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1. Introduction. 

This is in the sequel of our previous work [LW] on the study of the approxi- 
mated harmonic maps in high dimensions. The main purpose of the present 
article is to understand the bubbling phenomena as well as the energy quan- 
tization beyond the natural conformal dimension two for the Dirichelet in- 
tegral. This will be important toward our understandings of the defect 
measures and the energy concentration sets introduced and studied already 
for approximated harmonic maps in [LW]. We shall examine here the static 
situation, that is, the studies of harmonic spheres. In our forthcoming work 
[LW2], we will study the rectifiablity of defect measures in the parabolic case 
as well as the quasi-harmonic sphere bubblings and the so-called generalized 
varifold flow. 

As bi-products of our study are improvements of the "energy identity" 
as well as the "no necks formations" thorems for approximated harmonic 
maps from Riemannian surfaces. In all previous works one needs to assume 
the tension fields to be bounded in L2, that is not a conformally invariant 
condition. We find an essential optimal condition on tension fields, which is 
also scaling(up) invariant, and which is always satisfied whenever the tension 
fields are bounded in LP, for any p > 1. 

To describe the main results more precisely, we let M be a m dimensional 
compact Riemannian manifold (with possibly non-empty boundary 9M), 
N C Rk be a compact Riemannian manifold without boundary. For e > 0, 
let ue G C2(M,Rk) be a critical point of the generalized Ginzburg-Landau 
functional 
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where F G C00(Rk,R) satisfies: 

F{V) = d\V,N),   ifd(p,N)<<5, 

= 4(52, if d(p,N) >25. 

Here d denotes the Euclidean distance in Rk and d(',N) = mi{d(^p) : p G 
N}. Note that 5 > 0 is chosen to be so small that d2(p,N) is smooth for 
P £ ^25 = {p : d(p,N) < 26}. It is easy to check that ue satisfies: 

(1.1) Aue + \f(ue) = 0. 

Here f(ue) = —(DF)(ue). We assume henceforth that if N = S,/c~1, then 
F(p) = i(l - |p|2)2 SO that f(p) = p(l - \p\2) and (1.1) becomes 

(1.10 Aue + \u€(l-\u€\2) = 0. 
6 

For e > 0, let ue be solutions to (1.1) with 

(1.2) suple(ue) < +oo. 

Our interest is to study the limit behavior of t^'s, as e tends to 0. 
It is well-known, via Chen-Struwe [CS] and Chen-Lin [CL]), that one can 

always find a subsequence of ue, still denoted by uej such that ue —> u weakly 
in ii/'1(M)i?/c) and u G Hl(M,N) is a weakly harmonic map. Moreover, u 
is smooth away from a closed subset E C M with locally finite (ra — 2) 
dimensional Hausdorff measure. Very recently, we showed in [LW] that if N 
doesn't support harmonic S2 (i.e., nontrivial harmonic maps from S'2) then 
ue —> u strongly in iJ1(M, Rk). In particular, u is a stationary harmonic 
map whose singular set has Hausdorff dimension at most m — 4 (see, Lin 

[L])- 
The aim of this paper is to extend the blow-up techniques developed in 

[L] and [LW] to the case that N does support harmonic S*2. We obtain the 
bubbling result in the two dimension case, m — 2.   For m > 3, we prove 
a quantization result for the density function of the defect measure on the 
concentration set associated with the process of convergence, provided that 
AT = S'/c_1.   These ideas for the generalized Ginzburg-Landau functionals, 
which are motivated by an earlier work of Helein [H] and some recent works 
by [LR] and [LR1] in higher dimensions, can also be used to extend the 
known results on the energy identity and the bubble tree convergence for 
approximated harmonic maps from surfaces with bounded L2 tension field 
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to the case that the tension field of the approximated harmonic maps from 
surfaces with bounded LP tension field for any jp > 1, provided that N = 
5fc-1. 

Now, let us state our main results. 

Theorem A. Assume that m = 2. For e > 0, let ue C i/'1(M,i?fc) be 
solutions to (1.1) and satisfy (1.2) (for dM ^ 0, ue = g for some fixed 
g € ^(dM.N)). Then for any en —> 0 there exist a subsequence of uenJ 

denoted as itself, and a harmonic map UQ E C00(M, N) and a finite number 
of harmonic S2's, {(jUi}li=zV along with points {a^}l

i=l C M, and {A^}^=1 C 
i?4- such that 

l 

(1.3) lim Ien(0 = E(UQ) + J2E^i)- 
1=1 

(1.4) lim = 0. 
L00(M) 

Here£;(uo) = /M ^\Duo\2, Efa) = fS2 l\DuJi\2, cmduj?(x) = ^(^j^-)- 
a;(oo). 

Throughout this paper, it is assumed that all sequential convergences 
is taken after passing to possible subsequences if not mentioned explicitly. 
(1.3) is called as energy identity and (1.4) is called as bubble tree convergence. 
It will be clear from the proof in the below that (1.3) implies 

l 
iim

n Kn - ^o - y^rii#i(M) - o- 
1=1 

However, since if1(i?2) $£ L00(i?2), the convergence (1.4) asserting that 
there is no neck formation during the process of convergence is one of the 
most difficult issues in the study of bubbling phenomena for approximated 
harmonic maps with bounded L2 tension field in the two dimension case. 
For previous works on two dimensional harmonic map bubblings, see [J], 
[P], [Q], [DT], [QT], [W], [LW1]. 

For m > 3, assume that M = fi C R171 is a bounded domain , Note that 
if uen satisfies (1.1) and (1.2), then, for en -» 0, there exists a nonnegative 
Radon measure v on ft such that 

ee„KJ(z) dx = (l\Du€n\
2 + ^F(uenyj (x) dx -► ^\Du\2(x) dx + i/, 
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as convergence of Radon measures. Moreover, we showed in [LW] that there 
exists a closed subset E C fi, with locally finite (m — 2) dimensional Haus- 
dorff measure, such that 

(i) E =spt(^)Using(n), here spt(i/) denotes the support of v and sing(^) 
denotes the singular set of u\ 

(ii) there exists a iJ771-2 measurable function 0 < e^ < 6 < oo such that 

v(x) = e(x)Hm-2LZ,   for Hm-2  a.e.   x e E. 

(hi) Ifu€n does not converge to u strongly in JJ1(0, i2fe), then iJm_2(E) > 0 
and there exists at least one harmonic S2 in N. 

Claim (hi) suggests that if N does support harmonic S'2, then the strong 
convergence may fail. Hence, in order to understand the blowing up behav- 
iors of the convergence, it is important to understand the nontrivial defect 
measure u and describe its density function 0. We employ the ideas intro- 
duced in the recent works [LR] and [LR1] to show the following: 

Theorem B. J/; in addition, N = S*"1. Then, for iJ771"2 a.e. x e E, 
there exist 1 < lx < oo and harmonic S2 's, {(j)j}jLi, such that 

(1.5) e(a) = 2>to)- 
l=i 

One shall view (1.5) as a higher dimensional version of energy identity 
for weakly convergent sequences of critical points of the Ginzburg-Landau 
functionals. We also believe that theorem B remains to be true for any 
Riemannian manifold N. 

When m = 3, for any fixed e > 0, suitable scalings of a solution ue to 
(1.1) yield either a harmonic map u : R3 —> N: 

(1.6) Au + j4(u)(Zto, Du) = 0, 

with bounded normalized energy: 

(1.7) supiT1 /    \Du\2(x)dx < oo 
R>o        JBR 

or a map v : Rs —>• Rk which solves: 

(1.8) Av + f(v) = 0, 
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with 

(1.9) supiT1 f    [hDu\2 + F(v))(x)dx<oo. 
R>o        JBR \

2 / 

In order to understand these maps, we look at its tangent maps at the 
infinity. This has been done by Lin-Riviere [LR] for maps satisfying (1.6) 
and (1.7). Here we carry out the analysis for (1.8) and (1.9). 

First, recall a tangent map for v : R3 —> Rk satisfying (1.8) and (1.9) 
is a map (/> : R3 —> Rk obtained as a weak limit of VRn(x) = v(Rnx) in 
H} (R3,Rk) for some Rn —t +oo. Let TQQ denote the set consisting of all 
possible tangent maps of v at infinity. Then we can prove 

Theorem G.   Let v : R3 —>> Rk be a solution to (1.8) and (1.9).   Then for 
any 0 E Too 

(a) (f)(x) = (/>(■&) for x ^ 0, and (j)\g2 is a harmonic map into N. More- 

over, there exist Rn —> oo and a nonnegative Radon measure v on R3 

such that 

fjin = -\DvRn\2 + RlF(vn)) dx -> -|^|2 dx + 1/ 

as convergence of Radon measures. 

(b) v is a cone-measure, i.e. v\ — v for any A > 0. Here v\(A) = 
X~'1u(XA) for any Borel set A C R3. Moreover, there exist 1 < I < oo, 
{Pj}lj=i C S*2, and {8j}lj=i C R+ such that 

spt(v) = u}=1a^, 

where OPj denotes the ray emitting from the origin to Pj.   For 1 < 

j<l,     
vLOPj = 0jH

1LOPj. 

(c) The following balancing condition holds: 

i 

x\D(l)\2(x)dH2(x) + V OjPj = 0. 

(d) //; in addition, N = S^1. Then, for 1 < j < I, there exist 1 < pj < oo 
and harmonic S2 's, {(frq}1^3, such that 

q=l 

Is 
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Note that if <f) : S2 -> S2 is a harmonic map, then one has 

£(<£) = 47r|deg(0)|, 

where deg((/)) denotes the topological degree of (j). Hence, as a consequence 
of (d) in theorem C, we have the quantization result for a entire solution in 
of (1.8)-(1.9) ini?3. 

Corollary D.   Let v : Rs ->► S2 be a solution to (1.8) and (1.9).  Then 

(1.10) lim R-1 [    (l\Dv\2 + hi - \v\2)2) (x) dx = 47rfc, 
R^00        JBR \

2 4 / 

for some nonnegative integer k. 

One shall compare Corollary D with the two dimensional quantization 
effect result by Brezis-Merle-Riviere [BMR]. The similar result for three 
dimensional entire solutions to (1.6) and (1.7) was obtained by [LR], [LR1]. 
The basic idea is the estimate for the gradient in L2,1 and L2,oc (both are the 
Lorentz spaces). As an application of such analysis , we obtain the bubbling 
result for sequences of maps into the sphere with bounded L? tension field, 
for any p > 1. This extends previous known results, where the tension field 
is assumed to be bounded in L2. 

Theorem E. For m = 2 and M without boundary. Assume that un C 
Hl{M, S^1) converges to u weakly in jEf1(M, S^-1). For any p > 1, if the 
tension field: 

(1.11) hn = Aun + \Dun\2un, 

is bounded in Z^M). Then there exist a finite many harmonic S2's, 
{UJ}J=I, Wn}j=i C M, {X3n}j=i C R+ such that 

L 

(1.12) lim \\un-u-y]u)J
n\\Loo{M) = 0. 

j=l 

In particular, (1.12) holds, with L00(M) replaced by iiZ'1(M). Here a;£(-) = 

Here we would like to remark that the condition on the tension fields hn 

can be further weakened to a local scaling invariant one (see Proposition 6.2 
in the last section for the precise statement of these conditions). 
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2. Basic Estimates. 

This section is devoted to establishing a priori estimates needed in later 
sections. We assume that M ■ = ft C Rm is a bounded smooth domain. 
Denote BR(X) C R171 as the ball centered at x with radius R > 0. 

Lemma 2.1. Assume that ue : O —> i?fc solves (1.1).  T/ien we /ia^e 

(2.1) 

I?2-™ /        ee(ue)(x)dx-r2-m [       ee(ue)(x)dx 
JBR(x) JBr{x) 

JBR(x)\Br(x) o\y-x\ Jr JBt(x)     e
z 

for any x G ft and 0 < r < R < d(x, dti). 

One can find the proof in [OS] or [CL]. 

Lemma 2.2.   There exist eo > 0 and CQ > 0 such that if ue : B2R —t Rk 

solves (1.1) and (2R)2~rn fB    ee(ue)dx < e^, then 

(2.2) R2   sup   ee(ue)(x) < CoR2~m e€(ue)dx. 
xeBsR JB2R 

Moreover, for e « 1, 

(2.3) R2 sup \\f(ue)\(x) < Co (e2 + ^-e'0**) . 
xeBR e \ e J 

Proof One can refer to [CS] for the proof of (2.2). One can also find the 
proof of (2.3) in the last section of [CL]. However, we would like to outline 
a proof of (2.3) in the case that that N = S'fc_1. Note that the maximum 
principle implies l^eK^) ^ 1- By scaling argument, it suffices to prove (2.3) 
for R = l. Let $c = 1 - |ue|

2. Then it follows from (1.1') that 

(2.4) -e2A$e + 2$e < Ae2ee{ue) < Cege2,    in Bi, 

0 < $€ < 1,    on dBx. 
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Here we used (2.2), which implies that ee(u€) < CCQ in Bi.   Let w€(x) = 
we(\x\) : Bi —> R be a solution to 

(2.5) -e2Awe + 2we = 0,     in B1, 

we = 1,     on dBi. 

Then one can check that for e < 1 fe(x) = eal^' -1) is a super-solution to 
(2.5). Hence the maximum principle implies that 

w€(x) < e^^l2"1), xeBu 

and 
^(^) < Ce^e2 + ei^l2-1), x G Si. 

This yields (2.3). 

Lemma 2.3. For m = 2. Ze£ ue : ^(0) -> i2fe solve (1.1).   27ien; /or any 
0 < i? < 2; 

2      _r_ /      ^K) ^   f      |n_, ,2   ,  0  f      F(ue) 
idBR 

Here DT denotes the tangential derivative on dBft. 

JOB,   dr RjBn    e2 JdBn Jdl IBR    £- JdBR JdBR    e2 

Proof. Multiplying (1.1) by x • Due and integrating it over BR, integrations 
by parts yield (2.6). 

3. Proof of Theorem A. 

In this section m = 2. The idea is based on that developed by Lin-Wang 
[LW1]. The first step is to show the convexity of tangential energy of ue 

on 51; the second step is to use the Pohozaev inequality of Lemma 2.3 to 
control the radial energy of ue by its tangential energy. To make the proof 
clear and self-contained, we first recall the process for the first bubble. 

For en —>■ 0, we assume that uen does not converge to u strongly in 
Hl(M,Rk). Then there exist {XJ}^ C M and {rajj^i £ R+ such tliat 

1 L 
e
en(uen)(x) dx-> -\Du\2(x)dx + y^2mj5Xj. 

3=1 
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Here SXj denotes the Dirac mass at Xj. For simplicity, we assume L = 1. 
Consider the maximum concentration function: 

Qen(t) = o  max      /       een(uen)(x) dx. 
Bt{x)cBs{x) JBt(x) 

Then there are xn —> xi and An -> 0 such that 

Qen(K) = ^=  f e€n(uen)(x)dx. 
1 JBXn(xn) 

Define vn(x) = uen(xn + Xnx) : fin -> Rk, here {ln = X~1(Bs(xi) \ {xi}). 
Then 

A^n + —o/(^n) = 0,   in fin, 

and 

JB1(z) * 
for any z € fin, with equality for z = 0. Therefore Lemma 2.2 implies that 
w„ —> wi ^ constant in C1 fl H1^2) locally. Moreover, we claim that 

(3.3) in = -^ -»• 0. 

Otherwise, for a subsequence, either ^ —> c > 0 and wi satisfies 

Awi + c-2/(wi) = 0, 

It follows from [BMR] or [LW] that UJI is constant, which is impossible. Or 
en —> oo, which implies that LUI is a harmonic function in R2 with positive 
and finite energy and hence constant. This is impossible again. It follows 
that UJI : R2 —> N is a nontrivial harmonic map with finite energy. Hence 
the removable result of [SU] implies that ui can then be lifted to a harmonic 
S2 to N. One can repeat the same process to find all possible harmonic S'2's, 
{wj}lj=i- Moreover, / < C(M,N) < oo, since the energy of harmonic £2's 
has a uniform positive low-bound. It is clear that 

i 

(3.4) lim Ien(tO > E(u) + YJE(UJJ). 

3=1 

To prove (3.4) is an equality. We use the induction procedure illustrated 
in [DT] and assume that there is only one harmonic S2 obtained as above. 
Then theorem follows from the following Lemma. 
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Lemma 3.1. Assume that Z = 1.  Then we have 

(3-5) BJ^WSSOIBAB^ 
e*M{x)dx = 0' 

(3.6) RJ™s^o °^eB5\BRXnUen(x) - 0. 

Proof. For simplicity, we assume that xn = xi = 0 G R2. To make it clear, 
we further assume that TV = S1*"1. Since Z = 1, it follows from the argument 
of [DT] that 

(3.7) lim  f een(u€n)(x) dx < ^, Vi?An < r < 8. 

Therefore Lemma 2.2 implies that for n sufficiently large 

(3.8) sup    r2    max     (\Duen\
2 + ^{l - \uen\

2)] < Ce2. 
"5"       T 

Let    (r, ^)   be   the   polar   coordinate   in   i?2.        Define   vn     :     Sn 

[| log <J|, | log iZAnl] x S1 -> iZ* by vn(r, 6) = uen(e-r, 6). Then we have 

—2r 
(3-9) Avn + ^-(l - \vn\2)vn = 0, in Sn. 

€n 

Here A^n = ^Jp- + ^L. Moreover, (3.8) gives, for n » 1, 

(3.10) sup    (\Dvn\2 + ^(1 - \vn\2)) (r,0) < Ce2. 
M)G£n  \ en ) 

By adapting the calculation of [LW1], we now claim that, for n » 1, 

(3.11) -^J^ K?,|
2 > J^ K,,!2, Vr e [|log5|,|logi?An|]. 
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In fact, by direct calculations and integrations by parts, we have 

d2 

:,0eVn,rr 

/     \VnM2 = 2 \vn,er\2 + 2  /    "nfiVrift Jsl Js1 Js1 

= 2 /    |vni0r|
2 -2 /   vnje 

Js1 Js1 

= 2  /     \vnfr\2 + 2  /     \vni0 
Js1 Js1 

+ 2 f  e-2re-2(l-\vn\2)vnvnjee 
Js1 

= 2 f   K^|2 + 2 /   K^|2 

Js1 Js1 

-2 /  e-2re-2((l-\vn\2)vn)evn,0 
Js1 

= 2 [   KA|2 + 2 /   \vn900\2 

Js1 Js1 

+ 4/  e-2re-2\vnvn,e\2-2 [  e^e-^l - |t;n|2)|t;njfl 
Js1 Js1 

>2 f   \vnfi0\2-Cel f   \vnM2 

/     K,6 >   /     Kfll2 

Here we have used the Poincare inequality on S1: 

/   Ivnjel2 ^ /   \vn,e\ Js1 Js1 

Let 0(5, i?-1) denote the quantities such that limJR^00)(j_).oO(5, i?_1) = 0. 
Since uen -^ u in C

1(M \ S^) and nen(An-) -> CJI in Cl(BR) for any i? > 0, 
we can choose 8 sufficiently small and R sufficiently large such that 

o„= / \Dvn\2 = Q{8,R-x) 
y{|log5|}x5i 

(3.12) 6n= /" \Dvn\2 = Q{5,R-r). 
J{\\ogR\n\}xSl 

Denote To = | log 5\ and Tn = \ log R\n\. Applying the maximum principle 
to (3.11), we have 

(3.13) /   KtflV, •) < AneT + Bne-*, Vr € {TQ,Tn\, 
Js1 
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where 
pTnh    -pTon                     pTo+2TTln    _p2To+Tnh fQiA\            A        
e    0n     e   an    o       e           an — e           on 

Now we can easily see 

(3.15)                               lim   f   \vnto\2 = 0(8,R-1), 

and 

(3.16)                         lim   f "{[   \vnfi\
2)\=Q{8,R-1). 

Therefore Lemma 2.3 to conclude that 

PTn 

>    * 

< [ K^ + OR-2^)2. 

It tends to zero as n —± oo, 5 —> 0, and i? —> oo. Putting these two estimates 
together, we obtain (3.5). Moreover, (3.16) and Lemma 2.3 imply 

[Tn f (l_|u     |2)2 

JTo JdB-r 
en 

rTn   r i i -1?/   I2 /•T» 
</    (/   l«Mla)4+6n    sup    e-2-1     l^J    /     cMr 

^TQ     ^5! r€[ro,Tn] en ^TQ 

->0, 

as n —> oo, J -> 0, and R —t oo. In particular, we have 

(3.17) lim   f \Dvn\ = 0(5,R-1). 
n->oo Jj, 

Note that the Ll norm of gradient of vn essentially controls the oscillation 
of vn. Hence we conclude that the oscillation over the neck region goes to 
zero. Note that the inequality (2.6)also implies 

/ -2F(uen)(x)dx 
JBs\RXn en 

goes to zero as n —> oo, 5—^0, and R —t oo. Hence (3.5) is proven. 
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4. Proof of Theorem C. 

Note claim (4) of theorem C is a consequence of theorem B, we will prove 
the first three statements of theorem C. 

It follows from the definition of T^ that for any cj) G T^ there exist Rn —>* 
oo such that URn{x) = u(Rnx) —> </) weakly in Hi (R3,Rk). Moreover, it 
follows from (1.9) that for any R > 0, 

jR_1 /     eE-i(uRn)(x)dx <   lim   —— /        ei(u)(x) dx = Ai < oo, 
JBR     

n ^n^oo KKn JBRRn 

we assert that there exists a nonnegative Radon measure u on R3 such that 

eR-i(uRn)dx-* -\D<l)\2(x)dx + i>, 

as convergence of Radon measures. Moreover, (2.1) and (1.9) imply 

^ R
lim   / p-^ + ^Tp^ [   F(u)=0. 

R^OOJR3\BR        dp JR JBp 

By the lower semi-continuity, we then have, for any r < R < oo, 

JBn\Br Op n->°°JBR\Br °P 

I = lim/ P-^I^O. 

This implies that (f)(x) — </>(]§[) for x ^ 0. It also follows that 

f        p-2 f   FW = 0, 
J Bji\Br JBp 

this implies that (j) : JR
3
 -> N is a harmonic map. Furthermore, we claim 

that fi = ^\D<p\2(x) dx + v is a cone-measure, i.e., for any A > 0, /^A = M- 
Suppose that we have achieved this. Then we see that v is also a cone 
measure, since ^|D(/>|2(a;) dx is a cone measure. In particular, S =spt(z/) is 
a 1-dimensional cone in i?3 with locally finite H1 measure so that there exist 
1 < I < oo {Pj}l

j=i C S2, and {0j}l
j=1 such that 

E = u<=1ap-, 

and 



354 FangHua Lin and Chang You Wang 

for 1 < j < I. To prove that fi is a cone measure, it suffices to show 

(4.2) dufaO) = drda(0),V(r,O) e i?+ x S2. 

Here a is a Radon measure on S2. In fact, if (4.2) is true then for any Borel 
set A C R3 and A > 0, 

JXA 

= A"1 /   drda(6) = [ drda(6) = fi(A). 
JXA JA 

Note that (4.2) is equivalent to that n is invariant under radial directional 
translations, namely 

(4.3) dn(r + a,0) = d/i(r,0),Vr,a > 0,0 G S2. 

Let Ve e C00(i?+,i?) be a family of mollifies and rj G C00(S'2). For a > 0, 
denote ^n = URn and 

E(un,r],a,e) = /      /   eR-i(un)(r + a,6)7](6)^e(r)(r + a)2drd9. 
Jo    Js2 

Note that 

e^-i(^n)(r + a, 0)(r + a)2drd6 —> d/i(r + a, 0), 

so that 

lim     E{un,r],a, e) = /   rj{6)d^(r + a, 0). 

Therefore, we need to show 

— |a=o^(^n,^,a,e) -^ 0, 
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as n —> oo and e —> 0 in the sense of distribution. In fact, 

(4.4) 
d 

\a=oE(un,ri,a,6) 
da 

r»oo 

= 2 f     [ (r + a)(K,r|
2 + ^(ixn))^ + a,0)rt(e)il>e(r)d0dr 

Jo    Js2 

r+oo    r 
+ /     ((r + 0)2Un^Un^r + UnfiUnfir 

Jo     Js2 

- (r + a)2Rlf(un)un,r)(r + a,%(e)^c(r)rfWr 
Z' + OO      /» 

= 2 / /   ((r + a)K5r|
2 + (r + a)i?2FK))(r + a,%(^e(r)^dr 

^o      Js2 

r+oo    n 

+ /        /   [2(r + a)2('ixn)r'un5rr + un^un^e) + un^unie]v(0)^e(r)dedr 
Jo      Js2 

J      />-foo     /» 

= V /        /   (r + a)[l^,r|2 + i^K)](r + a,0)ri(0)Mr)Mdr 
da J0      Js* 

r+oo     n 
+ 2 1        I   (r + a)2un^un^r(r + a,6)(j){9)rilje{r)d6dr 

Jo     Js2 

r+oo     r 

- /   un^unje(j)e{0)i)e{r)dedr. 
Jo     Js2 

Here we have used that 

UnfiB + (r + afu^rr + Rlf(un) = 0. 

Integrating (4.4) with respect to a € (0, i? — p) and taking e into zero, we 
have 

(4.5) [  eR-i(un)(R,e)i1(e)d6- [  eR-i{un)(p,9)r1(e)de 
Js2    n Js2    n 

= 2 [ R2\un,r\2(RJe)v(e)d6-2 [ p2\un^r\2(pJe)r,(e)de 
Js2 Js2 

+ 2 [    [  r2R2
nF(un)(r,e)rj(e)dedr 

Jp   Js2 

- /   un,runfr)Q(6)d6dr. 
Jp   Js2 

Passing n into infinity and using (2.1), we obtain 

/  r,(e)dii(R,6)= [  r){e)d^p,e). 
Js2 Js2 
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This gives (4.3).   To show (c), we observe that the same argument as in 
Lemma 2.3 implies that, for any X € ^(i?3,^3), 

(4.6) /    eR-i (^n)divX - un,kunjXf = 0. 
J R3 

Hence, by choosing -X^a;) = Xj for 1 < j < 3 and letting n into infinity, we 
have 

i 

[  \x\D(j>\\x)dH\x) + YjejPj = ^ Js2 2 u 
This yields (c). 

5. Proof of Theorem B. 

In this section, As in [LR] and [LR1] we use the estimate on suitable Lorentz 
spaces norm of Due to give a proof of the energy identity of theorem B. We 
assume that M — Q, C i?m is a bounded smooth domain. 

First note that (2.1) implies that 

(5.1) R2-mn(BR(x)) > r2-mn(Br(x))y \/x G fi, 0 < r < R < d(x, dti). 

Here /i = ^|i)'u|2(x) dx + v is the limiting of eeix{ue^){x)dx. Hence 

em-2(M,z) = Urn i22-mM(Ba(aO) 
xx—^0 

exists for all x E SI and is upper semi-continuous. Moreover, it follows from 
the definition of E that 

(5.2) x e S if and only if eg < @m~2(^ x) < oo. 

In fact, the rectifiablity theorem of Preiss [P] and Lin [L] yields that S is 
(m - 2)-rectifiable. Note that e171'2^^) = limr^or2~m fBr{x) \Du\2 = 0 

for ifm-2 a.e. x E S. Therefore, for H™'2 a.e. x E S, eg < em-2(z/,x) = 
liinr-^or2~rnu(Br(x)) = 0m_2(/i, x) < oo. This verifies the condition of the 
rectifiablity theorem of [PI] and [L]. Based on this, we know that there 
exists a i?m_2-measurable function eg < © < oo such that 

i/(x) = e(x)Hm-2LZ,   for Hm-2 a.e. x E S. 

Since © is jHrm_2-measurable, it is approximately continuous for Hm~2 a.e. 
x E S. This, combines with the (m — 2)-rectifiablity of S, implies that for 
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Hm 2 a.e XQ e S, S has a (m — 2)-dimensional tangent plane T^QS, © is 
approximately continuous at XQ, and @rn~2(u,xo) = 0. We may assume 
that XQ = 0 and T^S = {(0,0,2/) : y € i?"1-2}. Let rn -> 0 and vn(x) = 
uen(rnx) :B%-+Rk. Then 

A^n + e-2i;n(l - |^n|2) - 0, in B?. 

Here €n = ^L. Now we follow the blow-up scheme of [LW] to conclude that 
there exist a tangent measure /i* of ji at 0 such that 

een{yn){x)dx -> /x* 

and 
^n -> constant, 

weakly in Hl(Rm) locally. Moreover, spt(/i*) = {(0,0)} x R™-2 c i?m, and 

/x* = e(0)iJm-2L({(0,0)} x i2m-2). 

Furthermore, applying (2.1) with various centers on TQS, we can assume 
that 

(5.3) lim 
n—too 

P      m 
dvn 

dyj 
+ €-zF(vn) = 0. 

Here Qi = 5? x 5^-2 c i?2 x i?m-2. 
Now we want to show that O(0) is a finite sum of energies of nontrivial 

harmonic maps from S2 into N. 
Let us first recall how the first bubble is obtained from the blow-up 

analysis from [LW]. Let X = (x1,X2) £ R2 and Y = (y3, ■ ■ ■ ,ym) G i?m-2. 
Define /„ : B™'2 ->• R by 

A0O-4fe 5Vn 

% 
+ €^F(t/n)      (^n^ 

and 5n : B" m-2 Rby 

9n(Y)= [   e-en(vn)(X,Y)dX. 
JBl 

Then the Pubini's theorem and (5.3) imply 

lim   H/nlliifB"-*} =0. 
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Therefore the weak L1-estimate of the Hardy-Littlewood maximal function 
implies that for any 0 < 6 < 1 there exists E% C B™~2, with \E%\ >l-S, 
such that 

(5.4) lim   sup  r2-m [       fn(Y)dY = 0,VY € 2%. 
"^OKr^i JBr{Y) 

Note also that for H™-2 a.e. Y e B^~2, gn is bounded. It follows [LW] 
that there exists F£ C E%, with [i^l >1-2S, such that 

(5.5) iim</n(y) = e(o),vrei^. 
n—yoo 

As in the section 3, we may assume that 0 G F^. For eo > 0 given by Lemma 
2.2, there exist {Xn}(c Bj) ->► 0 and An -^ 0 such that 

(5.6)   / ein(Vn)(x,0)dX = 7^= max f ein(vn)(X,0)dX, 
JBln(xn) C(m)     zeBzjBXn(z) 

here C(m) > 0 is to be chosen later. Define rescaling maps wn(X,Y) = 
Vn((Xn,0) + \n(X,Y)). Then w? satisfies (l.l') in A"1^2^) \ {Xn}) x 
JB™L7 , with €n replaced by Sn = j^-. It also follows from (5.4) and (5.6) that 

(5.7) 

lim     sup    r 2-m 

JB?-\O)JB* w \^3 

m     a        2 
OWn 

dyj 
+ Sn-

zF{wn)    = 0, 

(5.8) f      e5n(wn)(X,0)dX = -^- 

=   max    / esn(wn)(X,0)dX. 
zeB'    JBI{Z) 

Moreover, if we let (f> € CQ
>
{B

2
{Q)), then direct calculations show that for 

3 < j < m, 

-?- [      <p2(X)esn(wn)(X,Y)dX 

= -2 V /       foWftX)*,*^(X, Y)wntyj(X, Y) dX 

771   ft    r + T,Jr <t>2(X)wn,yiwn,yj(X,Y)dX. 
1=3       yl   J B2(V) 
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This, combines with (5.7) and (5.8), implies 

(5.9) (2An)2-/ eSn{Wn){x,Y)<6f. 

Hence Lemma 2.2 implies that 

wn(X,Y) -> w in Ctoc(B™-2 x R2). 

Moreover, Sn -> 0 and iu(X, Y) = w(Y) : i?2 -> iS^-1 is a nontrivial har- 
monic map with finite energy, which can be lifted to be a harmonic map 
from S2. 

Let wn(X) = wn(X}0) : B? -> S*"1. Since (5.5) gives 

(5.10) lim   f    esn(wn)(X)dX = Q(0). 
n^00 JBI 

In order to prove theorem B, we need to show that 

(5.11) lim e,n{^n){X)dX = VJB(^), 
n—>oo z—' 

where (/)j : 52 —> Sk~1 are nontrivial harmonic maps. 
Denote A(R,n) = {X e R2 : RXn < \X\ < |}. Then it follows from the 

first bubbling process shown as above that (5.11) is equivalent to 

(5.12) lim   lim   / e~en(vn){X,0)dX = Y]Efo). 
R-±oon^ooJA^n) ^ 

As in §3, it follows from the induction argument of [DT] that we only need 
to show that (5.12) is true for I = 1, i.e., 

(5.13) lim   / ein(vn)(X,0)dX = 0(R-1). 
n->00 JA(R,n) 

Here lim^^oo 0(R~l) = 0. We first claim that for any ei > 0, there are 
sufficiently large R and no such that for n > no, one has 

(5.14) r2-m [ e,n(vn)(X,Y)dXdY<el 
J(Bl\B?)xBy-2 
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for all r E [i2An, \]. Indeed, if (5.14) fails, then we may assume that there 
exists rn G [RXn, \] such that 

r2
n-™ f ein(vn)(X,Y)dXdY 

is equal to the maximum of the left hand side of (5.14) over all r G [i2An, 5], 
and is larger than e\. Moreover ^ —>• 00. Scale vn and define vn(X,Y) : 

(S2,, \ B^) x B™-2 -+ Rk by Vn(X,y) - vn(rnX,rnY). Then we have 

(5.15) / e?7n(^)(X,y)dXdy>62. 

Here r]n = ^ —>> 0. By the energy bound of t;n, we may assume that 

Vn -> ^00 weakly in if,1 (i?2 x B™~2,Rk). Moreover, using (5.7), we can 

conclude that v00(X,Y) = v00(X) : R2 —> S1*'1 is a harmonic map with 
finite energy. Hence, if the convergence is strong in H} (R2 x B™~2,Rk), 
then (5.15) implies that t^oo is nontrivial, which contradicts with I — 1. 
Hence the convergence fails to be strong and the blow-up argument of [LW] 
yields that there exist {x^KUi ^ ^2 ^or some 1 < p < 00 and Cd > 0 for 
1 < d < p such that 

p 

\Dvn\2(X,Y)dXdY -► \Dv00\2(X)dXdY + ^2cdH
m-2L({xd} x i?771"2), 

d=i 

as convergence of Radon measures. Moreover, there exists at least one non- 
trivial harmonic S2 along with the convergence process, this again contra- 
dicts with 1 = 1. It follows from (5.14) and Lemma 2.2 that we have 

(5.16) r2 sup egn(t;n)(X>y)<Ce;, 
(B2r\B2)xBr-a 

for all r € [RXn,§]. If we define t«B(X,y) : B2 1 x B"!^2 -»• i?fc by 

^n(X, y) = ^n(AnX, AnY"). Then (5.16) implies, in particular, 

(5.17) \X\\Dwn\(X,Y) < Cei.V^.y) G (5?2AB)-I \ ^) x S^2. 

Now let us recall the definition of the two Lorentz spaces we need, the 
reader can refer to Ziemer [Z] for details. 
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Definition 5.1. Let Ct C R2 be a given domain. A / : Q —> R is in L2,1^) 
(or L2'00^)) if 

|L2,i(n) = y     tff*(t)j<oo 

|L2,OO(Q) = supt>ott/*(t) < oo respectively) where /*(£) is the rear- 
rangement function of /. 

Lemma 5.2. Let wn be given as above. Then we have, for any Y G B^'2, 

(5.18) llT^^nil^-CB^^YBl) ^ ^i- 

Proof. It is easy to see that jjU E L2'00(i?2). Hence (5.17) implies, for any 

Y e B%-2, 

\\Dwn(-,Y)\\L2,oo(B2^\B2j   <Cen\\\X\~    ||L2,oo(B2 \B^ 

(5.19) < CeilllXl^H^oc^) < Cei. 

Let T-L1(Rrn) denote the Hardy space in i?m.   The following lemma is 
well-known and can be found in Stein [S]. 

Lemma 5.3. Assume that g G T-Ll{Rrn), the Hardy space in Rm.  Let ip G 
i?1(i?m) be a solution to 

AV> = g. 

Themp GW2^(Rm) and 

(5.20) PV||Ll(ii-)<C||/|kl(iim). 

Now we need 

Proposition 5.4. For l< 3,1 <k, we have, in B2^ x B™!]2, 
An An 

(i) 

m 

(5.21) EK<«-,i,n<«)« = 0- 

(2) 

(5.22) AKdu;^ - ^dt^) = 2(i*(d< A dwl
n). 
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Here d denotes the exterior derivative and d* denotes its adjoint in RP 

Proof. (1) Note that 

m 

a=l 

wn^wn - wnAw3n 

= ^^2(K|2 - \)wl
n - ^ie-^l^l2 - IK = 0- 

(2) Note that (1) is equivalent to that d*(wndwl
n — wl

ndwJ
n) = 0. Hence 

A(widwl
n - wl

ndwi) - (Af + d*d)(widwl
n - wl

ndwi) 

= d*d(wJ
ndwl

n - wl
ndw3

n) 

= 2d*(dwiAdwl
n). 

Lemma 5.5. 

(5.23) /       \\dwiwi - dwiwi(;Y)\\L2,HB2       jdY 
JBrn-2 ^    (2An)-iy 

R 
T 

<C f \Dwn\2(X,Y)dXdY. 

Proof. Let wn(X, Y) : Rm —> Rk be an extension of wn such that 

(5.24) WDwnWmn") < c\\Dwn\\L2{B2_iXB^-2). 

Let F% G Hl{Rm, A2(Rm)) be a solution to 

(5.25) AF% = 2(dw\Ad'S&). 

Then Lemma 5.3 implies that i^' € W2-1^, A2(i?m)) and 

ll^i^'ULl^m) < C||d< Ad^||wi(flm) 

<C\\DWnfL2(B2_iXBrn-2y 
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By the Fubini's theorem, we know, for H™-2 a.e. Y G B™'2, DF^-.Y) G 
W1'1(i?2). By using the equation (5.22), we know that if Gn is a harmonic 

An1   X  "R 

i*(Gj? + d*(2#) - {dwlwi - vidvi)) = 0, 

1-form in B2, x B™-2, with 

here j : d(B2
1 x B^  2) —>■ i?m denotes the inclusion map, then 

(5.26) cKX - ti£<K = d*(^) + <%, 

in -B^.x x B7^2. By choosing i? suitably, we may assume that 

'^^-^^''^(K^V)-^5?2)) 
(5.27) < Ci?   2|l^>n -^n<IL2(jB2_iXBm-2), 

and 

Hence, applying the estimate on harmonic functions, we have D2Gn   G 
L\B* x S^-2) and 

V.    3    / 4 

11   T-)ZS-11J || 

nllL   (B(aA„)-lXB^      ) 

< C ( ||-D
2
K-

7
|ILI(S2_1XS--

2
) + ¥« - rf«llt2(B2_1xS™-2) ) 

(5.29) 

^c/" |z?^n|2(x,y)dxdy. 
■/B^xB™-2 

Combining these estimates together, we can conclude that 

dw^wi - dwiwi G w1'1 (i?(
2
2AB)-i x'^r2) 

and 

||d«-dtl^<|| /    2 xBm-2\ 

(5.30) <c/ \Dwn\2(X,Y)dXdY. 
JB

2
 ,XB™-2 
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Thus, for H"1'2 a.e. Y € B^2, {dw^wi - dv&w^Y) € W"1'1^2^).!). 

Hence, using the embedding W1'1(i?2) C L2,1^2) (cf. Helein [H]), we know 
that, for Hm-2 a.e. Y e B^'2, dwl

nwi - dv&w^Y) € L2'1^2^^) and 

/      ,N<«4-^<(-,r)||L2,i(B?    , jdY 
JB™-2 (aAn)-1' 

rt 
T 

< C / |M« - d«||^i,i(jB2 ) 

T 

<C f \Dwn\2(X,Y)dXdY. 
JB

2
_1XB^-

2 

This proves Lemma 5.5. 
Using the duality between L2,1 and L2'00 and putting Lemma 5.3 and 

Lemma 5.4 together, we then have 

f \dwiwi - dv&wtfiX, Y)dXdY 
J(BUn)-^

BK)xBT2 

= [   widwiwi-dwiwix-^wi^ 
JB™-2 K    (2An)-1 

/ JM«-^«llL2,l(B2 \B\) 
JB7^-2 (2An)-l x    R' 

T 

(5.31) <Cei f \Dwn\2(X,Y)dXdY. 
JB

2
 ,XB^-

2 

\B 
2 > 

< 

On the other hand, it follows from (5.16) that 

\wn\(X,Y) > ^V(X,y) G (B2
2Xn)^\BR) x S--2- 

Hence, we can write (1.1') into the polar coordinate form as follows. Since 
PnUn, we have Pn > h and |cjn| = 1.  Moreover, (pn,un) Wn =   m 

satisfies: 

(5.32) Apn + 6-2pn(l - |pnp) - Pnl^^nl2 - 0, 

(5.33) d^plDujn) + ^Dc^l2^ = 0. 
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Observe that 

k 

J2 \dwM - d<<|2(X,y) = p2
n\Dun\2(X,Y). 

Hence, (5.31) implies 

/ pl\Dun\2(X,Y)dXdY 

(5.34) <Cei f \Dwn\2(X,Y)dXdY. 

Now we need to estimate the L2 norm of Dpn. In order to do so, we multiply 
(5.32) by (1 — pn) and integrate it over the domain, we then have 

f Apn(l - pn) + e-2(l - pn)2pn(l + Pn){X, Y)dXdY 

=   f Pn(l- Pn)\Dun\2(X,Y)dXdY 
J(B^n)_1\Bl)xB^ 

<Cei [ \Dwn\2(X,Y)dXdY. 

It follows from (5.16) that 

lim i?2"™ / e-2(l - pn)2pn(l + pn)(X,Y)dXdY = 0. 
^^ J(B2 ,   .   ABDxB™-2 

(2A„)- 

Using the integration by parts, we also have 

/ Apn(l-pn)(X,Y)dXdY 

= f \Dpn\2(X,Y)dXdY 
■/(B(

a
aAn)-i\^)xBSf-a 

+  / (1 - Pn)pn,v 
Jd^^XBDxB™-*) 

Here v denotes the unit outward normal of the boundary. It is not difficult 
to see that the second term goes to zero as long as n —> oo, R -> oo. In fact, 
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we have 

T>2—m [ \DPn\2(X,Y)dXdY 

(5.35) <CeiR2-m [ \Dwn\2(X,Y) + O^-^i?-1). 
JB

2
 IXB?-

2 

Here lim^-^oo linin-^oo 0(n~1,i?_1) = 0. Putting (5.34) and (5.35) together, 
we then obtain 

32-m f \Dwn\2 + e-2(l - \wn\2)2(X,Y)dXdY 

<CeiR2-m f iDwnfiXW + OirT1^-1) 
JB

2
 , XB™-2 

<Cei+0(n-1,i2-1). 

This, combines with the strong constancy argument as that used in the first 
bubble process, implies 

(5.36) f \Dwn\2(X, 0)dX < Cei + O^"1, R'1). 

This finishes the proof of (5.23) and the proof of Theorem B is complete. 

6. Proof of Theorem E. 

In this section, we modify the ideas developed in the previous section to 
show both the energy identity and the oscillation convergence results stated 
in theorem E. Note that all the known results on this aspect require that 
the tension fields are bounded in L2, and various methods developed in [J], 
[P], [Q], [DT], [W], [QT], [LW1] seem to be difficult to generalize the case 
that the tension field is bounded in LP for any p > 1. By an example of [P], 
one knows that the energy identity fails to hold for tension fields belonging 
to L1 only. We believe the idea here may be useful for other problems as 
well. 

By following the bubbling scheme developed by Brezis-Coron [BC] (see, 
Qing [Q] or Wang [W]), one only needs to consider the situation where two 
bubbles by different scales generated at the same point and prove that there 
is no energy concentration and oscillation at the neck region between these 
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two bubbles. More precisely, we assume that there exist An —> 0, /in —¥ 0, 
with ^ —> oo, such that un(xi+Xn') converges to a nontrivial harmonic map 
UJI strongly in ^(BR^N) for any 0 < R < oo, and un(xi +/in-) converges 
to another nontrivial harmonic map UJ2 strongly in H} (R2\Br,N) for any 
small r > 0. Moreover, for some universal small constant eo to be chosen 
later, we can assume that 

\Dun\z < eg. (6.1) f 
JBrfj,n\BRxn 

We need to show: 

Lemma 6.1.   Under the same notions as above.  We have 

(6.2) lim   f \Dun\2 = 0(r,R-1). 
JBr^n \J32R\n 

Here lim^^o^-^oo 0(r, i?-1) = 0. 

Proof. Denote rn = ^IL. Note that rn —>• oo. Define vn(x) — un(xi + rnx). 
Then vn satisfies: 

(6.3) Avn + \Dvn\2vn = /in, in Brn, 

where hn(x) = X^lhn(Xnx). It follows from the conformal invariance of the 
Dirichlet energy in two dimension that 

(6.4) f \Dvn 
JBrn\BR 

2 <    2 

For 1 < i, j < k. Consider the 1- forms dv^Vn — v^dvn- Then the equation 
(6.3) gives 

(6.5) d*(dvivi - vidvi) = Vyn - hivi = Hj?, 

and 

(e.e) A(dvivi - vidvi) = dHU+2^^ A dvi). 

Now, let vn : R? —¥ Rk be an extension of vn from Brn \ BR such that 

(6.7) /   \Dvn\2<C [ \Dvn\2<Cel 
JR2 JBrn\BR 
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Let £?„ : R2 -> Rkxk be an extension of Hn from Brn by letting IT^ = 0 
outside Brn. Hence 

(6.8) /   \Hn\p<C f    \Hn\*. 
JB? JBrn 

Define two functions *n  E H1(R2,A2(Rkxk)), Fn G W2*{R2,Rk*k) by 
letting: 

^715 (6.9) kV^^/ydvi. 

and 

(6.10) Ai^=^'. 

Then, we have 

(6.11) A(d«X - <^ - di^' - 2d*¥i) = 0, in £rn \ Bfl. 

Therefore, if we define the 1-forms Gn € H^B^ \ BR, A(Rkxk)) by 

(6.12) AG" = 0, in BPn \ Bfl, 

(6.13) **(G^ - (dvX - <^ - dF* - 2d*¥j)) = 0. 

Here i : d(Brn \ BR) —} R2 denotes the inclusion map and i* denotes the 
pull-back map over one forms. Then we know, for 1 < ij < k, 

(6.14) dvivi - v^dvi - dFi? - 2d*¥^ = Gi?, in Brn \ BR. 

For \I/n, we observe that the right hand side of (6.9) is in /H1(i?2) (the Hardy 
space in R2)( see [CLMS] for the details), and in H~1(R2) by Brezis-Coron 
[BC]. Hence, we know that <&% G W2^(R2) and satisfies: 

\\D2¥j\\Lim< H^A^II^i^) 

<C f   \Dvn\2 

JB? 

(6.15) < C f \Dvn\2 < Ce2, 
JBrn\BR 

and 

(6.16) /   \D¥j\2<c[   \Dvn\2<C f \Dvn\2<Cel 
JB* JB? JBrn\BR 
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For Fn, the W2'p-estimate implies 

\\D  Fn\\LP{R2) < C\\Hn IILP^
2
) 

<C||^||LP(Brn) 

(6.17) ^CXn^WKUviB^y 

Hence, by Holder inequality, we have 

\\D2Fi%,{Brn) < \\D2F^\\LPiBrn/n
{1 -$ 

(6.18) <C\\hn\\LPiBctiin)iZ
{l~lp). 

This, combines with the embedding (see, Helein [H]) that Wl'1(R'2)  C 
L2'^^2) yields' 

(6.19) \\DF%\\L,,HBrn) < CWhnUr^jVn1^■ 

Moreover, using the L2'00 estimate for DFn and (6.8) (see, also [H]), we have 

\\DFn   IlLS^^)   <  C\\Hn \\L1(R2) 

< C\\Hn\\Li(Brj 

<C\\hn\\Li(Baftn) 

(6.20) <C\\hn\\LP{B^n
{1~kp\ 

Using the duality between L2'1 and L2'00, we have 

\\DF^\\LHBrn) < IIDF^IIADF^II^ 

(6.21) ^CWKW^s^fS1'^. 

For Gn, we can choose suitable a > 0 and R > 0 so that 

(6.22) RH&'WvueBj < C,rl\\G^\\L2{dBrn) < C. 

Since Gn is a harmonic 1-form, it is well-known that 

(6.23) \\Gn\\L2HB.XB2R) < CiH, ||Gn||L9.co(B   \B2R) < CR-l 
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Substituting these estimates into (6.14), we conclude that (dv^Vn — v^dvi 

2d*¥j) e L2'1 n L2'00^ \ B2R) and 

(6.24)    HOfoX - <d*i - 2d*¥^\\L,HB   \B2R) < C (R-I + /if"- 

(6.25)   ||(^X " vldvi - 2d**£)||La.oo(B2^Saj0 < C (R^ + iZ?  ^ 

In particular, 

(i 2(1 — -) 

Therefore, by (6.15) and (6.16), we have 

i 2(1—-) 
< 2\\Lhi>%>\\l?{Ip) + CTT2 + c^  pJ 

•I   ,   „   2(1-1) <C I \Dvn\z + CR-2+Ciin f \Dvn\ 
JBr~\BR 

< Ceo\\Dvn\\L2iB   \B2R) + C f \Dvn\ 

+ C [ \Dvn\2 + OR-* + C/Z 
JBonXBr, 

2(1-^) 

Notice that 
k 

Y^\dvilvi-v
i

ndvi\2 = 2\Dvn\\ 

Hence, by choosing €o sufficiently small and summing the left hand side of 
the above inequality over 1 < i, j < k, we obtain 

\\Dvn\\L2{B    \B2R) < C If \Dvn\2 + f \Dvn\ 
-T yBmXBrp JB2R\BR 

(6.27) +CR-$+CijLn1~*). 

Note that 
/ \Dvn\2= f iDojrf + Oin-1), 
JB2R\BR JB2R\BR 



Harmonic and Quasi-Harmonic Spheres 371 

and 

f \Dvn\2< f \Duj2\2 + 0(n-1). 
JBrn\Br^ JB^B* 

Here limn-^oo 0(n~1) = 0. It is clear that if we choose R sufficiently large 
and a sufficiently small, then both terms in the right hand sides of the above 
two inequality can be as arbitrarily small. Hence, the proof of Lemma 6.1 
is complete. 

The oscillation convergence in theorem E also follows from Lemma 6.1. 
In fact, it follows from the proof of Lemma 6.1 that 

f 2(1—-) 
\\D2vn\\Li{B    \B2R) < C / |^n|

2 + CWKWLPUM)!*    
P
   -»• 0, 

J Brn\BR 

as n -> 0 and R —> oo. Let vn be an extension of vn to R2 such that it is 
compactly supported and 

Note that 

\D Vn\\mR2) - C\\D Vn\\L1(Br^\B2R)' 

\vn\(x) = \       log \x - y\Avn(y)dy 
\JR

2 

\L 
nr*   qj 

Dv(y)dy 
& k - y\2 

In particular, 

-   hn2 ll^^nllL2.1^2) 
II m 11^00(^2) ^ ; 

< C\\D ^nlU1^2) 

< C\\D2vn\\Li{B   \B2R). 

lim   lim       max      \vn\(x) = 0. 
R-±oc n->oo xeBrn\B2R 

This implies that there is no neck formation between the two bubbles. 
At the end of this paper, we provide a weaker condition of the tension 

field /in, which seems to be optimal in certain sense, such that theorem E 
remains to be true. 

For an bounded domain O C R2. Let H1^) be the local Hardy space 
on Q defined in the usual way ( see, Semmes [Se] for the detail). For a 
Riemannian surface M, we can define 7^1(M) by using the coordinate charts. 
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Proposition 6.2. The energy identity part of theorem E remains to be true 

if 

(a) the tension fields hn is bounded in ?{1(M); 

(b) hn is equi-integrable, 

i.e., for any e > 0 there is a 8 > 0 such that for any E C M, with \E\ < 5, 
fE \hn\(x)dx < e for any n > 1. The oscillation convergence part of theorem 
E remains to be true if hn is equi-integrable in %1{M) in the sense that for 
any e > 0 there is a 5 > 0 such that for any open set E C M, with \E\ < 5, 

ll^nlk1^) <€'foranyn> 1. 

It is easy to check that for p > 1 if hn is bounded in 17 (M) then it 
satisfies the above conditions. 

Proof It follows the same line of the proof of Lemma 6.1, except that we 
need to estimate the L2,1 norm of DFn in a different way. To do it, let 
rj e CQ(R

2
, R+) be such that rj = 1 in Brn and let 

Then it follows from a Lemma of Semmes [Se] that ri(H% — cjf) € ?/1(i?2) 
and 

\\v(HV-c«)\\nim<C\\hn\\HHBTn) 

(6.28) < C\\hn\\Hi{M) < C < oo. 

Now Let F^j and i7^ be 1-forms on i?2 and solve: 

(6.29) Al%tl = r,(Hii-<*l), 

(6-30) A^2 = <V 

This, combines with (6.10), implies 

(6.31) F^F^ + F^ + I^, mBrn. 

Here 1$ is a harmonic 1-form so that we can estimate L2'1 norm of DL^ in 
the same way as that of 0%'. For F^ and F^, we have 

Wn^^Him < CMHH - <*[)\\HW) $ c, 
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\\D2rn
j

>2\\LHBrn) < Crn\\D2F^\\L2iBrn) 

<CrB||c«i/||L.(Jl») = CrM 

< C\\hn\\Li{Brn) 

<C\\hn\\LHB5)<C. 

Prom these, we obtain the bound of \\D2Fn3llz^BrJ- The smallness of 

\\DFn\\L2<°o(Brn) follows from the equi-integrable condition of h„. In fact, 
for any e > 0, we can choose <5 > 0 sufficiently small so that 

\\vHii\\Lim < \\hn\\mBrn) < WhnhHB,) < €. 

If, in addition, hn is equi-integrable in Ul{M), then the above argument im- 
plies that \\DF%!\\L2,i(Brn) = 0(5) so that the oscillation convergence follows 
as well. 

References. 

[A] W. Allard, An integrality theorem and a regularity theorem for sur- 
faces whose first variation with respect to a parametric elliptic in- 
tegrand is controlled, in 'Geometric measure theory and the calcu- 
lus of variations (Arcata, Calif., 1984),' 1-28, Proc. Sympos. Pure 
Math., 44, Amer. Math. Soc, Providence, R.I., 1986. 

[BC] H. Brezis and J. Coron, Convergence of solutions of H-systems or 
how to blow bubbles, Arch. Rational Mech. Anal., 89(1) (1985), 
21-56. 

[BMR] H. Brezis, F. Merle, and T. Riviere, Quantization effects for -Au = 
u(l - \u\2) in i?2, Arch. Rational Mech. Anal., 126(1) (1994), 35- 
58. 

[CL] Y. Chen and F.H. Lin, Evolution of harmonic maps with Dirichlet 
boundary conditions, Comm. Anal. Geom., 1(3-4) (1993), 327-346 

[CS] Y. Chen and M. Struwe, Existence and partial regularity results for 
the heat flow for harmonic maps, Math. Z., 201(1) (1989), 83-103. 

[CLMS] R. Coifman, P.L. Lions, Y. Meyers, and S. Semmes, Compensated 
compactness and Hardy spaces, J. Math. Pures Appl. (9), 72(3) 
(1993), 247-286. 



374 FangHua Lin and Chang You Wang 

[DT] W.Y. Ding and G. Tian, Energy identity for a class of approximate 
harmonic maps from surfaces, Comm. Anal. Geom., 3(3-4) (1995), 
543-554. 

[H] F.   Helein,   Harmonic   Maps,    Conservation  Laws   and  Moving 
Frames, 1997, Diderot Multimedia Diderot Editeur, Art's et Sci- 
ences. 

[J] J.  Jost,   Two dimensional geometric variational problems,  New 
York, Wiley, 1991. 

[L] F.H. Lin, Gradient estimates and blow-up analysis for stationary 
harmonic maps, Ann. of Math. (2), 149(3) (1999), 785-829. 

[LR] F.H. Lin and T. Riviere, Energy Quantization for Harmonic Maps, 
Duke Math. Journal, 111(1) (2002). 

[LR1] F.H. Lin and T. Riviere, A quantization property for static Ginz- 
burg-Landau votices, Comm. Pure Appl. Math., 54(7) (2001), 826- 
850. 

[LW] F.H. Lin and C.Y. Wang, Harmonic and Quasi-harmonic Spheres, 
Comm. Anal. Geom., 7(2) (1999), 397-429. 

[LW1] F.H. Lin and C.Y. Wang, Energy identity of harmonic map flows 
from surfaces at finite singular time, Calc. Var. &; P.D.E., 6(4) 
(1998), 369-380. 

[LW2] F.H. Lin and C.Y. Wang, Harmonic and Quasi-Harmonic Spheres, 
Part III, Ann. Inst. H. Poincar Anal. Non Linaire (in press). 

[P] T. Parker, Bubble tree convergences for harmonic maps, J. Differ- 
ential Geom., 44(3) (1996), 595-633. 

[PI] D. Preiss, Geometry of measures in Rn: distribution, rectifiability, 
and densities, Ann. of Math. (2), 125(3) (1987), 537-643. 

[Q] J. Qing, On singularities of the heat flow for harmonic maps from 
surfaces into spheres, Comm. Anal. Geom., 3(1-2) (1995), 297-315. 

[QT] J. Qing and G. Tian, Bubbling of the heat flows for harmonic maps 
from surfaces, Comm. Pure Appl. Math., 50(4) (1997), 295-310. 

[SU] J. Sacks and K. Uhlenbeck, The existence of minimal immersions 
of2-spheres, Ann. of Math. (2), 113(1) (1981), 1-24. 



Harmonic and Quasi-Harmonic Spheres 375 

[Se] S. Semmes, A primer on Hardy spaces, and some remarks on a the- 
orem of Evans and Miiller, Comm. Partial Differential Equations, 
19(1-2) (1994), 277-319. 

[S] E. Stein, Singular Integrals and Differentiablity Properties of Func- 
tions, Princeton University Press, 1970. 

[W] C.Y. Wang, Bubble phenomena of certain Palais-Smale sequences 
from surfaces to general targets, Houston J. Math., 22(3) (1996), 

559-590. 

[Z] W.  Ziemer,   Weakly differentiable functions.  Sobolev spaces and 
functions of bounded variation, Graduate Texts in Mathematics, 
120, Springer-Verlag, New York, 1989. 

COURANT INSTITUTE OF MATHEMATICAL SCIENCE 

NEW YORK UNIVERSITY, NEW YORK 10012 
E-mail address: linf Ocims.nyu. edu 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY 

LEXINGTON, KY 40506 
E-mail address:  cywangOms. uky. edu 

RECEIVED MARCH 14, 2000. 


