therefore the weak L!-estimate of the Hardy-Littlewood maximal function
implies that for any 0 < 6 < 1 there exists E} C B{n_Q, with |[E}| > 1 -9,
such that

5.4 lim sup r2—m fn(Y)dY =0,VY € E}.
(4
B.(Y)

n—)OOO<TS%

Note also that for H™~2 a.e. Y € B2, g, is bounded. It follows [LW]
that there exists Fy C EF, with |F3*| > 1 — 24, such that

(5.5) lim ga(Y) = 6(0),¥Y € F}.

As in the section 3, we may assume that 0 € F§. For 9 > 0 given by Lemma
2.2, there exist {X,}(C B?) — 0 and )\, — 0 such that

62
5.6 / ez, (vn)(X,0)dX = —2— = max / ez, (v)(X,0)dX,
(5.6) 5 () (vn)(X,0) Com) B (2) & (vn)(X,0)

here C(m) > 0 is to be chosen later. Define rescaling maps w,(X,Y) =
vn((Xn,O) + An(X,Y)). Then wy, satisfies (1.1') in A1 (BF(Xa) \ {Xn}) X
Bm .~, with €, replaced by d, = —i— It also follows from (5.4) and (5.6) that

(5 7)

lim sup 72 m/ / Bwn + 6,7 F(wy) | =0,
G ey P20 /B2, (0) 3%
2
€
5.8 / es,, (wy)(X,0)dX = =2
68 [ conlonX08x = b
= max es, (wn)(X,0)dX.

ZEBigl B%(2)
Moreover, if we let ¢ € C$°(B2(0)), then direct calculations show that for
3<j<m,

o 0
- X)es. (wa)(X,Y)dX
B9; /32(0)45( Jes,, (W) ( )

_ -22 / S0 (X)X Y g, (X, Y Yy (X, ¥) dX

Zi / $2(X ) gy y, (X, Y )dX.
= 0y JB3(0)
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This, combines with (5.7) and (5.8), implies

62
(5.9) (20p)2™ /B es, (wn)(X,Y) < 30

T (0)x B} (0)
Hence Lemma 2.2 implies that
wn(X,Y) = w in G (By*~? x R?).

Moreover, 6, — 0 and w(X,Y) = w(Y) : R? — S*~1 is a nontrivial har-
monic map with finite energy, which can be lifted to be a harmonic map
from S2.

Let W (X) = wn(X,0) : B2 — S*~1. Since (5.5) gives

(5.10) lim es, (W) (X)dX = 6(0).

Zz

In order to prove theorem B, we need to show that

1
(5.11) i eg, (1,)(X)dX = 3 B(y),

=1

where ¢; : S 2 _y S*=1 are nontrivial harmonic maps.
Denote A(R,n) = {X € R*: R\, < |X| < 1}. Then it follows from the
first bubbling process shown as above that (5.11) is equivalent to

1
(5.12) lim lim ez, (vn)(X,0)dX =) E(4;).

R—00 n—¥00 A(Ryn)

=2

As in §3, it follows from the induction argument of [DT] that we only need
to show that (5.12) is true for [ =1, i.e,,

(5.13) lim ez, (vn)(X,0)dX = O(R™Y).
n—00 A(R,n)

Here limp 0o 0(R™!) = 0. We first claim that for any €; > 0, there are
sufficiently large R and ng such that for n > ng, one has

(5.14) 2-m /(32 S ez, (v)(X,Y)dXdY < €,
27 r)XDBr
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for all r € [RA,, %] Indeed, if (5.14) fails, then we may assume that there
exists 7, € [RA, 5] such that

ri-m / ez, (vn)(X,Y)dXdY
(B3, \B2,)x B,

is equal to the maximum of the left hand side of (5.14) over all r € [RA,, 3],
and is larger than €?. Moreover = — co. Scale v, and define T, (X,Y) :

(Bf_1 \ B%,,) ¥ B2 & RF by 5,(X,Y) = va(rnX,r,Y). Then we have

™

(5.15) en.(Un) (X, Y)dXdY > é2.

/(15'§’><B§)><B;""2

Here n, = f—: — 0. By the energy bound of 7,, we may assume that
Up — Vo weakly in Hlloc(R2 x BT"2 RF). Moreover, using (5.7), we can
conclude that veo(X,Y) = veo(X) : R2 — S*~1 is a harmonic map with
finite energy. Hence, if the convergence is strong in Hlloc(R2 X B;”_2, R¥),
then (5.15) implies that vy is nontrivial, which contradicts with [ = 1.
Hence the convergence fails to be strong and the blow-up argument of [LW]
yields that there exist {z4}f_; C R? for some 1 < p < oo and Cy > 0 for
1 < d < p such that

p
DB, [*(X,Y)dXdY — | Dveo [ (X)dXdY + > CaH™ 2L({za} x R™2),
d=1

as convergence of Radon measures. Moreover, there exists at least one non-
trivial harmonic S? along with the convergence process, this again contra-
dicts with ! = 1. It follows from (5.14) and Lemma 2.2 that we have

5.16 r? sup ez (vp)(X,Y) < Cez,
n _ 1
(B%T\EE)XB" -2

for all 7 € [RAn,3]. If we define w,(X,Y) : B2, x B3 — RF by
wn(X,Y) = v,(AM X, \nY). Then (5.16) implies, in particular,

(5.17) | X[|Dw,|(X,Y) < Cer,Y(X,Y) € (By,)-1 \ BR) x B 2.

Now let us recall the definition of the two Lorentz spaces we need, the
reader can refer to Ziemer [Z] for details.
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Definition 5.1. Let Q C R? be a given domain. A f:Q — Ris in L>!(Q)
(or L?*®(Q)) if

1 dt
I fllz2n (@) = A 3 (¢ )5 <00

(I fllz2.00() = suPssg t3 f*(t) < oo respectively) where f*(t) is the rear-
rangement function of f.

Lemma 5.2. Let w, be given as above. Then we have, for any Y € BE”,

(5.18) |1 Dwa, Y)llzzee (g2, | \B3) < Cer.

Proof. It is easy to see that ﬁ € L>*(R?). Hence (5.17) implies, for any
Y € BR?,

[ Dwn (-, Y)”L2°°(B2 ay-1\B2) S Cenl||X|™ ”L2°°(B2)\ —1\B2)
(5.19) < Cerll|X| | pooe(ry < Cer.

Let H'(R™) denote the Hardy space in R™. The following lemma is
well-known and can be found in Stein [S].

Lemma 5.3. Assume that g € H!(R™), the Hardy space in R™. Let 1 €
H(R™) be a solution to

A =g.
Then v € W1(R™) and

(5.20) D%l 11(rmy < CIIfll22(Rm)-
Now we need

Proposition 5.4. For 1< j,1 <k, we have, in Bin B/'\”_12,

(5.21) Z(wJ wh o — whwl e = 0.

(5.22) A(wldw!, — whdwl) = 2d* (dw?, A dwl).
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Here d denotes the exterior derivative and d* denotes its adjoint in R™.

Proof. (1) Note that

m
E: Jat  — bt apd

(wnwn,a wnwn,a)a
a=1

= wZ;Awf1b — wh Aw?
= )& (|wal? — Dwy, — wi&,* (Jwnf® — w), = 0.

(2) Note that (1) is equivalent to that d*(wdwl, — whdw)) = 0. Hence

A(wldwt, — ! dwl) = (dd* + d*d)(widw!, — w!,dwl)
= d*d(wi dw!, — wl dw?)

= 2d* (dwl A dut).

Lemma 5.5.
m-

(5.23) /B

<C / | Dw, |2(X,Y)dXdY.
B, x B2

, || dwt wl, — dw%wfm(‘vY)”L%I(Bé)‘n)_l)dY

Proof. Let ,(X,Y) : R™ — R be an extension of w, such that

(524) ”D'II}n”LZ(Rm) S C”Dwn”L2(Bz_1XBKt—2).
An

Let FY € HY(R™, A2(R™)) be a solution to
(5.25) AFY = 2(dwt, A diirl,).
Then Lemma 5.3 implies that F2 € W21(R™, A2(R™)) and

| D?*F || 1 (gmy < Clldiby, A i |21 (gm)
< C||Dibn||Z2(gmy

< 2 oy
> C“Dwn”Lz(Bi;lXBE 2)
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By the Fubini’s theorem, we know, for H™ 2 ae. Y € Bg_2, DF,?(-,Y) €
WL(R?). By using the equation (5.22), we know that if G}/ is a harmonic
1-form in Bi_l X Bg—z, with

7(GY + d*(F) — (dwpw}, — wpdw))) =0,
here j : c’?(Bi_1 X Bg_z) — R™ denotes the inclusion map, then
(5.26) dwiwl, — whdwl = d*(F9) + GY,

in Bi_l X B;’;_Q. By choosing R suitably, we may assume that

dw' wl — dwl w? m—
” n%“n n n”L2(6(B(24_)§u)—1XB%E2))
_l . . . .
(5.27) < CR™2||dw,w}, — dwzzw:z”Lz(Bi_leg”)’
and
5.28 D2F4 o\ < C||D?F# m-2,.
(5.28)  |[D°Fy ||L1(a(3(2%ﬂ)_1x3¥2)) | D*F, ”Ll(Bi;leR )

Hence, applying the estimate on harmonic functions, we have D2GY €
LY(B? x Ba?) and
4

(8

||D2G2||L1(B(2

m—2
2Xn) "1 XB.}} )

<C (”D2F7izj”L1(Bi;1><Bg_2) + ||dwflw,’1 - dwglw;il”Lz(Bigl ng_2)>
(5.29) |
<C / | Dw,|*(X,Y)dXdY.
Bi_leg‘2

Combining these estimates together, we can conclude that
dwhwl — dwlwi € Whi (3(22)\”)_1 x'B%’ﬂ)
and

“dwnwn dwnwn ”Wl'l (B(szn)—-l XBg_Z)

(5.30) <C / | Dw,|*(X,Y)dXdY.
B?_,xBR~*



364 FangHua Lin and ChangYou Wang

Thus, for H™ 2 a.e. Y € Bm ~2, (dw}, wh — dwnwn)( Y) e Wh(B?, (22n )—1)

Hence, using the embedding W1 1(RQ) c L% 1(RZ) (cf. Hélein [H]), we know
that, for H™ 2 ae. Y € Bm 2, dwjwh — dwhwl,(-,Y) € L* (B}, y-1) and

[ dwiud - dwful Dl Y
%
<0 [ lduiw] - dwfu} s

m—2
BR
z

<C / |Dw,|*(X,Y)dXdY.
2_ xBp~?

(2an)~ -1)

This proves Lemma 5.5.
Using the duality between L?! and L?>*® and putting Lemma 5.3 and
Lemma 5.4 together, we then have

|dw? w! — dwiw’|?(X,Y)dXdY

(B2 1\B )XBm 2

(2An)~

B [ R T o A

R
z

S [ o 0 = dudilinscar, s
'T
”d’u) wJ dw]w ||L2 oo(B2 ) I\BH)

(5.31) < Cel/ |D'wn| (X,Y)dXdY.
- JB2_ xBR~?

On the other hand, it follows from (5.16) that
1 -
lwn|(X,Y) 2 §aV(X) Y)e (B(szn)—l \ Br) x By .
Hence, we can write (1.1') into the polar coordinate form as follows. Since

W, = |wn|3ﬁ = pnWn, We have p, 2 5 and |w,| = 1. Moreover, (pn,wn)
satisfies:

(5.32) Apn + &.%pn(1 = |pnl?) — pu|Dwn|* = 0,

(5.33) div(p2 Dwy) + p2|Dwp 2w, = 0.
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Observe that
k . . . .
S dwt i, — dwlwd (X, Y) = 2 Dun 2(X, Y).
ij=1

Hence, (5.31) implies

/( " P2 | Dw, |2 (X, Y)dXdY

-2
(2an)-1 \BR)X B

(5.34) < Ceq / |Dw,|*(X,Y)dXdY.

2 m—2
B . 1 XBg

Now we need to estimate the L2 norm of Dp,. In order to do so, we multiply
(5.32) by (1 — pn) and integrate it over the domain, we then have

(52 \B2 ) B2 Apn(L = pr) + €21 = pa)?pa(1+ pn)(X,Y)dXdY
(2An)—1 \PRI* PR

/ el pn)|Dwn|?(X,Y)dXdY
(BéAnyq\BR)XBR

SCfl/
B

It follows from (5.16) that

. |Dw,|?(X,Y)dXdY.

?f\n)_l XBQ-

lim R2™™ / &2(1 = pn)?pn(1 4 pn)(X,Y)dXdY = 0.
n—oo (B(Qg,\n)—l\B?Z)XBg_2

Using the integration by parts, we also have

/ 2 2 m—2 Apn(l - pn)(.X, Y)dXdY
(B(z,\n)—l\BR)XBR

/ |Dp,|?(X,Y)dXdY
(B,,,y-1 \BR)xBE

+/ (1- Pn)Pn,V~
8((3(221\7;)‘1\3?‘5))(3?_2)

Here v denotes the unit outward normal of the boundary. It is not difficult
to see that the second term goes to zero as long as n — 0o, R — oo. In fact,
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we have

R?m / |Dpn|*(X,Y)dXdY
(Bfy,y-1 \BR)XBR

(5.35) < CeaRE™ / |Dwa (X, Y) + 0(n~', R7Y).

B2__ xBm2
}\;1 R

Here limg_o0 limp 00 0(n ™Y, R71) = 0. Putting (5.34) and (5.35) together,
we then obtain

RZ—m /(‘B2 o) - |Dwn|2 + E;Q(]. _ IwnIQ)Z(X, Y)dXdY
(2an)—1 VPRIXPR

< CeR*™ / . |Dw,|*(X,Y) +0(n" Y, R7Y)

BirleBg_
< Cer +0(n™ Y, R7Y).

This, combines with the strong constancy argument as that used in the first
bubble process, implies

(5.36) |Dw,|?(X,0)dX < Cep +0(n~1, R7Y).
2

2
(2xn)~1 \BR

This finishes the proof of (5.23) and the proof of Theorem B is complete.
6. Proof of Theorem E.

In this section, we modify the ideas developed in the previous section to
show both the energy identity and the oscillation convergence results stated
in theorem E. Note that all the known results on this aspect require that
the tension fields are bounded in L2, and various methods developed in [J],
[P], [Q], [DT], [W], [QT], [LW1] seem to be difficult to generalize the case
that the tension field is bounded in LP for any p > 1. By an example of [P],
one knows that the energy identity fails to hold for tension fields belonging
to L' only. We believe the idea here may be useful for other problems as
well.

By following the bubbling scheme developed by Brezis-Coron [BC] (see,
Qing [Q] or Wang [W]), one only needs to consider the situation where two
bubbles by different scales generated at the same point and prove that there
is no energy concentration and oscillation at the neck region between these
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two bubbles. More precisely, we assume that there exist A, — 0, p, — 0,
with ’)% — 00, such that u,(z1+A,") converges to a nontrivial harmonic map
w; strongly in H!(Bg, N) for any 0 < R < 00, and up(z1 + i) converges
to another nontrivial harmonic map wy strongly in Hlloc(R2 \ B;, N) for any
small 7 > 0. Moreover, for some universal small constant ¢y to be chosen
later, we can assume that

(6.1) / |Dug|? < €3
B"#n\BR)\n

‘We need to show:

Lemma 6.1. Under the same notions as above. We have

(6.2) lim |Du,|? = 0(r, R71).
n—oo le'é_‘& \BzRAn

Here lim,_,0,p—c0 0(, R =0.

Proof. Denote 1, = %’f:" Note that 7, — 0o. Define vp(z) = un(z1 + T0).
Then v, satisfies:

(6.3) Av, + |Dvg|?vy = By, in B,

where A, (z) = A2h,(Anz). It follows from the conformal invariance of the
Dirichlet energy in two dimension that

(6.4) / |Dv,|? < €3
. Brn \BR

For 1 <14,j5 < k. Consider the 1- forms d'vfb'u,jl — v};dv,’;. Then the equation
(6.3) gives

(6.5) d* (dvivl — vidv?) = Fiod — Bloi = H9,
and
(6.6) A(dvivi —vidvl) = dHY 4 2d* (dv?, A dv?).

Now, let T, : R2 — R* be an extension of v, from B, \ Bg such that

(6.7) / DT < C / Dugl2 < Ce2.
R2 B, \Br
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Let 'j-_'f; : R? — R*** be an extension of H, from B,, by letting F:f =0
outside B;,. Hence

(6.8) / H.P<C / \H, P
R? B,

Define two functions ¥, € H'(R2? A%(RF*¥)), F, € W%P(R? R***) by
letting:

(6.9) AVY = d5, A did,,
and
(6.10) AF =H7.

Then, we have

(6.11) A(dvivl — vt dvl — dFY — 2d*¥%) =0, in B,, \ Br.
Therefore, if we define the 1-forms G,, € H(B,, \ Bg, A(R***)) by
(6.12) AGY =0, in B,, \ Bg,

(6.13) i*(GY — (dvivl — vidvl — dF9 — 2d*¥¥)) = 0.

Here i : O(By, \ Bg) — R? denotes the inclusion map and i* denotes the
pull-back map over one forms. Then we know, for 1 <ij < k,

(6.14) dviv] — vt dv] — dFY — 2d* 9% = G¥, in B,, \ Bg.

For ¥,,, we observe that the right hand side of (6.9) is in #!(R?2) (the Hardy
space in R?)( see [CLMS] for the details), and in H~!(R?) by Brezis-Coron
[BC]. Hence, we know that ;) € W2!(R?) and satisfies:

| D?T || 11 r2y < ATy, A A0 I3 (Re)

<c / DB, |2
R2

(6.15) <C |Dun|? < Cep,
Brn\BR

and

(6.16) / |DWH|2 < C’/ | DT, |2 < C’/ | Dv,|? < Cé2.
R2 R2 Br,\Br
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For F,, the W%P-estimate implies

ID2F || 1o rey < CIH Nl zo(r2)
< CllH || e (B.,)

22
(617) S CA'n p”hn”LP(Baun)‘

Hence, by Holder inequality, we have

2 i 2 pij 2(1-3)
| D°F || 1B,y < ID*F || Lo(B,,)Tn
2 i 2(1-3)
SID*FY pomeyrn *
2(1-1)
(6.18) < Cllbn| o (Bapp )i *

This, combines with the embedding (see, Hélein [H]) that W1(R2?) C
L¥1(R?) yields’

g 2(1-1)
(6.19) IDF || 12(B,,) < CllhnllLe(Bap, )in *-

Moreover, using the L% estimate for DF;, and (6.8) (see, also [H]), we have

I DE || 200 (r2y < CIIH | L2(R2)
< C||Hyllz1(B,,)
< Cllhnll Lt (Baw,)
2(1-3)
(6.20) < CllbnllLe(Bay,)in 7
Using the duality between L%! and L%, we have
g 1 1
IDF 128,y < IDF (720 I DF | 72,00
2(1—%)

(6.21) < Ol Lo (Bayn ) im

For G,,, we can choose suitable & > 0 and R > 0 so that
1 Lo

(6.22) R2(|GY || z28BR) £ C, A IGY |l 22(88,,) < C.

Since G,, is a harmonic 1-form, it is well-known that

—1 ” —1
(6.23) ”Gnlle'l(Brfﬁ\BzR) < CR 2, ”Gn”LZ’W(B%L\BgR) < CR™ 2.



370 FangHua Lin and ChangYou Wang

Substituting these estimates into (6.14), we conclude that (dv}, v, — vl dvi, —
2d*¥¥) € L>1n L2'°°(B_a \ Bzr) and

1-1
(6.24) ||(dvivl — vidvl — 2d*T) “L271(Bg,}\323) < C( 3 4 n( )) )

(6:25) (dvho], - ], = 24" V) a ooy g < O (R4 ).
In particular,

(626)  (dofod — via ~ 208 gy ) < C (RH 41 7).
Therefore, by (6.15) and (6.16), we have

l|dv},vg, — U;izdvz;”Lz(Br_f‘\Bzg)

1— 1
< 2Dy || parey + CRF + Ol ™7

2 -1 2(1-3)
<C |[Dvp|*+CR™2 4+ Cupn °
Bra \Br
< CeollenuLz(B%‘_\BzR) + C/; \Br |Dvnl2
2 _1 2(1- 1)
+C |Dvp|*+ CR™2 + Cun
Byr\Br

Notice that

k
Z |dvivd — vl dvl|? = 2|Dvy, |2
ij=1
Hence, by choosing ¢y sufficiently small and summing the left hand side of
the above inequality over 1 < 4,5 < k, we obtain

D,v (B S C / 'D'U 2+/ _D'Un 2
| Dvallz (Bﬂgs\Bm) (Bm\Br |Den BzR\BRl |

(6.27) +CR 3} + o,

/ | Doy |2 = / |Dwr]? +0(n~Y),
Bor\Br Bar\Br

Note that
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and : -
/ |Dvn|2 < / |Dw2|2 + O(n"l).
Br\Bzp / Ba\Bg

Here limy, 00 0(n™) = 0. It is clear that if we choose R sufficiently large
and « sufficiently small, then both terms in the right hand sides of the above
two inequality can be as arbitrarily small. Hence, the proof of Lemma 6.1
is complete.

The oscillation convergence in theorem E also follows from Lemma 6.1.
In fact, it follows from the proof of Lemma 6.1 that

2(1-1)
D%l o\ SC [ 1Dl + Clllioiuin * =0,

asn — 0 and R — oo. Let 9, be an extension of v, to R? such that it is
compactly supported and

1D%8n|| 1 (m2) < C”Dz”n”L‘(Brg \B2r)*

Note that
inle) = | [ Togle ~ slAsn(s)ay

- /R uDﬁ(y)aly’

2 |z —y|?
| Dn|| 21 (R2)

Lz,co(Rz)

< C“D2’5n”L1(Rz)

< C”Dzvn”Ll(B

y
< || =
- llyl2

"'_fk\B2R)'

In particular,
lim lim max |up|(z) =0.
R—o0on—00 :z:EBrél \B2r
This implies that there is no neck formation between the two bubbles.

At the end of this paper, we provide a weaker condition of the tension
field h,, which seems to be optimal in certain sense, such that theorem E
remains to be true.

For an bounded domain  C R2. Let #!(Q) be the local Hardy space
on § defined in the usual way ( see, Semmes [Se| for the detail). For a
Riemannian surface M, we can define 7! (M) by using the coordinate charts.
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Proposition 6.2. The energy identity part of theorem E remains to be true
if '

(a) the tension fields hy, is bounded in H*(M);

(b) hy is equi-integrable,

i.e., for any € > 0 there is a § > 0 such that for any E C M, with |E| <4,
[z |hnl(z)dz < € for any n > 1. The oscillation convergence part of theorem
E remains to be true if hy, is equi-integrable in H'(M) in the sense that for
any € > 0 there is a & > 0 such that for any open set E C M, with |E| <6,
Al gy < € for any n > 1.

It is easy to check that for p > 1 if h, is bounded in LP(M) then it
satisfies the above conditions.

Proof. Tt follows the same line of the proof of Lemma 6.1, except that we
need to estimate the L?! norm of DF;’ in a different way. To do it, let
n € CY(R?%, R4) be such that n =1 in B, and let

Jr2 nH;

=
fR2 n

n

Then it follows from a Lemma of Semmes [Se] that n(Hy — cd) e HY(R?)
and

In(H = e)llarzy < Cllbnllaas,,)

Now Let Fff)l and F:f)2 be 1-forms on R? and solve:

(6.29) AFZ, =n(HY - ),
(6.30) AFYZ, = ciin.

This, combines with (6.10), implies
(6.31) F9 =FJ +F2+ LY, in B,,.

Here LY is a harmonic 1-form so that we can estimate L2 norm of DL¥ in
the same way as that of G/ . For F’; and F,, we have

ID*FY, || pa(rey < Clin(Hy? = &d)lla(rzy <
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ID*FZ3l| (8,,,) < Cral D*Flall1a(s,..)
< Crallcinlicz ey = Crilcd|
< Cllhnllprs,,)
S Cllhallriss) < C.

From these, we obtain the bound of ||D2F,i,j|| [1(B,,)- The smallness of

||DF,’;j | L2.00(B,,) follows from the equi-integrable condition of h,. In fact,
for any € > 0, we can choose ¢ > 0 sufficiently small so that

InHZ|| 12 (r2y < [Rnllzis,,) < hnllziss) <€

If, in addition, hy is equi-integrable in H'(M), then the above argument im-
plies that | DFy || 21(p,, ) = 0(d) so that the oscillation convergence follows

as well.
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